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ABSTRACT

Learning expressive and efficient policy functions is a promising direction in rein-
forcement learning (RL). While flow-based policies have recently proven effective
in modeling complex action distributions with a fast deterministic sampling process,
they still face a trade-off between expressiveness and computational burden, which
is typically controlled by the number of flow steps. In this work, we propose mean
flow policy (MFP), a new generative policy function that models the mean velocity
field to achieve the fastest one-step action generation. To ensure its high expressive-
ness, an instantaneous velocity constraint (IVC) is introduced on the mean velocity
field during training. We theoretically prove that this design explicitly serves as a
crucial boundary condition, thereby improving learning accuracy and enhancing
policy expressiveness. Empirically, our MFP achieves state-of-the-art success
rates across several challenging robotic manipulation tasks from Robomimic and
OGBench. It also delivers substantial improvements in training and inference speed
over existing flow-based policy baselines.

1 INTRODUCTION

A promising topic in reinforcement learning (RL) community is to develop expressive and efficient
policies, particularly in complex control environments where action distributions can be multi-
modal (Zhu et al., 2023; Wang et al., 2023). Generative policies, such as diffusion model and
flow matching, have recently emerged as a powerful alternative to Gaussian or mixture policies by
transforming simple base distributions into flexible action distributions via learnable transforma-
tions (Song et al., 2020; Chi et al., 2023). However, a key limitation of existing generative policies
is their dependence on iterative multi-step refinement from noise to actions (Wang et al., 2024a;
2025; Ding et al., 2024). This computational dependency imposes a significant overhead that hinders
training speed, particularly for online RL where action sampling is a per-step requirement (Li, 2023;
Yang et al., 2023). Moreover, this overhead translates to considerable inference latency, which is a
major impediment to achieving high closed-loop performance in real-time control systems (Zhan
et al., 2024; 2025; Jiang et al., 2024).
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Figure 1: Performance-efficiency evalua-
tion on 9 robotic manipulation tasks. Our
MFP achieved the highest success rate and
fastest training speed on a single A100 GPU.

A question naturally arises: Can we unify the expres-
siveness of generative policies with the efficiency of
one-step action generation for online RL?

In this paper, we propose the mean flow policy (MFP)
as an affirmative answer. While existing flow policies
learn instantaneous velocities and require multi-step
iterative sampling (Lipman et al., 2023; Park et al.,
2025; Bharadhwaj et al., 2024), MFP instead learns
the mean velocity field (Geng et al., 2025a). This
design enables a direct, single-step mapping from a
base Gaussian noise to a multi-modal action distri-
bution, thereby preserving the expressive power of
flow-based models while drastically improving train-
ing and inference efficiency (Kornilov et al., 2024).

Although the time-efficiency gains of MFP are very
promising, its learning difficulty is higher than that

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of a standard flow policy. One reason is that our MFP requires modeling the mean velocity for any
time interval specified by two time points (Geng et al., 2025a). A more significant reason is that its
learning process is governed by a first-order ordinary differential equation (ODE) derived from the
definition of mean velocity. However, this ODE theoretically suffers from the problem of multiple
solutions due to a lack of explicit boundary conditions, that is, the value at any boundary point is not
enforced. This poses a non-trivial challenge to learning accuracy and consequently affects policy
expressiveness (Birkhoff & Langer, 1923).

To address this, we introduce an instantaneous velocity constraint (IVC) to compensate for the lack
of boundary conditions. Intuitively, IVC pairs the average velocity loss for each interval with an
instantaneous velocity loss at the interval’s start point. In practice, IVC is implemented as a auxiliary
policy loss, adding negligible computational overhead while materially improving accuracy. We
evaluate our MFP on Robomimic (Mandlekar et al., 2021) and OGBench (Park et al., 2024), two
demanding robot manipulation benchmarks. As shown in Figure 1 and Table 3, MFP achieves
state-of-the-art success rates while delivering substantial speed-ups in training and per-step inference
over strong flow-policy baselines, on average across both suites.

Our contributions are summarized threefold:

• We propose a new flow-based policy, namely mean flow policy (MFP), that enables fastest
one-step action generation. By modeling the mean velocity field, MFP retains the expres-
siveness of generative policies while eliminating multi-step sampling overhead.

• We design a training enhancement technique, namely instantaneous velocity constraint (IVC),
to improve the learning accuracy of mean velocity field. This technique explicitly serves as
a boundary condition, thereby stabilizing learning and enhancing policy expressiveness.

• We empirically achieve state-of-the-art success rates on two challenging robotic manipulation
benchmarks: Robomimic and OGBench. Moreover, our approach provides a substantial
speedup in both training and inference over existing flow-policy baselines, highlighting its
practicality for real-time application.

2 PRELIMINARIES

Reinforcement Learning. We consider an agent interacting with an environment modeled as
a Markov Decision Process (MDP), defined by a tuple M = ⟨S,A,P, r, γ⟩ (Li, 2023). The
components are the state space S ⊆ Rn, the action space A ⊆ Rm, the state transition function
P(s′|s, a), the reward function r(s, a), and the discount factor γ ∈ [0, 1). The primary goal in
reinforcement learning (RL) is to learn a policy π(a|s) that maximizes the expected cumulative
discounted reward, namely return, given by

Jπ = Eπ,P

[ ∞∑
k=0

γkr(sk, ak)

]
. (1)

Grounded in the off-policy learning paradigm, our approach utilizes an action-value function (Q-
function) to guide policy improvement, which denotes the expected cumulative return for taking an
action a in a state s and thereafter following the policy π.

Qπ(s, a) = Eπ,P

[ ∞∑
i=0

γir(si, ai)|s0 = s, a0 = a

]
. (2)

The optimal action-value function, Q∗(s, a), represents the maximum expected return achievable
from state s by taking action a. The optimal policy π∗ can then be found by selecting the action that
maximizes this function: π∗(s) = argmaxa∈A Q∗(s, a).

Flow Matching. Flow matching is a principled methodology for constructing continuous-time
generative models (Lipman et al., 2023). In contrast to diffusion models, which employ stochastic
differential equations (SDEs) (Song et al., 2020), flow matching is built upon deterministic dynam-
ics governed by an ordinary differential equation (ODE). By directly learning a continuous-form
instantaneous vector field, this approach simplifies the training objective and enables more efficient
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sampling. Specifically, it trains a neural network vθ : Rd × [0, 1] → Rd to parameterize a velocity
field v(x(t), t) that matches a predefined conditional target velocity v(1) .

For a source distribution q(x(0)) and a target distribution p(x(1)), the velocity field is trained by
minimizing the flow matching loss (Lipman et al., 2024):

LFM(θ) = E t∼U([0,1])
x(1)∼p, x(0)∼q

∥∥vθ(x(t), t)− v(x(t), t)
∥∥2
2
, (3)

where any intermediate point along the generating path x(t) = tx(1) + (1 − t)x(0) is a linear
interpolation between source and target points. The velocity for this path is assumed to be a constant
vector v(x(t), t) = x(1)− x(0). This formulation defines the target vector field along a straight path
between the source and target samples. Once trained, the learned field vθ defines a probability flow
via the following ODE:

dx(t)

dt
= vθ(x(t), t), x(0) ∼ q, (4)

which allows us to effectively generate samples of the target distribution p, starting from samples
of the source distribution q. Although flow matching is conceptually designed to generate along
a straight line, the paths still curve in practice when fitting between two distributions (Song et al.,
2023). Therefore, multi-step discretization and numerical methods like the Euler method are often
required to solve the ODE in Eq. (4) to obtain high-quality generated results (Park et al., 2025).

3 METHOD

First, we introduce the mean flow policy (MFP), showing how its integration with a “generate-and-
select” mechanism enables a direct mapping from noise to optimal actions. We then present the
instantaneous velocity constraint (IVC) and theoretically justify its role in improving the learning
accuracy. Finally, the complete pseudo-code for our mean flow RL algorithm is provided.

3.1 MEAN FLOW POLICY

𝑟1 

𝑡1 

ℒMF 𝑟2 

𝑡2 

ℒIVC  

Figure 2: Velocity field: blue arrows de-
note the mean velocity over a time in-
terval, with red arrows representing the
instantaneous velocity at a time point.

In RL, a policy π(·|s) defines a distribution over actions
given a state s. For standard flow-based policies, this
mapping is framed as a generative process: a velocity
model, v(a(t), t, s), transforms a standard Gaussian noise
(source) into the optimal action (target), with the state
serving as a conditioning input. The final output action
a(1) is calculated by

a(1) = a(0)+

∫ 1

0

v(a(τ), τ, s)dτ, a(0) ∼ N (0, I). (5)

Unlike standard flow policies that learn the instantaneous
velocity field v(a(t), t, s), we center on the mean velocity
field u(a(t), t, r, s), modeling the mean velocity over any
given time interval [t, r] as

u(a(t), t, r, s) ≜
1

r − t

∫ r

t

v(a(τ), τ, s)dτ. (6)

The relationship between these two types of velocities is shown in Figure 2. If the mean velocity
model u∗ is ideally learned, the policy inference is formulated as

a(1) = a(0) + u∗(a(0), 0, 1, s), a(0) ∼ N (0, I). (7)

(1) How to imitate a given target action. To train the mean velocity model u, we first multiply
both sides of Eq. (6) by (r − t) and then differentiate with respect to t ( treating r as independent of
t), which yields the mean flow identity:

−u(a(t), t, r, s) + (r − t)
d

dt
u(a(t), t, r, s) = −v(a(t), t, s). (8)

3
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We assume there is a target optimal action a∗, serving as a(1) for imitation. For two randomly
sampled time points, t and r (with t < r), the intermediate point a(t) is defined by the linear
interpolation: a(t) = t · a(1) + (1 − t) · a(0), and v = a∗ − a(0). Let θ denote the learnable
parameters, the training objective is to minimize the residual of the mean flow identity in Eq. (8) as

LMF(θ) = Et,r<t,a(t)

∥∥∥∥uθ(a(t), t, r, s)− sg
(
v − (t− r)

d

dt
uθ(a(t), t, r, s)

)∥∥∥∥2
2

, (9)

where “sg” denotes the stop-gradient operator to stabilize training. Calculating this training loss
requires computing the total time derivative term, d

dtu. Using the chain rule, this term is expanded
as shown in Eq. (10), and its computation can be performed efficiently using the Jacobian-vector
product (JVP) in modern automatic differentiation libraries.

d

dt
uθ(a(t), t, r, s) = v(a(t), t, s) · ∂

∂a
uθ(a(t), r, t, s) +

∂

∂t
uθ(a(t), r, t, s), (10)

By minimizing Eq. (9), the mean velocity model u can effectively transform a standard Gaussian
noise into the desired target action distribution. In RL, however, there is no ground-truth dataset of
optimal actions to imitate. Next, we will detail how to gradually find better actions and eventually
approach the optimal target action.

(2) How to find the optimal target action to imitate. Finding the optimal action a∗ directly is
not realistic. However, we can use the Q-function to progressively find better actions as imitation
targets, and eventually find the optimal action a∗ in a bootstrap manner. This mechanism is called
“generate-and-select” or “best-of-N”.

In practice, at any given state s, the agent first generate N diverse candidate actions as
ai = aik(1) = ϵi + uθ(ϵi, 0, 1, s), ai(0) = ϵi ∼ N (0, I), i = 1, · · · , N. (11)

Then the critic function Qϕ parameterized by ϕ is employed to evaluate all candidates, and the action
yielding the highest Q-value is identified as the final output action for that state:

a⋆ = argmax
ai

Qϕ(s, a
i). (12)

We treat the combined mean flow generation process in Eq. (11) and the best-of-N mechanism in Eq.
(12) as a unified policy πunified

θ , or simply denoted as πθ. The resulting action, a⋆, then serves three
purposes: (1) interacting with the environment, (2) acting as the target action for policy training, and
(3) calculating the target value for value training.

Although this bootstrap mechanism is intuitive, next we will formally prove that such a imitation-
based update guarantees policy improvement by the following theorem.
Theorem 1 (Mean Flow Policy Improvement). Let the new policy πnew be derived from an old
policy πold via the N -candidate generative update process described above. Under assumptions of a
bounded Q-function error (ϵQ), LQ-Lipschitz continuity of the Q-function, and a bounded mean flow
matching error (ϵA), the performance difference between these two policies is lower-bounded by

V πnew(s)− V πold(s) ≥ Eτ∼πnew

[ ∞∑
t=0

γt∆πold
N (st)

]
︸ ︷︷ ︸

BFN improvement term ∆1

− 2ϵQ + LQϵA
1− γ︸ ︷︷ ︸

fitting error term ∆2

, (13)

where V (s) is the state-value function, and ∆πold
N (s) is the best-of-N advantage gain, satisfying

∆πold
N (s) := Ea1,...,aN∼πold(·|s)

[
max

i=1,...,N
Qπold(s, ai)

]
− V πold(s) ≥ 0. (14)

Proof. See Appendix A.

This theorem decomposes the performance difference into two distinct components: a BFN improve-
ment term ∆1 and a fitting error term ∆2. As we prove in Appendix A.4, the best-of-N advantage
gain (∆πold

N ) in ∆1 is strictly non-negative, implying that the policy improvement can be driven by the
benefit of sampling N diverse action candidates. It is also important to note that this improvement is
partially counteracted by the fitting error term ∆2, which stems from the critic’s inaccuracy (ϵQ) and
the mean flow matching error (ϵA). This highlights the importance of reducing ϵA to further enhance
policy performance. In the next subsection, we will introduce the instantaneous velocity constraint
(IVC) to help reduce this fitting error.

4
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3.2 THE INSTANTANEOUS VELOCITY CONSTRAINT AS A BOUNDARY CONDITION

As we mentioned above, the underlying principle for training the mean velocity model is Eq. (8),
which is a first-order ordinary differential equation (ODE) with respect to u. Mathematically speaking,
we need to know both the dynamics and at least a boundary condition to accurately solve the unique
solution of a ODE. Back to our practical setting, Eq. (8) only provides the dynamics given t < r.
Although sampling pairs where r is very close to t could implicitly serve as the boundary condition,
such events are too rare to ensure robust training.

Inspired by this, we introduce the instantaneous velocity constraint (IVC), a training objective that
explicitly enforces a boundary condition at t. The mean velocity from t to t is exactly the known
instantaneous velocity v = a∗ − a(0), so the IVC objective is expressed as:

LIVC(θ) = Et,a(t) ∥uθ(a(t), t, t)− v∥22 . (15)

To understand the effectiveness of this IVC objective, we first derive the following theorem, which
demonstrates the multiplicity of solutions for Eq. (8) in the absence of a boundary condition.
Theorem 2 (Multiplicity of Solutions for the Mean Flow Identity). Let the cumulative error ∆u

be defined as the difference between the learned and the true mean velocity field, ∆u(a(t), t, r) ≜
uθ(a(t), t, r)− u∗(a(t), t, r). Assume uθ perfectly satisfies the mean flow identity (Eq. (8)) for all
t < r. Then, its cumulative error ∆u satisfies

∆u(a(t), t, r) =
C(a, r)

r − t
(16)

where C(a, r) is an integration constant independent of time t.

Proof. By assumption, both uθ and u∗ precisely satisfy the mean flow identity. Subtracting the
identity for u∗ from that of uθ yields a homogeneous linear differential equation with respect to the
cumulative error ∆u as

∆u + (t− r)
d

dt
∆u = 0. (17)

By the product rule for derivatives, this is equivalent to d
dt [(r − t)∆u] = 0. Integrating with respect

to t yields (r − t)∆u = C(a, r), which completes the proof.

Theorem 2 reveals that any solution learned by perfectly minimizing the LMF loss belongs to a family
of functions with a unknown constant C(a, r). Because the LMF loss is blind to the boundary, it
cannot provide a gradient to force C(a, r) to zero. This allows an arbitrary, persistent bias to exist in
the learned uθ. Next, we derive the following theorem to prove that the explicit introduction of IVC
eliminates this degree of freedom and restricts the solution space to the unique correct u∗.
Theorem 3 (Uniqueness via the Instantaneous Velocity Constraint). Let the boundary error ∆v be
defined as the error at the boundary t, ∆v(a(t), t) ≜ uθ(a(t), t, t)− v∗(a(t), t). Minimizing the IVC
loss, LIVC = E[∥∆v∥2], forces the integration constant C(a, r) in Theorem 2 to zero. This eliminates
the boundary error and ensures the cumulative error ∆u vanishes for all t < r.

Proof. The boundary error ∆v is the limit of the cumulative error ∆u as r → t+. Applying Eq. (16):

∆v(a(t), t) = lim
r→t+

C(a, r)

r − t
. (18)

This limit diverges if C(a, r) ̸= 0. To keep the IVC loss finite, the optimization must prevent
this divergence, which requires C(a, r) = 0. With C(a, r) = 0, the boundary error ∆v is zero.
Consequently, by invoking Theorem 2, the cumulative error ∆u also becomes zero. This completes
the proof.

In essence, Theorem 3 proves that the IVC provides the necessary boundary condition to make the
learning problem well-posed. By forcing the error constant to zero at the boundary, the IVC eliminates
the cumulative error inherent to the mean flow objective, thereby retaining the high expressive power
of the generative model. Moreover, the resulted smaller mean flow matching error ϵA in Theorem 1,
which helps enable a more effective policy improvement with each update.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 MEAN FLOW REINFORCEMENT LEARNING

This section systematically presents the complete picture of our mean flow RL. The policy training
loss Lpolicy combines the mean velocity model loss in Eq. (9) with the IVC loss in Eq. (15):

Lpolicy(θ) = LMF(θ) + λLIVC(θ), (19)

where the balancing hyperparameter λ > 0 is called IVC coefficient, and the default value is 1.0.

Concurrently, the critic Qϕ is trained to minimize a standard TD-error in Eq. (20) on transitions
(sk, ak, rk, sk+1) from the replay buffer, where k is the step index.

LQ(ϕ) = E
[(
Qϕ(sk, ak)−

(
rk + γQϕ(sk+1, a

⋆
k+1)

))2]
. (20)

Recall that we treat the combined mean flow generation process in Eq. (11) and the best-of-N
mechanism in Eq. (12) as a unified policy πθ, so the calculation of a⋆k+1 also involves a generative-
then-select process for ensuring an unbiased policy evaluation.

The overall training scheme decouples the generative policy’s imitative training from the Q-value
gradient. Instead, the policy improvement is guaranteed by a best-of-N mechanism under the guidance
of Q-value selection. This design allows us to leverage the policy’s full expressive power while
ensuring stable and effective policy improvement. The complete algorithm is shown in Algorithm 1.

Algorithm 1 Mean Flow RL

Input: Mean Flow policy πθ, where θ is the parameters of uθ, Critic Qϕ, offline dataset Doffline
Initialize replay buffer D with Doffline

▷ Phase 1: Offline Pre-training
for offline training step do

Replay a mini-batch from D
Update policy πθ by minimizing Lpolicy(θ) with Eq. (19)
Update critic Qϕ by minimizing LQ(ϕ) with Eq. (20)

end for
▷ Phase 2: Online Interaction and Fine-tuning

for online training step k = 1, 2, . . . do
Observe sk, execute a∗k = πθ(sk), receive sk+1, rk, and store (sk, a

⋆
k, rk, sk+1) into D

Replay a mini-batch from D
Update policy πθ by minimizing Lpolicy(θ) with Eq. (19)
Update critic Qϕ by minimizing LQ(ϕ) with Eq. (20)

end for

4 EXPERIMENTS

4.1 MAIN EXPERIMENT

Benchmark. We consider a total of 9 sparse-reward robotic manipulation tasks with varying diffi-
culties. This includes 3 tasks from the Robomimic benchmark (Mandlekar et al., 2021), Lift, Can
and Square, and 6 tasks from OGBench (Park et al., 2024), cube-double-task 2/3/4 and
cube-triple-task 2/3/4. For Robomimic, we use the multi-human datasets. For OGBench,
we use the default play-style datasets. See more details of these tasks in Appendix C.

Baselines and our method. We compare with three latest strong offline-to-online RL baselines.
(1) FQL (flow Q learning) (Park et al., 2025) first uses behavioral cloning to train a multi-step
flow policy on offline data. It then trains a separate one-step policy that imitates the multi-step
policy and maximizes Q-values, enabling efficient and stable learning within the data distribution. (2)
BFN (best-of-N ) (Ghasemipour et al., 2021) combines the best-of-N sampling with an expressive
multi-step flow policy. Specifically, BFN first generates N candidate actions and picks the action
(out of N ) that maximizes the current Q-value. (3) QC (Q-chunking) (Li et al., 2025) applies action
chunking (Bharadhwaj et al., 2024) on the basis of BFN to improve exploration and sample efficiency.
(4) Ours MFP also adopts the chunking trick, but leverages a more efficient mean flow policy to
achieve the fastest one-step action generation with maintained or even enhanced expressiveness.

6
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FQL BFN QC MFP (ours)

Figure 3: Training curves on benchmarks. The solid lines correspond to mean and shaded regions
correspond to 95% confidence interval over five runs. The shadow background indicates the offline
training phase, while the white background indicates the online training phase.

Table 1: Success rates. Mean ± Std over 5 seeds. Bold = best, underlined = 2nd-best.

Task FQL BFN QC MFP (ours)
Robomimic-lift 0.96± 0.03 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
Robomimic-can 0.74± 0.11 0.82± 0.03 0.94 ± 0.06 0.92 ± 0.07
Robomimic-square 0.12± 0.05 0.34± 0.06 0.92 ± 0.01 0.93 ± 0.01
Cube-double-task2 0.95± 0.04 0.88± 0.05 1.00 ± 0.00 1.00 ± 0.00
Cube-double-task3 0.97± 0.04 0.90± 0.06 1.00 ± 0.00 1.00 ± 0.00
Cube-double-task4 0.08± 0.04 0.35± 0.09 0.93 ± 0.08 0.95 ± 0.04
Cube-triple-task2 0.01± 0.02 0.08± 0.06 0.82 ± 0.10 0.88 ± 0.03
Cube-triple-task3 0.12± 0.13 0.26± 0.14 0.69 ± 0.05 0.71 ± 0.06
Cube-triple-task4 0.00± 0.00 0.02± 0.02 0.46 ± 0.13 0.52 ± 0.11
Average 0.44± 0.05 0.52± 0.06 0.86 ± 0.05 0.88 ± 0.05

Main results. As shown in Table 1, our MFP matches or exceeds state-of-the-art multi-step
flow-matching baselines on eight of nine tasks. On the remaining task, MFP ranks second, with a
performance of 0.92, which is just 0.02 points below the top-performing baseline’s score of 0.94.
While all methods achieve near-perfect performance on simpler tasks like Robomimic-lift, Cube-
double-task2, and Cube-double-task3, MFP demonstrates clear superiority on the more challenging
tasks. Specifically, MFP consistently outperforms all baselines on Robomimic-square, Cube-double-
task4, and all Cube-triple tasks, where it consistently achieves the highest success rates. For instance,
on the most difficult task, Cube-triple-task4, MFP achieves a success rate of 0.52 ± 0.11, which is
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significantly higher than the next-best baseline, QC (0.46 ± 0.13), and substantially exceeds both
FQL and BFN. Overall, our MFP secures the top position with an average success rate of 0.88 ± 0.05.
This result highlights its strong capability that is competitive with multi-step flow policies in solving
long-horizon, sparse-reward tasks.

4.2 ABLATION STUDY AND SUPPLEMENTARY EXPERIMENTS

(1) Ablation on the instantaneous velocity constraint (IVC). We perform an ablation study on the
IVC coefficient λ. Our full version (λ = 1.0) was compared against variants with a reduced constraint
(λ = 0.5) and without the constraint (λ = 0.0). The results, as shown in Figure 4, indicate a positive
correlation between the IVC weight and performance, while also demonstrating that the method is not
overly sensitive to λ. For example, the success rate on the challenging Cube-triple-task4 significantly
increases from 0.30 ± 0.21 (with no IVC) to 0.45 ± 0.15 (with a partial IVC), and further to 0.52 ±
0.11 (with full IVC). Detailed numerical results are listed in Table 4 in Appendix B.1. These findings
empirically validate our theoretical claims, confirming the IVC’s role as a crucial component for
modeling an accurate mean velocity field and consequently achieving significant performance gains.
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Figure 4: Training curves of ablation on the IVC.

(2) Comparison with one-step variants of the aforementioned baselines. We compared our
MFP against one-step variants of the aforementioned baselines: FQL-Onestep, BFN-Onestep, and
QC-Onestep. As shown in Figure 5, a naive one-step configuration is insufficient for solving these
complex, long-horizon tasks, with baselines achieving success rates near zero on both Cube-triple-
task3 and Cube-triple-task4. In stark contrast, our MFP achieves success rates of 0.71 ± 0.06 and 0.52
± 0.11 on these tasks, respectively. Detailed numerical results can be seen in Table 5 in Appendix B.1.
This supplementary comparison highlights that simply using a one-step standard flow is not enough;
the superior expressive capability and stable learning process of our mean flow policy are critical for
tackling these challenging long-horizon manipulation tasks.
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Figure 5: Training curves of comparison with one-step flow.

(3) Training and inference time analysis. Figure 1 presents a comparison of the average success
rate (%) versus online training speed (iter/s) across the all 9 tasks. Our MFP achieves highest
success rate and fastest training speed. This superior training efficiency stems directly from our
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one-step action generation, which eliminates the expensive iterative sampling process required by
prior multi-step flow policies.

Table 2: Comparison of online training speed

Task FQL BFN QC MFP (ours)
Average 108.5 ± 7.7 iter/s 68.0 ± 5.8 iter/s 92.6 ± 6.3 iter/s 153.6 ± 11.5 iter/s

Regarding inference time-efficiency, we conducted an evaluation with a focus on its suitability for
real-world robotic deployment. Since robotic platforms often have limited computational resources,
our experiments were conducted on a CPU-only environment, AMD Ryzen Threadripper 3960X
24-Core Processor. To simulate a more realistic deployment scenario without hardware acceleration,
we disabled JAX’s Just-In-Time (JIT) compilation during all evaluations.

The results are listed in Table 3. our MFP and FQL exhibit very similar inference times, with both
approaches being significantly faster than BFN and QC.

Why BFN and QC are slow. The poor performance of BFN and QC is primarily because they rely
on a 10-step flow policy, which requires iterative computation to transform noise into an action.

Why FQL is fast. FQL simultaneously learns both a 10-step flow policy for high-accuracy imitation
and a separate one-step flow policy. The one-step policy is obtained through a distillation process
combined with a Q-function maximization loss, which allows FQL to achieve a high inference speed
comparable to our MFP.

Why MFP is better than FQL comprehensively. Despite FQL’s relatively fast inference, its
training process is very slow due to the involvement of multiple policies, including a multi-step flow
policy. Furthermore, benchmark results indicate that its success rate is very low, averaging only half
of our MFP’s. When considering FQL’s overall low success rate and slow training speed, our MFP
still maintains a significant advantage.

Table 3: Comparison of inference time

Task FQL BFN QC MFP (ours)
Average 10.76 ± 1.02 ms 117.3 ± 13.23 ms 113.22 ± 11.92 ms 10.93 ± 0.95 ms

4.3 SUPPLEMENTARY RESULTS

We also extended our evaluation to high-dimensional D4RL tasks and visual manipulation tasks,
and conduct a series of ablation results to demonstrate MFP’s superior performance across diverse
situations. Please see Appendix E and F for full details.

5 RELATED WORK

Offline-to-online RL. The offline-to-online RL first uses a static, pre-collected dataset to offline train
initial policy and Q-value functions (Levine et al., 2020; Kumar et al., 2020). This process provides
a warm start, giving the agent a foundational understanding of the environment that significantly
accelerates and improves the efficiency of subsequent online interactive fine-tuning (Lee et al.,
2022). Numerous algorithmic designs have been proposed to improve offline-to-online RL, including
behavioral regularization (Ashvin et al., 2020; Tarasov et al., 2023), conservatism (Kumar et al., 2020),
in-sample maximization (Kostrikov et al., 2022; Garg et al., 2023), out-of-distribution detection (Yu
et al., 2020; Kidambi et al., 2020; Nikulin et al., 2023) and dual RL (Lee et al., 2021; Sikchi et al.,
2024). Beyond these algorithmic solutions, the choice of policy function also plays an important
role (Wang et al., 2023). A policy network with high expressiveness can better capture the intricate
distribution of the behavioral policy during offline training stage. This capability is also crucial for
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adapting to target environments during online fine-tuning, as optimal actions in these settings often
possess a naturally multi-modal nature (Park et al., 2025; Li et al., 2025). Since the policy must
infer actions at every step during both the online fine-tuning and real-time deployment stages, the
inference time efficiency of the policy function is also critical (Li, 2023; Park et al., 2025). Our work
contributes a new policy function, MFP, which achieves the fastest single-step action generation and
maintains a high expressive capacity to achieve high performance.

Generative models as RL policies. The expressive power of generative models, such as denoising
diffusion models (Ho et al., 2020) and flow matching (Lipman et al., 2022), makes them promising
for representing complex, multi-modal policies in both offline (Janner et al., 2022; Chi et al., 2023)
and online (Yang et al., 2023; Wang et al., 2024a; Ding et al., 2024) RL. However, their iterative
sampling process requires a high number of function evaluations (NFE), creating a prohibitive latency
for the high-throughput nature of online RL. A common approach in RL to improving time-efficiency
of generative policies is distillation, which compresses a trained iterative model into a one-step
policy (Wang et al., 2024b; Park et al., 2025). Beyond the field of RL, recent studies have begun to
explore training a single-step generative flow directly for tasks like image generation (Lu & Song,
2025). These methods typically operate either by enforcing consistency constraints on the model’s
outputs at different time steps (Song et al., 2023; Song & Dhariwal, 2024; Geng et al., 2025b) or
by explicitly modeling the flow velocity over a specific time interval (Boffi et al., 2024; Frans et al.,
2024). The latter class of methods generally requires more iterations to train, but ultimately performs
better (Frans et al., 2024). A typical representative, mean flow, has achieved the best one-step fitting
performance on Imagenet (Geng et al., 2025a). We propose a new policy function, MFP, which
combines mean flow with RL to enable the fastest single-step action generation. In the context of RL,
the dynamic shifts in data distribution during sampling place higher demands on imitation-based flow
matching training. To address this, our proposed IVC serves as an explicit boundary condition during
MFP training, which reduces fitting error and consequently ensures strong policy expressiveness.

6 CONCLUSION

We propose the mean flow policy (MFP), a new generative RL policy that enjoys both high time-
efficiency and expressiveness. The former stems from the fastest one-step action generation, and the
latter contributes to our designed instantaneous velocity constraint (IVC), which explicitly serves as
a necessary boundary condition and reliably improves the learning accuracy. Empirical results on
the Robomimic and OGBench benchmarks confirm that our MFP achieves state-of-the-art success
rates and offers substantial improvements in training and inference speed. We believe that this work
represents a significant step towards developing highly expressive and efficient policy functions for
complex robotic control tasks. Regarding limitation, a primary one is the additional GPU memory
consumption during training, which stems from the Jacobian-Vector Product (JVP) operation. In
future work, we plan to validate our method on more tasks and real robotic platforms.
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A THEORETICAL ANALYSIS ON THE MEAN FLOW POLICY IMPROVEMENT

In this section, we provide the detailed theoretical analysis for the policy improvement guarantee of
our training paradigm. It includes the implementation procedures of policy update detailed in A.1,
core assumptions and useful lemma in A.2, the formal proof of the mean flow policy improvement
theorem in A.3, and three key properties of the improvement gain in A.4.

A.1 IMPLEMENTATION PROCEDURES OF POLICY UPDATE

Let πold denote the base mean flow policy prior to an update. At the same time, we have a learned
critic, Qϕ(s, a), which is an approximation of the true action-value function of the base policy,
Qπold(s, a). Let πnew denote the updated policy, which is derived from πold through the following
three-step generative process for any given state s:

1. Sample: Generate N candidate actions {a1, . . . , aN} by sampling from the base policy, i.e.,
ai ∼ πold(·|s).

2. Select: Use the learned critic Qϕ to select the best action from the candidates, which
becomes the target action a∗(s):

a∗(s) = argmax
ai

Qϕ(s, ai).

3. Match: The new policy πnew is obtained by training the parameters of πold to match the
target action a∗(s). Note that an action anew ∼ πnew is not guaranteed to perfectly match
a∗(s). We formally bound the expected distance between them in Assumption 3.

For analytical clarity, we introduce a conditional matching distribution, M(·|a∗), to model the
outcome of the matching process (Step 3). Specifically, we assume the specific target a∗ has been
selected in the previous Steps 1 and 2, then generation of the final action anew is expressed as

anew ∼ M(·|a∗).
The difference between M(·|a∗) and πnew is that M(·|a∗) describes the action distribution conditioned
on a specific target action a∗, whereas πnew represents the marginal distribution of the action, which
results from averaging over all possible targets a∗(s) generated in Steps 1 and 2.

A.2 CORE ASSUMPTIONS AND USEFUL LEMMA

Our analysis relies on the following assumptions and lemma.
Assumption 1 (Bounded Q-Value Fitting Error). The error between the learned critic Qϕ and the
true Q-function of the base policy Qπold is uniformly bounded by a constant ϵQ ≥ 0.

∀(s, a) ∈ S ×A, |Qϕ(s, a)−Qπold(s, a)| ≤ ϵQ.

Assumption 2 (Q-Value Smoothness). The true Q-value of the base policy, Qπold(s, a), is LQ-
Lipschitz continuous with respect to the action a.

∀s ∈ S, a1, a2 ∈ A, |Qπold(s, a1)−Qπold(s, a2)| ≤ LQ · d(a1, a2).

Assumption 3 (Bounded Mean Flow Matching Error). The expected distance between the action
anew generated by the new policy and the target action a∗ is bounded by a constant ϵA ≥ 0.

∀s ∈ S, Eanew∼M(·|a∗)[d(anew, a
∗(s))] ≤ ϵA.

Lemma 1 (Performance Difference Lemma (Kakade & Langford, 2002)). Let M = (S,A, P,R, γ)
be a Markov Decision Process, and let π and π′ be two arbitrary policies. The difference in the
state-value function at a starting state s, or denoted as s0, can be expressed in terms of the advantage
function of the new policy π′ with respect to the old policy π as:

V π′
(s)− V π(s) = Es∼dπ′ ,a∼π′(·|s)

[ ∞∑
t=0

γtAπ(s, a)

]
.
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where dπ
′
(s) is the discounted state visitation distribution under policy π′, and Aπ(s, a) =

Qπ(s, a)− V π(s) is the advantage function of policy π.

Proof. The proof relies on the key identity V π(s) =
∑

a∈A π(a|s)Qπ(s, a). We start with the
definition of the value difference for a state s:

V π′
(s)− V π(s) = V π′

(s)−
∑
a∈A

π′(a|s)Qπ(s, a) +
∑
a∈A

π′(a|s)Qπ(s, a)− V π(s)

= V π′
(s)−

∑
a∈A

π′(a|s)Qπ(s, a) +
∑
a∈A

π′(a|s)(Qπ(s, a)− V π(s))

= V π′
(s)−

∑
a∈A

π′(a|s)Qπ(s, a) +
∑
a∈A

π′(a|s)Aπ(s, a)

Using the Bellman expectation equation for V π′
(s):

V π′
(s) =

∑
a′∈A

π′(a′|s)

(
R(s, a′) + γ

∑
s′∈S

P (s′|s, a′)V π′
(s′)

)
And the definition of Qπ(s, a):

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′)

Substitute these into our first equation:

V π′
(s)− V π(s)

=
∑
a′∈A

π′(a′|s)

(
R(s, a′) + γ

∑
s′∈S

P (s′|s, a′)V π′
(s′)−Qπ(s, a′)

)
+
∑
a′∈A

π′(a′|s)Aπ(s, a′)

=
∑
a′∈A

π′(a′|s)

(
γ
∑
s′∈S

P (s′|s, a′)(V π′
(s′)− V π(s′))

)
+ Ea∼π′(·|s)[A

π(s, a)]

= γEa∼π′(·|s),s′∼P (·|s,a)[V
π′
(s′)− V π(s′)] + Ea∼π′(·|s)[A

π(s, a)]

This recursive formula shows that the value difference at state s depends on the expected value
difference at the next state s′. By recursively unrolling this expression over time and averaging over
the state visitation distribution dπ

′
(s), we arrive at the final result.

V π′
(s)− V π(s) = Es∼dπ′ ,a∼π′(·|s)

[ ∞∑
t=0

γtAπ(s, a)

]
.

This completes the proof.

A.3 PROOF OF THE MEAN FLOW POLICY IMPROVEMENT THEOREM

This subsection provides a formal proof of the mean flow policy improvement theorem, that is,
Theorem 1 in the main text.

Proof. Our proof begins by invoking the Performance Difference Lemma, i.e., Lemma 1, which
yields

V πnew(s)− V πold(s) = Eτ∼πnew

[ ∞∑
t=0

γtAπold(st, at)

]
. (21)

This equation connects the improvement in value function to the expected advantage of the new
policy’s actions, measured with respect to the old policy.

The following proof proceeds in two parts: first, we derive the single-step advantage bound
Eat∼πnew(·|st)[A

πold(st, at)], and second, we aggregate them over time to obtain the required bound of
value difference, which completes the proof.
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Part 1: Lower bound the single-step expected advantage We begin by analyzing the Q-value
decay due to the imperfect matching for a given target action a∗. The final action anew is distributed
according to M(·|a∗). We can bound the expected difference as follows:

Qπold(s, a∗)−Eanew∼M(·|a∗)[Q
πold(s, anew)]

=Eanew [Q
πold(s, a∗)−Qπold(s, anew)]

≤Eanew [|Qπold(s, a∗)−Qπold(s, anew)|] (by Jensen’s inequality)
≤Eanew [LQ · d(a∗, anew)] (by Q-Value Smoothness, Assumption. 2)
≤LQϵA (by Bounded Matching Error, Assumption 3)

Rearranging gives us the following bound for a given a∗:

Eanew∼M(·|a∗)[Q
πold(s, anew)] ≥ Qπold(s, a∗)− LQϵA.

Now, we take the expectation over the distribution of target actions a∗(s) to get the bound for the
marginal policy πnew:

Ea∼πnew [Q
πold(s, a)] = E{ai}∼πold

[
Eanew∼M(·|a∗(s))[Q

πold(s, anew)]
]

≥ E{ai}∼πold [Q
πold(s, a∗)]− LQϵA.

Next, we relate the Q-value of the target action, Qπold(s, a∗), back to the Q-values of the original
candidates {ai}:

Qπold(s, a∗) ≥ Qϕ(s, a
∗)− ϵQ (by Bounded Q-Value Fitting Error, Assumption 1)

= max
i=1,...,N

Qϕ(s, ai)− ϵQ (by definition of a∗)

≥ max
i=1,...,N

Qπold(s, ai)− 2ϵQ. (by Assumption 1 on each candidate ai)

Substituting this result back into our bound for Ea∼πnew [Q
πold(s, a)], we get:

Ea∼πnew [Q
πold(s, a)] ≥ E{ai}∼πold

[
max

i=1,...,N
Qπold(s, ai)

]
− 2ϵQ − LQϵA.

Finally, subtracting V πold(s) = Ea∼πold [Q
πold(s, a)] from both sides gives the desired single-step

advantage bound:
Ea∼πnew [A

πold(s, a)] ≥ ∆πold
N (s)− 2ϵQ − LQϵA,

where ∆πold
N (s) is the best-of-N advantage gain, defined as

∆πold
N (s) := Ea1,...,aN∼πold(·|s)

[
max

i=1,...,N
Qπold(s, ai)

]
− V πold(s).

Part 2: Extension to the value function difference With the single-step advantage bound estab-
lished, we substitute it into Eq. (21) and obtain:

V πnew(s)−V πold(s)

=Eτ∼πnew

[ ∞∑
t=0

γtAπold(st, at)

]

=

∞∑
t=0

γtEst∼dt
s,πnew

[
Eat∼πnew(·|st)[A

πold(st, at)]
]

(by law of total expectation)

≥
∞∑
t=0

γtEst∼dt
s,πnew

[∆πold
N (st)− 2ϵQ − LQϵA] (by substituting the bound from Part 1)

=Eτ∼πnew

[ ∞∑
t=0

γt∆πold
N (st)

]
− 2ϵQ + LQϵA

1− γ
. (by rearranging the geometric series)

This completes the proof.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 KEY PROPERTIES OF THE BEST-OF-N ADVANTAGE GAIN

The term ∆πold
N (s) has several important properties:

1. Non-negativity: ∆πold
N (s) ≥ 0.

2. Monotonicity with N : ∆πold
N+1(s) ≥ ∆πold

N (s).

3. Special case (N = 1): ∆πold
1 (s) = 0.

Proof. Our proof sketch is to first rewrite ∆πold
N (s) as an integral involving the cumulative distribution

function (CDF) of the Q-values, and then demonstrate the claimed properties of the rewritten form.

Let us define a random variable X representing the candidate Q-values. For a given state s, the
randomness of X is induced by the candidate action a independently sampled from the base policy:

X = Qπold(s, a), where a ∼ πold(·|s).

Recall that the definition of the best-of-N advantage gain is

∆πold
N (s) := Ea1,...,aN∼πold(·|s)

[
max

i=1,...,N
Qπold(s, ai)

]
− V πold(s).

We can equivalently describe this definition using the CDF notation of the random variable X .
Let FX(x) be the CDF of X , and X1, . . . , XN be N independent and identically distributed (i.i.d.)
samples of X , and let YN = max(X1, . . . , XN ). The CDF of YN is FYN

(y) = [FX(y)]N . Therefore,
we have ∆πold

N (s) = E[YN ]− E[X].

Moving forward, since the expectation of a random variable X in terms of its CDF satisfies E[X] =∫∞
0

(1− FX(x))dx−
∫ 0

−∞ FX(x)dx, we can further rewrite ∆πold
N (s) as:

∆πold
N (s) =

(∫ ∞

0

(1− FYN
(x))dx−

∫ 0

−∞
FYN

(x)dx

)
−
(∫ ∞

0

(1− FX(x))dx−
∫ 0

−∞
FX(x)dx

)
=

∫ ∞

−∞
(FX(x)− FYN

(x))dx.

Substituting FYN
(x) = [FX(x)]N , we arrive at the final rewritten form:

∆πold
N (s) =

∫ ∞

−∞
(FX(x)− [FX(x)]N )dx.

Next we use this form to prove the three key properties of ∆πold
N (s).

1. Proof of non-negativity (∆πold
N (s) ≥ 0)

The CDF FX(x) takes values in the range [0, 1]. For any value p ∈ [0, 1] and any integer N ≥ 1, we
have pN ≤ p. Therefore, the integrand FX(x)− [FX(x)]N is always greater than or equal to zero
for all x. The integral of a non-negative function is non-negative. Thus, ∆πold

N (s) ≥ 0.

2. Proof of monotonicity with N (∆πold
N+1(s) ≥ ∆πold

N (s))

We examine the difference between consecutive terms using the integral form:

∆πold
N+1(s)−∆πold

N (s) =

∫ ∞

−∞
(FX(x)− [FX(x)]N+1)dx−

∫ ∞

−∞
(FX(x)− [FX(x)]N )dx

=

∫ ∞

−∞
([FX(x)]N − [FX(x)]N+1)dx

=

∫ ∞

−∞
[FX(x)]N (1− FX(x))dx.

Since FX(x) ∈ [0, 1], both terms in the integrand, [FX(x)]N and (1 − FX(x)), are non-negative.
Their product is therefore non-negative. The integral of this non-negative function is non-negative,
which implies ∆πold

N+1(s)−∆πold
N (s) ≥ 0.
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3. Proof of special case (∆πold
1 (s) = 0)

Substituting N = 1 into the integral identity yields:

∆πold
1 (s) =

∫ ∞

−∞
(FX(x)− [FX(x)]1)dx =

∫ ∞

−∞
(FX(x)− FX(x))dx =

∫ ∞

−∞
0 dx = 0.

This confirms the special case.

B SUPPLEMENTARY RESULTS

B.1 NUMERICAL RESULTS OF ABLATION STUDY

Table 4: Ablation on the impact of IVC.

Task MFP (λ = 0.0) MFP (λ = 0.5) MFP (λ = 1.0)

Cube-triple-task3 0.65± 0.05 0.70± 0.14 0.71± 0.06
Cube-triple-task4 0.30± 0.21 0.44± 0.08 0.52± 0.11

Table 5: Comparison with one-step variants of the aforementioned baselines.

Task FQL-Onestep BFN-Onestep QC-Onestep MFP (ours)
Cube-triple-task3 0.00± 0.01 0.00± 0.00 0.02± 0.03 0.71± 0.06
Cube-triple-task4 0.00± 0.00 0.00± 0.00 0.01± 0.01 0.52± 0.11

C ENVIRONMENTS DESCRIPTION

Robomimic benchmark. We use three challenging tasks from the robomimic domain (Mandlekar
et al., 2021). We use the multi-human datasets that were collected by six human operators. Each
dataset consists of 50 trajectories provided by each operator, for a total of 300 successful trajectories.
The operators were varied in proficiency – there were 2 “worse” operators, 2 “okay” operators, and 2
“better” operators, resulting in diverse, mixed quality datasets. The three tasks are as described below.

(1) lift: requires the robot arm to pick a small cube. This is the simplest task of the benchmark.

(2) can: requires the robot arm to pick up a coke can and place in a smaller container bin.

(3) square: requires the robot arm to pick a square nut and place it on a rod. The nut is slightly bigger
than the rod and requires the arm to move precisely to complete the task successfully.

All of the three robomimic tasks use binary task completion rewards where the agent receives −1
reward when the task is not completed and 0 reward when the task is completed.

OGBench cube-double/triple: These three domains contain 2/3 cubes respectively. The
tasks in the two domains all involve moving the cubes to their desired locations. The reward is
−nwrong where nwrong is the number of the cubes that are at the wrong position. The episode
terminates when all cubes are at the correct position (reward is 0).

Below we highlight three representative tasks from each environment:

(4) Cube-double-task2 (move): Two cubes in different colors are initialized at (0.35,−0.1, 0.02)
and (0.50,−0.1, 0.02), and the goal is to move them to (0.35, 0.1, 0.02) and (0.50, 0.1, 0.02).

(5) Cube-double-task3 (move): The initial cube positions are (0.35, 0.0, 0.02) and (0.50, 0.0, 0.02),
and they must be placed at (0.425,−0.2, 0.02) and (0.425, 0.2, 0.02).

(6) Cube-double-task4 (swap): Two cubes start from (0.425,−0.1, 0.02) and (0.425, 0.1, 0.02),
and the objective is to swap their positions to (0.425, 0.1, 0.02) and (0.425,−0.1, 0.02).
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(a) Lift (b) Can (c) Square

(d) Cube-double-task2 (e) Cube-double-task3 (f) Cube-double-task4

(g) Cube-triple-task2 (h) Cube-triple-task3 (i) Cube-triple-task4

Figure 6: Snapshots of the 9 challenging long-horizon, sparse-reward manipulation tasks.

(7) Cube-triple-task2 (move): Three cubes are initialized at (0.35,−0.2, 0.02), (0.35, 0.0, 0.02),
and (0.35, 0.2, 0.02), with goals at (0.50, 0.0, 0.02), (0.50, 0.2, 0.02), and (0.50,−0.2, 0.02).

(8) Cube-triple-task3 (stack): A stacked tower of three cubes is initialized at (0.425, 0.2, 0.02),
(0.425, 0.2, 0.06), and (0.425, 0.2, 0.10), and the robot must relocate them to (0.35,−0.1, 0.02),
(0.50,−0.2, 0.02), and (0.50, 0.0, 0.02), respectively.

(9) Cube-triple-task4 (swap): Three cubes are initialized at (0.35, 0.0, 0.02), (0.50,−0.1, 0.02),
and (0.50, 0.1, 0.02), and they must be cyclically rearranged to (0.50,−0.1, 0.02), (0.50, 0.1, 0.02),
and (0.35, 0.0, 0.02).

These tasks highlight increasingly complex spatial reasoning requirements, ranging from coordinated
multi-cube relocation to disassembly of stacked structures and cyclic rearrangement.
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D VISUALIZATIONS

This section provides supplementary visual material to demonstrate our model’s performance. The
included visualizations of successful episodes highlight our policy’s ability to generate precise
and robust trajectories, showcasing its effectiveness in handling the complexities of long-horizon
reasoning and sparse rewards inherent in these robotic manipulation tasks.

(a) Lift (b) step = 5 (c) step = 10 (d) step = 15 (e) step = 20

(f) Can (g) step = 15 (h) step = 30 (i) step = 45 (j) step = 65

(k) Square (l) step = 20 (m) step = 40 (n) step = 60 (o) step = 70

(p) Double-task2 (q) step = 15 (r) step = 30 (s) step = 45 (t) step = 60

(u) Triple-task2 (v) step = 20 (w) step = 30 (x) step = 45 (y) step = 50

Figure 7: Visualizations of typical success episodes: Robomimic-lift, Robomimic-can, Robomimic-square,
Cube-double-task2, and Cube-double-task3.
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(a) Double-task4 (b) step = 40 (c) step = 75 (d) step = 120 (e) step = 155

(f) Triple-task2 (g) step = 30 (h) step = 60 (i) step = 90 (j) step = 125

(k) Triple-task3 (l) step = 40 (m) step = 75 (n) step = 120 (o) step = 165

(p) Triple-task4 (q) step = 25 (r) step = 50 (s) step = 75 (t) step = 100

(u) step = 125 (v) step = 150 (w) step = 175 (x) step = 200 (y) step = 235

Figure 8: Visualizations of typical success episodes: Cube-double-task4, Cube-triple-task2, Cube-triple-
task3, and Cube-triple-task4.
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E ADDITIONAL EXPERIMENTS ON HIGH-DIMENSIONAL AND VISUAL TASKS

To verify the scalability and robustness of MFP across diverse domains, we extended our evaluation
to include two high-dimensional control tasks and two visual manipulation tasks, as shown in 9.

D4RL Visual

Hammer Door Puzzle 3x3 Puzzle 4x4 visual-input

Figure 9: Snapshots of the additional tasks.

E.1 HIGH-DIMENSIONAL CONTROL (D4RL ADROIT)

We evaluated MFP on the D4RL Adroit suite (Hammer and Door), which involves high-dimensional
dexterous manipulation. As shown in Table 6 and Figure 10, MFP significantly outperforms the
strong baseline QC, achieving 14 points increase in normalized scores on average. This highlights
MFP’s superior capability in modeling complex action distributions in high-dimensional spaces.

Table 6: Comparison of normalized scores on D4RL Adroit tasks (Mean ± Std).

Algorithm D4RL-Door D4RL-Hammer
QC 51.8± 6.0 92.2± 4.5
MFP (ours) 64.7± 4.7 108.3± 5.2

Figure 10: Training curves on D4RL Adroit tasks.

E.2 VISUAL-BASED MANIPULATION

We further evaluated MFP on visual-based Puzzle-3x3 and Puzzle-4x4 tasks, which require spatial
reasoning directly from pixel inputs. The results are summarized in Table 7. While both methods
solve the 3x3 task, MFP achieves a higher success rate (0.61 vs. 0.47) and better peak performance
on the significantly harder 4x4 task, demonstrating its effectiveness in learning visual policies with
sparse rewards.
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Table 7: Success rates on Visual-based manipulation tasks.

Algorithm Visual-puzzle-3x3 Visual-puzzle-4x4
QC 1.0± 0.0 0.47± 0.33
MFP (ours) 1.0± 0.0 0.61± 0.40

Figure 11: Training curves on visual tasks.

F ADDITIONAL ABLATION STUDIES

F.1 IMPACT OF INFERENCE STEPS

To demonstrate the trade-off between efficiency and performance, we evaluated the baseline QC with
varying inference steps (1, 5, and 20). As shown in Figure 12 and Table 8, reducing the baseline
steps leads to a catastrophic performance drop. In contrast, MFP is structurally designed for one-step
generation (NFE=1) and effectively dominates the Pareto frontier, achieving SOTA success rates with
minimal computational cost.

Table 8: Performance comparison with varying inference steps.

Algorithm Cube-triple-task3 Cube-triple-task4
QC (1 step) 0.02± 0.02 0.01± 0.91
QC (5 steps) 0.33± 0.40 0.08± 0.04
QC (20 steps) 0.69± 0.07 0.30± 0.08
MFP (ours) 0.71± 0.08 0.52± 0.11

F.2 COMPARISON WITH PROBABILISTIC MIXING

We compared our proposed Instantaneous Velocity Constraint (IVC) against the heuristic probabilistic
mixing strategy used in prior MeanFlow work (Geng et al., 2025a). As shown in Figure 13, our
simultaneous IVC loss yields significantly higher success rates and stability compared to mixing
strategies (25%, 50%, 75%), confirming that explicit boundary supervision is crucial for RL tasks.

G EVALUATION ON IMITATION LEARNING

To verify the generality of our method, we conducted a pure Behavioral Cloning (BC) experiment
on the Robomimic Square task. Our one-step MFP outperforms the multi-step baseline in success
rate while maintaining significantly faster inference. Additionally, visualization on the Push-T task
(Figure 15) confirms that MFP successfully captures multi-modal behaviors.
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Figure 12: Ablation study on flow inference steps.

Figure 13: Ablation study comparing IVC with probabilistic mixing strategies.

Figure 14: Behavior cloning experiment.

Test case
100 close-loop runs

Multi-modality evaluation

Figure 15: Visualization of multi-modal behaviors learned by MFP on the Push-T task.
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H REPRODUCIBILITY STATEMENT

The hyperparameters of all algorithms are shown in Table 9.

Parameter Value
Shared

Batch size 256
Discount factor (γ) 0.99
Optimizer Adam
Learning rate 3× 10−4

Target network update rate (τ ) 5× 10−3

UTD Ratio 1
Evaluation interval 5000
Number of evaluation episodes 50
Number of offline training steps 1× 106 (1M)
Number of online training steps 1× 106 (1M)
Number of flow steps (T ) 10
Policy network width 512
Policy network depth 4 hidden layers
Policy activation function GELU
Policy layer normalization False
Value network width 512
Value network depth 4 hidden layers
Value activation function GELU
Value layer normalization True
Value ensemble size (K) 2
Value ensemble operator MEAN

FQL

Flow step 10

BC weight (α) 10000 for lift, can and square
300 for cube-double-* and cube-triple-*

QC

Chunking horizon length 5
Flow step 10

Number of best-of-N 16 for lift, can and square
32 for cube-double-* and cube-triple-*

MFP-IVC (ours)

IVC ratio (λ) 1.0

Number of best-of-N 16 for lift, can and square
32 for cube-double-* and cube-triple-*

Table 9: Detailed hyperparameters.
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