
On Forecasting Project Activity Durations with
Neural Networks?

Peter Zachares1, Vahan Hovhannisyan1, Carlos Ledezma1, Joao Gante2, and
Alan Mosca1

1 nPlan, <first name>@nplan.io
2 For contributions made while employed at nPlan,

joaofranciscocardosogante@gmail.com

Abstract. Accurately forecasting project end dates is an incredibly
valuable and equally challenging task. In recent years it has gained added
attention from the machine learning community. However, state of the art
methods both in academia and in industry still rely on expert opinions
and Monte-Carlo simulations. In this paper, we formulate the problem
of activity duration forecasting as a classification task using a domain
specific binning strategy. Our experiments on a data set of real construc-
tion projects suggest that our proposed method offers several orders of
magnitude improvement over more traditional approaches where activity
duration forecasting is treated as a regression task. Our results suggest
that posing the forecasting problem as a classification task with carefully
designed classes is crucial for high quality forecasts both at an activity
and a project levels.
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1 Introduction

Many economic endeavours require undertaking complex projects which can only
be completed over long time spans [10]. In the planning phase, projects are al-
located budgets which rely on the completion of the project in a similar manner
to which it was planned. If a project’s completion is delayed, this can lead to
ballooning costs, which can have a major negative impact on the project stake-
holders including failure to complete the project [9]. To mitigate the risk of delay,
stakeholders of the project require an accurate time estimate of project duration.
With this knowledge, stakeholders can assess the risk of delay and even execute
mitigation actions to reduce this risk.

While it is impossible to estimate the duration of a complex project exactly
[6], it is possible to determine which durations are more likely than others, i.e.
in almost all cases a project will not take one hundred times longer to complete
than planned. Consequently, it is more useful to stakeholders to forecast the
duration of a project rather than to predict it.
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Each complex project is unique, but can share many similarities with past
projects. Using a data-driven modelling approach and details from past projects,
it is possible to accurately forecast a project’s duration providing stakeholders
with useful information for mitigating the risk of delay.

Complex projects involve the completion of numerous tasks. Each task in
the project has a state with respect to the current time which could be not
started, in progress or completed. In a project, the state of a task can depend
not only on the current time, but also on the state of many other tasks within
the project i.e. the facade structure must be completed before facade window
installation can begin. It is possible to model these state dependencies using
a directed acyclic graph (DAG) [5], where nodes represent activities and links
represent dependency constraints.

If provided with a duration forecast for each task in the project and an
estimated start date for the project, it is possible to estimate the end date, and
thus duration, of the entire project using an uncertainty propagation method
such as Monte Carlo sampling [32]. This simplifies the problem of forecasting a
project’s duration to forecasting the durations of tasks in the project. In addition,
past projects are more likely to contain similar tasks to a future project than
they are to mimic the future project exactly. Consequently, past project data
can provide more useful information for forecasting at a task level than a project
level.

Taking the approach described above to project duration forecasting, the
quality of the forecasts at a task-level will determine the quality of the forecast
of project duration. Neural networks have achieved state-of-the-art performance
in a number of forecasting tasks (also known as uncertainty estimation) both by
combining results from ensembles of models [23] [11] [28] and applying post-hoc
calibration [15].

In this paper we perform experiments to determine which training objectives
and inductive biases applied to neural networks yield the most accurate task-
level forecasts on project data. We perform experiments using a data set of
construction projects. Our results suggest that a neural network that outputs a
histogram distribution over task duration trained with a classification objective
and using a domain specific binning strategy to define the classes leads to the
most accurate forecasts.

The contributions of our work are threefold;

– To the best of our knowledge this is the first machine learning model used
to forecast project activity durations.

– A novel problem formulation which poses task duration forecasting as a
classification problem.

– A novel binning strategy incorporating domain knowledge about how hu-
mans complete tasks which leads to higher quality forecasts when used as
an inductive bias to train models on project data.

Notation . We follow standard notation practices using bold lower case letters
for vectors and bold upper case letters for matrices. For scalars we use both
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lower and upper case non-bold letters. Subscripts on vectors and matrices refer
to its elements. We use superscripts to indicate indices for vectors and matrices.

2 Related Work

Forecasting is an age old problem. Early on, humans used empirical observa-
tions to forecast the weather, but now we apply complex mathematical models
to forecast whether multi-billion dollar mega projects will finish on time and on
budget [33]. Currently, forecasting is a very broad field of research with applica-
tions in environment sciences [21], economics, supply chain management, project
controls and many other industries [31], [13]. For a comprehensive review of fore-
casting theory and practice we refer the reader to [29]. In this paper our focus
is on forecasting time durations of activities in project schedules.

While there has been some recent work on using machine learning algorithms
to forecast project durations using handcrafted features [7], [24], [25] (also see
reference therein), traditionally task duration forecasting has been implemented
using a blanket distribution for all tasks [8] or with added expert opinion [16],
[26], [27] for individual activities. The latter, more specialised solution is, of
course, more accurate, however, it is based on human inputs and inherently
suffers from various biases [2].

In a recent work [17] proposes a machine learning algorithm to learn activity
types in construction projects using a manually labelled database of activities.
This work is closest to ours in the literature, however, it does not address the
much more challenging problem of forecasting activity durations.

Our proposed method is based on the observation that task duration forecasts
are inherently heavy-tailed [16] and that Gaussian distributions are not suitable
to represent such distributions [35]. Hence, we pose task duration forecasting as a
multi-class classification problem to train neural networks to output a histogram
distribution describing the uncertainty in tasks’ durations [3].

Since the majority of all activities in a project complete on time, even if
the project suffers from large delays 3, splitting the activity duration range into
uniform intervals for a histogram distribution creates a large class imbalance.
We mitigate this well-known problem [19], [15] by proposing equibins - a novel
binning strategy which calculates a more balanced class distribution than using
uniform intervals. We also use domain knowledge about how humans accomplish
tasks to further improve our models.

3 Problem Formulation

Each task in a project has an associated feature vector x and duration label
y. We address the problem of learning the parameters θ of a neural network

3 2.977 million of 5.693 million (or 52.3%) activities in our database have completed
exactly on time.
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fθ : x → P (Y) that maps a task’s feature vector to a probability distribution
over its duration with the objective;

θ∗ = arg max
θ

fθ(x)

∣∣∣∣
Y=y

(1)

The objective is to maximise the likelihood of the neural network’s output
distribution evaluated at y. We assume that each task also has a planned duration
yplan and define a new quantity, completion ratio as:

c =
y

yplan
(2)

When actualised, each task will have a completion ratio whose magnitude will
indicate the accuracy of the planner in estimating the duration of a task. We
assume that all tasks will be completed within some completion ratio range c ∈
[cmin, cmax), cmin > 0, cmax > cmin and separate the interval [cmin, cmax) into
n intervals of ([cmin, c1), [c1, c2), ..., [cn−2, cn−1), [cn−1, cmax), i > j → ci > cj).

We assume the associated distribution of the random variable Y is a his-
togram distribution composed of the following intervals:

yplan × {[cmin, c1), [c1, c2), ..., [cn−2, cn−1), [cn−1, cmax)} (3)

We assume that within each bin the distribution’s probability density is uniform.
Hence, each task’s duration y will fall within one of the histogram’s bins scaled
by yplan:

y ∈ [cn−1yplan, cmaxyplan) (4)

Using this formulation, it is possible to generate a one-hot vector y of size n
with zeros in all dimensions except the dimension corresponding to the index
of the interval the duration falls in, where the vector has value 1. With these
assumptions we can optimise our original objective by reposing forecasting task
duration as a classification problem where fθ maps to a multinomial distribution
(a vector of non-negative numbers which sum to one with n dimensions) over
completion ratio (fθ : x→ P (C)) and we optimise the equivalent objective;

θ∗ = arg max
θ

fθ(x)Ty (5)

4 Method

We assume access to a data set of related tasks from past projects which is
split into a training set and a validation set. Each split contains two matrices; a
feature matrix X ∈ Rk×m and a label matrix Y ∈ Rm×n, where k is the number
of data points, m is the number of features and n is the number of classes.

We assume the mapping from task features to the task’s distribution over
completion ratio can be expressed by a multi-layer perceptron [30] with a softmax
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operation as its final layer. For completeness, we define the softmax operation
below:

σ(z)i =
ezi∑m
l=1 e

zl
, (6)

where z is a vector of size n. We train our model using a variant of stochastic
gradient descent [22] to minimise the negative loglikelihood (also known as cross-
entropy loss) of the true class of each task in our training set i.e. if Xbatch is
a batch of feature vectors of k′ tasks from our training set and Ybatch are the
tasks’ corresponding label vectors. Then we minimise the loss:

Loss =

k′∑
i=1

−log(fθ(xi)
Tyi) (7)

The majority of all tasks in a project complete on time, even if the project
suffers from large delays. In addition, there are certain values of completion ratio
that are very common i.e. 1.0, 1.5, 2.0 in our data set (see Figure 1 for the data
distribution). This indicates that when stakeholders work on a project, if a task
cannot be finished on time, then they set a new deadline which is some multiple
of original task’s planned duration. Consequently, tasks tend to be delivered late
and early in a predictable manner. This means, splitting a task’s completion ratio
support [cmin, cmax) into uniform intervals can create a large class imbalance in
the data set. If intervals are all of uniform size, then an interval can contain many
commonly appearing completion ratio values in the data set and consequently
contain a much larger proportion of the data set than other intervals.

Fig. 1. Completion ratios (training labels) of all construction schedule activities in our
database: over half of them have completion ratio 1, aka completed on time. There are
also noticeable spikes at 0.5, 2, 3, etc points.

To mitigate this issue, we propose binning strategy called equibins, which
helps create a more balanced class distribution. equibins is an iterative algo-
rithm. Before starting, the algorithm stores a count of all completion ratio values
in the training and validation set which occur more than once. A hyperparameter
of the algorithm is how many bins nbins the algorithm should split the support
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into. The algorithm starts out with all labels in training and validation sets
union c ∈ Ctrain+val. At each iteration the algorithm calculates how many data

points would be within intervals of uniform size i.e. nuniform = b |Ctrain+val|
nbin

c.
If it finds a completion ratio value c which occurs more than nuniform times,
then the algorithm creates a bin centred at c with bounds [c− ε, c+ ε) where ε
is another hyperparameter of this binning strategy. Then the algorithm removes
the points within the defined interval from the set of completion values con-
sidered, sets nbin = nbin − 1 and repeats the steps described above until there
are no completion ratio values which occur more than nuniform times. Then the
algorithm splits the remaining intervals in the support into bins by finding the
boundaries which separate the remaining data into nbin equally sized quantiles.
Note that nbin could be less than the originally specified value depending on the
number of iterations of the algorithm required to remove common completion
ratio values from the set of considered values.

5 Experiments

Our experiments are designed to answer two questions:

1. Does posing task duration forecasting as a classification problem yield higher
quality forecasts?

2. Does our proposed binning strategy equibins improve the quality of fore-
casts outputted by a task duration model trained as a classifier in comparison
to a naive binning strategy?

We perform our experiments on real world project data from our proprietary
database of over 400, 000 construction schedules from a wide range of sectors.
The labels for each task correspond to the one-hot vector encodings described
in section 3. We filter out any tasks from our data set which have a completion
ratio less than 0.1 or greater than 10, viewing them as noisy or mislabelled. After
data cleaning and preprocessing we get a data set of over 70, 000, 000 activities
to train and test our models. We split our data set into a training, validation and
test set using split ratio 16 : 4 : 5. Each task’s feature vector is a combination of a
128 dimensional embedding vector of a textual description of the task from a pre-
trained tiny-BERT [20] language model and a set of numerical features including
the tasks planned duration yplan and numerical features which describe the date
at which the task is planned to start.

For our proposed model, we used a 5-layer fully-connected network. Each
layer, except the last layer is composed of a linear layer, a batch normalisation
layer [18], a Relu layer [1] and a dropout layer [34]. Figure 2 presents the model
architecture. The last layer uses a softmax operation as its activation function
and is not followed by a drop-out layer. For our experiments we used a dropout
rate of 0.3 and the internal layers of the model had 3968 hidden units. The
model was trained using ADAM [22] with a learning rate of 2.0e − 4. The hy-
perparameters of the model architecture and training were determined using a
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Bayesian hyperparameter search 4. We trained our model for 64 epochs with
an early stopping condition: model training terminated if the model’s perfor-
mance on the validation set did not improve for five consecutive epochs. For
evaluation, we used the parameters for each model which resulted in the lowest
validation loss. For our equibins binning strategy, we separated the support of
the histogram into 53 bins and used an ε value of 1e− 3.
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Fig. 2. Representative multi-layer perceptron used in our experiments.

We compare our proposed model to three baselines. All baselines share the
same model architecture up to their last layer and were trained using the training
procedure described above. The first baseline poses task duration forecasting as
a regression task where the model outputs a Gaussian distribution. The model
output is two parameters; a mean and log standard deviation. We further process
the log standard deviation by performing a softplus operation on it [37] to ensure
stability during training. This baseline outputs a uni-modal distribution.

If our data is inherently multi-modal, the baseline could perform poorly due
to its inability to describe a multi-modal distribution. Consequently, our sec-
ond baseline also poses task duration forecasting as a regression task where the
model outputs a Gaussian mixture model with 3 modes. The model also out-
puts a log standard deviation for each mode (as opposed to standard deviation)
which is processed by applying softplus operation to it. The model outputs 3
terms for the weighting terms of the Gaussian mixture model which are pro-
cessed by performing a softmax operation on them to ensure they sum to one.
Both regression baselines are trained by minimising the negative log-likelihood
of each task’s actualised completion ratio with respect to the distribution they
output. The third baseline poses task duration forecasting as a classification
task, but uses uniformly sized bin intervals as opposed to the equibins strategy
we propose.

4 https://cloud.google.com/blog/products/ai-machine-learning/hyperparameter-
tuning-cloud-machine-learning-engine-using-bayesian-optimization
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For our purposes, classification metrics such as F1-score are not very infor-
mative, since we do not intend to use the predicted class in any downstream task.
Instead, the entire distribution outputted by the classifier is used as a forecast
for the duration of a task. Consequently, we report metrics commonly used to
measure forecast quality.

The first metric is the probability mass within 1e − 2 of a task’s actualised
completion ratio averaged over the entire test set. This metric measures local
distribution quality and approximates the likelihood of sampling the correct com-
pletion ratio for a task. The second metric is the continuous ranked probability
score (CRPS) [12] of the distribution outputted by our model averaged over the
entire test set. This metric assesses the quality of the output distribution over its
entire support, which roughly measures the overall quality of the learned fore-
cast. The third metric we report is the expected calibration error (ECE) [14],
[4], which is another rough measure of the quality of the distributions outputted
by our model.

6 Results

Table 1 records the performance of our proposed model and the three baselines
described above. The results show clearly that in terms of likelihood there is
an order of magnitude increase in performance (∼ 0.001 →∼ 0.01) when using
models trained using a classification objective versus a model trained using a
regression objective to forecast task duration.

A possible reason for the improved performance of models trained using
classification objectives as opposed to regression objectives is that continuous
distributions like Gaussian and Gaussian mixture models use distance metrics
to calculate likelihood. These density functions contain an implicit locality as-
sumption where points close to each other have similar likelihoods. In addition,
Gaussian likelihoods decay exponentially as they move away from the mean
of the distribution. If the underlying distribution a model is trying to learn
does not meet this locality assumption or exponential decay assumption, then a
Gaussian density functions will struggle to approximate it. Using a classification
objective, the model learns a histogram distribution which makes fewer assump-
tions about the underlying distribution. Specifically, it makes a strong locality
assumption within bins, but no locality assumption across bins. In our exper-
iments, histogram distributions trained using a classification objective (which
makes no locality assumption across bins) yield better uncertainty estimates
from the trained model.

In addition, there is another order of magnitude increase (∼ 0.01→∼ 0.1) in
performance in terms of likelihood when using the equibins binning strategy as
an inductive bias in the model as opposed to uniformly sized bins. As explained
in Section 4, equibins leads to a more balanced class distribution. A more
balanced class distribution encourages sensitivity in our models as they see more
variation in their targets during training and consequently are more likely to
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identify statistical relationships in their training set than models trained on a
highly unbalanced class distribution.

In terms of CPRS on the test set, the combination of training the model
using a classification objective and using an equibins strategy yielded the same
improvement in CRPS over the three baselines (∼ 0.060 →∼ 0.044). Finally in
terms of ECE, there was not much of a difference between the models trained
using classification objectives (∼ 1.7 versus ∼ 1.9), but there was a large jump
in performance when comparing models trained using regression objectives as
opposed to classification objectives (∼ 7.0 versus ∼ 1.8). To calculate the ECE
for the two regression baselines, we first approximated them as histogram dis-
tributions within the completion ratio support [0.1, 10).

In our experiments, the performance of the models in terms of likelihood
and CRPS suggest that training models using a classification objective and in-
corporating an equibins binning strategy improves the performance of neural
networks on task duration forecasting. On the other hand, the performance of
models in terms of ECE suggest that only training models using a classification
objective is important.

Model Likelihood CRPS ECE

Unimodal Gaussian Regressor 0.0058 0.0600 7.1043

Gaussian Mixture Model with 3 modes Regressor 0.0062 0.0582 7.0310

Uniform bin size Classifier 0.0368 0.0602 1.7416

Equibins Classifier 0.3680 0.0443 1.8973

Table 1. Performance metrics on the test set of models trained to perform task du-
ration forecasting. Higher likelihood and higher CRPS mean better forecasting power;
lower ECE means better forecasting power.

Better activity level forecasts should result in better project end date fore-
casts. To demonstrate this, we ran Monte-Carlo simulations on various projects
for which we have both initially planned and fully actualised schedules. We re-
port the difference in performance between the two best performing models:
our proposed equibins classifier and the uniform bin size classifier baseline on
the project end-date forecasting task. We report the probability density func-
tion calculated by performing a Monte Carlo simulation on a project using the
distributions outputted by these models.

We found a very consistent behaviour across all tested project, and we report
visual representative results of project end date forecasting in Figure 3. Visually
the results suggest that using the equibins classifier results in probability den-
sity functions for project end-date forecasts which place a much higher likelihood
on the project’s actual end-date with more mass around this date than when
using a uniform bin size classifier.
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Fig. 3. Comparison of project level forecasts after running Monte-Carlo simulations
using samples from a classification model with equibin classes (above) versus a re-
gression Gaussian mixture model (below). The same true end date for the project is
marked on each graph.

7 Discussion and Conclusions

Accurately forecasting project end dates is a valuable, yet challenging task, tra-
ditionally solved by relying on heuristics provided by experts to forecast activity
durations and Monte-Carlo simulations. In recent years, the problem of forecast-
ing task durations has gained a growing amount of attention from the machine
learning community. However, there is still no consensus on what is best practice
when it comes to forecasting activity durations using neural networks. In this
paper, we experiment with different problem formulations and inductive biases
to determine which are important when training neural networks to forecast
activity durations.

Experiments on our data set of real world construction projects suggest the
performance benefits of our proposed method for forecasting activity duration,
as well as forecasting project end dates. We show that posing the forecasting
problem as a classification task with carefully designed classes is crucial for high
quality results.

The next natural step in our research is to replace the simple feed forward
neural networks used here with ones that can take advantage of the underlying
graph structure in project schedules. In recent years graph neural networks have
been deployed in a wide range of applications from molecular biology to social
sciences [36], however graph neural networks have not yet been effectively ap-
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plied to project duration forecasting problems. Another interesting direction is
searching for methods to train models end-to-end, meaning directly to forecast
project end dates, possibly removing the need to perform Monte-Carlo sampling
as part of the model when forecasting project end dates.
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