Under review as a conference paper at ICLR 2026

MEAN FLOW POLICY WITH INSTANTANEOUS VELOC-
ITY CONSTRAINT FOR ONE-STEP ACTION GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning expressive and efficient policy functions is a promising direction in rein-
forcement learning (RL). While flow-based policies have recently proven effective
in modeling complex action distributions with a fast deterministic sampling process,
they still face a trade-off between expressiveness and computational burden, which
is typically controlled by the number of flow steps. In this work, we propose mean
flow policy (MFP), a new generative policy function that models the mean velocity
field to achieve the fastest one-step action generation. To ensure its high expressive-
ness, an instantaneous velocity constraint (IVC) is introduced on the mean velocity
field during training. We theoretically prove that this design explicitly serves as a
crucial boundary condition, thereby improving learning accuracy and enhancing
policy expressiveness. Empirically, our MFP achieves state-of-the-art success
rates across several challenging robotic manipulation tasks from Robomimic and
OGBench. It also delivers substantial improvements in training and inference speed
over existing flow-based policy baselines.

1 INTRODUCTION

A promising topic in reinforcement learning (RL) community is to develop expressive and efficient
policies, particularly in complex control environments where action distributions can be multi-
modal (Zhu et al., 2023; Wang et al., 2023). Generative policies, such as diffusion model and
flow matching, have recently emerged as a powerful alternative to Gaussian or mixture policies by
transforming simple base distributions into flexible action distributions via learnable transforma-
tions (Song et al., 2020; Chi et al., 2023). However, a key limitation of existing generative policies
is their dependence on iterative multi-step refinement from noise to actions (Wang et al., 2024a;
2025; Ding et al., 2024). This computational dependency imposes a significant overhead that hinders
training speed, particularly for online RL where action sampling is a per-step requirement (Li, 2023;
Yang et al., 2023). Moreover, this overhead translates to considerable inference latency, which is a
major impediment to achieving high closed-loop performance in real-time control systems (Zhan
et al., 2024; 2025; Jiang et al., 2024).

A question naturally arises: Can we unify the expres-
siveness of generative policies with the efficiency of 10
one-step action generation for online RL? : [:]

In this paper, we propose the mean flow policy (MFP) 08

as an affirmative answer. While existing flow policies
learn instantaneous velocities and require multi-step 06 _<>‘

iterative sampling (Lipman et al., 2023; Park et al.,

2025; Bharadhwaj et al., 2024), MFP instead learns 0.4 ey e
the mean velocity field (Geng et al., 2025a). This FaL
design enables a direct, single-step mapping from a 0.2

base Gaussian noise to a multi-modal action distri-
bution, thereby preserving the expressive power of
flow-based models while drastically improving train-
ing and inference efficiency (Kornilov et al., 2024).

Qc MFP (ours)

Success rate

50 75 100 125 150 175

Online training speed (iter/s)

Figure 1: Performance-efficiency evalua-
tion on 9 robotic manipulation tasks. Our
Although the time-efficiency gains of MFP are very MFP achieved the highest success rate and
promising, its learning difficulty is higher than that fastest training speed on a single A100 GPU.

Under review as a conference paper at ICLR 2026

of a standard flow policy. One reason is that our MFP requires modeling the mean velocity for any
time interval specified by two time points (Geng et al., 2025a). A more significant reason is that its
learning process is governed by a first-order ordinary differential equation (ODE) derived from the
definition of mean velocity. However, this ODE theoretically suffers from the problem of multiple
solutions due to a lack of explicit boundary conditions, that is, the value at any boundary point is not
enforced. This poses a non-trivial challenge to learning accuracy and consequently affects policy
expressiveness (Birkhoff & Langer, 1923).

To address this, we introduce an instantaneous velocity constraint (IVC) to compensate for the lack
of boundary conditions. Intuitively, IVC pairs the average velocity loss for each interval with an
instantaneous velocity loss at the interval’s start point. In practice, IVC is implemented as a auxiliary
policy loss, adding negligible computational overhead while materially improving accuracy. We
evaluate our MFP on Robomimic (Mandlekar et al., 2021) and OGBench (Park et al., 2024), two
demanding robot manipulation benchmarks. As shown in Figure 1 and Table 4, MFP achieves
state-of-the-art success rates while delivering substantial speed-ups in training and per-step inference
over strong flow-policy baselines, on average across both suites.

Our contributions are summarized threefold:

* We propose a new flow-based policy, namely mean flow policy (MFP), that enables fastest
one-step action generation. By modeling the mean velocity field, MFP retains the expres-
siveness of generative policies while eliminating multi-step sampling overhead.

* We design a training enhancement technique, namely instantaneous velocity constraint (IVC),
to improve the learning accuracy of mean velocity field. This technique explicitly serves as
a boundary condition, thereby stabilizing learning and enhancing policy expressiveness.

* We empirically achieve state-of-the-art success rates on two challenging robotic manipulation
benchmarks: Robomimic and OGBench. Moreover, our approach provides a substantial
speedup in both training and inference over existing flow-policy baselines, highlighting its
practicality for real-time application.

2 PRELIMINARIES

Reinforcement Learning. We consider an agent interacting with an environment modeled as
a Markov Decision Process (MDP), defined by a tuple M = (S, A, P,r,v) (Li, 2023). The
components are the state space S C R", the action space A C R™, the state transition function
P(s'|s,a), the reward function r(s,a), and the discount factor v € [0,1). The primary goal in
reinforcement learning (RL) is to learn a policy m(a|s) that maximizes the expected cumulative
discounted reward, namely return, given by

Jr = EW,P

Z’ka(sk,ak)l : M

k=0

Grounded in the off-policy learning paradigm, our approach utilizes an action-value function (Q-
function) to guide policy improvement, which denotes the expected cumulative return for taking an
action a in a state s and thereafter following the policy 7.

QW(S,G,) =]Eﬂ‘,'P [Z ’yir(si; ai)|50 = S,a0 = CL] . (2)

=0

The optimal action-value function, Q*(s, a), represents the maximum expected return achievable
from state s by taking action a. The optimal policy 7* can then be found by selecting the action that
maximizes this function: 7*(s) = argmaxae4 @*(s, a).

Flow Matching. Flow matching is a principled methodology for constructing continuous-time
generative models (Lipman et al., 2023). In contrast to diffusion models, which employ stochastic
differential equations (SDEs) (Song et al., 2020), flow matching is built upon deterministic dynam-
ics governed by an ordinary differential equation (ODE). By directly learning a continuous-form
instantaneous vector field, this approach simplifies the training objective and enables more efficient

Under review as a conference paper at ICLR 2026

sampling. Specifically, it trains a neural network vy : R? x [0, 1] — R? to parameterize a velocity
field v(x(t), t) that matches a predefined conditional target velocity v(1) .

For a source distribution ¢(x(0)) and a target distribution p(x(1)), the velocity field is trained by
minimizing the flow matching loss (Lipman et al., 2024):

Len(0) =E oy oo (z(t),t) —v((t),1)]
2(1)~p, 2(0)~g

2
:, 3)

where any intermediate point along the generating path z(t) = tx(1) + (1 — ¢)x(0) is a linear

interpolation between source and target points. The velocity for this path is assumed to be a constant

vector v(z(t),t) = (1) — x(0). This formulation defines the target vector field along a straight path

between the source and target samples. Once trained, the learned field vy defines a probability flow
via the following ODE:

dz(t)

di :Ue(x(t)at)v x(O)N(L 4

which allows us to effectively generate samples of the target distribution p, starting from samples
of the source distribution g. Although flow matching is conceptually designed to generate along
a straight line, the paths still curve in practice when fitting between two distributions (Song et al.,
2023). Therefore, multi-step discretization and numerical methods like the Euler method are often
required to solve the ODE in Eq. (4) to obtain high-quality generated results (Park et al., 2025).

3 METHOD

First, we introduce the mean flow policy (MFP), showing how its integration with a “generate-and-
select” mechanism enables a direct mapping from noise to optimal actions. We then present the
instantaneous velocity constraint (IVC) and theoretically justify its role in improving the learning
accuracy. Finally, the complete pseudo-code for our mean flow RL algorithm is provided.

3.1 MEAN FLOW PoOLICY

In RL, a policy 7 (-|s) defines a distribution over actions

given a state s. For standard flow-based policies, this n

mapping is framed as a generative process: a velocity t

model, v(a(t), ¢, s), transforms a standard Gaussian noise

(source) into the optimal action (target), with the state t

serving as a conditioning input. The final output action

a(1) is calculated by 00 Ly 2

o> Liyc

1
a(l) = a(0)+/ v(a(r), T, s)dr, a(0) ~ N(0,1). (5) Figure 2: Velocity field: blue arrows de-
0 note the mean velocity over a time in-
Unlike standard flow policies that learn the instantaneous terval, with red arrows representing the
velocity field v(a(t), ¢, s), we center on the mean velocity instantaneous velocity at a time point.
field u(a(t), t,r, s), modeling the mean velocity over any
given time interval [t, 7] as

1
r—t

u(a(t), t,r,s) =

/t " ola(r), 7, 8)dr ©)

The relationship between these two types of velocities is shown in Figure 2. If the mean velocity
model v* is ideally learned, the policy inference is formulated as

a(1) = a(0) + u*(a(0),0,1,s), a(0) ~ N(0,1). 7
(1) How to imitate a given target action. To train the mean velocity model u, we first multiply

both sides of Eq. (6) by (r — t) and then differentiate with respect to ¢ (treating r as independent of
t), which yields the mean flow identity:

—ula(t),t,r,s) + (r — t)%u(a(t),t,r, s) = —v(a(t),t, s). (8)

Under review as a conference paper at ICLR 2026

We assume there is a target optimal action a*, serving as a(1) for imitation. For two randomly
sampled time points, ¢ and r (with ¢ < r), the intermediate point a(t) is defined by the linear
interpolation: a(t) = ¢ -a(1) + (1 —t) - a(0), and v = a* — a(0). Let 6 denote the learnable
parameters, the training objective is to minimize the residual of the mean flow identity in Eq. (8) as

d 2
Lyve(0) = By petoae ||uolalt), t,r,s) —sg (v —(t-— r)autg(a(t), t,r, s))

; ©))

2
where “sg” denotes the stop-gradient operator to stabilize training. Calculating this training loss
requires computing the total time derivative term, %u. Using the chain rule, this term is expanded
as shown in Eq. (10), and its computation can be performed efficiently using the Jacobian-vector

product (JVP) in modern automatic differentiation libraries.

ua(a(t),t,7,5) = o(a(t), 1) - 2-uo(a(t), ot 5) + gruo(a(t),ts), (10)

By minimizing Eq. (9), the mean velocity model u can effectively transform a standard Gaussian
noise into the desired target action distribution. In RL, however, there is no ground-truth dataset of
optimal actions to imitate. Next, we will detail how to gradually find better actions and eventually
approach the optimal target action.

(2) How to find the optimal target action to imitate. Finding the optimal action a* directly is
not realistic. However, we can use the Q-function to progressively find better actions as imitation
targets, and eventually find the optimal action a* in a bootstrap manner. This mechanism is called
“generate-and-select” or “best-of-N”.

In practice, at any given state s, the agent first generate N diverse candidate actions as

a’ =aj,(1) = € +ug(e;,0,1,8), a’(0) =€ ~N(0,1), i=1,---,N. (11)
Then the critic function ()4 parameterized by ¢ is employed to evaluate all candidates, and the action
yielding the highest Q-value is identified as the final output action for that state:

a* = argmax Qy(s,a’). (12)

We treat the combined mean flow generation process in Eq. (11) and the best-of-/N mechanism in Eqg.
(12) as a unified policy 75" | or simply denoted as 7g. The resulting action, a*, then serves three
purposes: (1) interacting with the environment, (2) acting as the target action for policy training, and
(3) calculating the target value for value training.

Although this bootstrap mechanism is intuitive, next we will formally prove that such a imitation-
based update guarantees policy improvement by the following theorem.

Theorem 1 (Mean Flow Policy Improvement). Let the new policy Ty, be derived from an old
policy m, via the N-candidate generative update process described above. Under assumptions of a
bounded Q-function error (eq), Lq-Lipschitz continuity of the Q-function, and a bounded mean flow
matching error (€ 5), the performance difference between these two policies is lower-bounded by

= 2 L
Ve (s) = VT(s) 2 Bro,, [Z M’fv““@t)] - = 7@3 : (13)
t=0

fitting error term Ao

BFN improvement term A1

where V (s) is the state-value function, and A" (s) is the best-of-N advantage gain, satisfying

AFAE) = Barmnai | %, @ (5,00 = V74(5) 2 0. (14

Proof. See Appendix A. O

This theorem decomposes the performance difference into two distinct components: a BFN improve-
ment term Ay and a fitting error term As. As we prove in Appendix A.4, the best-of-N advantage
gain (AT) in A is strictly non-negative, implying that the policy improvement can be driven by the
benefit of sampling N diverse action candidates. It is also important to note that this improvement is
partially counteracted by the fitting error term Ay, which stems from the critic’s inaccuracy () and
the mean flow matching error (e 4). This highlights the importance of reducing € 4 to further enhance
policy performance. In the next subsection, we will introduce the instantaneous velocity constraint
(IVC) to help reduce this fitting error.

Under review as a conference paper at ICLR 2026

3.2 THE INSTANTANEOUS VELOCITY CONSTRAINT AS A BOUNDARY CONDITION

As we mentioned above, the underlying principle for training the mean velocity model is Eq. (8),
which is a first-order ordinary differential equation (ODE) with respect to u. Mathematically speaking,
we need to know both the dynamics and at least a boundary condition to accurately solve the unique
solution of a ODE. Back to our practical setting, Eq. (8) only provides the dynamics given ¢ < 7.
Although sampling pairs where r is very close to ¢ could implicitly serve as the boundary condition,
such events are too rare to ensure robust training.

Inspired by this, we introduce the instantaneous velocity constraint (IVC), a training objective that
explicitly enforces a boundary condition at ¢t. The mean velocity from ¢ to ¢ is exactly the known
instantaneous velocity v = a* — a(0), so the IVC objective is expressed as:

EIVC(H) =]Et,a(t) ||u9(a(t)a t7 t) - UH; . (15)

To understand the effectiveness of this IVC objective, we first derive the following theorem, which
demonstrates the multiplicity of solutions for Eq. (8) in the absence of a boundary condition.

Theorem 2 (Multiplicity of Solutions for the Mean Flow Identity). Let the cumulative error A,
be defined as the difference between the learned and the true mean velocity field, A, (a(t),t,r) £
ug(a(t), t,r) —u*(a(t),t,r). Assume ug perfectly satisfies the mean flow identity (Eq. (8)) for all
t < r. Then, its cumulative error A, satisfies

Cla,r)

Ay(a(t),t,r) = p—

(16)
where C'(a,) is an integration constant independent of time t.

Proof. By assumption, both uy and u* precisely satisfy the mean flow identity. Subtracting the
identity for v* from that of ugy yields a homogeneous linear differential equation with respect to the
cumulative error A, as

d

Ay +(t—r)—=A, =0. (17

dt
By the product rule for derivatives, this is equivalent to % [(r —t)A,] = 0. Integrating with respect
to ¢t yields (r — t)A, = C(a,), which completes the proof.

Theorem 2 reveals that any solution learned by perfectly minimizing the Ly loss belongs to a family
of functions with a unknown constant C(a,). Because the Ly loss is blind to the boundary, it
cannot provide a gradient to force C'(a, ') to zero. This allows an arbitrary, persistent bias to exist in
the learned wug. Next, we derive the following theorem to prove that the explicit introduction of IVC
eliminates this degree of freedom and restricts the solution space to the unique correct u*.

Theorem 3 (Uniqueness via the Instantaneous Velocity Constraint). Let the boundary error A, be
defined as the error at the boundary t, A, (a(t),t) = ug(a(t),t,t) —v*(a(t),t). Minimizing the IVC
loss, Lye = E[||Ay||?], forces the integration constant C(a, 1) in Theorem 2 to zero. This eliminates
the boundary error and ensures the cumulative error /A, vanishes for all t < r.

Proof. The boundary error A, is the limit of the cumulative error A, as » — t*. Applying Eq. (16):

Ay(a(t),t) = lim M.

r—tt r—1

(18)

This limit diverges if C'(a,r) # 0. To keep the IVC loss finite, the optimization must prevent
this divergence, which requires C'(a,r) = 0. With C(a,r) = 0, the boundary error A, is zero.
Consequently, by invoking Theorem 2, the cumulative error A,, also becomes zero. This completes
the proof. O

In essence, Theorem 3 proves that the IVC provides the necessary boundary condition to make the
learning problem well-posed. By forcing the error constant to zero at the boundary, the IVC eliminates
the cumulative error inherent to the mean flow objective, thereby retaining the high expressive power
of the generative model. Moreover, the resulted smaller mean flow matching error € 4 in Theorem 1,
which helps enable a more effective policy improvement with each update.

Under review as a conference paper at ICLR 2026

3.3 MEAN FLOW REINFORCEMENT LEARNING

This section systematically presents the complete picture of our mean flow RL. The policy training
loss Lpolicy combines the mean velocity model loss in Eq. (9) with the IVC loss in Eq. (15):

Lyolicy (0) = Lmr(0) + ALve(0), (19)
where the balancing hyperparameter A > 0 is called IVC coefficient, and the default value is 1.0.

Concurrently, the critic Q4 is trained to minimize a standard TD-error in Eq. (20) on transitions
(Sk,ak, Tk, Sk+1) from the replay buffer, where k is the step index.

Lo(¢)=E [(Q¢(5k;ak) — (1 + Qe (sk+1, a2+1)))2} . (20

Recall that we treat the combined mean flow generation process in Eq. (11) and the best-of-N
mechanism in Eq. (12) as a unified policy 7y, so the calculation of aj , ; also involves a generative-
then-select process for ensuring an unbiased policy evaluation.

The overall training scheme decouples the generative policy’s imitative training from the Q-value
gradient. Instead, the policy improvement is guaranteed by a best-of- N mechanism under the guidance
of Q-value selection. This design allows us to leverage the policy’s full expressive power while
ensuring stable and effective policy improvement. The complete algorithm is shown in Algorithm 1.

Algorithm 1 Mean Flow RL

Input: Mean Flow policy mg, where 6 is the parameters of ug, Critic ()4, offline dataset Dogpiine
Initialize replay buffer D with Dogine

> Phase 1: Offline Pre-training
for offline training step do
Replay a mini-batch from D
Update policy 7 by minimizing Lyoiicy (6) with Eq. (19)
Update critic Q4 by minimizing L (¢) with Eq. (20)
end for
> Phase 2: Online Interaction and Fine-tuning
for online training step k = 1,2, ... do
Observe sy, execute aj, = my(sy), receive Sg41, Tk, and store (sk, aj, Tk, Sk+1) into D
Replay a mini-batch from D
Update policy mg by minimizing Lpoiicy (6) with Eq. (19)
Update critic @, by minimizing £ (¢) with Eq. (20)
end for

4 EXPERIMENTS

4.1 MAIN EXPERIMENT

Benchmark. We consider a total of 9 sparse-reward robotic manipulation tasks with varying diffi-
culties. This includes 3 tasks from the Robomimic benchmark (Mandlekar et al., 2021), Lift, Can
and Square, and 6 tasks from OGBench (Park et al., 2024), cube-double-task 2/3/4 and
cube-triple-task 2/3/4. For Robomimic, we use the multi-human datasets. For OGBench,
we use the default play-style datasets. See more details of these tasks in Appendix C.

Baselines and our method. We compare with three latest strong offline-to-online RL baselines.
(1) FQL (flow Q learning) (Park et al., 2025) first uses behavioral cloning to train a multi-step
flow policy on offline data. It then trains a separate one-step policy that imitates the multi-step
policy and maximizes Q-values, enabling efficient and stable learning within the data distribution. (2)
BFN (best-of-N) (Ghasemipour et al., 2021) combines the best-of-/N sampling with an expressive
multi-step flow policy. Specifically, BFN first generates N candidate actions and picks the action
(out of V) that maximizes the current Q-value. (3) QC (Q-chunking) (Li et al., 2025) applies action
chunking (Bharadhwayj et al., 2024) on the basis of BFN to improve exploration and sample efficiency.
(4) Ours MFP also adopts the chunking trick, but leverages a more efficient mean flow policy to
achieve the fastest one-step action generation with maintained or even enhanced expressiveness.

Under review as a conference paper at ICLR 2026

Success Rate
Success Rate
Success Rate

0.0 05 1.0 15 2.0
Steps (x106)

(a) Robomimic-lift

Steps (x106)

(c) Robomimic-square

Steps (x106)

(b) Robomimic-can

Success Rate
Success Rate
Success Rate

0 rrlkK
0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0
Steps (x10°) Steps (x106) Steps (x106)

(d) Cube-double-task2 (e) Cube-double-task3 (f) Cube-double-task4

Success Rate

Pt y ment , 2 X y g
0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0
Steps (x10°) Steps (x10°) Steps (x10°)

(g) Cube-triple-task2 (h) Cube-triple-task3 (i) Cube-triple-task4
/A FaL BFN Qc O MFP (ours)
Figure 3: Training curves on benchmarks. The solid lines correspond to mean and shaded regions

correspond to 95% confidence interval over five runs. The shadow background indicates the offline
training phase, while the white background indicates the online training phase.

<O

Table 1: Success rates. Mean + Std over 5 seeds. Bold = best, underlined = 2nd-best.

Task FQL BFN QC MFP (ours)
Robomimic-lift 0.96 +0.03 1.00 £0.01 1.00+0.00 1.00 + 0.00
Robomimic-can 0.744+0.11 0.82+£0.03 094 +0.06 0.92 4+ 0.07
Robomimic-square 0.12+£0.05 0.34£0.06 0.924+0.01 0.93 £ 0.01
Cube-double-task2 0.95+0.04 0.88+0.05 1.00+0.00 1.00 & 0.00
Cube-double-task3 0.97+0.04 0.90+0.06 1.00+0.00 1.00 + 0.00
Cube-double-task4 0.08 £0.04 0.354+0.09 0.93 £0.08 0.95 + 0.04
Cube-triple-task2 0.01£0.02 0.08+£0.06 0.824+0.10 0.88 + 0.03
Cube-triple-task3 0.12+0.13 0.26+0.14 0.69 +£0.05 0.71 + 0.06
Cube-triple-task4 0.00£0.00 0.02+£0.02 046+0.13 0.52 +0.11
Average 0.44+0.05 0.52+0.06 0.86+0.05 0.88+ 0.05

Main results. As shown in Table 1, our MFP matches or exceeds state-of-the-art multi-step
flow-matching baselines on eight of nine tasks. On the remaining task, MFP ranks second, with a
performance of 0.92, which is just 0.02 points below the top-performing baseline’s score of 0.94.
While all methods achieve near-perfect performance on simpler tasks like Robomimic-lift, Cube-
double-task2, and Cube-double-task3, MFP demonstrates clear superiority on the more challenging
tasks. Specifically, MFP consistently outperforms all baselines on Robomimic-square, Cube-double-
task4, and all Cube-triple tasks, where it consistently achieves the highest success rates. For instance,
on the most difficult task, Cube-triple-task4, MFP achieves a success rate of 0.52 + 0.11, which is

Under review as a conference paper at ICLR 2026

significantly higher than the next-best baseline, QC (0.46 + 0.13), and substantially exceeds both
FQL and BEN. Overall, our MFP secures the top position with an average success rate of 0.88 £ 0.05.
This result highlights its strong capability that is competitive with multi-step flow policies in solving
long-horizon, sparse-reward tasks.

4.2 ABLATION STUDY AND SUPPLEMENTARY EXPERIMENTS

(1) Ablation on the instantaneous velocity constraint (IVC). We perform an ablation study on the
IVC coefficient A. Our full version (A = 1.0) was compared against variants with a reduced constraint
(A =0.5) and without the constraint (A = 0.0). The results, as shown in Figure 4, indicate a positive
correlation between the IVC weight and performance, while also demonstrating that the method is not
overly sensitive to A. For example, the success rate on the challenging Cube-triple-task4 significantly
increases from 0.30 = 0.21 (with no IVC) to 0.45 £ 0.15 (with a partial IVC), and further to 0.52 +
0.11 (with full IVC). Detailed numerical results are listed in Table 2 in Appendix B.1. These findings
empirically validate our theoretical claims, confirming the IVC’s role as a crucial component for
modeling an accurate mean velocity field and consequently achieving significant performance gains.

&

2 2 MFP (A=0.0)
© ©
['3 [:4
2 2
8 8
S S MFP (A=0.5)
7] 7]

. _ . el MFP (A=1.0)

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Steps (x10°) Steps (x10°)
(a) Cube-triple-task3 (b) Cube-triple-task4

Figure 4: Training curves of ablation on the IVC.

(2) Comparison with one-step variants of the aforementioned baselines. We compared our
MFP against one-step variants of the aforementioned baselines: FQL-Onestep, BFN-Onestep, and
QC-Onestep. As shown in Figure 5, a naive one-step configuration is insufficient for solving these
complex, long-horizon tasks, with baselines achieving success rates near zero on both Cube-triple-
task3 and Cube-triple-task4. In stark contrast, our MFP achieves success rates of 0.71 £ 0.06 and 0.52
+ 0.11 on these tasks, respectively. Detailed numerical results can be seen in Table 3 in Appendix B.1.
This supplementary comparison highlights that simply using a one-step standard flow is not enough;
the superior expressive capability and stable learning process of our mean flow policy are critical for
tackling these challenging long-horizon manipulation tasks.

1.0 1.0 A

FQL-Onestep

o

BFN-Onestep

Success Rate
e
o

QC-Onestep
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 MFP (ours)
Steps (x10°) Steps (x10°)
(a) Cube-triple-task3 (b) Cube-triple-task4

Figure 5: Training curves of comparison with one-step flow.

(3) Training and inference time analysis. Figure 1 presents a comparison of the average success
rate (%) versus online training speed (iter/s) across the 9 tasks. Our MFP achieves highest success rate
and fastest training speed. This superior training efficiency stems directly from our one-step action

Under review as a conference paper at ICLR 2026

generation, which eliminates the iterative sampling process required by prior multi-step flow policies.
Regarding inference time-efficiency, our MFP is also one of the most competitive approaches, as
shown in Table 4 in Appendix B.2. To conclude, our MFP is highly time-efficient in both training
and inference, making it suitable for rapid tuning and real-time deployment.

5 RELATED WORK

Offline-to-online RL. The offline-to-online RL first uses a static, pre-collected dataset to offline train
initial policy and Q-value functions (Levine et al., 2020; Kumar et al., 2020). This process provides
a warm start, giving the agent a foundational understanding of the environment that significantly
accelerates and improves the efficiency of subsequent online interactive fine-tuning (Lee et al.,
2022). Numerous algorithmic designs have been proposed to improve offline-to-online RL, including
behavioral regularization (Ashvin et al., 2020; Tarasov et al., 2023), conservatism (Kumar et al., 2020),
in-sample maximization (Kostrikov et al., 2022; Garg et al., 2023), out-of-distribution detection (Yu
et al., 2020; Kidambi et al., 2020; Nikulin et al., 2023) and dual RL (Lee et al., 2021; Sikchi et al.,
2024). Beyond these algorithmic solutions, the choice of policy function also plays an important
role (Wang et al., 2023). A policy network with high expressiveness can better capture the intricate
distribution of the behavioral policy during offline training stage. This capability is also crucial for
adapting to target environments during online fine-tuning, as optimal actions in these settings often
possess a naturally multi-modal nature (Park et al., 2025; Li et al., 2025). Since the policy must
infer actions at every step during both the online fine-tuning and real-time deployment stages, the
inference time efficiency of the policy function is also critical (Li, 2023; Park et al., 2025). Our work
contributes a new policy function, MFP, which achieves the fastest single-step action generation and
maintains a high expressive capacity to achieve high performance.

Generative models as RL policies. The expressive power of generative models, such as denoising
diffusion models (Ho et al., 2020) and flow matching (Lipman et al., 2022), makes them promising
for representing complex, multi-modal policies in both offline (Janner et al., 2022; Chi et al., 2023)
and online (Yang et al., 2023; Wang et al., 2024a; Ding et al., 2024) RL. However, their iterative
sampling process requires a high number of function evaluations (NFE), creating a prohibitive latency
for the high-throughput nature of online RL. A common approach in RL to improving time-efficiency
of generative policies is distillation, which compresses a trained iterative model into a one-step
policy (Wang et al., 2024b; Park et al., 2025). Beyond the field of RL, recent studies have begun to
explore training a single-step generative flow directly for tasks like image generation (Lu & Song,
2025). These methods typically operate either by enforcing consistency constraints on the model’s
outputs at different time steps (Song et al., 2023; Song & Dhariwal, 2024; Geng et al., 2025b) or
by explicitly modeling the flow velocity over a specific time interval (Boffi et al., 2024; Frans et al.,
2024). The latter class of methods generally requires more iterations to train, but ultimately performs
better (Frans et al., 2024). A typical representative, mean flow, has achieved the best one-step fitting
performance on Imagenet (Geng et al., 2025a). We propose a new policy function, MFP, which
combines mean flow with RL to enable the fastest single-step action generation. In the context of RL,
the dynamic shifts in data distribution during sampling place higher demands on imitation-based flow
matching training. To address this, our proposed IVC serves as an explicit boundary condition during
MFP training, which reduces fitting error and consequently ensures strong policy expressiveness.

6 CONCLUSION

We propose the mean flow policy (MFP), a new generative RL policy that enjoys both high time-
efficiency and expressiveness. The former stems from the fastest one-step action generation, and the
latter contributes to our designed instantaneous velocity constraint (IVC), which explicitly serves as
a necessary boundary condition and reliably improves the learning accuracy. Empirical results on
the Robomimic and OGBench benchmarks confirm that our MFP achieves state-of-the-art success
rates and offers substantial improvements in training and inference speed. We believe that this work
represents a significant step towards developing highly expressive and efficient policy functions for
complex robotic control tasks. Regarding limitation, a primary one is the additional GPU memory
consumption during training, which stems from the Jacobian-Vector Product (JVP) operation. In
future work, we plan to validate our method on more tasks and real robotic platforms.

Under review as a conference paper at ICLR 2026

REFERENCES

Nair Ashvin, Dalal Murtaza, Gupta Abhishek, and L Sergey. Accelerating online reinforcement
learning with offline datasets. CoRR, vol. abs/2006.09359, 2020.

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash Ku-
mar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmentations
and action chunking. In 2024 IEEFE International Conference on Robotics and Automation (ICRA),
pp. 4788-4795. IEEE, 2024.

George D Birkhoff and Rudolph E Langer. The boundary problems and developments associated
with a system of ordinary linear differential equations of the first order. In Proceedings of the
American Academy of Arts and Sciences, volume 58, pp. 51-128. JSTOR, 1923.

Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. Flow map matching. arXiv preprint
arXiv:2406.07507, 2, 2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. Advances
in Neural Information Processing Systems, 37:53945-53968, 2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme g-learning: Maxent rl
without entropy. In The Eleventh International Conference on Learning Representations, 2023.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J. Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling, 2025a. URL https://arxiv.org/abs/2505.13447.

Zhengyang Geng, Ashwini Pokle, Weijian Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. In The Thirteenth International Conference on Learning Representations, 2025b.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-max
g-learning operator for simple yet effective offline and online rl. In International Conference on
Machine Learning, pp. 3682-3691. PMLR, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

Yuxuan Jiang, Yujie Yang, Zhigian Lan, Guojian Zhan, Shengbo Eben Li, Qi Sun, Jian Ma, Tianwen
Yu, and Changwu Zhang. Rocket landing control with random annealing jump start reinforcement
learning. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp- 14026-14033. IEEE, 2024.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In In
Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810-21823, 2020.

Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Aleksandr Korotin. Optimal flow matching:
Learning straight trajectories in just one step. Advances in Neural Information Processing Systems,
37:104180-104204, 2024.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. In International Conference on Learning Representations, 2022.

10

https://arxiv.org/abs/2505.13447

Under review as a conference paper at ICLR 2026

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179-1191, 2020.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning, pp. 6120-6130. PMLR, 2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic Q-ensemble. In Conference on Robot
Learning, pp. 1702-1712. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv
preprint arXiv:2507.07969, 2025.

Shengbo Eben Li. Reinforcement Learning for Sequential Decision and Optimal Control. Springer
Verlag, Singapore, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In The Eleventh International Conference on Learning Representations,

2023.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In The Thirteenth International Conference on Learning Representations, 2025.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. What matters in learning from offline
human demonstrations for robot manipulation. In arXiv preprint arXiv:2108.03298, 2021.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by
random network distillation. In International conference on machine learning, pp. 26228-26244.
PMLR, 2023.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. ArXiv, 2024.

Seohong Park, Qiyang Li, and Sergey Levine. Flow Q-learning. arXiv preprint arXiv:2502.02538,
2025.

H Sikchi, A Zhang, and S Niekum. Dual rl: Unification and new methods for reinforcement
and imitation learning. In International Conference on Learning Representations. International
Conference on Learning Representations, 2024.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In The
Twelfth International Conference on Learning Representations, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, pp. 32211-32252. PMLR, 2023.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36:11592-11620, 2023.

11

Under review as a conference paper at ICLR 2026

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
Advances in Neural Information Processing Systems, 37:54183-54204, 2024a.

Yinuo Wang, Mining Tan, Wenjun Zou, Haotian Lin, Xujie Song, Wenxuan Wang, Tong Liu, Likun
Wang, Guojian Zhan, Tianze Zhu, et al. Enhanced dacer algorithm with high diffusion efficiency.
arXiv preprint arXiv:2505.23426, 2025.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023.

Zhendong Wang, Zhaoshuo Li, Ajay Mandlekar, Zhenjia Xu, Jiaojiao Fan, Yashraj Narang, Linxi
Fan, Yuke Zhu, Yogesh Balaji, Mingyuan Zhou, et al. One-step diffusion policy: Fast visuomotor
policies via diffusion distillation. arXiv preprint arXiv:2410.21257, 2024b.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. arXiv preprint arXiv:2305.13122, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129-14142, 2020.

Guojian Zhan, Yuxuan Jiang, Shengbo Eben Li, Yao Lyu, Xiangteng Zhang, and Yuming Yin. A
transformation-aggregation framework for state representation of autonomous driving systems.
IEEE Transactions on Intelligent Transportation Systems, 25(7):7311-7322, 2024.

Guojian Zhan, Xin An, Yuxuan Jiang, Jingliang Duan, Huichan Zhao, and Shengbo Eben Li. Physics
informed neural pose estimation for real-time shape reconstruction of soft continuum robots. /EEE
Robotics and Automation Letters, 2025.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting
Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey. arXiv preprint
arXiv:2311.01223, 2023.

12

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS ON THE MEAN FLOW POLICY IMPROVEMENT

In this section, we provide the detailed theoretical analysis for the policy improvement guarantee of
our training paradigm. It includes the implementation procedures of policy update detailed in A.1,
core assumptions and useful lemma in A.2, the formal proof of the mean flow policy improvement
theorem in A.3, and three key properties of the improvement gain in A.4.

A.1 IMPLEMENTATION PROCEDURES OF POLICY UPDATE

Let 74 denote the base mean flow policy prior to an update. At the same time, we have a learned
critic, Q4(s, a), which is an approximation of the true action-value function of the base policy,
Q74 (s, a). Let myew denote the updated policy, which is derived from 74 through the following
three-step generative process for any given state s:

1. Sample: Generate N candidate actions {a1, ..., ay } by sampling from the base policy, i.e.,
Q; ~ 7T01d(-|8).
2. Select: Use the learned critic Q¢ to select the best action from the candidates, which
becomes the target action a*(s):
a*(s) = argmax Qy(s,a;).
a;

3. Match: The new policy 7w is obtained by training the parameters of my4 to match the
target action a*(s). Note that an action apey ~ Tpew 1S not guaranteed to perfectly match
a*(s). We formally bound the expected distance between them in Assumption 3.

For analytical clarity, we introduce a conditional matching distribution, M (-|a*), to model the
outcome of the matching process (Step 3). Specifically, we assume the specific target a* has been
selected in the previous Steps 1 and 2, then generation of the final action ay.y is expressed as

Anew ~ M (-]a™).

The difference between M (-|a*) and 7y is that M (-|a™) describes the action distribution conditioned
on a specific target action a*, whereas 7., represents the marginal distribution of the action, which
results from averaging over all possible targets a*(s) generated in Steps 1 and 2.

A.2 CORE ASSUMPTIONS AND USEFUL LEMMA

Our analysis relies on the following assumptions and lemma.

Assumption 1 (Bounded Q-Value Fitting Error). The error between the learned critic () and the
true Q-function of the base policy Q™ is uniformly bounded by a constant e > 0.

V(s,a) € Sx A, |Qs(s,a) — Q™ (s,a)| < eq.

Assumption 2 (Q-Value Smoothness). The true Q-value of the base policy, Q™ (s, a), is Lg-
Lipschitz continuous with respect to the action a.

Vs €S, ar a2 € A, |Q™(s,a1) — Q™ (s,a2)| < Lg - d(a1,az).

Assumption 3 (Bounded Mean Flow Matching Error). The expected distance between the action
Qnew generated by the new policy and the target action a* is bounded by a constant € 4 > (.

Vs € S, Ea,,ewNM(-m*)[d(anera*(s))] < e€a.

Lemma 1 (Performance Difference Lemma (Kakade & Langford, 2002)). Let M = (S, A, P, R,7)
be a Markov Decision Process, and let ™ and 7' be two arbitrary policies. The difference in the
state-value function at a starting state s, or denoted as sq, can be expressed in terms of the advantage
function of the new policy 7’ with respect to the old policy 7 as:

o
V™ (s) = V™(5) = By’ (o) [Z FEA™ (s, a)] :
t=0

13

Under review as a conference paper at ICLR 2026

where d™ (s) is the discounted state visitation distribution under policy 7', and A™(s,a) =
Q™ (s,a) — V™(s) is the advantage function of policy .

Proof. The proof relies on the key identity V7 (s) = > _ 4 7(a|s)Q"(s,a). We start with the
definition of the value difference for a state s:

V™ (s) = VT (s) = V™ (s) — Z 7' (als)Q™ (s,a) + Z 7' (als)Q™ (s,a) — V7™ (s)

acA acA

=V ()= > 7(als)Q"(s,a) + Y 7'(als)(Q"(s,a) — V7 (s))
acA acA

:V”/(s) Z '(als)Q™ (s, a) —1—2 $)A" (s, a)
acA acA

Using the Bellman expectation equation for V™ (s):
VT(s) = w(d]s) (R(s, a)+7 > P(s]s, a’)v“’(s')>
a’€eA s'eS

And the definition of Q7 (s, a):

Q" (s,a) = R(s,a) + 7 Z P(s'|s,a)V7(s")

s’eS

Substitute these into our first equation:

V™ (s) = V7 (s)

= > (d]s) (R(s,a’) +9) P(s]s,a)V™ (s) — Q" (s,) + > w(d']s)A™(s,d)

a’€ A s’eS a’€eA
=y (7 > P(s/]s,) (VT (s) — V“(S'))) + Eanr(5)[A7 (s, a)]
a’e€A s'eS

=B (s)simPClsa) [V (8) = V()] + Egmrr (1) [A™ (5, a)]

This recursive formula shows that the value difference at state s depends on the expected value
difference at the next state s’. By recursively unrolling this expression over time and averaging over
the state visitation distribution d™ (s), we arrive at the final result.

V7 (5) = VR(5) = Eq e a1 [Z A AT (s, a)].

t=0

This completes the proof. O

A.3 PROOF OF THE MEAN FLOW POLICY IMPROVEMENT THEOREM

This subsection provides a formal proof of the mean flow policy improvement theorem, that is,
Theorem 1 in the main text.

Proof. Our proof begins by invoking the Performance Difference Lemma, i.e., Lemma 1, which
yields

o0
1/ Tnew (5) _ V?Told(s) _ Ermrm [Z ,ytAmm(st7 at)] . (21)
t=0

This equation connects the improvement in value function to the expected advantage of the new
policy’s actions, measured with respect to the old policy.

The following proof proceeds in two parts: first, we derive the single-step advantage bound
B, e (-|s0) [A™4(5¢, a¢)], and second, we aggregate them over time to obtain the required bound of
value difference, which completes the proof.

14

Under review as a conference paper at ICLR 2026

Part 1: Lower bound the single-step expected advantage We begin by analyzing the Q-value
decay due to the imperfect matching for a given target action a*. The final action ap.y, is distributed
according to M (-|a*). We can bound the expected difference as follows:

Qﬂ-cld (57 a*)_EaneWNM(' la*) [Qﬂ—om (37 anew)]
=Eaq,, [@™"(s,a") — Q™" (s, Gnew)]

<Eq,, [|Q"" (s, a") — Q™" (s, anew)|] (by Jensen’s inequality)
<Eq,.,[Lo - d(a”, anew)] (by Q-Value Smoothness, Assumption. 2)
<Lgea (by Bounded Matching Error, Assumption 3)

Rearranging gives us the following bound for a given a*:
Bt (1) (@™ (8, tnew)] = Q7(s,a%) — Lgea.

Now, we take the expectation over the distribution of target actions a*(s) to get the bound for the
marginal policy Tpew:

Eoor. [Q™ (s, a)] = Efa;}~mo [Eanew~M(~|a*(S)) Q™" (s, anew)]]
= E{ai}’\‘ﬂ'old [Qﬂom (s, a*)] — Lgea.

Next, we relate the Q-value of the target action, Q™" (s, a*), back to the Q-values of the original
candidates {a;}:

Q™4 (s,a") > Qu(s,a") —eg (by Bounded Q-Value Fitting Error, Assumption 1)
= max Qo(s,a;) —€g (by definition of a*)
> max Q™M (s, a;) — 2€q. (by Assumption 1 on each candidate a;)

Substituting this result back into our bound for Eqr,. [@™4(s, a)], we get:
Eanrpe (@7 (8, @)] = Efa,}mmyy [.r{laXN Q"M (s, ai)} —2eq — Lgea.

Finally, subtracting V™4 (s) = Eq.on,, [@™4(s, a)] from both sides gives the desired single-step
advantage bound:

Banme, [A™(s,0)] > AR (s) — 26q — Lgéa,

where A" (s) is the best-of- NV advantage gain, defined as

A7TNO]d(S) =]Eal,..-,aszrom(-\s) [maXN de(s’ai)] — V7al(s).

=1,...,

Part 2: Extension to the value function difference With the single-step advantage bound estab-
lished, we substitute it into Eq. (21) and obtain:

VTrnew (s) _VTrold (S)

:ETNTK‘HCW [Z ,ytATro]d (Sta at)‘|

t=0

= Z V' Egimdt - (B mormaen (- 50) [A™ (54, a1)]] (by law of total expectation)
=0

o0
> Z ytIEstng . [AN"(s¢) — 2eq — Lgea] (by substituting the bound from Part 1)
t=0

oo
2 L
=K, r, [Z 'ytA}z;"d(st)] — M. (by rearranging the geometric series)
-
t=0
This completes the proof. O

15

Under review as a conference paper at ICLR 2026

A.4 KEY PROPERTIES OF THE BEST-OF-/N ADVANTAGE GAIN
The term A7 (s) has several important properties:
1. Non-negativity: AT (s) > 0.
2. Monotonicity with N: A, (s) > AR(s).
3. Special case (N = 1): AT"(s) = 0.
Proof. Our proof sketch is to first rewrite A% (s) as an integral involving the cumulative distribution
function (CDF) of the Q-values, and then demonstrate the claimed properties of the rewritten form.

Let us define a random variable X representing the candidate Q-values. For a given state s, the
randomness of X is induced by the candidate action a independently sampled from the base policy:

X =Q™4(s,a), wherea ~ Toq(-|s).

Recall that the definition of the best-of-/NV advantage gain is

AR(s) ==]Ea1,..4,azv~7rold('\3) i:r{laXN Q" (s,a;)| — V™(s).

We can equivalently describe this definition using the CDF notation of the random variable X.
Let F'x (z) be the CDF of X, and X7, ..., Xy be N independent and identically distributed (i.i.d.)
samples of X, and let Yy = max (X7, ..., Xy). The CDF of Yy is Fy,, (y) = [Fx(y)]". Therefore,
we have A (s) = E[Yy] — E[X].

Moving forward, since the expectation of a random variable X in terms of its CDF satisfies E[X] =
JoS (1 = Fx(x))dz — fi)oo Fx (z)dz, we can further rewrite A" (s) as:

AR (s) = (/000(1 — Fy, (x))dx — /_0Oo Fy, (x)d;v) - (/000(1 — Fx(x))dx — /_Ooo FX(ac)dm)

_ / " (Fy(2) — Fyy (2))da.

Substituting Fy,, (x) = [Fx(x)]", we arrive at the final rewritten form:
A7) = [(Pxo) [Fx (o)),

Next we use this form to prove the three key properties of AT (s).

1. Proof of non-negativity (A" (s) > 0)

The CDF Fx (z) takes values in the range [0, 1]. For any value p € [0, 1] and any integer N > 1, we
have pV < p. Therefore, the integrand Fiy (x) — [Fx (x)]" is always greater than or equal to zero
for all z. The integral of a non-negative function is non-negative. Thus, A% (s) > 0.

2. Proof of monotonicity with N (A4, (s) > AR(s))
We examine the difference between consecutive terms using the integral form:
o0

AT (5) — ATH(s) = / (Fx(2) — [Fx ()] M) dz - / (Fx () — [Fx (2)]¥)dz

— 00 — 00

oo

— [(@) - [P+ as

- /oo [Fx (@)Y (1 — Fx ())de.

— 00

Since Fx (x) € [0, 1], both terms in the integrand, [Fx (z)]" and (1 — Fx(z)), are non-negative.
Their product is therefore non-negative. The integral of this non-negative function is non-negative,
which implies AP | (s) — AR“(s) > 0.

16

Under review as a conference paper at ICLR 2026

3. Proof of special case (AT (s) = 0)
Substituting N = 1 into the integral identity yields:

AT (5) = / (Fx(z) — [Fx ()])da = / (Fx(z) — Fx(x))dz = / 0dz = 0.
This confirms the special case. O
B SUPPLEMENTARY RESULTS
B.1 NUMERICAL RESULTS OF ABLATION STUDY
Table 2: Ablation on the impact of IVC.
Task MFP (A = 0.0) MFP (A =0.5) MFP (\ = 1.0)
Cube-triple-task3 0.65 4+ 0.05 0.70 = 0.14 0.71 £ 0.06
Cube-triple-task4 0.30 +0.21 0.44 +0.08 0.524+0.11

Table 3: Comparison with one-step variants of the aforementioned baselines.

Task FQL-Onestep BFN-Onestep QC-Onestep MFP (ours)

Cube-triple-task3 0.00 £0.01 0.00 £ 0.00 0.02+0.03 0.71 4 0.06
Cube-triple-task4 ~ 0.00 & 0.00 0.00 £ 0.00 0.01£0.01 0.5240.11

B.2 INFERENCE TIME-EFFICIENCY

This subsection evaluates the inference time-efficiency of our method, with a focus on its suitability for
real-world robotic deployment. Since robotic platforms often have limited computational resources,
our experiments were conducted on a CPU-only environment, AMD Ryzen Threadripper 3960X
24-Core Processor. To simulate a more realistic deployment scenario without hardware acceleration,
we disabled JAX’s Just-In-Time (JIT) compilation during all evaluations.

The results are listed in Table 4. our MFP and FQL exhibit very similar inference times, with both
approaches being significantly faster than BFN and QC.

Why BFN and QC are slow. The poor performance of BFN and QC is primarily because they rely
on a 10-step flow policy, which requires iterative computation to transform noise into an action.

Why FQL is fast. FQL simultaneously learns both a 10-step flow policy for high-accuracy imitation
and a separate one-step flow policy. The one-step policy is obtained through a distillation process
combined with a Q-function maximization loss, which allows FQL to achieve a high inference speed
comparable to our MFP.

Why MFP is better than FQL comprehensively. Despite FQL’s relatively fast inference, its
training process is very slow due to the involvement of multiple policies, including a multi-step flow
policy. Furthermore, benchmark results indicate that its success rate is very low, averaging only half
of our MFP’s. When considering FQL’s overall low success rate and slow training speed, our MFP
still maintains a significant advantage.

Table 4: Comparison of inference time

Task FQL BFN QC MFP (ours)
Average 10.76 £1.02ms 117.3£1323ms 11322+ 11.92ms 10.93 £ 0.95 ms

17

Under review as a conference paper at ICLR 2026

C ENVIRONMENTS DESCRIPTION

(a) Lift

(c) Square

(d) Cube-double-task2 (e) Cube-double-task3 (f) Cube-double-task4

(g) Cube-triple-task?2 (h) Cube-triple-task3 (i) Cube-triple-task4

Figure 6: Snapshots of the 9 challenging long-horizon, sparse-reward manipulation tasks.

Robomimic benchmark. We use three challenging tasks from the robomimic domain (Mandlekar
et al., 2021). We use the multi-human datasets that were collected by six human operators. Each
dataset consists of 50 trajectories provided by each operator, for a total of 300 successful trajectories.
The operators were varied in proficiency — there were 2 “worse” operators, 2 “okay” operators, and 2
“better” operators, resulting in diverse, mixed quality datasets. The three tasks are as described below.

(1) lift: requires the robot arm to pick a small cube. This is the simplest task of the benchmark.
(2) can: requires the robot arm to pick up a coke can and place in a smaller container bin.

(3) square: requires the robot arm to pick a square nut and place it on a rod. The nut is slightly bigger
than the rod and requires the arm to move precisely to complete the task successfully.

All of the three robomimic tasks use binary task completion rewards where the agent receives —1
reward when the task is not completed and 0 reward when the task is completed.

18

Under review as a conference paper at ICLR 2026

OGBench cube-double/triple: These three domains contain 2/3 cubes respectively. The
tasks in the two domains all involve moving the cubes to their desired locations. The reward is
—Nwrong WhETe Nyrong 1s the number of the cubes that are at the wrong position. The episode
terminates when all cubes are at the correct position (reward is 0).

Below we highlight three representative tasks from each environment:

(4) Cube-double-task2 (move): Two cubes in different colors are initialized at (0.35, —0.1,0.02)
and (0.50, —0.1,0.02), and the goal is to move them to (0.35,0.1,0.02) and (0.50,0.1,0.02).

(5) Cube-double-task3 (move): The initial cube positions are (0.35,0.0,0.02) and (0.50, 0.0, 0.02),
and they must be placed at (0.425,—0.2,0.02) and (0.425,0.2,0.02).

(6) Cube-double-task4 (swap): Two cubes start from (0.425, —0.1,0.02) and (0.425,0.1,0.02),
and the objective is to swap their positions to (0.425,0.1,0.02) and (0.425, —0.1, 0.02).

(7) Cube-triple-task2 (move): Three cubes are initialized at (0.35, —0.2,0.02), (0.35,0.0,0.02),
and (0.35, 0.2, 0.02), with goals at (0.50, 0.0,0.02), (0.50,0.2,0.02), and (0.50, —0.2, 0.02).

(8) Cube-triple-task3 (stack): A stacked tower of three cubes is initialized at (0.425,0.2,0.02),
(0.425,0.2,0.06), and (0.425,0.2,0.10), and the robot must relocate them to (0.35, —0.1,0.02),
(0.50, —0.2,0.02), and (0.50, 0.0, 0.02), respectively.

(9) Cube-triple-task4 (swap): Three cubes are initialized at (0.35,0.0,0.02), (0.50,—0.1,0.02),
and (0.50,0.1,0.02), and they must be cyclically rearranged to (0.50, —0.1,0.02), (0.50,0.1,0.02),
and (0.35, 0.0, 0.02).

These tasks highlight increasingly complex spatial reasoning requirements, ranging from coordinated
multi-cube relocation to disassembly of stacked structures and cyclic rearrangement.

19

Under review as a conference paper at ICLR 2026

D VISUALIZATIONS

This section provides supplementary visual material to demonstrate our model’s performance. The
included visualizations of successful episodes highlight our policy’s ability to generate precise
and robust trajectories, showcasing its effectiveness in handling the complexities of long-horizon
reasoning and sparse rewards inherent in these robotic manipulation tasks.

(a) Lift (b) step =5 (c) step = 10 (d) step = 15 (e) step = 20

(f) Can (g) step =15 (h) step = 30 (i) step = 45 (j) step = 65

LI !

(k) Square 1) step = 20 (m) step = 40 (n) step = 60

(p) Double-task2 (q) step =15 (r) step = 30 (s) step = 45 (t) step = 60

(u) Triple-task2 (v) step = 20 (w) step = 30 (x) step = 45 (y) step = 50

Figure 7: Visualizations of typical success episodes: Robomimic-lift, Robomimic-can, Robomimic-square,
Cube-double-task2, and Cube-double-task3.

20

Under review as a conference paper at ICLR 2026

(a) Double-task4 (b) step = 40 (c) step =75 (d) step = 120 (e) step = 155

(f) Triple-task2 (g) step = 30 (h) step = 60 @i) step = 90 () step = 125

(k) Triple-task3 1) step = 40 (m) step = 75 (n) step =120 (0) step = 165

(p) Triple-task4 (q) step = 25 (r) step = 50 (s) step =75 (t) step = 100

(u) step = 125 (v) step = 150 (w) step = 175 (x) step = 200 (y) step = 235

Figure 8: Visualizations of typical success episodes: Cube-double-task4, Cube-triple-task2, Cube-triple-
task3, and Cube-triple-task4.

21

Under review as a conference paper at ICLR 2026

E REPRODUCIBILITY STATEMENT

The hyperparameters of all algorithms are shown in Table 5.

Parameter Value
Shared

Batch size 256
Discount factor () 0.99
Optimizer Adam
Learning rate 3x 1074
Target network update rate (7) 5x 1073
UTD Ratio 1
Evaluation interval 5000
Number of evaluation episodes 50
Number of offline training steps 1 x 10% (1IM)
Number of online training steps 1 x 108 (1IM)
Number of flow steps (1) 10
Policy network width 512
Policy network depth 4 hidden layers
Policy activation function GELU
Policy layer normalization False
Value network width 512
Value network depth 4 hidden layers
Value activation function GELU
Value layer normalization True
Value ensemble size (K) 2
Value ensemble operator MEAN
FQL

Flow step 10

10000 for 1ift, can and square

BC weight (a) 300 for cube—-double—« and cube-triple—=*
oc

Chunking horizon length 5

Flow step 10

16 for 1ift, can and square

Number of best-of-I 32 for cube-double—* and cube—-triple—»*

MFP-IVC (ours)

IVC ratio (\) 1.0

16 for 1ift, can and square
Number of best-of-I 32 for cube-double—* and cube—-triple—x*

Table 5: Detailed hyperparameters.

22

Under review as a conference paper at ICLR 2026

F LLM USAGE DISCLOSURE

We used ChatGPT to refine the grammar and improve the clarity of the text. All LLM-generated
suggestions were reviewed and edited by the authors, who take full responsibility for the final content.

23

	Introduction
	Preliminaries
	Method
	Mean Flow Policy
	The Instantaneous Velocity Constraint as a Boundary Condition
	Mean Flow Reinforcement Learning

	Experiments
	Main Experiment
	Ablation Study and Supplementary Experiments

	Related work
	Conclusion
	Theoretical analysis on the mean flow policy improvement
	Implementation procedures of policy update
	Core Assumptions and useful lemma
	Proof of the mean flow policy improvement theorem
	Key Properties of the best-of-N Advantage Gain

	Supplementary results
	Numerical results of ablation study
	inference time-efficiency

	Environments Description
	Visualizations
	Reproducibility statement
	LLM Usage Disclosure

