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Abstract

Our work focuses on tackling large-scale fine-grained image retrieval as ranking
the images depicting the concept of interests (i.e., the same sub-category labels)
highest based on the fine-grained details in the query. It is desirable to alleviate
the challenges of both fine-grained nature of small inter-class variations with large
intra-class variations and explosive growth of fine-grained data for such a practical
task. In this paper, we propose an Attribute-Aware hashing Network (A2-NET)
for generating attribute-aware hash codes to not only make the retrieval process
efficient, but also establish explicit correspondences between hash codes and visual
attributes. Specifically, based on the captured visual representations by attention,
we develop an encoder-decoder structure network of a reconstruction task to unsu-
pervisedly distill high-level attribute-specific vectors from the appearance-specific
visual representations without attribute annotations. A2-NET is also equipped with
a feature decorrelation constraint upon these attribute vectors to enhance their rep-
resentation abilities. Finally, the required hash codes are generated by the attribute
vectors driven by preserving original similarities. Qualitative experiments on five
benchmark fine-grained datasets show our superiority over competing methods.
More importantly, quantitative results demonstrate the obtained hash codes can
strongly correspond to certain kinds of crucial properties of fine-grained objects.

1 Introduction

Fine-grained image retrieval in computer vision aims to retrieve images belonging to multiple subordi-
nate categories of a super-category (aka a meta-category), e.g., different species of animals/plants [36],
different models of cars [20], different kinds of retail products [39], etc. Its key challenge therefore
lies with understanding fine-grained visual differences that sufficiently discriminate between objects
that are highly similar in overall appearance, but differ in fine-grained features. Also, fine-grained
retrieval still demands ranking all the instances so that images depicting the concept of interest (e.g.,
the same sub-category label) are ranked highest based on the fine-grained details in the query.

In particular, with the explosive growth of fine-grained data in real applications [1, 14, 26, 36, 39],
fine-grained hashing, as a promising solution for dealing with large-scale fine-grained retrieval tasks,
has proven to be able to greatly reduce the storage cost and increase the query speed [8, 18] benefiting
from the learned compact binary hash code representations. However, although previous works,
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3.3 Attribute-Aware Hash Codes Generating64

How to generate attribute-aware hash codes is the key of our A2-NET model. We elaborate it in65

the following four aspects, i.e., unsupervised attribute-guided learning, attribute-specific feature66

decorrelation, hash code learning and the optimization learning algorithm.67

3.3.1 Unsupervised Attribute-Guided Learning68

In real-applications, especially for the large-scale and fine-grained tasks, attribute annotations are69

always infeasible, which limits the learning process to be conducted in an unsupervised setting.70

While, in the literature, the main goal of unsupervised learning is to capture regularities in data for the71

purpose of extracting useful representations or for restoring corrupted data [4]. Many unsupervised72

methods explicitly produce internal latent units or codes, from which the data is to be reconstructed.73

Inspired by this, we develop an unsupervised attribute-guided learning component to project the74

holistic representation xi of Ii into a latent space, i.e., the attribute space V . In V , its high-level75

vectors are designed to have certain desirable properties, e.g., corresponding to semantic properties76

of fine-grained objects (a.k.a. “fine-grained attributes”).77

More specifically, in our A2-NET, the unsupervised attribute-guided learning is realized by a recon-78

struction paradigm with an encoder-decoder structure, as shown in Figure ??. In concretely, given79

a batch of n training data Ii, the holistic representations X = {x1; x2; . . . ; xn} 2 Rd⇥n can be80

obtained as aforementioned. By formulation, the encoder projects X into the attribute space V with81

a projection matrix W 2 Rk⇥d to get an internal latent representation V 2 Rk⇥n w.r.t. X . In82

particularly, we set that the dimension of latent representation k equals to the number of hash bits in83

the final binary hash code ui. Furthermore, each column of V , i.e., vi 2 Rk, can derive ui by84

ui = sgn(tanh(vi)) . (5)

Meanwhile, regarding vi, we also consider to reconstruct its input xi by a decoder as a counterpart85

of the encoder. Therefore, on one hand, such a reconstruction paradigm can reduce and further distill86

high-level semantic cues in the attribute space V . While, on the other hand, it can drive the training87

of A2-NET by preserving the similarity between queried hash codes and database points in terms of88

learning to hash (cf. Section 3.3.3).89

In concretely, the learning objective of unsupervised attribute-guided learning is written as follows:90

min
W

kX � W>WXk2
F s.t. WX = V 0 = tanh(V ) , (6)

where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91

However, directly minimizing Eq. (6) with a hard constraint is hard to optimize. Therefore, we relax92

the constraint into a soft constraint, and the learning objective can be rewritten by93

min
W

kX � W>V 0k2
F + �kWX � V 0k2

F . (7)

3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98

min
V 0

kV 0V 0> � kIk2
F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103

In the following, we conduct the hash code learning based on the obtained attribute-specific features.104

Assume that we have n query data points which are denoted as {qi}n
i=1, as well as m database points105
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which are denoted as {vj}m
j=1. Note that, both qi and vi are belonging to the attribute space V . Then,106

the corresponding binary hash codes can be obtained via107

ui = sgn(tanh(qi)) , (9)
zj = sgn(tanh(vj)) , (10)

where ui, zj 2 {�1, +1}k. The goal of our hash code learning is to learn binary hash codes for both108

query points and database points from {qi}n
i=1, {vj}m

j=1, and the pairwise supervised information,109

i.e., S 2 {�1, +1}n⇥m. To preserve the pairwise similarity, we adopt the `2 loss between the110

supervised information (a.k.a. similarity) and the inner product of query-database point binary code111

pairs. It can be formulated as follows:112

minU ,Z

Pn
i=1

Pm
j=1

�
u>

i zj � kSij

�2

s.t. U 2 {�1, +1}n⇥k, Z 2 {�1, +1}m⇥k . (11)

Overall, we get the final objective of the proposed A2-NET model by considering Eq. (7), Eq. (8) and113

Eq. (11) together as follows:114

min
W ,⇥

L(I) = kX�W>V 0k2
F +�kWX�V 0k2

F +↵kV 0V 0>�nIk2
F +�

nX

i=1

mX

j=1

�
u>

i zj � kSij

�2
,

(12)
where �, ↵ and � are hyper-parameters as the trade-off.115

In practice, during training, it might be only available a set of database points {vj}m
j=1 without query116

points. Thus, we randomly sample n data points from database to construct a query set, and denote117

the indices of all the database points as � with the indices of the query set as ⌦. Additionally, because118

we cannot back-propagate the gradient to ⇥ due to the sgn(·) function, we omit the sgn(·) function119

and only apply tanh(·) for relaxation in Eq. (10) of the whole optimization process. Therefore, the120

optimization formulation of A2-NET can be rewritten with only database points {vj}m
j=1 for training121

as:122

min
W ,⇥

L(I) = kX � W>V 0k2
F + �kWX � V 0k2

F + ↵kV 0V 0> � nIk2
F

+ �
X

i2⌦

X

j2�

⇣
tanh(W · F (Ii; ⇥))

>
zj � kSij

⌘2

. (13)

For optimization, we employ the back-propagation algorithm and follow [8] to train the whole123

A2-NET model in an end-to-end manner.124

3.4 Out-of-Sample Extension125

After training A2-NET, the learned model can be applied for generating binary codes for query points126

including unseen query points in the training phase. Specifically, we can use the following equation127

to generate the binary code for Iq:128

uq = sgn(tanh(W · F (Iq; ⇥))) . (14)

4 Experiments129

In this section, we present the implementation details, empirical settings, main results, ablation studies130

and also some interesting qualitative analyses of the learned attribute-aware binary hash codes.131

4.1 Datasets132

x0
i By following ExchNet [4], our experiments are conducted on five fine-grained benchmark datasets,133

i.e., CUB-200-2011 [16], Aircraft [12], Food101 [1], NABirds [15] and VegFru [6]. Specifically,134

CUB-200-2011 is one of the most popular used fine-grained datasets. It contains 11,788 bird images135

from 200 bird species and is officially split into 5,994 images for training with 5,794 images for136

test. Aircraft contains 10,000 images spanning 100 aircraft models with 3,334 for training, 3,333137
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where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91

However, directly minimizing Eq. (6) with a hard constraint is hard to optimize. Therefore, we relax92

the constraint into a soft constraint, and the learning objective can be rewritten by93

min
W

kX � W>V 0k2
F + �kWX � V 0k2

F . (7)

3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98

min
V 0

kV 0V 0> � nIk2
F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103
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where �, ↵ and � are hyper-parameters as the trade-off.115

In practice, during training, it might be only available a set of database points {vj}m
j=1 without query116
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For optimization, our A2-NET does not require complicated two-stage learning algorithms, e.g., the123

alternative optimization strategy. We employ the back-propagation algorithm and follow [8] to train124

the whole A2-NET model in a unified end-to-end manner.125
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Figure 1: Overall framework of the proposed A2-NET model, which consists of two crucial modules,
i.e., fine-grained representation learning and attribute-aware hash codes generating. The whole
network can be end-to-end trainable, and is generally driven by the unsupervised attribute-guided
loss, the feature decorrelation loss and the hash code learning loss, cf. Section 3.3.

has the potential to help with large-scale fine-grained data too. Therefore, targeting the big data35

challenge, fine-grained hashing [7, 13] is a promising direction worthy of further explorations.36
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obtain corresponding fine-grained object attributes (e.g., xx), without significant annotation cost38

2 Related Work39

In this section, we briefly review the related work in the following three aspects, i.e., fine-grained40

image retrieval, learning to hash and the studies about visual attributes in computer vision problems.41

2.1 Fine-Grained Image Retrieval42
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mechanisms [6] for further improving the retrieval accuracy of FG-SBIR, e.g., [23, 25].58

However, although these fine-grained retrieval methods achieved good results, they still show the59

limitations in the face of large-scale data, i.e., the searching time for exact nearest neighbor is typically60

expensive or even impossible for the given queries. To alleviate this issue, fine-grained hashing, which61

aims to generate compact binary codes to represent fine-grained images, as a promising direction62

has attracted the attention in the fine-grained community very recently [7, 14]. More specifically,63
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3.3 Attribute-Aware Hash Codes Generating64

How to generate attribute-aware hash codes is the key of our A2-NET model. We elaborate it in65

the following four aspects, i.e., unsupervised attribute-guided learning, attribute-specific feature66

decorrelation, hash code learning and the optimization learning algorithm.67

3.3.1 Unsupervised Attribute-Guided Learning68

In real-applications, especially for the large-scale and fine-grained tasks, attribute annotations are69

always infeasible, which limits the learning process to be conducted in an unsupervised setting.70

While, in the literature, the main goal of unsupervised learning is to capture regularities in data for the71

purpose of extracting useful representations or for restoring corrupted data [4]. Many unsupervised72

methods explicitly produce internal latent units or codes, from which the data is to be reconstructed.73

Inspired by this, we develop an unsupervised attribute-guided learning component to project the74

holistic representation xi of Ii into a latent space, i.e., the attribute space V . In V , its high-level75

vectors are designed to have certain desirable properties, e.g., corresponding to semantic properties76

of fine-grained objects (a.k.a. “fine-grained attributes”).77

More specifically, in our A2-NET, the unsupervised attribute-guided learning is realized by a recon-78

struction paradigm with an encoder-decoder structure, as shown in Figure ??. In concretely, given79

a batch of n training data Ii, the holistic representations X = {x1; x2; . . . ; xn} 2 Rd⇥n can be80

obtained as aforementioned. By formulation, the encoder projects X into the attribute space V with81

a projection matrix W 2 Rk⇥d to get an internal latent representation V 2 Rk⇥n w.r.t. X . In82

particularly, we set that the dimension of latent representation k equals to the number of hash bits in83

the final binary hash code ui. Furthermore, each column of V , i.e., vi 2 Rk, can derive ui by84

ui = sgn(tanh(vi)) . (5)

Meanwhile, regarding vi, we also consider to reconstruct its input xi by a decoder as a counterpart85

of the encoder. Therefore, on one hand, such a reconstruction paradigm can reduce and further distill86

high-level semantic cues in the attribute space V . While, on the other hand, it can drive the training87

of A2-NET by preserving the similarity between queried hash codes and database points in terms of88

learning to hash (cf. Section 3.3.3).89

In concretely, the learning objective of unsupervised attribute-guided learning is written as follows:90

min
W

kX � W>WXk2
F s.t. WX = V 0 = tanh(V ) , (6)

where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91

However, directly minimizing Eq. (6) with a hard constraint is hard to optimize. Therefore, we relax92

the constraint into a soft constraint, and the learning objective can be rewritten by93

min
W

kX � W>V 0k2
F + �kWX � V 0k2

F . (7)

3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98

min
V 0

kV 0V 0> � kIk2
F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103

In the following, we conduct the hash code learning based on the obtained attribute-specific features.104

Assume that we have n query data points which are denoted as {qi}n
i=1, as well as m database points105
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Inspired by this, we develop an unsupervised attribute-guided learning component to project the74

holistic representation xi of Ii into a latent space, i.e., the attribute space V . In V , its high-level75

vectors are designed to have certain desirable properties, e.g., corresponding to semantic properties76

of fine-grained objects (a.k.a. “fine-grained attributes”).77

More specifically, in our A2-NET, the unsupervised attribute-guided learning is realized by a recon-78

struction paradigm with an encoder-decoder structure, as shown in Figure ??. In concretely, given79

a batch of n training data Ii, the holistic representations X = {x1; x2; . . . ; xn} 2 Rd⇥n can be80

obtained as aforementioned. By formulation, the encoder projects X into the attribute space V with81

a projection matrix W 2 Rk⇥d to get an internal latent representation V 2 Rk⇥n w.r.t. X . In82

particularly, we set that the dimension of latent representation k equals to the number of hash bits in83

the final binary hash code ui. Furthermore, each column of V , i.e., vi 2 Rk, can derive ui by84

ui = sgn(tanh(vi)) . (5)

Meanwhile, regarding vi, we also consider to reconstruct its input xi by a decoder as a counterpart85

of the encoder. Therefore, on one hand, such a reconstruction paradigm can reduce and further distill86

high-level semantic cues in the attribute space V . While, on the other hand, it can drive the training87

of A2-NET by preserving the similarity between queried hash codes and database points in terms of88

learning to hash (cf. Section 3.3.3).89

In concretely, the learning objective of unsupervised attribute-guided learning is written as follows:90

min
W

kX � W>WXk2
F s.t. WX = V 0 = tanh(V ) , (6)

where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91

However, directly minimizing Eq. (6) with a hard constraint is hard to optimize. Therefore, we relax92

the constraint into a soft constraint, and the learning objective can be rewritten by93

min
W

kX � W>V 0k2
F + �kWX � V 0k2

F . (7)

3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98

min
V 0

kV 0V 0> � kIk2
F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103

In the following, we conduct the hash code learning based on the obtained attribute-specific features.104

Assume that we have n query data points which are denoted as {qi}n
i=1, as well as m database points105
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which are denoted as {vj}m
j=1. Note that, both qi and vi are belonging to the attribute space V . Then,106
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ui = sgn(tanh(qi)) , (9)
zj = sgn(tanh(vj)) , (10)
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query points and database points from {qi}n
i=1, {vj}m

j=1, and the pairwise supervised information,109

i.e., S 2 {�1, +1}n⇥m. To preserve the pairwise similarity, we adopt the `2 loss between the110

supervised information (a.k.a. similarity) and the inner product of query-database point binary code111

pairs. It can be formulated as follows:112

minU ,Z

Pn
i=1

Pm
j=1

�
u>

i zj � kSij

�2

s.t. U 2 {�1, +1}n⇥k, Z 2 {�1, +1}m⇥k . (11)

Overall, we get the final objective of the proposed A2-NET model by considering Eq. (7), Eq. (8) and113

Eq. (11) together as follows:114

min
W ,⇥

L(I) = kX�W>V 0k2
F +�kWX�V 0k2

F +↵kV 0V 0>�nIk2
F +�

nX

i=1

mX

j=1

�
u>

i zj � kSij

�2
,

(12)
where �, ↵ and � are hyper-parameters as the trade-off.115

In practice, during training, it might be only available a set of database points {vj}m
j=1 without query116

points. Thus, we randomly sample n data points from database to construct a query set, and denote117

the indices of all the database points as � with the indices of the query set as ⌦. Additionally, because118

we cannot back-propagate the gradient to ⇥ due to the sgn(·) function, we omit the sgn(·) function119

and only apply tanh(·) for relaxation in Eq. (10) of the whole optimization process. Therefore, the120

optimization formulation of A2-NET can be rewritten with only database points {vj}m
j=1 for training121

as:122

min
W ,⇥

L(I) = kX � W>V 0k2
F + �kWX � V 0k2

F + ↵kV 0V 0> � nIk2
F

+ �
X

i2⌦

X

j2�

⇣
tanh(W · F (Ii; ⇥))

>
zj � kSij

⌘2

. (13)

For optimization, we employ the back-propagation algorithm and follow [8] to train the whole123

A2-NET model in an end-to-end manner.124

3.4 Out-of-Sample Extension125

After training A2-NET, the learned model can be applied for generating binary codes for query points126

including unseen query points in the training phase. Specifically, we can use the following equation127

to generate the binary code for Iq:128

uq = sgn(tanh(W · F (Iq; ⇥))) . (14)

4 Experiments129

In this section, we present the implementation details, empirical settings, main results, ablation studies130

and also some interesting qualitative analyses of the learned attribute-aware binary hash codes.131

4.1 Datasets132

x0
i By following ExchNet [4], our experiments are conducted on five fine-grained benchmark datasets,133

i.e., CUB-200-2011 [16], Aircraft [12], Food101 [1], NABirds [15] and VegFru [6]. Specifically,134

CUB-200-2011 is one of the most popular used fine-grained datasets. It contains 11,788 bird images135

from 200 bird species and is officially split into 5,994 images for training with 5,794 images for136

test. Aircraft contains 10,000 images spanning 100 aircraft models with 3,334 for training, 3,333137
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3.3 Attribute-Aware Hash Codes Generating64
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3 Methodology27

In this section, we introduce the overall framework and notations of the proposed A2-NET model, as28

well as elaborating the detailed modules of A2-NET and its corresponding optimization algorithm.29

3.1 Overall Framework and Notations30

As illustrated in Figure ??, our A2-NET model consists of two crucial modules, i.e., a fine-grained31

representation learning module and an attribute-aware hash codes generating module. Given an32

input image Ii, based on its corresponding deep activation tensor Ti 2 RC⇥H⇥W extracted by a33

backbone CNN, a set of attention guidance A = {Ac} is learned for capturing fine-grained tailored34

local patterns T c
i from Ti. To distill semantical cues and further generate the final attribute-aware35

binary hash codes, we propose to transform these appearance-specific features T towards semantic-36

specific representations T̂ by performing a transform network �(·). After aggregating T̂ , the obtained37

attentive local-level features xc
i are associated with the global-level feature xglobal

i to form as a38

holistic feature representation xi. In order to generate attribute-aware binary hash codes, we conduct39

a reconstructing paradigm to project xi as vi in an attribute space where its data point correspond to40

an attribute vector w.r.t. one kind of namable properties of fine-grained objects. Finally, hash code41

learning is performed upon vi to obtain the final attribute-aware binary codes ui.42

3.2 Fine-Grained Representation Learning43

Attention plays an important role in human perception [3, 7], and humans exploit a sequence of44

partial glimpses and selectively focus on salient parts of an object or a scene in order to better capture45

visual structure [10]. Inspired by this, we incorporate the attention mechanism into representation46

learning to capture fine-grained local patterns for distinguishing subtle differences between these47

subordinate categories.48

In concretely, we extract the deep feature of its input image Ii via a backbone CNN model �CNN(·)49

as50

Ti = �CNN(Ii) 2 RC⇥H⇥W . (1)

Then, based on Ti, C attention guidance Ac 2 RH⇥W is generated as a set of attention maps, i.e., A.51

The attention guidance Ac is designed to evaluate which deep descriptors should be attended or even52

overlooked by conducting53

T c
i = Ac � Ti , (2)

where � is the element-wise Hadamard product. To obtain the final attribute-aware binary codes, it is54

desirable to transform these appearance-specific (i.e., low-level) features T to semantic-specific (i.e.,55

mid-level) representations which are closer to the attribute space. Thus, a transforming network �(·),56

which is equipped with a stack of convolution layers, is performed on T as follows:57

T̂ c
i = �(T c

i ; ✓local) , (3)

T̂i = �(Ti; ✓global) , (4)

where ✓ presents the parameters of the corresponding transforming networks w.r.t. T c
i and Ti, respec-58

tively. Then, we aggregate T̂ c
i and T̂i by conducting global average-pooling and correspondingly59

obtain the attentive local-level features xc
i , as well as the global-level feature xglobal

i . The holistic60

feature representation w.r.t. the input image Ii is achieved by concatenating both xc
i and xglobal

i , i.e.,61

xi =
h
xc

i ; x
global
i

i
= F (Ii; ⇥) 2 Rd. Note that, we hereby abstract the aforementioned fine-grained62

feature learning process as a function F (Ii; ⇥) with its parameters ⇥.63
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where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91

However, directly minimizing Eq. (6) with a hard constraint is hard to optimize. Therefore, we relax92

the constraint into a soft constraint, and the learning objective can be rewritten by93

min
W

kX � W>V 0k2
F + �kWX � V 0k2

F . (7)

3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98

min
V 0

kV 0V 0> � nIk2
F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103

In the following, we conduct the hash code learning based on the obtained attribute-specific features.104

Assume that we have n query data points which are denoted as {qi}n
i=1, as well as m database points105

which are denoted as {vj}m
j=1. Note that, both qi and vi are belonging to the attribute space V . Then,106

the corresponding binary hash codes can be obtained via107

ui = sgn(tanh(qi)) , (9)
zj = sgn(tanh(vj)) , (10)

where ui, zj 2 {�1, +1}k. The goal of our hash code learning is to learn binary hash codes for both108

query points and database points from {qi}n
i=1, {vj}m

j=1, and the pairwise supervised information,109

i.e., S 2 {�1, +1}n⇥m. To preserve the pairwise similarity, we adopt the `2 loss between the110

supervised information (a.k.a. similarity) and the inner product of query-database point binary code111

pairs. It can be formulated as follows:112

minU ,Z

Pn
i=1

Pm
j=1

�
u>

i zj � kSij

�2

s.t. U 2 {�1, +1}n⇥k, Z 2 {�1, +1}m⇥k . (11)

Overall, we get the final objective of the proposed A2-NET model by considering Eq. (7), Eq. (8) and113

Eq. (11) together as follows:114

min
W ,⇥

L(I) = kX�W>V 0k2
F +�kWX�V 0k2

F +↵kV 0V 0>�nIk2
F +�

nX

i=1

mX

j=1

�
u>

i zj � kSij

�2
,

(12)
where �, ↵ and � are hyper-parameters as the trade-off.115

In practice, during training, it might be only available a set of database points {vj}m
j=1 without query116

points. Thus, we randomly sample n data points from database to construct a query set, and denote117

the indices of all the database points as � with the indices of the query set as ⌦. Additionally, because118

we cannot back-propagate the gradient to ⇥ due to the sgn(·) function, we omit the sgn(·) function119

and only apply tanh(·) for relaxation in Eq. (10) of the whole optimization process. Therefore, the120

optimization formulation of A2-NET can be rewritten with only database points {vj}m
j=1 for training121

as:122

min
W ,⇥

L(I) = kX � W>V 0k2
F + �kWX � V 0k2

F + ↵kV 0V 0> � nIk2
F

+ �
X

i2⌦

X

j2�

⇣
tanh(W · F (Ii; ⇥))

>
zj � kSij

⌘2

. (13)

For optimization, our A2-NET does not require complicated two-stage learning algorithms, e.g., the123

alternative optimization strategy. We employ the back-propagation algorithm and follow [8] to train124

the whole A2-NET model in a unified end-to-end manner.125
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Figure 1: Overall framework of the proposed A2-NET model, which consists of two crucial modules,
i.e., fine-grained representation learning and attribute-aware hash codes generating. The whole
network can be end-to-end trainable, and is generally driven by the unsupervised attribute-guided
loss, the feature decorrelation loss and the hash code learning loss, cf. Section 3.3.
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2 Related Work39

In this section, we briefly review the related work in the following three aspects, i.e., fine-grained40

image retrieval, learning to hash and the studies about visual attributes in computer vision problems.41
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However, although these fine-grained retrieval methods achieved good results, they still show the59

limitations in the face of large-scale data, i.e., the searching time for exact nearest neighbor is typically60

expensive or even impossible for the given queries. To alleviate this issue, fine-grained hashing, which61

aims to generate compact binary codes to represent fine-grained images, as a promising direction62

has attracted the attention in the fine-grained community very recently [7, 14]. More specifically,63
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Figure 1: Key idea of the propose A2-NET model, as well as the main process of fine-grained hashing
based on our attribute-aware hash codes. In concretely, for an query image Iq of Red bellied
Woodpecker, after returning all the correct results, the fine-grained image (belonging to Red headed
Woodpecker) closest to the query image is also retrieved.
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Abstract

The task of fine-grained image retrieval aims to rank all the instances so that images1

depicting the concept of interests (i.e., the same sub-category labels) are ranked2

highest based on the fine-grained details in the query. It is challenging due to the3

subtle differences between sub-category, as well as the fine-grained nature of small4

inter-class variations and large intra-class variations. Especially for large-scale5

data, it is desirable to be handled in a both effective and efficient way. In this paper,6

we an Attribute-Aware hashing Network, i.e., A2-NET, for generating an attribute-7

aware binary codes to not only speed up the retrieval process, but also corresponds8

to fine-grained attributes. Specifically, based on the learned attention maps, we9

design an auto-encoder to project the visual feature vector into an attribute space10

by following a reconstructing paradigm. Furthermore, A2-NET is also equipped11

with an orthogonal constraint upon the generated attributes to enhance their own12

representation abilities. Qualitative experiments on five benchmark fine-grained13

datasets show our superiority over competing methods. Moreover, quantitative14

results reveal the obtained hash codes correspond to the attributes of fine-grained15

patterns.16

1 Introduction17

another barrier also occurs because of xxx18

suffer from slow query speed and redundant storage costs due to both the explosive growth of massive19

fine-grained data and high-dimensional real-valued features.20
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3.3 Attribute-Aware Hash Codes Generating64

How to generate attribute-aware hash codes is the key of our A2-NET model. We elaborate it in65

the following four aspects, i.e., unsupervised attribute-guided learning, attribute-specific feature66

decorrelation, hash code learning and the optimization learning algorithm.67

3.3.1 Unsupervised Attribute-Guided Learning68

In real-applications, especially for the large-scale and fine-grained tasks, attribute annotations are69

always infeasible, which limits the learning process to be conducted in an unsupervised setting.70

While, in the literature, the main goal of unsupervised learning is to capture regularities in data for the71

purpose of extracting useful representations or for restoring corrupted data [4]. Many unsupervised72

methods explicitly produce internal latent units or codes, from which the data is to be reconstructed.73

Inspired by this, we develop an unsupervised attribute-guided learning component to project the74

holistic representation xi of Ii into a latent space, i.e., the attribute space V . In V , its high-level75

vectors are designed to have certain desirable properties, e.g., corresponding to semantic properties76

of fine-grained objects (a.k.a. “fine-grained attributes”).77

More specifically, in our A2-NET, the unsupervised attribute-guided learning is realized by a recon-78

struction paradigm with an encoder-decoder structure, as shown in Figure ??. In concretely, given79

a batch of n training data Ii, the holistic representations X = {x1; x2; . . . ; xn} 2 Rd⇥n can be80

obtained as aforementioned. By formulation, the encoder projects X into the attribute space V with81

a projection matrix W 2 Rk⇥d to get an internal latent representation V 2 Rk⇥n w.r.t. X . In82

particularly, we set that the dimension of latent representation k equals to the number of hash bits in83

the final binary hash code ui. Furthermore, each column of V , i.e., vi 2 Rk, can derive ui by84

ui = sgn(tanh(vi)) . (5)

Meanwhile, regarding vi, we also consider to reconstruct its input xi by a decoder as a counterpart85

of the encoder. Therefore, on one hand, such a reconstruction paradigm can reduce and further distill86

high-level semantic cues in the attribute space V . While, on the other hand, it can drive the training87

of A2-NET by preserving the similarity between queried hash codes and database points in terms of88

learning to hash (cf. Section 3.3.3).89

In concretely, the learning objective of unsupervised attribute-guided learning is written as follows:90

min
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where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91
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the constraint into a soft constraint, and the learning objective can be rewritten by93
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F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103

In the following, we conduct the hash code learning based on the obtained attribute-specific features.104

Assume that we have n query data points which are denoted as {qi}n
i=1, as well as m database points105
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always infeasible, which limits the learning process to be conducted in an unsupervised setting.70
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purpose of extracting useful representations or for restoring corrupted data [4]. Many unsupervised72

methods explicitly produce internal latent units or codes, from which the data is to be reconstructed.73

Inspired by this, we develop an unsupervised attribute-guided learning component to project the74

holistic representation xi of Ii into a latent space, i.e., the attribute space V . In V , its high-level75

vectors are designed to have certain desirable properties, e.g., corresponding to semantic properties76

of fine-grained objects (a.k.a. “fine-grained attributes”).77

More specifically, in our A2-NET, the unsupervised attribute-guided learning is realized by a recon-78

struction paradigm with an encoder-decoder structure, as shown in Figure ??. In concretely, given79

a batch of n training data Ii, the holistic representations X = {x1; x2; . . . ; xn} 2 Rd⇥n can be80

obtained as aforementioned. By formulation, the encoder projects X into the attribute space V with81

a projection matrix W 2 Rk⇥d to get an internal latent representation V 2 Rk⇥n w.r.t. X . In82

particularly, we set that the dimension of latent representation k equals to the number of hash bits in83

the final binary hash code ui. Furthermore, each column of V , i.e., vi 2 Rk, can derive ui by84

ui = sgn(tanh(vi)) . (5)

Meanwhile, regarding vi, we also consider to reconstruct its input xi by a decoder as a counterpart85

of the encoder. Therefore, on one hand, such a reconstruction paradigm can reduce and further distill86

high-level semantic cues in the attribute space V . While, on the other hand, it can drive the training87

of A2-NET by preserving the similarity between queried hash codes and database points in terms of88

learning to hash (cf. Section 3.3.3).89

In concretely, the learning objective of unsupervised attribute-guided learning is written as follows:90

min
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F s.t. WX = V 0 = tanh(V ) , (6)

where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91

However, directly minimizing Eq. (6) with a hard constraint is hard to optimize. Therefore, we relax92

the constraint into a soft constraint, and the learning objective can be rewritten by93
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3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98
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where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102
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which are denoted as {vj}m
j=1. Note that, both qi and vi are belonging to the attribute space V . Then,106

the corresponding binary hash codes can be obtained via107

ui = sgn(tanh(qi)) , (9)
zj = sgn(tanh(vj)) , (10)

where ui, zj 2 {�1, +1}k. The goal of our hash code learning is to learn binary hash codes for both108

query points and database points from {qi}n
i=1, {vj}m

j=1, and the pairwise supervised information,109

i.e., S 2 {�1, +1}n⇥m. To preserve the pairwise similarity, we adopt the `2 loss between the110

supervised information (a.k.a. similarity) and the inner product of query-database point binary code111

pairs. It can be formulated as follows:112

minU ,Z

Pn
i=1

Pm
j=1

�
u>

i zj � kSij

�2

s.t. U 2 {�1, +1}n⇥k, Z 2 {�1, +1}m⇥k . (11)

Overall, we get the final objective of the proposed A2-NET model by considering Eq. (7), Eq. (8) and113

Eq. (11) together as follows:114

min
W ,⇥

L(I) = kX�W>V 0k2
F +�kWX�V 0k2

F +↵kV 0V 0>�nIk2
F +�

nX

i=1

mX

j=1

�
u>

i zj � kSij

�2
,

(12)
where �, ↵ and � are hyper-parameters as the trade-off.115

In practice, during training, it might be only available a set of database points {vj}m
j=1 without query116

points. Thus, we randomly sample n data points from database to construct a query set, and denote117

the indices of all the database points as � with the indices of the query set as ⌦. Additionally, because118

we cannot back-propagate the gradient to ⇥ due to the sgn(·) function, we omit the sgn(·) function119

and only apply tanh(·) for relaxation in Eq. (10) of the whole optimization process. Therefore, the120

optimization formulation of A2-NET can be rewritten with only database points {vj}m
j=1 for training121

as:122

min
W ,⇥

L(I) = kX � W>V 0k2
F + �kWX � V 0k2

F + ↵kV 0V 0> � nIk2
F

+ �
X

i2⌦

X

j2�

⇣
tanh(W · F (Ii; ⇥))

>
zj � kSij

⌘2

. (13)

For optimization, we employ the back-propagation algorithm and follow [8] to train the whole123

A2-NET model in an end-to-end manner.124

3.4 Out-of-Sample Extension125

After training A2-NET, the learned model can be applied for generating binary codes for query points126

including unseen query points in the training phase. Specifically, we can use the following equation127

to generate the binary code for Iq:128

uq = sgn(tanh(W · F (Iq; ⇥))) . (14)

4 Experiments129

In this section, we present the implementation details, empirical settings, main results, ablation studies130

and also some interesting qualitative analyses of the learned attribute-aware binary hash codes.131

4.1 Datasets132

x0
i By following ExchNet [4], our experiments are conducted on five fine-grained benchmark datasets,133

i.e., CUB-200-2011 [16], Aircraft [12], Food101 [1], NABirds [15] and VegFru [6]. Specifically,134

CUB-200-2011 is one of the most popular used fine-grained datasets. It contains 11,788 bird images135

from 200 bird species and is officially split into 5,994 images for training with 5,794 images for136

test. Aircraft contains 10,000 images spanning 100 aircraft models with 3,334 for training, 3,333137
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decorrelation, hash code learning and the optimization learning algorithm.67
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always infeasible, which limits the learning process to be conducted in an unsupervised setting.70

While, in the literature, the main goal of unsupervised learning is to capture regularities in data for the71
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learning to hash (cf. Section 3.3.3).89
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and remove the redundant correlation among these attribute-specific features, we introduce a feature97
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2.1 Fine-Grained Image Retrieval24

2.2 Learning to Hash25

2.3 Visual Attributes26

3 Methodology27

In this section, we introduce the overall framework and notations of the proposed A2-NET model, as28

well as elaborating the detailed modules of A2-NET and its corresponding optimization algorithm.29

3.1 Overall Framework and Notations30

As illustrated in Figure ??, our A2-NET model consists of two crucial modules, i.e., a fine-grained31

representation learning module and an attribute-aware hash codes generating module. Given an32

input image Ii, based on its corresponding deep activation tensor Ti 2 RC⇥H⇥W extracted by a33

backbone CNN, a set of attention guidance A = {Ac} is learned for capturing fine-grained tailored34

local patterns T c
i from Ti. To distill semantical cues and further generate the final attribute-aware35

binary hash codes, we propose to transform these appearance-specific features T towards semantic-36

specific representations T̂ by performing a transform network �(·). After aggregating T̂ , the obtained37

attentive local-level features xc
i are associated with the global-level feature xglobal

i to form as a38

holistic feature representation xi. In order to generate attribute-aware binary hash codes, we conduct39

a reconstructing paradigm to project xi as vi in an attribute space where its data point correspond to40

an attribute vector w.r.t. one kind of namable properties of fine-grained objects. Finally, hash code41

learning is performed upon vi to obtain the final attribute-aware binary codes ui.42

3.2 Fine-Grained Representation Learning43

Attention plays an important role in human perception [3, 7], and humans exploit a sequence of44

partial glimpses and selectively focus on salient parts of an object or a scene in order to better capture45

visual structure [10]. Inspired by this, we incorporate the attention mechanism into representation46

learning to capture fine-grained local patterns for distinguishing subtle differences between these47

subordinate categories.48

In concretely, we extract the deep feature of its input image Ii via a backbone CNN model �CNN(·)49

as50

Ti = �CNN(Ii) 2 RC⇥H⇥W . (1)

Then, based on Ti, C attention guidance Ac 2 RH⇥W is generated as a set of attention maps, i.e., A.51

The attention guidance Ac is designed to evaluate which deep descriptors should be attended or even52

overlooked by conducting53

T c
i = Ac � Ti , (2)

where � is the element-wise Hadamard product. To obtain the final attribute-aware binary codes, it is54

desirable to transform these appearance-specific (i.e., low-level) features T to semantic-specific (i.e.,55

mid-level) representations which are closer to the attribute space. Thus, a transforming network �(·),56

which is equipped with a stack of convolution layers, is performed on T as follows:57

T̂ c
i = �(T c

i ; ✓local) , (3)

T̂i = �(Ti; ✓global) , (4)

where ✓ presents the parameters of the corresponding transforming networks w.r.t. T c
i and Ti, respec-58

tively. Then, we aggregate T̂ c
i and T̂i by conducting global average-pooling and correspondingly59

obtain the attentive local-level features xc
i , as well as the global-level feature xglobal

i . The holistic60

feature representation w.r.t. the input image Ii is achieved by concatenating both xc
i and xglobal

i , i.e.,61

xi =
h
xc

i ; x
global
i

i
= F (Ii; ⇥) 2 Rd. Note that, we hereby abstract the aforementioned fine-grained62

feature learning process as a function F (Ii; ⇥) with its parameters ⇥.63
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where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91

However, directly minimizing Eq. (6) with a hard constraint is hard to optimize. Therefore, we relax92

the constraint into a soft constraint, and the learning objective can be rewritten by93

min
W

kX � W>V 0k2
F + �kWX � V 0k2

F . (7)

3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98

min
V 0

kV 0V 0> � nIk2
F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103

In the following, we conduct the hash code learning based on the obtained attribute-specific features.104

Assume that we have n query data points which are denoted as {qi}n
i=1, as well as m database points105

which are denoted as {vj}m
j=1. Note that, both qi and vi are belonging to the attribute space V . Then,106

the corresponding binary hash codes can be obtained via107

ui = sgn(tanh(qi)) , (9)
zj = sgn(tanh(vj)) , (10)

where ui, zj 2 {�1, +1}k. The goal of our hash code learning is to learn binary hash codes for both108

query points and database points from {qi}n
i=1, {vj}m
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where �, ↵ and � are hyper-parameters as the trade-off.115
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For optimization, our A2-NET does not require complicated two-stage learning algorithms, e.g., the123

alternative optimization strategy. We employ the back-propagation algorithm and follow [8] to train124

the whole A2-NET model in a unified end-to-end manner.125
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Figure 1: Overall framework of the proposed A2-NET model, which consists of two crucial modules,
i.e., fine-grained representation learning and attribute-aware hash codes generating. The whole
network can be end-to-end trainable, and is generally driven by the unsupervised attribute-guided
loss, the feature decorrelation loss and the hash code learning loss, cf. Section 3.3.

has the potential to help with large-scale fine-grained data too. Therefore, targeting the big data35

challenge, fine-grained hashing [7, 13] is a promising direction worthy of further explorations.36

low-level to mid-level appearance-specific to semantic-specific37

obtain corresponding fine-grained object attributes (e.g., xx), without significant annotation cost38

2 Related Work39

In this section, we briefly review the related work in the following three aspects, i.e., fine-grained40

image retrieval, learning to hash and the studies about visual attributes in computer vision problems.41

2.1 Fine-Grained Image Retrieval42

Fine-grained image retrieval as an integral part of fine-grained image analysis [34] has gained more43

and more traction in recent years [7, 20, 23, 33, 35, 37, 38]. What makes it challenging is that44

objects of fine-grained images have only subtle differences, and often largely vary in pose, scale, and45

orientation or can exhibit cross-modal differences (e.g., sketch-based retrieval [20]).46
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Figure 1: Key idea of the propose A2-NET model, as well as the main process of fine-grained hashing
based on our attribute-aware hash codes. In concretely, for an query image Iq of Red bellied
Woodpecker, after returning all the correct results, the fine-grained image (belonging to Red headed
Woodpecker) closest to the query image is also retrieved.
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Abstract

The task of fine-grained image retrieval aims to rank all the instances so that images1

depicting the concept of interests (i.e., the same sub-category labels) are ranked2

highest based on the fine-grained details in the query. It is challenging due to the3

subtle differences between sub-category, as well as the fine-grained nature of small4

inter-class variations and large intra-class variations. Especially for large-scale5

data, it is desirable to be handled in a both effective and efficient way. In this paper,6

we an Attribute-Aware hashing Network, i.e., A2-NET, for generating an attribute-7

aware binary codes to not only speed up the retrieval process, but also corresponds8

to fine-grained attributes. Specifically, based on the learned attention maps, we9

design an auto-encoder to project the visual feature vector into an attribute space10

by following a reconstructing paradigm. Furthermore, A2-NET is also equipped11

with an orthogonal constraint upon the generated attributes to enhance their own12

representation abilities. Qualitative experiments on five benchmark fine-grained13

datasets show our superiority over competing methods. Moreover, quantitative14

results reveal the obtained hash codes correspond to the attributes of fine-grained15

patterns.16

1 Introduction17

another barrier also occurs because of xxx18

suffer from slow query speed and redundant storage costs due to both the explosive growth of massive19

fine-grained data and high-dimensional real-valued features.20
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Figure 1: Key idea of our A2-NET, as well as the main process of fine-grained hashing based
on our attribute-aware hash codes. In concretely, regarding a query image Iq of Red bellied
Woodpecker, after returning all the correct results, a fine-grained image belonging to Red headed
Woodpecker closest to the query image in terms of Hamming distance is also retrieved.

e.g., [8, 18], achieved good retrieval performance, the bits of their hash codes correspond to no
semantics, i.e., fine-grained attributes. While, such attributes, e.g., head color, tail color, male,
female, living habits, are great means of describing fine-grained objects, in a way both humans and
computers understand. In this paper, to establish an explicit correspondence between hash codes and
visual attributes for not only further improving large-scale fine-grained retrieval accuracy, but more
importantly integrating interpretation into deep learning based hash methods, we propose a unified
Attribute-Aware hashing Network, termed as A2-NET (cf. Figure 1), for achieving these goals.

In our A2-NET, considering huge labor cost of supervised attribute annotations, we restrict ourselves
in an unsupervised setting to automatically capture discriminative visual attributes from still images
and then correspond the final learned hash code representations to these attributes. Therefore, a
hash bit of learned hash codes could be both discriminative and intuitive. Additionally, thanks to
the unsupervised setting, the attributes derived from A2-NET will be not restricted to pre-defined
attributes like supervised-based attribute learning methods [15, 21, 42, 45]. Moreover, it can distill
the most useful properties of fine-grained objects as attribute-aware hash codes in such an end-to-end
trainable manner for accuracy retrieval among multiple similar subordinate categories.

More specifically, as the overall framework shown in Figure 2, our A2-NET consists of a fine-
grained representation learning module and an attribute-aware hash codes generating module. It first
leverages attention mechanisms to model fine-grained tailored patterns in terms of both global-level
deep features Ti and local-level cues T c

i from input image Ii. Then, the appearance-specific features
of these visual patterns T are aggregated and translated into semantic-specific representations xi.
After that, we formulate the aforementioned unsupervised attribute learning as a reconstruction
task of projecting xi to an attribute vector vi by performing an encoder-decoder structure network.
Therefore, it can be expected that in the high-level attribute space, vi could correspond to certain
kinds of nameable properties of fine-grained objects. Moreover, a feature decorrelation constraint
is further introduced upon vi to both enhance the discriminative ability and remove the redundant
correlation among these dimensions of attribute-specific features. Finally, our attribute-aware hash
codes ui are generated from vi by conducting the hash code learning procedure.

To evaluate our model, we conduct extensive experiments using five benchmark fine-grained retrieval
datasets for both accuracy and interpretability. Quantitative results of retrieval accuracy on these
datasets show that the proposed A2-NET model obviously and consistently outperforms existing state-
of-the-art methods. Qualitative visualization of the obtained attribute-aware hash codes demonstrates
that these hash bits have strong correspondences to visual attributes of fine-grained objects (cf.
Figure 4), even without employing attribute supervisions or part-level annotations. In addition, the
ablation studies of these crucial components in A2-NET also validate their own effectiveness.

2 Related Work

2.1 Fine-Grained Image Retrieval

Fine-grained image retrieval as an integral part of fine-grained image analysis [41] has gained more
and more traction in recent years [8, 25, 29, 40, 43, 47, 48]. What makes it challenging is that
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3.3 Attribute-Aware Hash Codes Generating64

How to generate attribute-aware hash codes is the key of our A2-NET model. We elaborate it in65

the following four aspects, i.e., unsupervised attribute-guided learning, attribute-specific feature66

decorrelation, hash code learning and the optimization learning algorithm.67

3.3.1 Unsupervised Attribute-Guided Learning68

In real-applications, especially for the large-scale and fine-grained tasks, attribute annotations are69

always infeasible, which limits the learning process to be conducted in an unsupervised setting.70

While, in the literature, the main goal of unsupervised learning is to capture regularities in data for the71

purpose of extracting useful representations or for restoring corrupted data [4]. Many unsupervised72

methods explicitly produce internal latent units or codes, from which the data is to be reconstructed.73

Inspired by this, we develop an unsupervised attribute-guided learning component to project the74

holistic representation xi of Ii into a latent space, i.e., the attribute space V . In V , its high-level75

vectors are designed to have certain desirable properties, e.g., corresponding to semantic properties76

of fine-grained objects (a.k.a. “fine-grained attributes”).77

More specifically, in our A2-NET, the unsupervised attribute-guided learning is realized by a recon-78

struction paradigm with an encoder-decoder structure, as shown in Figure ??. In concretely, given79

a batch of n training data Ii, the holistic representations X = {x1; x2; . . . ; xn} 2 Rd⇥n can be80

obtained as aforementioned. By formulation, the encoder projects X into the attribute space V with81

a projection matrix W 2 Rk⇥d to get an internal latent representation V 2 Rk⇥n w.r.t. X . In82

particularly, we set that the dimension of latent representation k equals to the number of hash bits in83

the final binary hash code ui. Furthermore, each column of V , i.e., vi 2 Rk, can derive ui by84

ui = sgn(tanh(vi)) . (5)

Meanwhile, regarding vi, we also consider to reconstruct its input xi by a decoder as a counterpart85

of the encoder. Therefore, on one hand, such a reconstruction paradigm can reduce and further distill86

high-level semantic cues in the attribute space V . While, on the other hand, it can drive the training87

of A2-NET by preserving the similarity between queried hash codes and database points in terms of88

learning to hash (cf. Section 3.3.3).89

In concretely, the learning objective of unsupervised attribute-guided learning is written as follows:90

min
W

kX � W>WXk2
F s.t. WX = V 0 = tanh(V ) , (6)

where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91

However, directly minimizing Eq. (6) with a hard constraint is hard to optimize. Therefore, we relax92

the constraint into a soft constraint, and the learning objective can be rewritten by93

min
W

kX � W>V 0k2
F + �kWX � V 0k2

F . (7)

3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98

min
V 0

kV 0V 0> � kIk2
F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103

In the following, we conduct the hash code learning based on the obtained attribute-specific features.104

Assume that we have n query data points which are denoted as {qi}n
i=1, as well as m database points105
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the constraint into a soft constraint, and the learning objective can be rewritten by93

min
W

kX � W>V 0k2
F + �kWX � V 0k2

F . (7)

3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98

min
V 0

kV 0V 0> � kIk2
F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103

In the following, we conduct the hash code learning based on the obtained attribute-specific features.104

Assume that we have n query data points which are denoted as {qi}n
i=1, as well as m database points105
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which are denoted as {vj}m
j=1. Note that, both qi and vi are belonging to the attribute space V . Then,106
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ui = sgn(tanh(qi)) , (9)
zj = sgn(tanh(vj)) , (10)
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i=1, {vj}m

j=1, and the pairwise supervised information,109
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Pm
j=1

�
u>

i zj � kSij

�2

s.t. U 2 {�1, +1}n⇥k, Z 2 {�1, +1}m⇥k . (11)

Overall, we get the final objective of the proposed A2-NET model by considering Eq. (7), Eq. (8) and113

Eq. (11) together as follows:114
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F +↵kV 0V 0>�nIk2
F +�

nX

i=1

mX

j=1

�
u>

i zj � kSij

�2
,

(12)
where �, ↵ and � are hyper-parameters as the trade-off.115

In practice, during training, it might be only available a set of database points {vj}m
j=1 without query116

points. Thus, we randomly sample n data points from database to construct a query set, and denote117

the indices of all the database points as � with the indices of the query set as ⌦. Additionally, because118

we cannot back-propagate the gradient to ⇥ due to the sgn(·) function, we omit the sgn(·) function119
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j=1 for training121

as:122
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F + ↵kV 0V 0> � nIk2
F

+ �
X

i2⌦

X

j2�

⇣
tanh(W · F (Ii; ⇥))

>
zj � kSij

⌘2

. (13)

For optimization, we employ the back-propagation algorithm and follow [8] to train the whole123

A2-NET model in an end-to-end manner.124

3.4 Out-of-Sample Extension125

After training A2-NET, the learned model can be applied for generating binary codes for query points126

including unseen query points in the training phase. Specifically, we can use the following equation127

to generate the binary code for Iq:128

uq = sgn(tanh(W · F (Iq; ⇥))) . (14)

4 Experiments129

In this section, we present the implementation details, empirical settings, main results, ablation studies130

and also some interesting qualitative analyses of the learned attribute-aware binary hash codes.131

4.1 Datasets132

x0
i By following ExchNet [4], our experiments are conducted on five fine-grained benchmark datasets,133

i.e., CUB-200-2011 [16], Aircraft [12], Food101 [1], NABirds [15] and VegFru [6]. Specifically,134

CUB-200-2011 is one of the most popular used fine-grained datasets. It contains 11,788 bird images135

from 200 bird species and is officially split into 5,994 images for training with 5,794 images for136

test. Aircraft contains 10,000 images spanning 100 aircraft models with 3,334 for training, 3,333137

4

Fine-grained representation learning

U
ns

up
er

vi
se

d 
at

tr
ib

ut
e-

gu
id

ed
 lo

ss
 (S

ec
tio

n 
3.

3.
1)

Feature decorrelation 
loss (Section 3.3.2)

3.3 Attribute-Aware Hash Codes Generating64
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3 Methodology27

In this section, we introduce the overall framework and notations of the proposed A2-NET model, as28

well as elaborating the detailed modules of A2-NET and its corresponding optimization algorithm.29

3.1 Overall Framework and Notations30

As illustrated in Figure ??, our A2-NET model consists of two crucial modules, i.e., a fine-grained31

representation learning module and an attribute-aware hash codes generating module. Given an32

input image Ii, based on its corresponding deep activation tensor Ti 2 RC⇥H⇥W extracted by a33

backbone CNN, a set of attention guidance A = {Ac} is learned for capturing fine-grained tailored34

local patterns T c
i from Ti. To distill semantical cues and further generate the final attribute-aware35

binary hash codes, we propose to transform these appearance-specific features T towards semantic-36

specific representations T̂ by performing a transform network �(·). After aggregating T̂ , the obtained37

attentive local-level features xc
i are associated with the global-level feature xglobal

i to form as a38

holistic feature representation xi. In order to generate attribute-aware binary hash codes, we conduct39

a reconstructing paradigm to project xi as vi in an attribute space where its data point correspond to40

an attribute vector w.r.t. one kind of namable properties of fine-grained objects. Finally, hash code41

learning is performed upon vi to obtain the final attribute-aware binary codes ui.42

3.2 Fine-Grained Representation Learning43

Attention plays an important role in human perception [3, 7], and humans exploit a sequence of44

partial glimpses and selectively focus on salient parts of an object or a scene in order to better capture45

visual structure [10]. Inspired by this, we incorporate the attention mechanism into representation46

learning to capture fine-grained local patterns for distinguishing subtle differences between these47

subordinate categories.48

In concretely, we extract the deep feature of its input image Ii via a backbone CNN model �CNN(·)49

as50

Ti = �CNN(Ii) 2 RC⇥H⇥W . (1)

Then, based on Ti, C attention guidance Ac 2 RH⇥W is generated as a set of attention maps, i.e., A.51

The attention guidance Ac is designed to evaluate which deep descriptors should be attended or even52

overlooked by conducting53

T c
i = Ac � Ti , (2)

where � is the element-wise Hadamard product. To obtain the final attribute-aware binary codes, it is54

desirable to transform these appearance-specific (i.e., low-level) features T to semantic-specific (i.e.,55

mid-level) representations which are closer to the attribute space. Thus, a transforming network �(·),56

which is equipped with a stack of convolution layers, is performed on T as follows:57

T̂ c
i = �(T c

i ; ✓local) , (3)

T̂i = �(Ti; ✓global) , (4)

where ✓ presents the parameters of the corresponding transforming networks w.r.t. T c
i and Ti, respec-58

tively. Then, we aggregate T̂ c
i and T̂i by conducting global average-pooling and correspondingly59

obtain the attentive local-level features xc
i , as well as the global-level feature xglobal

i . The holistic60

feature representation w.r.t. the input image Ii is achieved by concatenating both xc
i and xglobal

i , i.e.,61

xi =
h
xc

i ; x
global
i

i
= F (Ii; ⇥) 2 Rd. Note that, we hereby abstract the aforementioned fine-grained62

feature learning process as a function F (Ii; ⇥) with its parameters ⇥.63
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where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.91

However, directly minimizing Eq. (6) with a hard constraint is hard to optimize. Therefore, we relax92

the constraint into a soft constraint, and the learning objective can be rewritten by93

min
W

kX � W>V 0k2
F + �kWX � V 0k2

F . (7)

3.3.2 Attribute-Specific Feature Decorrelation94

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal95

latent vectors V 0 as the attribute-specific features. In order to both enhance the discriminative ability96

and remove the redundant correlation among these attribute-specific features, we introduce a feature97

decorrelation constraint upon V 0, which is formulated by98

min
V 0

kV 0V 0> � nIk2
F , (8)

where I is the identity matrix. Such a feature decorrelation constraint is preferable to construct99

independent features and reduce redundant information. Therefore, based on unsupervised attribute-100

guided learning and attribute-specific feature decorrelation, the final learned hash codes are expected101

to be both attribute-aware and hash-bit independent.102

3.3.3 Hash Code Learning103

In the following, we conduct the hash code learning based on the obtained attribute-specific features.104

Assume that we have n query data points which are denoted as {qi}n
i=1, as well as m database points105

which are denoted as {vj}m
j=1. Note that, both qi and vi are belonging to the attribute space V . Then,106

the corresponding binary hash codes can be obtained via107

ui = sgn(tanh(qi)) , (9)
zj = sgn(tanh(vj)) , (10)

where ui, zj 2 {�1, +1}k. The goal of our hash code learning is to learn binary hash codes for both108

query points and database points from {qi}n
i=1, {vj}m

j=1, and the pairwise supervised information,109

i.e., S 2 {�1, +1}n⇥m. To preserve the pairwise similarity, we adopt the `2 loss between the110

supervised information (a.k.a. similarity) and the inner product of query-database point binary code111

pairs. It can be formulated as follows:112

minU ,Z

Pn
i=1

Pm
j=1

�
u>

i zj � kSij

�2

s.t. U 2 {�1, +1}n⇥k, Z 2 {�1, +1}m⇥k . (11)

Overall, we get the final objective of the proposed A2-NET model by considering Eq. (7), Eq. (8) and113

Eq. (11) together as follows:114

min
W ,⇥

L(I) = kX�W>V 0k2
F +�kWX�V 0k2

F +↵kV 0V 0>�nIk2
F +�

nX
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�
u>

i zj � kSij

�2
,

(12)
where �, ↵ and � are hyper-parameters as the trade-off.115

In practice, during training, it might be only available a set of database points {vj}m
j=1 without query116

points. Thus, we randomly sample n data points from database to construct a query set, and denote117

the indices of all the database points as � with the indices of the query set as ⌦. Additionally, because118

we cannot back-propagate the gradient to ⇥ due to the sgn(·) function, we omit the sgn(·) function119

and only apply tanh(·) for relaxation in Eq. (10) of the whole optimization process. Therefore, the120

optimization formulation of A2-NET can be rewritten with only database points {vj}m
j=1 for training121

as:122

min
W ,⇥

L(I) = kX � W>V 0k2
F + �kWX � V 0k2

F + ↵kV 0V 0> � nIk2
F

+ �
X

i2⌦

X

j2�

⇣
tanh(W · F (Ii; ⇥))

>
zj � kSij

⌘2

. (13)

For optimization, our A2-NET does not require complicated two-stage learning algorithms, e.g., the123

alternative optimization strategy. We employ the back-propagation algorithm and follow [8] to train124

the whole A2-NET model in a unified end-to-end manner.125
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Figure 2: Overall framework of the proposed A2-NET model, which consists of two crucial modules,
i.e., fine-grained representation learning and attribute-aware hash codes generating. The whole
network can be end-to-end trainable, and is generally driven by the unsupervised attribute-guided
reconstruction loss, the feature decorrelation loss and the hash code learning loss, cf. Section 3.3.

objects of fine-grained images have only subtle differences, and often largely vary in pose, scale, and
orientation or can exhibit cross-modal differences (e.g., sketch-based retrieval [25]).

Depending on the type of query image, the most studied areas of fine-grained image retrieval
can be separated into two groups: fine-grained content-based image retrieval (FG-CBIR) and fine-
grained sketch-based image retrieval (FG-SBIR). More specifically, in FG-CBIR, unsupervised
learning based [40] and supervised learning based methods [44, 47, 48] were developed from
different perspectives for handling fine-grained retrieval tasks, e.g., localizing fine-grained parts [40],
enhancing intra-class separability with inter-class compactness [48], and reducing the confidence
of the fine-grained predictions [44], etc. While, FG-SBIR needs to not only capture fine-grained
characteristics present in the sketches, but also possess the ability to traverse the sketch and image
domain gap. In the literature of FG-SBIR, the earlier works, e.g., [23, 43, 46], were mostly based
on Siamese-triplet networks [3] to tackle the aforementioned challenges. Recently, some works
tried to incorporate the advances of recent progress in self-supervised learning [6] and attention
mechanisms [7] for further improving the retrieval accuracy of FG-SBIR, e.g., [29, 32].

However, although these fine-grained retrieval methods achieved good results, they still have the
limitations in the face of large-scale data, i.e., the searching time for exact nearest neighbor is typically
expensive or even impossible for the given queries. To alleviate this issue, fine-grained hashing, which
aims to generate compact binary codes to represent fine-grained images, as a promising direction
has attracted the attention in the fine-grained community very recently [8, 19]. More specifically,
ExchNet [8] was the first to define the fine-grained hashing task and develop a fine-grained tailored
method to firstly locate discriminative object parts and further learn binary hash codes for representing
fine-grained images. In the same period, DSaH [19] was proposed to automatically mine salient
regions and learn semantic-preserving hash codes simultaneously. Unfortunately, the learned hash
bits of these methods lack any semantics which are more meaningful to fine-grained objects, and thus
lack the model interpretability. Compared with them, our proposed A2-NET can not only outperform
the previous fine-grained hashing methods, but more importantly, the learned hash codes of A2-NET
are attribute-aware, i.e., the hash bits of A2-NET have strong correspondence to semantic visual
properties that are useful for fine-grained image retrieval.

2.2 Learning to Hash

Hashing [38] is a widely-studied solution to approximate nearest neighbor search, which transforms
the data item to a short code consisting of a sequence of bits (i.e., hash codes). The research efforts
of hashing can be categorized into two groups, including data-independent hashing (aka locality
sensitive hashing [9, 27, 34]) and data-dependent hashing (aka learning to hash [4, 12, 17, 33]).
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Specifically, locality sensitive hashing methods attempted to adjust hash learning from different
perspectives, e.g., the theory or machine learning views, to name a few: proposing random hash
functions satisfying local sensitive property [9], developing better search schemes [27], providing
faster computation of hash functions [34], etc. While, compared with locality sensitive hashing
methods, since data-dependent hashing methods learn hash functions from a specific dataset to
achieve similarity preserving, they can generally obtain superior retrieval accuracy. Especially for
capitalizing on advances in deep learning, many well-performing methods were proposed to integrate
feature learning and hash code learning into an end-to-end framework based on deep networks,
e.g., [4, 12, 17]. In particular, very recently researchers in the vision community have begun to
pay attention to the more challenging and practical hashing task, i.e., fine-grained hashing [8, 19].
To the best of our knowledge, this is the first work to equip these learned hash codes with strong
correspondence to visual attributes for dealing with large-scale fine-grained image retrieval.

2.3 Visual Attributes

Attributes are typically mid-level semantic properties of objects [10], such as colors (e.g., “red”,
“blue”), texture (e.g., “striped”, “spotted”), or even life habits of animals (e.g., “living on the tree”,
“living in the water”). Visual attributes have exhibited their impact for strengthening various vision
tasks, including facial verification [21], fine-grained categorization [45], zero-shot transfer [42], scene
understanding [30], and so on. Most of the previous attribute learning methods are supervised
by costly human-generated annotations and also are dependent on pre-defined attribute labels,
e.g., [15, 21, 42, 45]. In consequence, for large-scale problems, these supervised methods might be not
feasible due to the restriction caused by the cumbersomely obtained attribute annotations. Moreover,
even for some tasks, their visual attributes are quite hard to define. In this paper, to alleviate the
aforementioned issues, we propose an A2-NET model to formulate an unsupervised learning structure
to project the learned visual features into an attribute space where it finally generates attribute-aware
binary hash codes. Compared with previous attribute learning methods, our A2-NET is independent
with pre-defined attribute labels, and could automatically learn discriminative attribute-aware hash
codes in a unified end-to-end trainable fashion. Furthermore, our method can not only correspond
hash bits to visual attributes tailored for fine-grained objects, which shows significant improvements
of retrieval accuracy, but also offer an intuitive way of deep hashing interpretation.

3 Methodology

In this section, we introduce the overall framework and notations of the proposed A2-NET model, as
well as elaborating the key modules of A2-NET and its corresponding optimization algorithm.

3.1 Overall Framework and Notations

As illustrated in Figure 2, our A2-NET model consists of two crucial modules, i.e., a fine-grained
representation learning module and an attribute-aware hash codes generating module. Given an
input image Ii, based on its corresponding deep activation tensor Ti ∈ RC×H×W extracted by a
backbone CNN, a set of attention guidance A = {Ac} is learned for capturing fine-grained tailored
local patterns T c

i from Ti. To distill semantical cues and further generate the final attribute-aware
binary hash codes, we propose to transform these appearance-specific features T towards semantic-
specific representations T̂ by performing a transform network φ(·). After aggregating T̂ , the obtained
attentive local-level features xc

i are associated with the global-level feature xglobal
i to form as a

holistic feature representation xi. In order to generate attribute-aware binary hash codes, we conduct
a reconstructing paradigm to project xi as vi in an attribute space where its data point corresponds
to an attribute vector w.r.t. a certain kind of nameable properties of fine-grained objects (e.g., “red
head” or “spotted body”). Furthermore, with the aid of feature decorrelation, vi is expected to be
more discriminative by removing redundant correlation information. Finally, hash code learning is
performed upon vi to obtain the final attribute-aware binary codes ui.

3.2 Fine-Grained Representation Learning

Attention plays an important role in human perception [7, 16], and humans exploit a sequence of
partial glimpses and selectively focus on salient parts of an object or a scene in order to better capture
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visual structure [22]. Inspired by this, we incorporate the attention mechanism into representation
learning to capture fine-grained local patterns for distinguishing subtle differences between these
subordinate categories.

In concretely, we extract the deep feature of its input image Ii via a backbone CNN model ΦCNN(·)
by

Ti = ΦCNN(Ii) ∈ RC×H×W . (1)

Then, based on Ti, C attention guidance Ac ∈ RH×W is generated as a set of attention maps, i.e., A.
The attention guidance Ac is designed to evaluate which deep descriptors [40] in these H ×W cells
should be attended or even overlooked by conducting

T c
i = Ac � Ti , (2)

where � is the element-wise Hadamard product. To obtain the final attribute-aware binary codes, it is
desirable to transform these appearance-specific (i.e., low-level) features T to semantic-specific (i.e.,
mid-level) representations which are closer to the attribute space. Thus, a transforming network φ(·),
which is equipped with a stack of convolution layers, is performed on T as follows:

T̂ c
i = φ(T c

i ; θlocal) , (3)

T̂i = φ(Ti; θglobal) , (4)

where θ presents the parameters of the corresponding transforming networks w.r.t. T c
i and Ti, respec-

tively. Then, we aggregate T̂ c
i and T̂i by conducting global average-pooling and correspondingly

obtain the attentive local-level features xc
i , as well as the global-level feature xglobal

i . The holistic
feature representation w.r.t. the input image Ii is achieved by concatenating both xc

i and xglobal
i , i.e.,

xi =
[
xc
i ;x

global
i

]
= F (Ii; Θ) ∈ Rd. Note that, we hereby abstract the aforementioned fine-grained

feature learning process as a function F (Ii; Θ) associated with its parameters Θ.

3.3 Attribute-Aware Hash Codes Generating

How to generate attribute-aware hash codes is the key of our A2-NET model. We elaborate it in
the following three aspects, i.e., unsupervised attribute-guided learning, attribute-specific feature
decorrelation, and hash code learning.

3.3.1 Unsupervised Attribute-Guided Learning

In real-applications, especially for the large-scale and fine-grained tasks, attribute annotations are
always infeasible, which limits the learning process to be conducted in an unsupervised setting.
While, in the literature, the main goal of unsupervised learning is to capture regularities in data for the
purpose of extracting useful representations or for restoring corrupted data [31]. Many unsupervised
methods explicitly produce internal latent units or codes, from which the data is to be reconstructed.

Inspired by this, we develop an unsupervised attribute-guided reconstruction component to project
the holistic representation xi of Ii into a latent space, i.e., the attribute space V . In V , its high-level
vectors are designed to have certain desirable properties, e.g., corresponding to semantic properties
of fine-grained objects (aka “fine-grained attributes”).

More specifically, in our A2-NET, the unsupervised attribute-guided learning is realized by a recon-
struction paradigm with an encoder-decoder structure, as shown in Figure 2. In concretely, given
a batch of n training data Ii, their holistic representations X = {x1;x2; . . . ;xn} ∈ Rd×n can be
obtained as aforementioned. By formulation, the encoder projects X into the attribute space V with
a projection matrix W ∈ Rk×d to get an internal latent representation V ∈ Rk×n w.r.t. X . In
particularly, we set that the dimension of latent representation k equals the number of hash bits in the
final binary hash code ui. Furthermore, each column of V , i.e., vi ∈ Rk, can derive ui by

ui = sgn(tanh(vi)) . (5)

Meanwhile, regarding vi, we also consider to reconstruct its input xi by a decoder as a counterpart
of the encoder. Therefore, on one hand, such a reconstruction paradigm can reduce and further distill
high-level semantic cues in the attribute space V . While, on the other hand, it can drive the training
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of A2-NET by preserving the similarity between queried hash codes and database points in terms of
hash code learning (cf. Section 3.3.3).

In concretely, the learning objective of unsupervised attribute-guided reconstruction is written as
follows:

min
W
‖X −W>WX‖2F s.t.WX = V ′ = tanh(V ) , (6)

where the decoder (i.e., a counterpart of the encoder) is realized by W> to simplify the network.
However, directly minimizing Eq. (6) with a hard constraint is difficult to optimize. Therefore, we
relax the constraint into a soft constraint, and then the learning objective can be rewritten as

min
W
‖X −W>V ′‖2F + λ‖WX − V ′‖2F . (7)

3.3.2 Attribute-Specific Feature Decorrelation

By conducting the aforementioned unsupervised attribute-guided learning, we can obtain the internal
latent vectors V ′ as the attribute-specific features. In order to both enhance the discriminative ability
and remove the redundant correlation among these attribute-specific features, we introduce a feature
decorrelation constraint upon V ′, which is formulated by

min
V ′
‖V ′V ′> − nI‖2F , (8)

where I is the identity matrix and n is the batch size. Such a feature decorrelation constraint is
preferable to construct independent features and reduce redundant information. Therefore, based on
both unsupervised attribute-guided reconstruction and attribute-specific feature decorrelation, the
final learned hash codes are expected to be both attribute-aware and hash-bit independent.

3.3.3 Hash Code Learning

In the following, we conduct the hash code learning based on the obtained attribute-specific features.
Assume that we have n query data points which are denoted as {qi}ni=1, as well as m database points
which are denoted as {vj}mj=1. Note that, both qi and vi are belonging to the attribute space V . By
following Eq. (5), the corresponding binary hash codes can be obtained via

ui = sgn(tanh(qi)) , (9)
zj = sgn(tanh(vj)) , (10)

where ui, zj ∈ {−1,+1}k. The goal of our hash code learning is to learn binary hash codes for both
query points and database points from {qi}ni=1, {vj}mj=1, and the pairwise supervised information,
i.e., S ∈ {−1,+1}n×m. To preserve the pairwise similarity, we adopt the `2 loss between the
supervised information (aka similarity) and the inner product of query-database point binary code
pairs. It can be formulated as follows:

minU ,Z

∑n
i=1

∑m
j=1

(
u>i zj − kSij

)2

s.t. U ∈ {−1,+1}n×k,Z ∈ {−1,+1}m×k . (11)

Overall, we get the final objective of the proposed A2-NET model by considering Eq. (7), Eq. (8) and
Eq. (11) together as follows:

min
W ,Θ

L(I) = ‖X−W>V ′‖2F +λ‖WX−V ′‖2F +α‖V ′V ′>−nI‖2F +β

n∑

i=1

m∑

j=1

(
u>i zj − kSij

)2
,

(12)
where λ, α and β are hyper-parameters as the trade-off.

In practice, during training, it might be only available a set of database points {vj}mj=1 without query
points. Thus, we randomly sample n data points from database to construct a query set, and denote
the indices of all the database points as Γ with the indices of the query set as Ω. Additionally, because
we cannot back-propagate the gradient to Θ due to the sgn(·) function, we omit the sgn(·) function
and only apply tanh(·) for relaxation in Eq. (10) of the whole optimization process. Therefore, the
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optimization formulation of A2-NET can be rewritten with only database points {vj}mj=1 for training
as:

min
W ,Θ

L(I) = ‖X −W>V ′‖2F + λ‖WX − V ′‖2F + α‖V ′V ′> − nI‖2F

+ β
∑

i∈Ω

∑

j∈Γ

(
tanh(W · F (Ii; Θ))

>
zj − kSij

)2

. (13)

For optimization, our A2-NET does not require complicated two-stage learning algorithms, e.g., the
alternative optimization strategy. In experiments, we employ the back-propagation algorithm and
follow [17] to train the whole A2-NET model in a unified end-to-end manner.

3.4 Out-of-Sample Extension

After training A2-NET, the learned model can be applied for generating binary codes for query points
including unseen query points in the training phase. Specifically, we can use the following equation
to generate the binary code for Iq:

uq = sgn(tanh(W · F (Iq; Θ))) . (14)

4 Experiments

4.1 Datasets

By following ExchNet [8], our experiments are conducted on five fine-grained benchmark datasets,
i.e., CUB200-2011 [37], Aircraft [28], Food101 [2], NABirds [35] and VegFru [14]. Specifically,
CUB200-2011 is one of the most popular used fine-grained datasets. It contains 11,788 bird images
from 200 bird species and is officially split into 5,994 images for training and 5,794 images for
test. Aircraft contains 10,000 images spanning 100 aircraft models with 3,334 for training, 3,333
for validation and 3,333 for test. For large-scale datasets, Food101 contains 101 kinds of foods with
101,000 images, where for each class, 250 test images are checked manually for correctness while
750 training images still contain a certain amount of noises. NABirds is a high quality dataset which
has 48,562 images of North American birds with 555 sub-categories, where 23,929 for training with
24,633 for test. VegFru is another large-scale fine-grained dataset covering 200 kinds of vegetables
and 92 kinds of fruits with 29,200 for training, 14,600 for validation and 116,931 for test.

4.2 Baselines and Implementation Details

Baselines In experiments, we compare our proposed model to the following competitive baselines,
i.e., ITQ [11], SDH [33], DPSH [24], HashNet [5], and ADSH [17]. Among them, DPSH, HashNet
and ADSH are deep learning based methods, while ITQ and SDH are not. Furthermore, we also
compare the results of our A2-NET with state-of-the-arts of fine-grained hashing methods, including
ExchNet [8]. Additionally, another fine-grained hashing method, i.e., DSaH [19], also achieved good
retrieval accuracy. However, due to its empirical settings quite distant from other existing fine-grained
hashing methods, for fair comparisons, we strictly control empirical settings as the same as those
of [19] and compare the results of our A2-NET with its results in the supplementary materials.

Implementation Details For fair comparisons, we follow the efficient training setting in Exch-
Net [8]. In concretely, for CUB200-2011, Aircraft and Food101, we sample 2,000 images per epoch,
while 4,000 samples are randomly selected for NABirds and VegFru. For the training details, regarding
the backbone model, we can choose any network structure as the base network for the fine-grained
representation learning module. While, by following [8], ResNet-50 [13] is employed in experiments.
The total number of training epochs is 20, and the number of batch size is set as 16. While, different
from ExchNet, our model only requires a smaller iteration time until convergence. Specifically, for
these datasets containing less than 20,000 training images, the iteration time Tmax is 60, and the
learning rate is divided by 10 at the 50th iteration. For other datasets, Tmax is set as 70, and the
learning rate is divided by 10 at the 60th iteration. The hyper-parameters, i.e., λ, α and β in Eq. (13),
are set as 1, 1

n×k and 12
k , respectively. The number of attention guidance equals the number of hash

bits. The optimizer is standard mini-batch stochastic gradient descent with the weight decay as 10−4.
All experiments are conducted with a GeForce RTX 2080 Ti GPU.
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Table 1: Comparisons of retrieval accuracy (% mAP) on five fine-grained benchmark datasets.

Datasets # bits ITQ SDH DPSH HashNet ADSH ExchNet Ours

CUB200-2011

12 6.80 10.52 8.68 12.03 20.03 25.14 33.83
24 9.42 16.95 12.51 17.77 50.33 58.98 61.01
32 11.19 20.43 12.74 19.93 61.68 67.74 71.61
48 12.45 22.23 15.58 22.13 65.43 71.05 77.33

Aircraft

12 4.38 4.89 8.74 14.91 15.54 33.27 40.00
24 5.28 6.36 10.87 17.75 23.09 45.83 63.66
32 5.82 6.90 13.54 19.42 30.37 51.83 72.51
48 6.05 7.65 13.94 20.32 50.65 59.05 81.37

Food101

12 6.46 10.21 11.82 24.42 35.64 45.63 46.44
24 8.20 11.44 13.05 34.48 40.93 55.48 66.87
32 9.70 13.36 16.41 35.90 42.89 56.39 74.27
48 10.07 15.55 20.06 39.65 48.81 64.19 82.13

NABirds

12 2.53 3.10 2.17 2.34 2.53 5.22 8.20
24 4.22 6.72 4.08 3.29 8.23 15.69 19.15
32 5.38 8.86 3.61 4.52 14.71 21.94 24.41
48 6.10 10.38 3.20 4.97 25.34 34.81 35.64

VegFru

12 3.05 5.92 6.33 3.70 8.24 23.55 25.52
24 5.51 11.55 9.05 6.24 24.90 35.93 44.73
32 7.48 14.55 10.28 7.83 36.53 48.27 52.75
48 8.74 16.45 9.11 10.29 55.15 69.30 69.77

Query
image Top-10  retrieved images

Figure 3: Examples of top-10 retrieved images on CUB200-2011 of 48-bit hash codes by our A2-NET.

4.3 Main Results

Table 1 presents the mean average precision (mAP) results of fine-grained retrieval on these five
aforementioned fine-grained benchmark datasets. For each dataset, we report the results of four
lengths of hash bits, i.e., 12, 24, 32, and 48, for evaluations. As shown in that table, our proposed A2-
NET model significantly and consistently outperforms the other baseline methods on these datasets.
In particular, compared with the state-of-the-art method ExchNet [8], our A2-NET achieves 17.83%
and 17.88% improvements over ExchNet of 24-bit and 32-bit experiments on Aircraft and Food-101,
respectively. Moreover, A2-NET also obtains superior results with an absolute value of about 80%
mAP on CUB200-2011, Aircraft and Food101 with 48-bit hash codes. These observations validate the
effectiveness of the proposed A2-NET model, as well as its promising practicality in real-applications
of fine-grained retrieval. Additionally, in Figure 3, we illustrate several retrieval results on CUB200-
2011, which shows that A2-NET can retrieve well among multiple subordinate categories when the
same species of birds with diverse variations appear in different kinds of background. Also, there
also exist several failure cases, where quite tiny differences (e.g., caused by different views) between
the query image and the returned images are demanded by carefully observations.

4.4 Ablation Studies

In this section, we demonstrate the effectiveness of these crucial components of the proposed A2-NET
model, i.e., the attention-based fine-grained representation learning component 3.2, the unsupervised

8



Table 2: Retrieval accuracy (% mAP) with incremental components of the proposed A2-NET model.

Configurations CUB200-2011 Food101
12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Vanilla backbone 20.03 50.33 61.68 65.43 35.64 40.93 42.89 48.81
+ Attention (Sec. 3.2) 27.42 58.17 68.24 76.10 41.33 65.07 70.06 78.51

+ Reconstruction (Sec. 3.3.1) 33.31 60.65 71.28 77.10 45.02 67.49 73.57 81.63
+ Feature decorrelation (Sec. 3.3.2) 33.83 61.01 71.61 77.33 46.44 66.87 74.27 82.13

(a) CUB200-2011 (b) Aircraft (c) Food101 (d) NABirds (e) VegFru

Figure 4: Quality demonstrations of the learned attribute-aware hash codes by the proposed A2-NET
model. Each column in each sub-figure can strongly correspond to a certain kind of properties of the
fine-grained objects, e.g., “yellow birds in the forest”, “double-winged aircrafts”, “noodle-like food”,
“Bromeliaceae fruits”, etc. (Best viewed in color and zoomed in.)

attribute-guided reconstruction component (cf. Section 3.3.1) and the attribute-specific feature
decorrelation component (cf. Section 3.3.2). In the ablation studies, we apply these components
incrementally on a vanilla backbone (i.e., ResNet-50) as the baseline. As evaluated in Table 2, by
stacking these two components one by one, the retrieval results are steadily improved, which justifies
the effectiveness of our proposed components in A2-NET.

4.5 Qualitative Analyses of Attribute-Aware Hash Codes

We hereby discuss the quality of the learned attribute-aware hash codes ui of A2-NET. After obtaining
ui, we visualize fine-grained images retrieved by a random single hash bit of ui to demonstrate the
strong correspondence between visual attributes and the obtained hash bits. All the five datasets in
experiments are used as examples to illustrate the quality. As observed in Figure 4, images of each
column have some similar fine-grained object properties, i.e., visual attributes. Indeed, the learned
hash codes are apparently attribute-aware, which could provide an explanation of the A2-NET’s
success in fine-grained retrieval. Meanwhile, it also offers human-understandable interpretation for
such a deep learning based fine-grained hashing method.

5 Conclusion

In this paper, we proposed an Attribute-Aware hashing Network, i.e., A2-NET, for dealing with
the large-scale fine-grained image retrieval task. Particularly, A2-NET was designed as expected
to be efficient, effective and more importantly interpretable. In concretely, by developing an unsu-
pervised attribute-guided reconstruction method based on the obtained appearance-specific visual
representation with attention, it can distill attribute-specific vectors in a high-level attribute space.
After further performing feature decorrelation upon attribute-specific vectors, their discriminative
ability is strengthened for representing a fine-grained object. Then, hash codes can be generated from
these attribute-specific vectors and thus became attribute-aware. Both qualitative and quantitative
experiments demonstrate the effectiveness of our A2-NET. Additionally, visual attributes have
been shown to be useful in describing both known and unknown entities, which motivates us to
study identifying unobserved sub-categories, i.e., zero-shot fine-grained recognition, based on our
attribute-aware hash codes as the future work.
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