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ABSTRACT

Diffusion models have emerged as a successful approach for molecular docking,
but they often cannot model protein flexibility or generate nonphysical poses. We
argue that both these challenges can be tackled by framing the problem as a trans-
port between distributions. Still, existing paradigms lack the flexibility to define
effective maps between such complex distributions. To address this limitation we
propose Unbalanced Flow Matching, a generalization of Flow Matching (FM) that
allows trading off sample efficiency with approximation accuracy and enables more
accurate transport. Empirically, we apply Unbalanced FM on flexible docking
and structure relaxation, demonstrating our ability to model protein flexibility
and generate energetically favorable poses. On the PDBBind docking benchmark,
our method FLEXDOCK improves the docking performance while increasing the
proportion of energetically favorable poses from 30% to 73%.

1 INTRODUCTION

The mechanism of action of most drug molecules is often rationalized by studying how the molecule
binds to one or more key proteins. Computationally, predicting the structure of these binding
interactions constitutes the molecular docking task. Over the past decades, significant progress has
been made in molecular docking, initially through classical search techniques and more recently
with deep learning models. However, these methods primarily focus on rigid docking, assuming the
protein has a fixed structure.

Proteins however are flexible entities and often undergo conformational changes during docking.
Computational methods for understanding flexibility fall into two categories: co-folding and flexible
docking. Co-folding involves predicting the bound structure of the protein and the ligand from
scratch as a single task. Flexible docking, instead, aims at only modeling the limited structural
transformation between unbound and bound protein structures, a formulation that allows for more
efficient, interpretable, and controllable methods.

However, existing flexible docking methods have so far failed to provide satisfactory levels of
accuracy. Among these, search-based techniques struggle to account for protein degrees of freedom
due to the significantly increased dimensionality of the search space (Koes et al., 2013; McNutt et al.,
2021). Deep learning methods have improved on this by extending diffusion or flow processes to
include the protein degrees-of-freedom, but these often implicitly force the model to learn protein
folding, resulting in structure predictions that are frequently inaccurate (Qiao et al., 2024; Lu et al.,
2024). Furthermore, recent works have highlighted the tendency of ML docking models to generate
non-physical structures (Buttenschoen et al., 2024).

Addressing the challenges above requires new techniques for precise transport between the complex
distributions of unbound (apo) and bound (holo) protein structures. Flow matching (FM) (Lipman
et al., 2022; Albergo et al., 2023), in principle, can learn such a transport. However, we show that
directly applying flow matching to this task results in complex mappings, a difficult learning task,
and consequently poor performance. To address this, we propose Unbalanced Flow Matching, where
we relax the marginal constraints of FM through a more careful choice of coupling distribution. We
study these choices both formally and empirically, resulting in a higher docking performance. We
further consider composing short unbalanced flows and show that, in the limit, this corresponds to
local likelihood gradient steps towards the desired marginal.
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Figure 1: Schematic representation of the FLEXDOCK docking framework formed by the chaining of
two unbalanced flows. The first (details in Section 4.1) is aimed at resolving the approximate pose
by working on longer flows but reduced degrees of freedom, and the second (Section 4.2) aims at
relaxing the generated structure producing high-quality poses.

Based on the insights above, we construct a new flexible pocket-based docking method FLEXDOCK
by chaining two separate Unbalanced Flows (see Figure 1). The first, referred to as manifold docking,
is defined on a low dimensional space and aims to predict the approximate ligand pose and protein
structural change. The second, relaxation, is defined on the full Euclidean space but with shorter
maps and aims to provide a fast yet effective relaxation of the structure.

Empirically, we demonstrate that the new modeling perspective of FLEXDOCK enhances structure
prediction quality, especially for protein conformations. On the PDBBind flexible pocket-based dock-
ing benchmark, FLEXDOCK improves the proportion of very accurate protein structure predictions
(all-atom RMSD below 1Å) from 32% of DiffDock-Pocket to 42% while having the same training
data and model architecture. Furthermore, thanks to the relaxation flow, the generated poses are far
more physically realistic, as demonstrated by the proportion of poses passing PoseBusters checks
(Buttenschoen et al., 2024) which increases from 30% to 73%.

In summary, we propose Unbalanced Flow Matching, a new distribution matching framework, and
prove it provides a way to balance sample efficiency and sample quality. Furthermore, by chaining
together new manifold docking and structure relaxation models based on Unbalanced FM, we develop
a flexible docking method that addresses two major limitations of previous docking techniques:
accurate protein flexibility modeling and the generation of energetically favorable poses.

2 BACKGROUND AND RELATED WORK

Flow matching. FM is a generative modeling paradigm that was introduced as a flexible gener-
alization of diffusion models, and allows learning a transport between arbitrary distributions with
a simulation-free objective (Lipman et al., 2022; Albergo et al., 2023). Given two distributions q0
and q1, FM provides a way of learning a vector field vt which induces a continuous normalizing flow
ψt(x) that transports q0 to q1, i.e., q1(x) = [ψ1]#q0(x), where # denotes the pushforward operator.

The key idea in FM is to define a conditional flow ψt(x0|x1) interpolating between x0 ∼ q0 and
x1 ∼ q1, and its associated vector field ut(xt|x1) =

d
dtψt(xt|x1). One can then learn the marginal

vector field vt(x) with a neural network vt(x; θ), by regressing against the conditional vector field
with the CFM objective:

LCFM = Et,x0∼q0,x1∼q1 ∥vt(xt; θ)− ut(xt|x1)∥2 (1)

FM was further generalized by Pooladian et al. (2023) and Tong et al. (2023) who show that the
CFM objective does not require independent samples from q0 and q1, but it can use an arbitrary
joint sampling distribution q(x0,x1), the coupling distribution, as long as it satisfies the marginal
constraints being q0 and q1 respectively. This formulation enables drawing a connection between FM
and optimal transport (OT). When using OT to define the coupling distribution q, the flows become
straight and the transport cost Eq0(x0) ∥ψ1(x0)− x0∥2 is the OT cost W 2

2 (q0, q1).
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Flexible Docking. Flexible docking assumes access to unbound structures of proteins (known as
apo) and predicts how these will change upon ligand binding (producing holo-structures). Traditional
search-based docking methods define a scoring function and search the space of possible poses,
aiming to find the pose minimizing the scoring function (Alhossary et al., 2015; McNutt et al.,
2021). These methods can in principle incorporate protein flexibility by adding torsion angles of the
sidechains in the pocket to the search space. However, they struggle to find optimal joint poses due to
the increased dimensionality and they are unable to model proteins’ flexibility beyond the sidechains.

Recently, a few deep learning methods for flexible docking have been proposed. DIFFDOCK-POCKET
(Plainer et al., 2023) and RE-DOCK (Huang et al., 2024) use diffusion and diffusion bridge models
to capture the flexibility in protein pocket sidechains in addition to ligand flexibility, they, however,
once again cannot model proteins’ flexibility beyond sidechain torsion angles. DYNAMICBIND
(Lu et al., 2024) incorporates backbone flexibility but uses hardcoded noise perturbation rules to
interpolate from apo residue frames to holo residue frames. Somnath et al. (2023) explicitly predicts
the conformational changes between apo and holo states of proteins using Diffusion Schrödinger
Bridges by treating the apo and holo states as paired data.

Structure Relaxation. Even in rigid docking, ML methods, despite improving geometric prediction
accuracy, often produce poses with nonphysical properties like steric clashes and strained bonds
(Buttenschoen et al., 2024). These artifacts can hinder downstream prediction tasks, necessitating
relaxation using molecular dynamics force fields. However, this relaxation process is often long
(Bryant et al., 2024), complicating its use in large-scale screening.

3 UNBALANCED FLOW MATCHING

The motivation for flexible docking over co-folding is to leverage the unbound distribution of proteins
and focus on modeling the precise effects of ligand binding. Formally, we wish to approximate a flow
ψt (equivalently vector field vt), whose pushforward transports the distribution over apo-structures q0
to the distribution over holo-structures q1.

The flexible docking setting presents two challenges that make a direct application of flow matching
for this task ineffective (as we will also demonstrate empirically). First, X-ray crystallography data
are the main source of bound conformations, resulting in the availability of a single sample for holo-
structure for most complexes in our dataset. This prevents us from using minibatch-OT based flow
matching methods (Pooladian et al., 2023), leading to a large expected length of conditional flows.
Second, even if one could construct the optimal transport mapping q between q0 and q1, the induced
expected cost will likely remain very high. In fact, although the different conformational states of
the protein do not change significantly upon ligand binding, their relative weights are often notably
altered. Training FM in this setting requires the model to move the protein between conformations,
leading to long and complex conditional and marginal flows, and a harder learning task.

We propose the Unbalanced Flow Matching framework to tackle such problems.

3.1 FORMALIZATION

Given an input distribution q0 and a target distribution q1, Unbalanced FM aims to learn a continuous
normalizing flow parameterized with a vector field vt(xt; θ) that minimizes the following objective:

min
q,θ

LUFM(q, θ) = min
q,θ

αEt,(x0,x1)∼q

[
∥vt(xt; θ)− ut(xt|x1)∥2

]
︸ ︷︷ ︸

Conditional flow matching

+D2(q0|qx0
) +D2(qx1

|q1)︸ ︷︷ ︸
Mass-variation penalty

(2)
where q is an arbitrary coupling distribution whose marginals we denote by qx0 and qx1 , and D2 is
the Rényi Divergence of order 2. We will derive the motivation for this objective in Section 3.2 by
showing that it describes a tractable upper bound to the fundamental approximation vs efficiency
trade-off.

Flow matching and its variants choose a coupling distribution q such that the marginals are conserved,
making the divergences equal to zero. Although this makes the mass-variation penalty term of our
objective 0, the conditional flow matching can significantly suffer from this choice as it might require
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Figure 2: Schematic depiction of the difference between FM and Unbalanced FM. The first builds
couplings that maintain the marginal distributions regardless of the difference between the distribu-
tions and the consequent expected transport cost. The second trades off some distributional coverage
to obtain couplings with significantly reduced transport costs.

complex couplings to be learned and consequently poor approximation. Instead, we aim to tackle
these challenges by considering jointly all terms of the UFM objective in Equation 2. However,
optimizing jointly q and θ to find a global minimum is typically intractable. Therefore, assuming the
function space of vt(·; θ) includes the zero function, we can lower bound the UFM objective with the
following objective that does not depend on θ:

min
q

E(x0,x1)∼q[∥x0 − x1∥2] +D2(q0|qx0
) +D2(qx1

|q1) ≜ UOT(q0, q1) (3)

This corresponds to the Unbalanced Optimal Transport (UOT) objective which we can approximate
to choose q. Fixing q, we can then learn θ via SGD with the resulting simplification of the UFM
objective:

min
θ

LUFM(q, θ) = min
θ

Et,(x0,x1)∼q

[
∥vt(xt; θ)− ut(xt|x1)∥2

]
(4)

By lifting the mass-conservation requirement of FM, we now simplify the learning task (see Figure 5
for an empirical validation). However, this implies that even with a perfectly trained vector field, the
pushforward of q0 will no longer correspond to q1. Our goal to obtain samples from q1, therefore,
entails reweighting the samples generated by the learned flow. In practice, we approximate this
reweighting with a discriminator c akin to the confidence model used in (Corso et al., 2022) (See
Algorithm 1, and Section 4.1).

Algorithm 1: UNBALANCED FM INFERENCE

Sample prior x0
(i) ∼ q0

Use flow ψ̂1(·|q, θ) to map x0
(i) to x1

(i)

Reweight or reject with learned discriminator c

Return [x1
(1),x1

(2), ...,x1
(n)]

3.2 EFFICIENCY VS APPROXIMATION TRADE-OFF

In this section, we show how the UFM objective arises from optimizing the trade-off between sample
efficiency and approximation accuracy. Sample efficiency refers to the number of samples from
q0 needed to obtain an approximate sample of q1 (passing the discriminator) under the learned
flow. These approximate samples of q1 still incur some imprecision due to the flow not being
learned perfectly; the approximation accuracy refers to the Wasserstein distance between q1 and
the distribution of these approximate samples. To study this, we consider a modified version of the
Unbalanced FM inference procedure (Algorithm 1). The main difference of this procedure (Algorithm
2) is that we perform some filtering not only after the flow but also before it. Algorithm 2 is, thus, at
most as sample efficient as Algorithm 1 but easier to study.

4
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Algorithm 2: UFM EFFICIENCY LOWER BOUND

Sample prior x0
(i) ∼ q0

Reweight or reject based on approx. qx0 (x0
(i))

q0(x0
(i))

Use flow ψ̂1(·|q, θ) to map x0
(i) to x1

(i) ∼ q̂x1

Reweight or reject based on approx. q1(x1
(i))

qx1 (x1
(i))

Return [x1
(1),x1

(2), ...,x1
(n)]

Algorithm 2: High-level inference routine for modi-
fied Unbalanced FM routine used to define theoretical
a lower bound on the efficiency of the original Unbal-
anced FM routine of Algorithm 1.

Figure 3: Relationship between the dif-
ferent distributions introduced in the the-
oretical analysis of the Unbalanced FM
efficiency lower bound algorithm.

Formalization. Let ψ1(·; q) be the optimal flow from the Unbalanced FM objective with couplings
q and ψ̂1(·; q, θ) its approximation we are able to learn. FM guarantees us that qx1

= [ψ1(·|q)]#qx0

and let q̂x1(·|θ) = [ψ̂1(·|q, θ)]#qx0 . We summarize all the defined distributions and their relationship
in Figure 3.

The definition of Unbalanced FM as a method to bridge two distributions q0 and q1 leads us
to analyze the trade-off between the approximation error when learning the flow, formalized as
W 2

2 (q̂x1(·|θ), qx1), and the sample efficiency ESS∗(q) that derives from having to perform rejection
sampling to bridge the gaps between q0 and qx0 and between qx1 and q1. Simple mappings will result
in low approximation errors but potentially lower efficiency, and vice versa.

Approximation error. Using Theorem 1 from Benton et al. (2023) we can show, under appropriate
assumptions that the approximation error for a given coupling distribution q, W 2

2 (q̂x1
(·|θ), qx1

), is
bounded by FM objective:
W 2

2 (q̂x1
(·|θ), qx1

) ≤ L2 ·Et,q

[
∥vt(xt; θ)− vt(xt)∥2

]
≤ L2 ·Et,q

[
∥vt(xt; θ)− ut(xt|x1)∥2

]
(5)

where L = exp[
∫ 1

0
Ltdt] and Lt is a constant such that vθ(x, t) is Lt-Lipschitz in x. The second

inequality follows from the convexity of the squared norm.

Sample efficiency. We can measure the sample efficiency that the model has when converting
samples of q0 to unbiased samples of q1 via the effective sample size ESS∗(q), i.e., the reciprocal of
how many samples from q0 it takes using the ideal flow ψ1(·, q) to generate an unbiased sample from
q1. In Proposition 1 (derivation in Appendix A.1), we demonstrate that for an ideal flow this sample
efficiency is bounded by the similarity between q0 and q1 and the respective marginals of q:
Proposition 1. The effective sample size, ESS∗, for sampling q1 when having access to samples of q0
and a perfectly trained flow with coupling distribution q is bounded by:

ESS∗(q) ≥ exp [−D2(q0|qx0
)−D2(qx1

|q1)] . (6)

Trade-off upper bound. The trade-off between approximation error and sampling efficiency in the
choice of optimal flow can then be expressed as a joint objective:

β W 2
2 (q̂x1

(·|θ), qx1
)︸ ︷︷ ︸

Approximation error

− logESS∗(q)︸ ︷︷ ︸
Sampling efficiency

≤ LUFM (7)

where the inequality derives from setting α = L2β and using the derivation above. This motivates
the UFM objective as a way to optimize an upper bound on the joint approximation error and sample
(in-) efficiency trade-off.

In practice, since we only have access to one sample for the distribution over bound structures (the
crystal structure in PDB, typically unique), we cannot define q via Unbalanced OT. In our experiments,
we approximate the optimal coupling with the distribution q(x0,x1) ∝ q0(x0)q1(x1)I∥x0−x1∥<ctask ,
where ||x0 − x1|| is defined as the aligned RMSD between the Cα positions of the residues in the
pocket and its neighborhood, and ctask is an empirically chosen cutoff to balance sample efficiency
and mapping complexity.
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3.3 CHAINING UNBALANCED FLOWS

In Section 4.2, we will show how we obtain effective structure relaxations by learning a further
unbalanced flow with smaller matching costs on top of the distribution learned by the initial manifold
docking unbalanced flow. In this section, we analyze the effect of chaining flows together in the case
of short distance couplings that corresponds to the setting of structure relaxation.

Each flow tries to learn the matching from the output distribution of the previous flow and the
final distribution. We consider the specific coupling introduced in the previous section q(x0,x1) =
q0(x0)q1(x1)I∥x0−x1∥≤ϵ with q0 now representing the output distribution of the previous flow. In
Proposition 2 (derivation in Appendix A.2), we demonstrate that taking ϵ→ 0 leads to approximate
local likelihood gradient steps that push q0 towards matching q1:

Proposition 2. A coupling q(x0,x1) ∝ q0(x0)q1(x1)I∥x0−x1∥≤ϵ with ϵ→ 0 generated a marginal
flow ψ1 that has the form:

ψ1(x0) ≈ x0 + Cϵ,n[q0(x0)∇q1(x0)− q1(x0)∇q0(x0)] (8)

where Cϵ,n is a constant that depends on ϵ and the dimensionality of the space n.

therefore, for all the points x0 sampled from q0 that have low likelihood under the final distribution q1
(so q1(x0) << q0(x0)), the transform ψ1(x0) ≈ x0 + Cϵ,nq0(x0)∇x0

q1(x0) will push the sample
toward the regions of higher likelihood of q1. Notably, the learned flows also have the property
ψ1(x0) = x0 when q0 = q1.

4 FLEXIBLE DOCKING

In the flexible docking task, our goal is to learn the joint distribution over the bound structures
(equivalently, poses thereof) of a protein-ligand complex given the distribution over the unbound
structures of the protein. We focus on the pocket-based flexible docking task, but all components of
our framework can be applied to the blind docking setting as well (unknown protein pocket).

In the previous section, we motivated the necessity of Unbalanced FM for the flexible docking task,
and the attractive properties that emerge from composing unbalanced flows. In this section, we
leverage these insights to decompose the flexible docking task into two subtasks, both modeled as
unbalanced flows: i) docking over the manifold degrees of freedom (Section 4.1), and ii) structure
relaxation (Section 4.2).

4.1 DOCKING OVER MANIFOLD DEGREES OF FREEDOM

Ligand and protein poses can be regarded as elements of R3nl and R3np , where nl and np are the
number of atoms in the ligand and protein respectively. However, during docking, ligand flexibility is
largely concentrated in the torsion angles at rotatable bonds (Corso et al., 2022), while for proteins, the
flexibility lies in the backbone frames and sidechain torsion angles (Jumper et al., 2021). Motivated
by the success of Intrinsic Diffusion Models (Corso, 2023) in similar domains, we reduce the space
of ligand and protein poses by defining our generative model over these degrees of freedom.

Transport of distributions formulation. For the distribution over ligand poses, we largely follow
DIFFDOCK (Corso et al., 2022), learning a diffusion model over the product space of rotations,
translations, and torsions, P = SO(3) × R3 × Tml . To model conformational changes in protein
structures upon docking, we employ our Unbalanced FM framework. The prior q0 is defined as
the distribution of (computationally generated) unbound structures, while the target distribution
q1 is defined over the crystallized bound structures. For the prior, given the relative inability
of computational models to sample the diverse conformational space (Jing et al., 2024), we use
outputs from ESMFold (Lin et al., 2022) with the addition of small Gaussian noise. Designing an
Unbalanced FM objective then amounts to choosing a coupling q(x0,x1), a conditional probability
path pt(x|x0,x1), (x0,x1) ∼ q, and the associated conditional vector field ut(x|x0,x1).

Choice of coupling q. A key requirement for q is to be able to sample pairs during training.
Because we typically only have access to one sample for the distribution over bound structures

6
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(the crystal structure in PDB, typically unique), we cannot define q via Unbalanced OT. Therefore,
we approximate the optimal coupling with the distribution q(x0,x1) ∝ q0(x0)q1(x1)Ic(x0,x1)<cdock ,
where c(x0,x1) is defined as the aligned RMSD between the Cα positions of the residues in the
pocket and its neighborhood, and cdock is an empirically chosen cutoff to balance sample efficiency
and mapping complexity. We can sample from q by taking individual independent samples from q0
and q1 and rejecting if c(x0,x1) ≥ cdock.

Flow Matching on SE(3) and T. For a protein with n residues and mp sidechain torsions, we
define the flow over the product space SE(3)n × SO(2)mp , where the SE(3) frame for each residue
corresponds to a roto-translation around the Cα atom, and the hypertorus Tmp over sidechain torsions.

Following the disintegration of measures (Pollard, 2002), every SE(3)-invariant measure can be
broken down into a SO(3)-invariant measure and a measure proportional to the Lebesgue measure
on R3, allowing us to build flows independently on SO(3) and R3. Following Chen & Lipman
(2024), given two points (x0,x1) ∼ q, the conditional probability path between x0 and x1 is given
by the geodesic between them, x = expx0

(t logx0
(x1)), and the corresponding conditional flow is

ut(xt|x0,x1) =
logxt

x1

1−t .

For SO(3), the geodesics can be computed efficiently by using the axis-angle representation
(equivalent to log(x1)) and the parallel transport operation (left multiplication with x0), while
exp is simply the matrix exponential. We view the torus T as the quotient space R/2πZ,
thus expx0

(x1) = (x0 + x1) mod 2π (equivalent to wrapping around R), and logx0
x1 =

arctan 2(sin(x1 − x0), cos(x1 − x0)).

Confidence discriminator. As discussed in Section 3.1, it is necessary to apply a rejection or
filtering step at the end of the unbalanced flow. This is because, by the design of the Unbalanced FM
framework, some of the samples produced will be incorrect (i.e. far from high-likelihood regions
of q1). To do this we train a confidence model (Corso et al., 2022) to predict the likelihood that a
sample from q1 is within 2Å ligand-RMSD and 1Å AA-RMSD of the input pose. This confidence
score is then used to rank or select different samples obtained from the flow.

4.2 STRUCTURE RELAXATION

Motivated by the results from Section 3.3, we frame structure relaxation as an (unbalanced) flow,
where the prior q0 is now the distribution over poses generated by the manifold docking process in
Section 4.1, and the target distribution q1 is still defined over the crystallized bound structures.

Choice of coupling q. We adopt a similar definition for q as Section 4.1, except now c(x0,x1) is
defined as the average of the aligned atomic RMSDs between the predicted pose for both the ligand
and protein (not just the latter) and their ground truth counterparts. We also use a smaller cutoff
crelax < cdock to enforce small structural changes.

Flow Matching for Relaxation. We define the flow over the Euclidean space. Given (x0,x1) ∼ q,
the conditional probability path pt(x|x0,x1) is defined as x0 · (1− t) + x1 · t, and the associated
conditional vector field ut(x|x0,x1) =

x1−x
1−t .

Energy-based loss. Molecular structures are characterized by degrees of freedom with vastly
different stiffness, for example the Generalized Amber Force Field (GAFF) is specified such that a
single bond between Carbon and Nitrogen atoms allows oscillations with a vibrational frequency of
4401 cm−1 (Wang et al., 2004). This causes even small W2 approximation errors to be particularly
problematic along such degrees of freedom. Therefore, to further improve the flow’s ability to
accurately relax degrees of freedom with narrow distributions, we introduce an additional energy-
based loss to encourage the model to sample low-energy poses.

A similar approach has been explored in the scope of works on Boltzmann Generators (Noé et al.,
2019) where models are trained directly to minimize the reverse KL divergence between the generated
samples and some energy function by evaluating the energy of the generated poses and their log-
likelihood under the model. Our approach distinguishes from this in two main aspects: firstly, to
preserve the stable and efficient training regime of (unbalanced) flow matching we do not use full
sampling trajectories but only evaluate the energy of the x̂1 = xt + (1− t)vt(xt; θ) predicted poses

7
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for t close to 1; secondly, instead of using force-field based energy functions that tend to be very
unstable on non-equilibrium poses we employ a handcrafted flat-bottom potential with the following
form:

Lenergy =
∑
i,j

max
(∥∥∥x̂(i)

1 − x̂
(j)
1

∥∥∥− Ui,j , 0
)
+max

(
Li,j −

∥∥∥x̂(i)
1 − x̂

(j)
1

∥∥∥ , 0) (9)

where Li,j and Ui,j are lower and upper bounds (if any) on the distance between each pair of atoms
(i, j) and depend on whether atoms i and j are covalently bonded, substituents of the same central
atom, or constitute an intermolecular cross term between the protein and ligand. Further details on
the formulation are provided in Appendix B.1.

Energy filtering. During inference, we utilize this flat-bottom potential combined with the initial
poses confidence scores as the Unbalanced FM discriminator to select the predictions for which
relaxation was successful. Starting with conformers predicted by the flexible docking model, we use
the docking confidence model to score and prioritize the predictions. After relaxation, we use the flat
bottomed potential to select only the relaxed conformers for which the potential is zero. We then
choose the relaxed pose with the greatest confidence score. If all relaxed conformers have a non-zero
potential value, we instead return the highest confidence conformer prior to relaxation.

5 EXPERIMENTS

Benchmark. We train and test our models on the widely adopted PDBBind benchmark (Liu et al.,
2017). We use computationally generated structures from ESMFOLD (Lin et al., 2022) as samples
from the distribution of unbound structures. We also evaluate on PoseBusters, a recent benchmark
dataset curated from the PDB, with several filtering steps and sequence-based clustering. Since we
focus on the flexible docking task, we evaluate the accuracy of both the predicted ligand and pocket
atom poses. We first align the predicted pocket atoms to their ground truth counterparts, and then
compute the heavy-atom RMSD between the predicted and ground truth poses for the ligand (with
permutation symmetry correction) and pocket atoms. For the ligand, following Huang et al. (2024),
we report the median and the percentage of predictions with RMSD below 2Å. For the pocket atoms,
we similarly report the percentage of predictions with RMSD below 1Å. Finally, we report the pose
quality using the percentage of top-1 predictions passing the series of tests from Buttenschoen et al.
(2024) referred to as PoseBusters checks.

Baselines. For the PDBBind benchmark, we compare FLEXDOCK to well established search-based
methods SMINA and GNINA, and flexible ML-based pocket level docking methods in DIFFDOCK-
POCKET (Plainer et al., 2023) and RE-DOCK (Huang et al., 2024). All methods receive as input – i)
the ligand with an initial seed conformation (using RDKit), ii) the ESMFold predicted structure, and
iii) the pocket residues. Additional details regarding the experimental setup, data, and baselines can
be found in Appendix D along with a link to the code used for our experiments. For the PoseBusters
benchmark we also report other baselines for pocket-based docking – these include both rigid methods
taking in the holo-structure like DEEPDOCK (Liao et al., 2019), UNIMOL (Zhou et al., 2023), GOLD
(Verdonk et al., 2003) and VINA (Trott & Olson, 2010) as well as ML-based cofolding methods
UMOL (Bryant et al., 2024) and ALPHAFOLD3 (Abramson et al., 2024).

Results. Table 1 presents the comparison of previous methods in the field with the overall FLEX-
DOCK model which shows improvements in many metrics. To better understand the value of our
methodological contributions, it is useful to directly compare with DIFFDOCK-POCKET, as this uses
the same architecture and training regime. Here we see large improvements in the pocket all-atom
accuracy with AA-RMSD < 1 Å improving from 32% to 42% and the pose quality (measured by the
proportion of PB valid poses) improving from 30% to 73%.

On PoseBusters, our method performs significantly better than the fast ML-based rigid docking
models DEEPDOCK and UNIMOL even without receiving the holo-structure. When compared to
large-scale co-folding models, it has similar RMSD performance but significantly better validity than
UMOL while being significantly faster (average of 11s per complex for FLEXDOCK and 206s for
UMOL excluding its MSA computation step). ALPHAFOLD3 performs significantly better, however,
it has been trained on more than one order of magnitude extra data compared to FLEXDOCK and
UMOL.
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Table 1: Top-1 PDBBind ESMFold Docking Performance We standardize all the generative
modeling-based methods to take 10 samples. - indicates results missing due to baselines taken
from previous work where output structures were not provided. ∗Note that REDOCK uses a slightly
different definition of pocket making the results not fully comparable, while their code is not available.

Method Ligand RMSD All-Atom RMSD % PB % PB valid and Runtime (s)
% < 2Å ↑ Median Å ↓ % < 1Å ↑ valid ↑ L-RMSD < 2 Å ↑

SMINA (rigid) 6.6 7.7 N.A. - - 258
SMINA 3.6 7.3 5.2 - - 1914
GNINA (rigid) 6.7 7.1 N.A. 93.3 6.7 260
GNINA 8.4 7.9 4.5 91.3 7.7 1575

DIFFDOCK-POCKET (rigid) 37.5 3.0 N.A. 25.9 4.9 17
DIFFDOCK-POCKET 41.8 2.5 32.4 30.1 5.9 17
REDOCK∗ 39.0 2.5 39.8 - - 15

FLEXDOCK 39.7 2.5 41.7 72.9 33.7 11
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Figure 4: Performance of different pocket-based
methods on the PoseBusters v2 benchmark.
GOLD, VINA, DeepDock and UniMol take as in-
put the holo-structure of the protein, while UMol,
FlexDock and AlphaFold3 only the sequence.
AlphaFold3 was trained on a dataset∼10x larger.
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Figure 5: Docking performance for different
cutoffs cdock. FM corresponds to UFM with
cdock = ∞. We generate 10 samples using a
small model (4M parameters) without any addi-
tional filtering or relaxation, and evaluate the best
prediction of these samples for every complex.

Ablations. Ablations regarding the choice of cutoff cdock (See Para. 4.1) can be found in Figure 5.
The comparison with standard FM highlights the importance of unbalanced flows in tackling this task.
Using a cutoff of 4Å gives better performance across both ligand and protein pose prediction metrics.

We also perform ablation studies in Table 2 to decompose the improvements from the different
components of FLEXDOCK. This shows that, on the one hand, the improvement in All-Atom RMSD
can be attributed to the improved modeling of protein flexibility through the Unbalanced FM over the
manifold degrees of freedom, not the relaxation. On the other hand, the improvement in pose quality
can be largely attributed to the different steps of the relaxation Unbalanced FM which improves
the %-PB valid from 13 to 73. Among these, we highlight the critical role of the energy loss. We
additionally compare our relaxtion to the OpenMM relaxation offered in the PoseBusters benchmark.
Our relaxation routine achieves an improvement of 4.5% in PB-Valid metrics, while being at least 2
order of magnitude faster.

6 CONCLUSION

While generative models are revolutionizing the field of structural biology, existing frameworks
lack the flexibility needed to tackle outstanding domain-specific issues. In this work, we presented
Unbalanced Flow Matching, a generalization of the Flow Matching framework that relaxes the
marginal preservation assumption. Theoretically, we showed this approach allows us to improve the
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Table 2: Ablation of the effect of the various components of the relaxation unbalanced flow described
in Section 4.2.We now split the runtime into the docking time + relaxation time.

Method Ligand RMSD All-Atom RMSD % PB % PB valid and Runtime (s)
% < 2Å↑ Median Å ↓ % < 1Å ↑ valid L-RMSD < 2 Å

FLEXDOCK (no relaxation) 38.8 2.6 43.8 13.1 9.4 10
FLEXDOCK (OpenMM Relaxation) 38.2 2.6 42.1 68.4 30.3 10 + 155

FLEXDOCK (relaxation w/out energy loss) 40.9 2.5 44.1 17.3 12.1 10 + 0.3
FLEXDOCK (no energy filtering) 40.4 2.5 40.6 64.5 32.2 10 + 0.3
FLEXDOCK 39.7 2.5 41.7 72.9 33.7 10 + 0.3

approximation error FM incurs at the cost of some sample efficiency. We apply Unbalanced FM
to enhance the ability of flexible docking models to model the flexibility of protein structures and
predict poses with good energetic properties. Empirically, we show that the resulting framework
FLEXDOCK improves these properties over the best existing methods on the PDBBind benchmark.

10
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A PROOFS

Note: in all derivations and definitions in this section, we will assume that the distributions we work
with are defined in Euclidean space and have full support.

A.1 UNBALANCED FM SAMPLE EFFICIENCY

Proposition 1. The effective sample size, ESS∗, for sampling q1 when having access to samples of q0
and a perfectly trained flow with coupling distribution q is bounded by:

ESS∗(q) ≥ exp [−D2(q0|qx0
)−D2(qx1

|q1)] (10)

where D2 is the Rényi Divergence of order 2.

Proof. When comparing pairs of distributions p and q the (population) effective sample size
ESS∗(p, q) is defined as (Maia Polo & Vicente, 2023):

ESS∗(p, q) := exp[−D2(p|q)]

and it can be considered as the percentage of effective samples from q one can obtain when taking
samples from p.

Similarly, we define ESS∗(q) in our setting as the percentage of effective samples from q1 one can
obtain from q0 using ψ1. While ψ1 could be directly applied to any distribution, including q0, it is
hard to model its pushforward analytically. On the other hand, we know that qx1

is the pushforward
of qx0

, therefore we can obtain samples from q1 by (1) reweighting samples of q0 into samples of
qx0

, (2) transporting samples from qx0
to samples of qx1

and (3) reweighting samples from qx1
into

samples from q1. By assumption of perfect flow step (2) has perfect efficiency, however, steps (1)
and (3) both may require more than one sample in expectation to be unbiased. This translates into an
efficiency equal to the product of the two effective sample sizes:

ESS∗(q) ≥ ESS∗(q0, qx0) ESS∗(qx1 , q1) = exp [−D2(q0|qx0)] exp [−D2(qx1 |q1)]

= exp [−D2(q0|qx0
)−D2(qx1

|q1)] .
where the inequality derives from the possibility of the existence of more effective procedures for this
sampling that do not require passing from samples of qx0

and qx1
.

A.2 CHAINING UNBALANCED FLOWS

Proposition 2. Assuming q0 and q1 are densities with a bounded Lipschitz constant. A pairing
distribution q(x0,x1) ∝ q0(x0)q1(x1)I∥x0−x1∥≤ϵ with ϵ→ 0 generates a marginal flow ψ1 that has
the form:

ψ1(x0) ≈ x0 + Cϵ,n[q0(x0)∇q1(x0)− q1(x0)∇q0(x0)] (11)

where Cϵ,n is a constant that depends on ϵ and the dimensionality of the space n.

Proof. Let ut(xt) be the vector field that generates the flow: d
dtψt(x) = ut(ψt(x)). By definition

ut(xt) is the marginal vector field that optimizes the objective function of the defined Unbalanced
FM. Therefore its derivative must be zero:

0 = ∇ut(xt)E(x0,x1)∼q

[
∥ut(xt)− ut(xt|x1)∥2

]
= ∇ut(xt)E(x0,x1)∼q0(x0)q1(x1)I∥x0−x1∥<ϵ/Zq

[
∥ut(xt)− (x1 − x0)∥2

]
Let δ = x1 − x0. Expressing the expectation as a n-dimensional ball integral:

∫
∥δ∥≤ϵ

2q0(xt − δt)q1(xt + δ(1− t))(ut(xt)− δ)Zq dδ = 0

14
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Therefore:

ut(xt) =

∫
∥δ∥≤ϵ

δq0(xt − δt)q1(xt + δ(1− t)) dδ

To approximate this integral as ϵ→ 0, we expand q0 and q1 using a Taylor series expansion around
xt:

q0(xt − δt) ≈ q0(xt)− tδ · ∇q0(xt)

q1(xt + δ(1− t)) ≈ q1(xt) + (1− t)δ · ∇q1(xt)

Substituting the approximations into the integral:

ut(xt) ≈
∫
∥δ∥≤ϵ

δ [(q0(xt)− tδ · ∇q0(xt)) (q1(xt) + (1− t)δ · ∇q1(xt))] dδ

Expanding the product inside the integral:

ut(xt) ≈
∫
∥δ∥≤ϵ

δ [q0(xt)q1(xt) + q0(xt)(1− t)δ · ∇q1(xt)− tδ · ∇q0(xt)q1(xt)] dδ

Higher-order terms involving (δ · ∇q0)(δ · ∇q1) will be of order ϵ2 and can be neglected as ϵ→ 0.

Since the integral is over a symmetric ball, terms with odd powers of δ vanish. Hence, only the cross
terms contribute:

ut(xt) ≈
∫
∥δ∥≤ϵ

δ [(1− t)q0(xt)δ · ∇q1(xt)− tq1(xt)δ · ∇q0(xt)] dδ

Using the symmetry and volume element:∫
∥δ∥≤ϵ

δiδj dδ =
ϵn+2

n+ 2
δij

πn/2

Γ(n/2 + 1)

Therefore:

ut(xt) ≈
ϵn+2

n+ 2

πn/2

Γ(n/2 + 1)
[(1− t)q0(xt)∇q1(xt)− tq1(xt)∇q0(xt)]

To determine the residual transformation brought by the full marginal flow, we need to integrate
the vector field ut(xt) over the path. Integrating over the path is challenging, but since we have
restricted the flows to be smaller than ϵ, the Lipschitz constant of ut is bounded (because the Lipschitz
constants of q0 and q1 are bounded), and we are taking ϵ→ 0. The change in ut within the flow will
be negligible. Therefore, we can approximate the marginal flow as:

ψ1(x0) ≈ x0 +

∫ 1

t=0

πn/2ϵn+2

(n+ 2)Γ(n/2 + 1)
[(1− t)q0(x0)∇q1(x0)− tq1(x0)∇q0(x0)] dt

Evaluating the integral:

ψ1(x0) ≈ x0 +
πn/2ϵn+2

(n+ 2)Γ(n/2 + 1)

[
− t

2

2
q1(x0)∇q0(x0)−

(1− t)2

2
q0(x0)∇q1(x0)

]1
0

ψ1(x0) ≈ x0 +
πn/2ϵn+2

2(n+ 2)Γ(n/2 + 1)
(q0(x0)∇q1(x0)− q1(x0)∇q0(x0))
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B TRAINING AND INFERENCE

In this section, we present the training and inference procedures for our manifold docking (Algorithms
3 and4) and relaxation models (Algorithms 5 and6). We refer to unbound protein structures as apo
structures, and the bound structures as holo structures. Recall that our goal is to learn a distribution
over holo structures, given the apo structure and a seed conformation of the ligand. Similar to
(Corso et al., 2022), we are in a setting, where traditional generative modeling where one has access
to multiple samples from the same data distribution, we only have a single (x∗,yapo,yholo) per
protein-ligand complex. This implies that the training loop (Algorithms 3 and5) now proceeds over
different distributions, along with a single sample from that distribution. This sample is then accepted
or rejected depending on the cutoff cdock, thus inducing an unbalanced coupling and flow.

Algorithm 3: TRAINING EPOCH: MANIFOLD DOCKING

Input: Training Pairs {(x∗,yapo,yholo)}; RDKit predictions {c}, RMSD cutoff cdock
Input: Pocket radius r; Pocket Buffer b
Input: Cα operator [·]Cα

foreach c,x∗,yapo,yholo do
Let x0 ← argminx RMSD(x∗,x)
ycenter, {i}pocket = EXTRACTPOCKET(yapo,yholo, r, b)
yapo ← RMSDALIGN(yapo,yholo, {i}pocket)
if RMSD(yapo,yholo) > cdock then

continue
else

yFA
apo,∆R

bb ← FRAMEALIGN(yapo,yholo)

yFA,SC
apo ,∆θsc ← SCCONFMATCH(yFA

apo,yholo)
Sample t ∼ U(0, 1)
// Ligand Diffusion
Sample ∆r,∆R,∆θ from diffusion kernels ptr

t (·|0), prot
t (·|0), ptor

t (·|0)
Compute xt by applying (∆r,∆R,∆θ) to x0

// Protein Flow

tsc, tbb
rot, t

bb
tr = COMPUTETIME(t, αsc, αbb

rot, α
bb
tr )

Interpolate ∆rbb
t ← [yapo]Cα · (1− t) +

[
yholo

]
Cα
· t

utr,bb
t (·|z)←

[
yholo

]
Cα
− [yapo]Cα

Interpolate ∆Rbb
t ← exp

(
tbb

rot log(∆R
bb)

)
urot,bb
t (·|z)←

log
∆Rbb

t
(∆Rbb)

1−tbb
rot

Interpolate ∆θsc
t ← exp (tsc log(∆θsc))

usc
t (·|z)←

log∆θsc
t
(∆θsc)

1−tsc

Compute yt by applying
(
∆rbb,∆Rbb,∆θsc

)
to yapo

Predict scores and drifts α, β, γ, δ, ϵ, η ← s(xt,yt, t)

// Ligand Loss

Llig = ∥α−∇ log ptr
t (·|0)∥2 + ∥β −∇ log prot

t (·|0)∥2 + ∥γ −∇ log ptor
t (·|0)∥2

// Protein Loss

Lprot = ∥δ − utr,bb
t (·|z)∥2 + ∥ϵ− urot,bb

t (·|z)∥2 + ∥η − usc
t (·|z)∥2

Apply optimization step on L = Lprot + Llig
end

end

Pocket Extraction. As our focus is on the flexible protein docking task, we first extract the protein
pocket given apo and holo-structures. We define the pocket residues as all residues in the holo-
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Algorithm 4: INFERENCE: MANIFOLD DOCKING

Input: RDKit predictions {c}, Apo structure yapo of the protein pocket
Input: Inference Steps N
Sample ΘN ∼ U(SO(2)m), RN ∼ U(SO(3)), rn ∼ N (0, σ2

tr)
Apply ΘN , RN , rn to c to get xN

Set yN ← yapo
∆t← 1/N
for n← N to 1 do

t← n/N
Predict scores and drifts α, β, γ, δ, ϵ, η ← s(xn,yn, t)

// Ligand Updates

∆σ2
tr = σ2

tr(n/N)− σ2
tr((n− 1)/N)

∆σ2
rot = σ2

rot(n/N)− σ2
rot((n− 1)/N)

∆σ2
tor = σ2

tor(n/N)− σ2
tor((n− 1)/N)

Sample ztr, zrot, ztor from N (0, σ2
tr),N (0, σ2

rot),N (0, σ2
tor)

Apply (α, β, γ) to xn to get xn−1

// Protein Updates

∆rbb
n ← δ ·∆t

∆Rbb
n ← ϵ ·∆t

∆θsc
n ← η ·∆t

Apply
(
∆rbb

n ,∆R
bb
t ,∆θ

sc
n

)
to yn to get yn−1

end

structure that have at least one heavy atom within 5Å of any ligand atom. Given these pocket residues,
the pocket center is defined based on the positions of the Cα atom in the apo structure. To construct
the geometric graphs (Appendix D), we also use the residues which have a Cα atom within 20Å of
the pocket center. This additional buffer is added to improve the model’s robustness to exact pocket
definitions, and also add geometric information from the pocket neighborhood.

Aligning Apo-Holo Frames. A residue frame (Jumper et al., 2021), is characterized by a tuple
(R, t) ∈ SE(3), where the rotation R is about the origin of the residue, and t specifies the position
of the Cα atom. Before applying the conformer matching step (explained below) to the protein
sidechains, we align the frames of the apo and holo structures, by computing the rotation that
aligns the N − Cα vectors of the corresponding residues. The alignment will not be perfect owing
to differences in the bond lengths and bond angles between the computationally generated and
ground truth structures, but provides the closest modification of the apo structure backbone to the
holo-structure one.

Conformer Matching. For both the ligand and the protein sidechains, we apply the conformer
matching procedures in (Jing et al., 2022) and (Plainer et al., 2023), where, given the local structures
from computational methods, we find the closest (in an RMSD sense) structure to the ground truth
by modifying the appropriate torsion angles. The conformer matching procedure is employed to
prevent a distribution shift between training and inference in the local structures that are considered
rigid in the manifold docking process. To elaborate, the local structures (such as bond lengths and
bond angles) vary between RDKit (for ligands) and ESMFold (for proteins) generated structures, and
their ground truth counterparts. If we train our models with ground truth local structures, this would
cause a distribution shift at inference time, when we only have access to local structures, provided by
RDKit and ESMFold.

B.1 ENERGY LOSS FORMULATION

To construct the flat-bottom potential defined in Equation 9, for any pair of atoms (i, j), we define the
lower and upper distances bounds Li,j and Ui,j in the following manner:

1. If the atom pair (i, j) represents a covalent bond between ligand atoms
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Algorithm 5: TRAINING EPOCH: RELAXATION

Input: Training Pairs {(xdock,xholo,ydock,yholo, {i}pocket)}, RMSD cutoff crelax

foreach xdock,xholo,ydock,yholo, {i}pocket do
if 0.5·RMSD(ydock,yholo) + 0.5·RMSD(xdock,xholo) > crelax then

continue
else

Sample t ∼ U(0, 1)
// Ligand Flow

Interpolate ∆rlig
t ← xdock · (1− t) + xholo · t

ulig
t (·|z)← xholo − xdock

Apply ∆rlig
t to xdock to get xt

// Protein Flow

Interpolate ∆rprot
t ← ydock · (1− t) + yholo · t

uprot
t (·|z)← yholo − ydock

Apply ∆rprot
t to ydock to get yt

// Make Prediction
Predict drifts α, β ← sr(xt,yt, t)
Apply α to xdock to get x̂1

Apply β to ydock to get ŷ1

x̂1, ŷ1 ← RMSDALIGN(x̂1, ŷ1,yholo, {i}pocket)

// Compute Loss

Llig = 1
N

∑N
i ∥x̂

(i)
1 − x

(i)
holo∥2

Lprot =
1
M

∑M
i ∥ŷ

(i)
1 − y

(i)
holo∥2

Linternal_energy =
∑

i,j max
(∥∥∥x̂(i)

1 − x̂
(j)
1

∥∥∥− Ui,j , 0
)
+max

(
Li,j −

∥∥∥x̂(i)
1 − x̂

(j)
1

∥∥∥ , 0)
Lcross_energy =

∑
i,j max

(
Li,j −

∥∥∥x̂(i)
1 − ŷ

(j)
1

∥∥∥ , 0)
L = λligLlig + λatomLatom + λenergy

t (Linternal_energy + Lcross_energy)
end

end

• Li,j is set to 0.75 times the lower distance bound used by RDKit
• Ui,j is set to 1.25 times the upper distance bound used by RDKit

2. If the atom pair (i, j) represents two substituents of the same central ligand atom

• Li,j is set to 0.75 times the lower distance bound used by RDKit
• Ui,j is set to 1.25 times the upper distance bound used by RDKit

3. If the atom pair (i, j) represents two ligand atoms that are neither covalently bonded nor
bonded to the same central atom

• Li,j is set to 0.8 times the lower distance bound used by RDKit
• No upper bound is used

4. If the atom pair (i, j) includes one protein and one ligand atom

• Li,j is set to the sum of each atom’s Van der Waal’s radius used by RDKit minus 0.75
• No upper bound is used

5. If the atom pair (i, j) represents two protein atoms

• No lower bound is used
• No upper bound is used

Under this formulation, any conformation for which the potential is zero will pass the following
PoseBusters validity checks as defined in Buttenschoen et al. (2024):
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Algorithm 6: INFERENCE: RELAXATION

Input: Manifold Docking Predictions (xdock,ydock)
Input: Inference Steps N
Set x1 ← xdock
Set y1 ← ydock
∆t← 1/N
for n← 0toN-1 do

t← n/N
Predict scores α, β ← s(xn,yn, t)
Apply α to xn to get xn1

Apply β to yn to get yn1

end

• Bond length validity due to condition (1)

• Bond angle validity due to condition (2)

• Internal steric clash due to condition (3)

• Minimum protein-ligand distance due to condition (4)

During training, we scale the energy loss term from a weight of 0 at t = 0 to 1 at t = 1 with the
exponential schedule: λenergy

t = eαt−1
eα−1 and α = −2.5. Additionally, since the RMSD of the ligand

is typically greater than that of the protein in docked poses, we further scale the ligand and protein
losses with weights λlig = 1.0 and λprot respectively.

C MODEL ARCHITECTURE

We use message passing networks based on tensor products of irreducible representations (irreps) of
SO(3), implemented with the e3nn library.

Graph Construction. We represent structures as geometric heterogeneous graphs, with nodes
comprising ligand heavy atoms, receptor residues in the pocket and neighborhood (located at the
position of Cα atoms), and the heavy atoms of the pocket residues. We chose to only model the
heavy atoms of the pocket residues for two reasons - i) this provides a useful sparsity constraint
for computational and memory efficiency, and ii) typically, most of the conformational changes
in the protein involve the pocket atoms, and modeling this explicitly would facilitate downstream
applications such as affinity prediction. We also adopt different cutoffs depending on the types of
nodes being connected, largely following (Corso et al., 2022):

1. Ligand atoms-ligand atoms, receptor atoms-receptor atoms, and ligand atom-receptor atom
interactions use a cutoff of 5Å. Covalent bonds between ligand atoms are explicitly modeled
with initial edge embeddings to reflect the type of bond. For receptor atoms, we limit the
maximum number of neighbors to 12.

2. For receptor residue interactions, we use a distance cutoff of 15Å, with a maximum neighbor
limit of 24.

3. For interactions between ligand atoms and receptor residues, unlike (Corso et al., 2022),
we found using the dynamic cutoff based on the ligand translation noise to cause NaNs
during training, possibly due to missing connections. We thus used a distance cutoff of 80Å
between ligand atoms and receptor residues.

4. Receptor pocket atoms are also connected to their corresponding residues.

Featurization. We adopted the same featurization as DIFFDOCK, using the residue type and
the embeddings with ESM2 Language model for the residues, the atom type, and other chemical
properties for the ligand and receptor atoms. The relaxation model additionally uses the Van der
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Waals radii as features for ligand and receptor atoms as well as the RDKit upper and lower distance
geometry bounds as features for ligand edges.

Manifold Docking and Relaxation We retain the core architecture of DIFFDOCK (Corso et al.,
2022), with the tensor product convolution-based message-passing layers, followed by a convolution
with the center of mass to predict the rotational and translation scores for the ligand. For the torsion
angles in the ligand and sidechain torsion angles in the protein, we use the pseudotorque layer from
(Jing et al., 2022), adapted accordingly for the sidechains. To predict the rotation and translation flows
for the residues (which are SE(3) equivariant), we use a linear layer that transforms the irreps of the
residue embeddings to a single odd and even vector (one for each flow). Since the residues constitute
a coarse-grained representation of the protein, we sum the odd and even vector representations to
obtain the predictions. For the relaxation model, we predict a single vector for each ligand and protein
atom. The magnitudes of the predictions are then adjusted with an MLP.

Confidence Model. The embedding layers for the confidence model follow the same architecture
as the manifold docking and relaxation. The aggregated ligand, receptor residue, and receptor atom
embeddings are concatenated, and updated with an MLP to predict the final confidence (a SE(3)
invariant output).

D EXPERIMENTAL DETAILS

The code used for running our experiments can be found at https://anonymous.4open.
science/r/flexdock-iclr-2025-7707 .

Data. For training our models, we use the PDBBind dataset (Liu et al., 2017) whose complexes were
extracted from the PDB. Following (Stärk et al., 2022; Corso et al., 2022), we adopt the time-based
split of PDBBind, where the 17k complexes before 2019 were divided into training and validation
sets, while the 363 complexes after 2019 form the test set. We download the PDBBind data as it is
provided by EquiBind from https://zenodo.org/record/6408497. These files are first
processed by PDBFixer from the OpenMM toolbox (Eastman et al., 2017), to replace non standard
residues and add missing atoms. We then used the PDBFixer processed files to extract the protein
sequence, and predict its structure with ESMFold (Lin et al., 2022). The ESMFold generated files
are also processed by PDBFixer to add missing atoms such as terminal oxygens, at the end of a
chain. These processed files now constitute our apo structures, while the processed analogues from
PDBBind constitute our holo structures. We further remove hydrogen atoms while aligning the apo
and holo structures.

To measure the validity and physicality of generated poses, we also use the PoseBusters suite of tests
(Buttenschoen et al., 2024), which evaluate i) chemical validity, ii) intramolecular validity for the
ligand poses based on energetics and geometry, and iii) intermolecular interactions and steric clashes
between protein and ligand.

Metrics. To evaluate the generated ligand and protein pocket poses, we compute the RMSD between
the predicted and ground truth poses after alignment. This alignment is computed based on the
Kabsch alignment between the atoms in the protein pocket, in the ground truth and predicted poses.
To account for permutation symmetries in the ligand, we use the symmetry-corrected RMSD of
sPyRMSD. For the ligand, besides the median RMSD, we report the % of RMSDs below 2Å, which
is a commonly adopted metric for judging the quality of docking predictions (Alhossary et al., 2015;
Hassan et al., 2017; McNutt et al., 2021). For the protein pocket atoms, besides the median RMSD,
we report the % of RMSDs below 1Å, where we chose the 1Å cutoff, typically treated as atomic
accuracy.

Training Details. For our manifold docking model (75.3 M parameters), we use an exponential
moving average of weights (EMA) during training, which is updated at every optimization step, with
a decay factor of 0.999. We train the model on 4 RTX A6000 GPUs, with a batch size of 4 per GPU.
Every 10 epochs, we run inference for 20 steps with the EMA weights on 500 complexes in the
validation set, and save the model with the largest percentage of ligand RMSDs < 2Å. The initial
learning rate of the model is 0.001, which is updated with a learning rate scheduler with decay 0.7 if
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Figure 6: Detailed comparison of the validty checks offered in PoseBusters V2 benchmark

the percentage of complexes with ligand RMSDs < 2Å does not improve over 30 epochs. We train
our model for 600 epochs, after which we did not observe a noticeable increase in ligand RMSDs <
2Å metric. We use the ADAM optimizer for all our models.

For the confidence model, we use a smaller version of the manifold docking model 4 M parameters
to generate 20 poses (both ligand and protein) per training complex. For the ligand, we assign label 1
if the RMSDS between predicted (after alignment) and ground truth pose is <2Å, while for protein
pocket atoms, we adopt an RMSD cutoff of 1Å. We train the confidence model for around 100 epochs,
and save the model with the best accuracy. We found the model predicting only the ligand pose
confidence to offer the best tradeoff between ligand and pocket atom prediction confidence.

Runtimes. Similar to other ML docking baselines, we measure runtimes for the manifold docking
and confidence model. These runtimes are calculated on a single RTX A100 80GB GPU, with the
preprocessing steps entailing ESM2 embedding generation and RDKit conformer generation. The
geometric graphs are generated on the fly as part of the model and thus are already included in the
runtimes.

E ADDITIONAL ANALYSIS

E.1 COMPARISONS ON POSEBUSTERS BENCHMARK

We include a stratification of different validity checks adopted in PoseBusters, comparing against
ALPHAFOLD3 and DIFFDOCK in Figure 6 . The numbers for ALPHAFOLD3 and DIFFDOCK were
taken from (Abramson et al., 2024). We find that FLEXDOCK generates highly valid molecules with
very low computational overhead ( 0.3s), and has a significant improvement from DIFFDOCK on the
intermolecular validity checks.

E.2 COMPARING RMSD DISTRIBUTIONS

Training and Test Distributions In Figure 7, we plot the all-atom (AA) RMSDs between ESM-
FOLD and holo structures in the training and test sets. While the AA-RMSDs is largely within 4A,
there is a very long tail of significantly larger distances which impact the expected squared coupling
distance when using Flow Matching.
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Large Conformational Changes. In Figure 8, we plot the AA-RMSDs between the ESMFold
and holo structures, and also between the corresponding predicted and holo structures for large
conformational changes (> 4Å). We find that FLEXDOCK is able to shift the distributions towards
lower RMSDs compared to the initial distribution. This is reasonable since the model updates the
apo structure to the closest structure based on the learned underlying transport. Additionally, we find
that 77.5% of poses pass the Posebusters validity checks, indicating the ability of our model to find
physically meaningful poses, even in this extreme setting.

ESMFlow vs ESMFold In Figure 8, we plot the AA-RMSDs between the apo and holo structures,
where the apo structures are generated either using ESMFold or its flow matching counterpart
ESMFlow (Jing et al., 2024). The distributions look largely similar, with most of the RMSDs within
5A, followed by a long tail of larger RMSDs. This also highlights the limited ability of current
methods to capture the diversity in the conformational space of apo protein structures.

Figure 9: AA-RMSD distributions between apo and holo structures, with apo structures generated
using ESMFold or ESMFlow
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Figure 10: Sample Efficiency for different cutoffs cdock

E.3 SAMPLE EFFICIENCY

In practice, rather than the actual sampling efficiency, one is often interested in indirect measurements
of the same, and using that to compare different methods. These indirect measurements are based
on performance achieves on desired metrics, with a fixed number of samples. In Figure 10, we plot
the best achievable performance for each cdock for 1, 5, 10 samples. Comparing FM with UFM (4A),
where cdock = 4.0 for instance, we can clearly see that even with 10 samples, FM achieves a worse
performance on ligand docking, compared to UFM (4A), with 5 samples, making UFM (4A) more
sample efficient.
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F VISUALIZED EXAMPLES

(a) 6FE5, L-RMSD: 0.66, AA-RMSD: 0.72,
APO-HOLO-RMSD: 3.93

(b) 6OD6, L-RMSD: 0.61, AA-RMSD: 0.81,
APO-HOLO-RMSD: 1.67

(c) 6BQD, L-RMSD: 0.51, AA-RMSD: 0.42,
APO-HOLO-RMSD: 0.56

(d) 6ROT, L-RMSD: 0.71, AA-RMSD: 0.57,
APO-HOLO-RMSD: 0.94

(e) 6OOY, L-RMSD: 3.97, AA-RMSD: 8.75 (f) 6CKL, L-RMSD: 3.51, AA-RMSD: 9.01

Figure 11: Visualized predictions for the complexes 6FE5, 6OD6, 6BQD, 6ROT, 6OOY, and 6CKL
in the PDBBind test dataset. L-RMSD and AA-RMSD denote Ligand RMSD and All-Atom RMSD
respectively, after aligning the predicted and ground truth pockets. Color Code: Holo protein (in
lime), predicted protein (magenta), true ligand (cyan) and predicted ligand (orange).
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