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Abstract
Effectively scaling up deep reinforcement learn-
ing models has proven notoriously difficult due
to network pathologies during training, motivat-
ing various targeted interventions such as periodic
reset and architectural advances such as layer nor-
malization. Instead of pursuing more complex
modifications, we show that introducing static
network sparsity alone can unlock further scal-
ing potential beyond their dense counterparts with
state-of-the-art architectures. This is achieved
through simple one-shot random pruning, where
a predetermined percentage of network weights
are randomly removed once before training. Our
analysis reveals that, in contrast to naively scaling
up dense DRL networks, such sparse networks
achieve both higher parameter efficiency for net-
work expressivity and stronger resistance to opti-
mization challenges like plasticity loss and gradi-
ent interference. We further extend our evaluation
to visual and streaming RL scenarios, demonstrat-
ing the consistent benefits of network sparsity.
Our code is publicly available at GitHub �.

1. Introduction
Deep neural networks have demonstrated consistent im-
provements with increased scale in supervised learning
tasks, where larger models reliably yield better results. How-
ever, this scaling pattern breaks down in deep reinforcement
learning (DRL), where increasing model size often leads to
deteriorating performance (Nauman et al., 2024a;b). This
limited scalability of DRL models can be largely attributed
to severe optimization pathologies that emerge during train-
ing (Nikishin, 2024; Nauman et al., 2024a), with these chal-
lenges becoming increasingly pronounced as model size
grows (Ceron et al., 2024a;b). Specifically, notable patho-
logical behaviors include plasticity loss (Nikishin et al.,
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Figure 1. Model scaling trends of ⋆⋆⋆sparse versus •••dense
networks on four hardest DMC tasks using SimBa architecture
with SAC and DDPG. Beyond a ∼17M baseline SimBa network,
dense networks (dashed lines) exhibit degrading performance with
increased scale. In contrast, introducing sparsity while increasing
model size (solid lines) can unlock further scaling potential.

2022; Sokar et al., 2023), parameter under-utilization (Ku-
mar et al., 2021), capacity collapse (Lyle et al., 2022a), etc.

Recent work has proposed various dynamic approaches to
address these pathologies, aiming to break through the scal-
ing barrier of DRL models (Lyle et al., 2022a; Klein et al.,
2024). Among these advances, periodic Reset and its vari-
ants stand out as a representative approach that enhances
model scaling capabilities by mitigating plasticity loss and
pathological behaviors through strategic re-initialization
of the entire network or specific neurons (Nikishin et al.,
2022; Sokar et al., 2023; Xu et al., 2024; Dohare et al.,
2024). While effective, these methods require drastic in-
terventions in optimization dynamics, inevitably disrupting
training stability and introducing significant computational
complexity (Nikishin, 2024; Klein et al., 2024).

Recent architectural advances – particularly spectral normal-
ization (Bjorck et al., 2021), layer normalization (Lyle et al.,
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2023; 2024a), and residual connections (Espeholt et al.,
2018) – have shown considerable success in mitigating plas-
ticity loss and enabling DRL network scaling. Building on
these advances, recent works such as BRO (Nauman et al.,
2024b) and SimBa (Lee et al., 2024) have achieved signifi-
cantly improved scalability without requiring Reset opera-
tions or RL algorithm modifications. However, while SimBa
represents the current state-of-the-art architectural design,
its scaling capabilities remain fundamentally limited. Our
investigation into scaling SimBa beyond previously studied
sizes reveals a consistent pattern: performance deteriorates
when scaling the network in any dimension, as evidenced
by the sharp drops shown in the dashed lines of Figure 1.

Another line of research aims to leverage adaptive or modi-
fied network topologies to enhance the parameter efficiency
and scalability of DRL models. In this direction, Ceron et al.
(2024a) demonstrates that gradual magnitude pruning of
large models leads to dramatic improvements in value-based
agents’ performance. Ceron et al. (2024b) shows that value-
based RL networks equipped with Soft Mixture of Experts
(MoEs) (Puigcerver et al., 2024) exhibit improved param-
eter scalability. In addition, Neuroplastic Expansion (Liu
et al., 2024) improves network plasticity by dynamically
growing the network from sparse to dense architectures,
thereby benefiting from larger model sizes. Although im-
plemented differently, these successful approaches share a
crucial insight: introducing network sparsity and topology
dynamicity during training holds the potential to enable
better parameter scaling in DRL models. However, these
studies predominantly propose dynamic methods meant to
directly act upon the update steps during optimization while
ignoring the static sparsity properties of the network at ini-
tialization. Moreover, since existing studies primarily focus
on standard MLPs, it remains unclear whether these sparsity
benefits extend to modern architectures equipped with resid-
ual connections and layer normalization (Lee et al., 2024).
Motivated by these current advances in DRL scalability, this
paper aims to explore a central question:

Can static network sparsity alone unlock further DRL
model scaling potential beyond current advanced ar-
chitectures while preventing optimization pathologies?

Through a series of ablation and scaling studies we reveal a
clear and definitive answer: YES! As summarized in Fig-
ure 1, sparse networks continue to show performance gains
well beyond the point where their dense counterparts hit scal-
ing limits, demonstrating superior parameter efficiency and
enhanced scalability at larger model sizes. Subsequently,
Section 4 delves into why introducing sparsity can break
through current scaling barriers by leveraging a range of
empirical metrics as diagnostic tools. Our analysis reveals
that while larger model sizes tend to induce more severe
optimization pathologies, appropriate network sparsity ef-

fectively counteracts these negative effects by preventing
capacity and plasticity loss (Klein et al., 2024), constraining
parameter growth (Lyle et al., 2024b), enhancing simplicity
bias (Lee et al., 2024), and mitigating gradient interfer-
ence (Lyle et al., 2023). Furthermore, in Section 5, we
extend our empirical evaluation to visual RL and stream-
ing RL, demonstrating that the benefits of network sparsity
consistently generalize across diverse RL setups.

Contributions of this paper can be summarized as:

1. While the advanced SimBa architecture (Lee et al.,
2024) has greatly improved DRL network scalabil-
ity, we show that introducing static network sparsity
through simple one-shot random pruning (Liu et al.,
2022) at initialization can unlock further scaling
potential beyond previous limitations.

2. Our extensive analysis reveals that appropriate net-
work sparsity alone can prevent severe optimization
pathologies that emerge as models scale up, such
as capacity collapse, plasticity loss, unbounded pa-
rameter growth and gradient interference.

3. We validate that the benefits of network sparsity
generalize well across broader RL scenarios.

2. Preliminary
In this section, we introduce the development and current
best practices in DRL network architecture design aimed
at mitigating optimization pathologies. Additionally, as a
foundation for our subsequent investigation, we detail our
approach to implementing network sparsity. Due to space
constraints, a detailed review of pathologies, network scal-
ing, and sparse models in DRL is provided in Appendix A.

2.1. Network Architecture Design in Deep RL

Early DRL community primarily treated neural networks as
function approximators, focusing research efforts on core
RL challenges such as exploration (Ciosek et al., 2019) and
value overestimation (Fujimoto et al., 2018) rather than net-
work architecture design. Hence, for a long period, most of
DRL works simply employed basic MLPs by default (Fuji-
moto et al., 2023), adding only a few convolutional layers
when processing visual observations (Yarats et al., 2022).

Moreover, the RL paradigm fundamentally differs from
(un)supervised learning, with its trial-and-error nature of
online interactions and non-stationarity of both data streams
and optimization objectives. The interplay of overlooked
RL-tailored deep learning mechanisms and inherent RL
challenges leads to severe optimization pathologies, which
recently have been recognized through several terms, in-
cluding primacy bias (Nikishin et al., 2022), dormant
neuron phenomenon (Sokar et al., 2023), implicit under-
parameterization (Kumar et al., 2021), capacity loss (Lyle
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et al., 2022a), and more broadly, plasticity loss (Klein et al.,
2024). More concerning, these pathologies intensify with
increasing model scale (Ceron et al., 2024a; Lyle et al.,
2023), hindering networks’ ability to leverage the enhanced
expressivity that larger models should provide, thereby fun-
damentally limiting the scalability of DRL.

Recent studies have begun to focus on architectural improve-
ments to mitigate these pathologies, progressively pushing
forward the effective scaling of DRL networks. Various nor-
malization techniques have shown different degrees of ef-
fectiveness, including Spectral Normalization (Bjorck et al.,
2021), Batch Normalization (Bhatt et al., 2024), and the
widely adopted Layer Normalization (Lee et al., 2023; Lyle
et al., 2023; 2024a). Beyond merely using ResNet as a vi-
sual encoder (Espeholt et al., 2018), BRO (Nauman et al.,
2024b) first demonstrated the effectiveness of incorporating
residual blocks in both policy and value networks, signifi-
cantly enhancing robustness and performance in challenging
RL tasks. Drawing from these insights and detailed analy-
sis, SimBa (Lee et al., 2024) further enhanced the training
stability by introducing observation normalization layers to
regulate input data distributions. Representing the current
best practices in DRL architecture design, SimBa success-
fully scaled DRL models beyond 10M parameters.

However, as shown by Figure 13 in Lee et al. (2024) and our
subsequent investigation, further increasing SimBa’s model
size not only fails to yield performance improvements but
also leads to significant degradation. This motivates us to
consider: Have we reached the fundamental scaling limits of
DRL models on current benchmarks and tasks? Or is there
a simple yet effective approach that could push these bound-
aries further? Drawing inspiration from previous scalability
improvements achieved through non-standard architectures
beyond vanilla MLPs that incorporate both network spar-
sity and dynamicity (Graesser et al., 2022; Tan et al., 2023;
Ceron et al., 2024b;a; Liu et al., 2024), this paper decouples
sparsity as a standalone feature to examine its effectiveness
on top of advanced architectural designs. Our thorough
investigation in Section 3 reveals that sparsity alone can un-
lock further scaling potential. Our empirical study not only
establishes a simple yet strong baseline for DRL network
scaling, but also suggests untapped opportunities for more
specialized DRL architectural designs.

2.2. Sparse Network with One-Shot Random Pruning

To isolate the independent role of network sparsity on DRL
scaling, we conduct our investigation using static sparse
training (SST) (Liu et al., 2022) with one-shot random prun-
ing. This straightforward approach establishes a fixed sparse
topology through random pruning before training, avoiding
confounding factors such as topology dynamics in dynamic
sparse training (DST) (Mocanu et al., 2018; Evci et al.,

2020) or targeted topology optimization in pruning at ini-
tialization (PaI) (Lee et al., 2019; Hoang et al., 2023).

Random Pruning. Static sparse training with one-shot
random pruning generates binary masks for each layer at
initialization. These masks, which determine the network’s
sparse topology, remain fixed throughout training. For a
network with L layers, each layer l has a binary mask Ml ∈
{0, 1}nl×nl−1

, where nl denotes the number of units in
layer l. The effective weights during both training and
inference are computed as Wl

eff = Ml ⊙ Wl, where ⊙
denotes element-wise multiplication.

Layer-Wise Sparsity Ratios. Random pruning represents
a remarkably simple random sampling process, requiring
only layer-wise sparsity ratios to be pre-defined. There are
two commonly adopted approaches for determining layer-
wise sparsity ratios from the overall network sparsity:

• Uniform: The sparsity ratio sl of each individual layer l
is equal to the overall network sparsity S.

• Erdős-Rényi (ER): This approach randomly generates
the sparse masks so that the sparsity in each layer sl scales
as 1− nl−1+nl

nl−1nl for a fully-connected layer (Mocanu et al.,
2018) and as 1− nl−1+nl+wl+hl

nl−1nlwlhl for a convolutional layer
with kernel dimensions wl × hl (Evci et al., 2020).

Extensive prior studies in both supervised learning (Liu
et al., 2022) and RL (Graesser et al., 2022; Tan et al., 2023;
Liu et al., 2024) have shown that ER-based initialization
yields superior performance over uniform sparsity, espe-
cially at high sparsity levels. Thus, we adopt layer-wise
sparsity ratios based on ER throughout our investigation
unless specified otherwise.

3. Sparsity Promotes DRL Network Scaling
This section aims to investigate whether introducing network
sparsity can unlock further scaling potential in DRL models
beyond the effective scaling limits of dense SimBa networks.
We conducted extensive experiments on several of the most
challenging DeepMind Control (DMC) (Tassa et al., 2018)
tasks using both Soft Actor-Critic (SAC) (Haarnoja et al.,
2018) and Deep Deterministic Policy Gradient (DDPG) (Lil-
licrap, 2015) with advanced SimBa architecture (Lee et al.,
2024). In this section, we first show that appropriate network
sparsity both enables further model scaling and enhances
parameter efficiency. We then analyze how model size and
sparsity ratios interact to identify optimal combinations.

Experimental Setup. Introducing network sparsity when
scaling up model size requires careful control of multiple
variables in our comparative experiments, including the
width and depth of both actor and critic networks, as well
as their respective sparsity levels. Since our primary goal
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Figure 2. Network scaling experiments comparing dense and sparse SimBa architectures trained with SAC and DDPG on DMC Hard
tasks. Results demonstrate that appropriate sparsity enables effective model scaling while preserving parameter efficiency.

is to investigate whether sparsity can extend DRL scaling
boundaries beyond current dense model limitations, we es-
tablish the following experimental protocol to ensure fair
and systematic evaluation: • Following SimBa’s validated
configuration, we maintain its default actor-critic size ra-
tio where the critic network is four times wider and twice
deeper than the actor network. • Taking the default SimBa
model size as our baseline (actor hidden dimension of 128,
critic hidden dimension of 512, one and two SimBa residual
blocks for actor and critic respectively), we scale both net-
works by integer multiples in width or depth. For instance,
a model with Width Scale = 2 and Depth Scale = 4 means
the actor network uses two blocks with hidden dimension
256, while the critic network uses four blocks with hidden
dimension 1024. • We specify only the overall sparsity level
for both networks, with specific layer sparsity determined
by the ER initialization. Complete experimental details are
provided in Appendix B.1.

3.1. Appropriate Network Sparsity Both Enables Model
Size Scaling and Enhances Parameter Efficiency

Although SimBa has integrated various recently proven in-
terventions for mitigating DRL network pathologies and
significantly improved its scalability, excessive model scal-
ing still leads to performance collapse. As illustrated in
Figure 2, when scaling the network along a single dimen-
sion beyond critical thresholds (exceeding 2× width or 1×
depth of the baseline model), larger models yield worse per-
formance. This degradation trend suggests that larger dense
networks suffer from severely reduced parameter efficiency,
preventing DRL agents from exploiting the theoretically
increased representational capacity.

These findings motivate our first investigation: whether in-
troducing appropriate sparsity during model scaling can
break through current scaling limitations. Using the SimBa
network with Width Scale = 2 and Depth Scale = 1 as the
anchor point, we maintain the same learnable parameters
count as the optimal dense model while increasing the to-
tal model size, exploring if such sparse scaling can more
effectively leverage the increased network capacity.

The scaling trends for width and depth are presented in Fig-
ure 2, while Figure 1 additionally illustrates the combined

scaling of both dimensions. Detailed results for individual
tasks can be found in Appendix B.2. First, when maintaining
the same parameter count, larger sparse networks achieve
superior performance compared to their smaller dense coun-
terparts, indicating higher parameter efficiency. Second, at
equal model sizes, sparse networks outperform their dense
counterparts with fewer parameters, demonstrating more
effective utilization of network capacity. Furthermore, in
Section 4, we will demonstrate that these benefits funda-
mentally arise from appropriate network sparsity preventing
DRL networks from falling into more severe optimization
pathologies during scaling.

Takeaway: Weight-level sparsity, a simple architectural
feature, can further unlock the scaling potential of DRL
networks beyond the improved scalability achieved by ad-
vanced architectures, enabling networks to better harness
both parameter efficiency and model capacity.

3.2. The Interplay between Model Size and Sparsity

Having established that appropriate network sparsity can
enable better scaling, we next examine the practical im-
plications of incorporating sparsity into DRL networks to
derive effective implementation guidelines. Specifically, we
treat model size and sparsity ratios as independent config-
uration parameters and analyze their performance impacts
systematically. Several critical questions merit investigation,
including: How does varying network sparsity influence the
scaling potential of larger models? What role does sparsity
play in enhancing default-sized model performance? Fur-
thermore, what are the optimal combinations of model size
and sparsity that yield the best DRL performance?

As shown in Figure 3, increasing network sparsity exhibits
substantially different effects across model scales. For large
networks, higher sparsity ratios consistently lead to im-
proved performance across all tasks. This is particularly
evident in challenging scenarios like Humanoid Walk and
Dog Run, where large sparse networks achieve up to 40%
higher returns compared to their dense counterparts. Such
results strongly indicate that sparsity serves as an effective
mechanism for unlocking the scaling potential of larger
models. In contrast, default-sized networks show modest
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Figure 3. Scaling via network sparsity on four hardest DMC tasks using SAC and DDPG. For both default SimBa networks (∼ 4.5M
parameters, blue lines) and large networks (∼ 109M parameters, orange lines), we systematically explore sparsity ratios from 0.1 to 0.9,
with steps of 0.1. Results demonstrate that while default networks suffer from high sparsity, large networks consistently benefit from
increased sparsity ratios, highlighting the crucial role of sparsity in enabling effective model scaling.

performance gains with low sparsity ratios, validating the
general benefits of network sparsity. However, their perfor-
mance deteriorates significantly with higher sparsity, indi-
cating that sufficient learnable parameters are essential for
maintaining network expressivity.

Takeaway: The best practice for scaling DRL networks
is to increase model size while maintaining high static
sparsity, achieving both efficient parameter utilization and
superior representational expressivity.

4. Understanding the Barrier of Scaling and
the Benefits of Network Sparsity

As demonstrated in the previous analysis, network sparsity
empirically enhances DRL model scaling capabilities. This
distinct scaling behavior raises the question: how can sparse
networks with fewer learnable parameters achieve superior
performance compared to their dense counterparts? To
gain deeper insights into this phenomenon, we explore there
critical factors: representation capacity, plasticity, regular-
ization, and gradient interference. Our analysis reveals that
while naively increasing DRL model size worsens optimiza-
tion pathologies, introducing appropriate sparsity effectively
mitigates these issues through multiple mechanisms.

4.1. Representational Capacity

The primary motivation for scaling up neural networks is to
gain enhanced expressivity, allowing them to capture more
complex relationships and learn more effective representa-
tions than their smaller counterparts. Therefore, we first
investigate how sparsity impacts network capacity.

Srank. We characterize the representational capacity using
the Stable-rank (Srank) (Kumar et al., 2021) of the critic
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Figure 4. Analysis of network representation capacity via Srank
metric on Humanoid Run using SAC. Network configurations
match Figure 3. (Left) Final Srank after 1M steps across sparsity
ratios. (Right) Srank progression for three network variants.

network. Srank measures the effective rank of learned rep-
resentations, indicating the diversity and richness of the
representations learned by the network. This is computed by
performing eigenvalue decomposition of the feature matrix
covariance and summing the indicators of singular values
above a threshold τ : Srank =

∑m
j=1 I (σj > τ), where

F ∈ Rd×m is the feature matrix containing d samples of
m-dimensional features, σj denotes the singular values, and
I(·) is the indicator function.

As shown in Figure 4, our analysis reveals two key findings.
First, increasing network sparsity leads to a consistent im-
provement in the critic’s Srank, gradually approaching the
theoretical upper bound of 256. More surprisingly, scaling
up the network from 4.5M to 109M parameters leads to
an unexpected degradation in representational capacity, re-
flected by a marked decline in Srank. This capacity collapse
potentially explains the scaling barrier in DRL.

Takeaway: Unlocking greater expressivity through scal-
ing in DRL requires appropriate sparsity, as larger dense
networks tend to suffer from severe capacity collapse.
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Figure 5. Plasticity measurements of three representative network configurations in the two most challenging tasks with SAC and DDPG.
Despite employing the advanced SimBa architecture, large dense critic networks still suffer from rising neuron dormancy and gradient
collapse as training progresses. Introducing sparsity, however, proves to be an effective solution, preventing such pathological trends.

4.2. Plasticity

Recent studies have identified plasticity loss as a key patho-
logical symptom in DRL networks, where models progres-
sively lose their ability to adapt to new experiences during
training, eventually reaching learning stagnation (Nikishin
et al., 2022; Lyle et al., 2023). While directly measuring
plasticity remains challenging, several indicators have been
found to strongly correlate with its deterioration, particu-
larly the emergence of dormant neurons and the decay of
gradient signals (Klein et al., 2024; Lewandowski et al.,
2024). Hence, we characterize network plasticity through
two key metrics: the dormant ratio (Sokar et al., 2023),
which measures the proportion of inactive neurons, and gra-
dient norm dynamics, which monitors the preservation of
learning capability throughout training (Abbas et al., 2023).

Dormant Ratio. The dormant ratio is the proportion of
dormant neurons within the entire network. Given an input
distribution D, A neuron i in layer ℓ is considered dormant
if its dormant score ρℓi across input data x ∼ P (·;D) falls
below threshold τ . The dormant score ρℓi of an individual
neuron can be defined as:

ρℓi =
Ex∼P (·;D)|hℓ

i(x)|
1
Hℓ

∑
k∈h Ex∼P (·;D)|hℓ

k(x)|
(1)

where h(x) denotes neuron activation and Hℓ is the layer ℓ
neuron count. A neuron i in layer ℓ is τ -dormant if ρℓi ≤ τ .

Gradient Norm. We monitor the L2 norm of network
gradients over active (non-pruned) parameters to quantify
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Figure 6. Reset diagnostic comparison for large dense networks
and large sparse networks. Despite dense networks relying on
Reset operations to recover plasticity, sparse networks maintain
learning capability naturally without such remedial interventions.

the strength of learning signals during training, where dimin-
ishing gradient norms potentially signal a loss of plasticity.

The distinct plasticity dynamics between sparse and dense
networks are illustrated in Figure 5. Benefiting from the ad-
vanced SimBa architecture, small dense networks maintain
healthy plasticity throughout training without significant
deterioration. However, as model size increases, large dense
networks exhibit clear signs of plasticity loss, manifested
through rising critic dormant ratios and collapsing gradient
norms in later training stages. Notably, actor networks show
minimal plasticity deterioration, aligning with the findings
in Ma et al. (2024). In contrast, large sparse networks effec-
tively mitigate the severe plasticity loss commonly observed
in larger models. Moreover, using equivalent parameter
counts, large sparse networks achieve comparable or lower
dormant ratios than small dense networks while sustaining
stronger gradient signals throughout training.
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Reset as a Diagnostic Tool. Given Reset serves as a direct
approach to restore plasticity in DRL networks (Nikishin
et al., 2022), we employ this operation to assess whether
plasticity loss remains a critical issue in the large sparse
SimBa network. As shown in Figure 6, Reset operations
significantly boost the performance of large dense networks
by breaking their learning stagnation yet provide no bene-
fits to large sparse networks, and may even slightly harm
performance by disrupting established training dynamics.

In past practices, scaling up vanilla MLP networks often
required Reset operations. With the progressive introduc-
tion of architectural advances, this dependence on Reset
gradually diminished (Lee et al., 2024). Now, by incorporat-
ing sparsity into SimBa and simultaneously increasing both
model size and sparsity ratio, we have completely elimi-
nated the need for Reset while achieving superior scalability.

Takeaway: Weight-level sparsity effectively preserves
plasticity in large-scale networks, eliminating plasticity
loss as a bottleneck for scaling up SimBa architectures.

4.3. Regularization

We then examine how network sparsity serves as an implicit
regularization mechanism that simultaneously constrains
weight magnitudes and induces beneficial inductive biases
towards simpler solutions.

Parameter Norm. Unbounded parameter growth has
been identified as a critical pathological behavior in deep
RL networks, leading to training instability and severely
hindering the network’s ability to effectively learn value
functions and policies (Lyle et al., 2024b).
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Figure 7. Parameter norm evolution for actor and critic networks,
corresponding to the Humanoid Run (SAC) scenario in Figure 5.

While network sparsification inherently reduces the total
number of parameters compared to dense architectures, a re-
markable finding emerges in Figure 7: large sparse networks
exhibit similar or even lower parameter norms compared to
small dense networks with equivalent learnable parameters.
This suggests that sparsity serves as an effective implicit
regularizer beyond mere parameter reduction.

Simplicity Bias. Neural networks inherently favor learning
simpler patterns over complex ones, a phenomenon known
as simplicity bias (Shah et al., 2020; Berchenko, 2024).
To quantify this bias, we utilize the simplicity bias score
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Figure 8. Simplicity bias scores and performance improvements
across different sparsity ratios, where performance gains are aver-
aged over large networks in eight scenarios from Figure 5.

from Lee et al. (2024) that evaluates network complexity
at initialization to avoid confounding factors from the non-
stationary RL training dynamics.

Figure 8 demonstrates that network sparsity consistently
promotes higher simplicity bias scores, correlating with im-
proved performance in scaled-up architectures. Remarkably,
SimBa’s comprehensive architectural improvements yielded
only a 0.5 increase in simplicity bias scores (from 5.8 to
6.3) (Lee et al., 2024), while our simple one-shot pruning
approach further raises these scores by 0.3-0.4, highlighting
the effectiveness of sparsity as a key network property.

Takeaway: Sparsity is an effective regularizer that can
control parameter growth and promote simpler solutions.

4.4. Gradient Interference

Finally, we investigate whether network sparsity affects the
interactions between gradients from different data points
- a phenomenon called gradient interference that impacts
learning dynamics (Bengio et al., 2020; Lyle et al., 2022b).
Following the analytical approach in Lyle et al. (2023), we
will estimate the interference level by gradient covariance
matrices, which are computed by sampling k training points
x1, . . . ,xk, and constructing Ck ∈ Rk×k with entries:

Ck[i, j] =
⟨∇θℓ(θ,xi),∇θℓ(θ,xj)⟩
∥∇θℓ(θ,xi)∥∥∇θℓ(θ,xj)∥

(2)

Init (0k steps) Final (990k steps) Init (0k steps) Final (990k steps)

Large Sparse Network (Critic) Large Dense Network (Critic)

Figure 9. Gradient covariance matrices of large sparse and dense
networks before and after training. Darker blue indicates strongly
aligned gradients, darker red indicates strongly conflicting gra-
dients, and lighter colors indicate more independent gradients.
Sparse networks maintain more independent (less interfering) gra-
dients throughout training compared to dense networks.

Figure 9 shows that while sparse and dense networks start
with similar gradient correlations, sparse networks maintain
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significantly weaker correlations throughout training.

Takeaway: Network sparsity naturally promotes gradient
orthogonality, mitigating gradient interference.

5. Sparsity Boosts Scaling in Broader Setups
To examine the broader applicability of our findings, we ex-
tend our experiments to visual RL and streaming RL scenar-
ios. Here we report core results, with complete experimental
details provided in Appendix C.

Visual RL. In our visual RL experiments, we evaluate on
image-based DMC with DrQ-v2 (Yarats et al., 2022) as our
baseline. Building on the insights of Ma et al. (2024), we
only scale the critic network while keeping the actor fixed.
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Figure 10. Scaling via network sparsity and critic width on two
representative visual RL tasks, reporting mean episode returns
averaged over 5 random seeds after 2M environment steps.
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Results in Figure 10 show that while increasing critic width
leads to gradual improvements with dense networks, com-
bining network sparsity (0.8) with larger widths can further
boost performance significantly, highlighting the effective-
ness of sparsity in visual RL scaling. We dive into the
plasticity dynamics to understand these performance differ-
ences. As shown in Figure 11, scaling up the critic width by
4x leads to severe plasticity deterioration in dense networks,
where a large fraction of neurons become inactive. However,
introducing sparsity effectively mitigates this issue, aligning
with our findings in Section 4.2 that weight-level sparsity
helps preserve neuron-level plasticity throughout training.

Streaming RL. Streaming RL agents process each sample
immediately upon arrival without storing past experiences,
exacerbating the non-stationarity of the learning process and
resulting in significant sample inefficiency (Elsayed et al.,
2024; Vasan et al., 2024). To overcome this stream barrier,
Elsayed et al. (2024) propose SparseInit by randomly initial-
izing most weights to zeros. Unlike our one-shot pruning
at initialization which maintains fixed sparsity throughout
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Figure 12. Streaming RL network scaling performance across spar-
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training, SparseInit only zeroes weights at initialization, al-
lowing gradient updates to gradually reduce sparsity during
training. Beyond showing that static pruning enables ef-
fective network scaling in streaming RL (Figure 12), we
demonstrate that both one-shot pruning and SparseInit sig-
nificantly improve sample efficiency (Figure 13), underlin-
ing the broad benefits of network sparsity in RL training.

6. Conclusion
This work demonstrates that static network sparsity,
achieved through one-shot random pruning, is a simple yet
powerful tool for unlocking the scaling potential of DRL.
By carefully studying its effects on representational capacity
(via Srank), simplicity bias, and gradient interference, we
show that sparsity not only mitigates optimization patholo-
gies but also enables larger models to achieve superior per-
formance across diverse RL settings, including challenging
streaming RL scenarios. These findings are particularly
significant because they address a long-standing challenge
in RL: scaling models effectively, an area where RL has
historically struggled compared to supervised learning.

Our approach is easy to implement and readily compatible
with any RL algorithm, requiring only a one-time prepro-
cessing step. Unlike dynamic methods which update spar-
sity patterns during training, static sparsity maintains a fixed
sparse structure throughout training, avoiding both training
instability and additional computational overhead.

Our results highlight the importance of architectural choices
in DRL and suggest that network architecture and RL algo-
rithms should not be studied in isolation. By establishing
sparsity as a key enabler of scalability, this work opens new
avenues for research into specialized sparsity structures, dy-
namic sparsity methods, and theoretical frameworks to make
RL more practical and deployable in real-world settings.
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A. Related Work
In this section, we review several topics closely related to our work. We begin by discussing the optimization pathologies
unique to deep reinforcement learning (DRL). We then examine the scaling barriers in DRL models and various attempts to
enhance their scalability. Additionally, we review existing applications of sparse networks in DRL, whether aimed at model
compression, training acceleration, or performance enhancement.

A.1. Optimization Pathologies in DRL

Although deep neural networks have driven remarkable advances in current deep reinforcement learning (DRL) applications,
growing evidence indicates that DRL networks are prone to severe optimization pathologies during training (Nikishin,
2024; Nauman et al., 2024a; Goldie et al., 2024). These pathologies emerge from the unique challenges of integrating DL
mechanisms with the RL paradigm, presenting distinctive issues not encountered in traditional RL settings. Such difficulties
stem from fundamental characteristics of reinforcement learning that distinguish it from supervised learning: non-stationary
data distributions and optimization objectives, as well as the inherent nature of learning through online interactions.

These DRL-specific pathologies have recently been identified and characterized through various phenomena: primacy
bias (Nikishin et al., 2022), the dormant neuron phenomenon (Sokar et al., 2023), implicit under-parameterization (Kumar
et al., 2021), capacity loss (Lyle et al., 2022a), and the broader issue of plasticity loss (Klein et al., 2024; Abbas et al., 2023;
Juliani & Ash, 2024). Although these studies approach the problem from different angles, they converge on a common
finding: DRL networks routinely develop severe optimization pathologies during training that fundamentally impair their
ability to learn from new experiences. The consequences manifest either as severe sample inefficiency or, in the worst cases,
complete learning stagnation (Ma et al., 2024). These pathologies manifest through several observable symptoms: a high
proportion of inactive neurons (Sokar et al., 2023), reduced effective rank of representational features (Kumar et al., 2021;
Lyle et al., 2022a), unbounded growth in parameter norms (Lyle et al., 2023), and increased gradient interference across
training samples (Lyle et al., 2024b). Each of these symptoms contributes to the network’s diminishing ability to effectively
learn and optimize both the policy and value functions.

Moreover, such pathological behaviors intensify with increasing model size, fundamentally limiting the scaling capabilities
of DRL models (Ceron et al., 2024a;b; Bjorck et al., 2021). Consequently, a critical bottleneck unique to DRL has emerged:
how to effectively scale up neural networks for better representation capacity while avoiding falling into severe optimization
pathologies. In this work, we demonstrate a surprisingly simple yet powerful alternative: static network pruning prior
to training. Through extensive experimental comparisons and empirical analysis, we show that this approach to network
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sparsity effectively unlocks the scaling potential of DRL networks while significantly mitigating optimization pathologies.

A.2. Network Scaling in DRL

Using deep neural networks is a key factor in successfully applying reinforcement learning to complex tasks. However,
while some recent advances in supervised learning have been driven by scaling up the number of network parameters,
a phenomenon commonly referred to as scaling laws, it remains challenging to increase the number of parameters in
deep reinforcement learning without experiencing performance degradation. Several recent works in DRL have addressed
this by scaling up network sizes through various strategies. Schwarzer et al. (2023) transitioned from the original CNN
architecture to the ResNet-based Impala-CNN architecture (Espeholt et al., 2018) and scaled the network width by a factor
of 4. Both BRO (Nauman et al., 2024b) and SimBa (Lee et al., 2024) employed deeper networks that incorporate layer
normalization (Lei Ba et al., 2016) and residual connections. Ceron et al. (2024b) incorporated a soft Mixture-of-Experts
module (Puigcerver et al., 2020) into value-based networks, resulting in more parameter-scalable models and improved
performance. Farebrother et al. (2024) show that value functions trained using categorical cross-entropy substantially
enhance performance and scalability in multiple domains. Ceron et al. (2024a) utilized magnitude pruning on value-based
networks, progressively decreasing the number of parameters in dense architectures during training to achieve highly sparse
models, leading to improved performance when scaling network width. Despite these advances, scaling up network sizes in
DRL using random static sparsity remains underexplored.

A.3. Sparse Networks in DRL

Initial explorations of sparse networks in DRL were primarily motivated by the potential for model compression, aiming to
accelerate training and facilitate efficient model deployment (Tan et al., 2023). Early explorations of network sparsification
in DRL primarily focused on behavior cloning and offline RL settings (Arnob et al., 2021; Vischer et al., 2021). In the
more challenging context of online RL, Sokar et al. (2021) explored the application of Sparse Evolutionary Training
(SET) (Mocanu et al., 2018) and successfully achieved 50% sparsity. However, attempts to increase sparsity beyond this
level resulted in significant training instability. Subsequently, Tan et al. (2023) enhanced the efficacy of dynamic sparse
training through a novel delayed multi-step temporal difference target mechanism and a dynamic-capacity replay buffer,
ultimately achieving sparsity levels of up to 95%. Graesser et al. (2022) conducted a comprehensive investigation and
demonstrated that pruning consistently outperforms standard dynamic sparse training methods, such as SET (Mocanu et al.,
2018) and RigL (Evci et al., 2020). Data Adaptive Pathway Discovery (DAPD) (Arnob et al., 2024) dynamically adjusts
network pathways in response to online RL distribution shifts, maintaining effectiveness at high sparsity levels.

Beyond the initial goal of achieving parameter-efficient architectures through sparsity, recent studies have recognized that
sparse and adaptive networks can enhance DRL model scalability while mitigating training pathologies such as plasticity loss.
For instance, Ceron et al. (2024a) shows that applying gradual magnitude pruning to large models significantly enhances
the performance of value-based agents. Similarly, Ceron et al. (2024b) demonstrates that incorporating Soft MoEs into
value-based RL networks enables better parameter scaling. Furthermore, Neuroplastic Expansion (Liu et al., 2024) addresses
plasticity challenges by progressively evolving networks from sparse to dense architectures, effectively leveraging increased
model capacity. Although these approaches differ in implementation, they all fall under the broader category of dynamic
sparse training, where network topology evolves during training. In contrast, this work isolates sparsity as a standalone
feature, revealing that static sparse training through random pruning at initialization alone can substantially enhance DRL
network scalability, addressing a significant gap in current research.
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B. Detailed Experimental Setup and Results of Main Experiments
This section details the experimental setup and the results of our evaluation in Section 3 and Section 4. The code is available
in the supplementary materials.

B.1. Detailed Experimental Setup

We evaluate SAC and DDPG with SimBa network with varying sizes and sparsity levels on 6 hard tasks of DeepMind
Control Suites (Tassa et al., 2018), also known as DMC Hard. The complete list for DMC Hard is provided in Table 1.
Note that we omit Dog Stand from this set since the default SimBa architecture already demonstrates strong performance on
this task, consistently achieving scores above 900 on the normalized 1000-point scale.

Table 1. DMC Hard consists of 6 continuous control tasks.
Task Observation dim Action dim

Dog Run 223 38
Dog Trot 223 38
Dog Walk 223 38
Humanoid Run 67 24
Humanoid Stand 67 24
Humanoid Walk 67 24

The experimental settings for DMC in Section 3 and Section 4 are primarily adapted from those employed in SimBa. Most of
the hyperparameters in our experiments are identical to those used in Lee et al. (2024), except for the network width (hidden
dimension) and depth (number of blocks), as detailed in Table 2 and Table 3. Unless otherwise specified, all experiments are
conducted using 8 random seeds.

Table 2. SAC hyperparameters. The hyperparameters listed below are used consistently across all experiments in Section 3 and Section 4.
For the discount factor, we follow Lee et al. (2024) using heuristics used by TD-MPC2 (Hansen et al., 2023).

Hyperparameter Value

Critic block type SimBa
Critic num blocks {2,4,6,8}
Critic hidden dim {256,512,1024,1536,2048,2560}
Critic learning rate 1e-4
Target critic momentum (τ ) 5e-3
Actor block type SimBa
Actor num blocks {1,2,3,4}
Actor hidden dim {64,128,256,384,512,640}
Actor learning rate 1e-4
Initial temperature (α0) 1e-2
Temperature learning rate 1e-4
Target entropy (H∗) |A|/2
Batch size 256
Optimizer AdamW
Optimizer momentum (β1, β2) (0.9, 0.999)
Weight decay (λ) 1e-2
Discount (γ) Heuristic
Replay ratio 2
Clipped Double Q False
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Table 3. DDPG hyperparameters. The hyperparameters listed below are used consistently across all experiments in Section 3 and
Section 4. For the discount factor, we follow Lee et al. (2024) using heuristics used by TD-MPC2 (Hansen et al., 2023).

Hyperparameter Value

Critic block type SimBa
Critic num blocks {2,4,6,8}
Critic hidden dim {256,512,1024,1536,2048,2560}
Critic learning rate 1e-4
Target critic momentum (τ ) 5e-3
Actor block type SimBa
Actor num blocks {1,2,3,4}
Actor hidden dim {64,128,256,384,512,640}
Actor learning rate 1e-4
Exploration noise N (0, 0.12)
Batch size 256
Optimizer AdamW
Optimizer momentum (β1, β2) (0.9, 0.999)
Weight decay (λ) 1e-2
Discount (γ) Heuristic
Replay ratio 2
Clipped Double Q False

B.2. Detailed DMC Results

Scaling Trends Visualization. Figure 14 presents an alternative visualization of the model scaling results shown in
Figure 2, using a linear scale for model size instead of the logarithmic scale used in the main text. This alternative
visualization emphasizes the widening performance gap between sparse and dense networks, which becomes particularly
pronounced at larger model scales (>100M parameters).
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Figure 14. Model scaling trends of ⋆⋆⋆sparse versus •••dense networks on four hardest DMC tasks using SimBa architecture with
SAC and DDPG. The data points in this figure are identical to those shown in Figure 1; however, this figure employs a linear scale for
model size, providing an alternative view of the scaling relationships.
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Single Task Results. We provide a detailed breakdown of the scaling trends for individual tasks that were aggregated in
Figure 2. The width scaling results are presented in Figure 15, while the depth scaling results are shown in Figure 16. For
each task, we use the optimal dense network as a reference point and explore larger model sizes with appropriate sparsity
levels to maintain constant parameter counts. The consistency between individual task trends (Figure 15 and Figure 16) and
the aggregated results (Figure 2) reinforces the generality of our findings.

1 2 3 4 5
Width Scale

900

910

920

930

E
pi

so
de

 R
et

ur
n

Dog Walk (SAC)
Dense Network
Sparse Network

1 2 3 4 5
Width Scale

600

650

700

750

800

850

900

E
pi

so
de

 R
et

ur
n

Dog Trot (SAC)
Dense Network
Sparse Network

1 2 3 4 5
Width Scale

450

500

550

600

E
pi

so
de

 R
et

ur
n

Dog Run (SAC)
Dense Network
Sparse Network

1 2 3 4 5
Width Scale

725

750

775

800

825

850

875

900

E
pi

so
de

 R
et

ur
n

Humanoid Stand (SAC)

Dense Network
Sparse Network

1 2 3 4 5
Width Scale

600

650

700

750

800

E
pi

so
de

 R
et

ur
n

Humanoid Walk (SAC)
Dense Network
Sparse Network

1 2 3 4 5
Width Scale

160

180

200

220

240

E
pi

so
de

 R
et

ur
n

Humanoid Run (SAC)
Dense Network
Sparse Network

1 2 3 4 5
Width Scale

750

800

850

900

E
pi

so
de

 R
et

ur
n

Dog Walk (DDPG)
Dense Network
Sparse Network

1 2 3 4 5
Width Scale

400

500

600

700

800

E
pi

so
de

 R
et

ur
n

Dog Trot (DDPG)

Dense Network
Sparse Network

1 2 3 4 5
Width Scale

300

350

400

450

500

550

E
pi

so
de

 R
et

ur
n

Dog Run (DDPG)
Dense Network
Sparse Network

1 2 3 4 5
Width Scale

650

700

750

800

850

900

E
pi

so
de

 R
et

ur
n

Humanoid Stand (DDPG)
Dense Network
Sparse Network

1 2 3 4 5
Width Scale

500

550

600

650

700

750

E
pi

so
de

 R
et

ur
n

Humanoid Walk (DDPG)
Dense Network
Sparse Network

1 2 3 4 5
Width Scale

140

160

180

200

220

240

E
pi

so
de

 R
et

ur
n

Humanoid Run (DDPG)
Dense Network
Sparse Network

Figure 15. Width scaling experiments comparing dense and sparse networks across all DMC Hard tasks. Results show episode returns for
both SAC (top two rows) and DDPG (bottom two rows) implementations on six challenging control tasks. Each data point represents the
mean performance across 8 random seeds, with error bars indicating standard deviation.
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Figure 16. Depth scaling experiments comparing dense and sparse networks across all DMC Hard tasks. Results show episode returns for
both SAC (top two rows) and DDPG (bottom two rows) implementations on six challenging control tasks. Each data point represents the
mean performance across 8 random seeds, with error bars indicating standard deviation.
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C. Detailed Experimental Setup of broader setups
C.1. Visual RL

We conducted visual RL experiments on DMC using image input as the observation. All experiments were based on the DrQ-
v2 (Yarats et al., 2022), with all hyperparameters retained from the original DrQ-v2 implementation. The sole modification
involved adjusting the width of the critic network to accommodate specific experimental settings. The hyperparameters are
presented in Table 4.

In Figure 11, we use the Fraction of Active Units (FAU) as a metric for measuring plasticity. The FAU for neurons located
in module M, denoted as ΦM, is formally defined as:

ΦM =

∑
n∈M 1(an(x) > 0)

N
, (3)

where an(x) represent the activation of neuron n given the input x, and N is the total number of neurons within module M.

Table 4. DrQ-v2 hyperparameters.

Hyperparameter Value

Replay buffer capacity 106

Action repeat 2

Seed frames 4000

Exploration steps 2000

n-step returns 3

Mini-batch size 256

Discount γ 0.99

Optimizer Adam
Learning rate 10−4

Critic Q-function soft-update rate τ 0.01

Features dim. 50

Repr. dim. 32× 35× 35

Hidden dim. 1024

Exploration stddev. clip 0.3

Exploration stddev. schedule linear(1.0, 0.1, 500000)
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C.2. Streaming RL

We conducted streaming RL experiments on two MuJoCo robot locomotion tasks (Todorov et al., 2012), Ant-v4 and
Walker2d-v4. All experiments were based on the Stream AC(λ) algorithm (Elsayed et al., 2024), with all hyperparameters
retained from the original Stream AC(λ) implementation. The sole modification involved adjusting the width of the actor
network and the critic network to accommodate specific experimental settings. The learning curves for agents with different
network widths and sparsity levels are presented in Figure 17.
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Figure 17. Learning curves of Stream AC(λ) agent on Ant-v4 and Walker2d-v4, evaluated across varying sparsity levels and network
widths for both the actor and critic networks.

C.3. Atari-100k

We conducted Atari experiments on the Atari-100k benchmark (Kaiser et al., 2020), where the agent may perform only
100K environment steps, roughly equivalent to two hours of human gameplay. Our experiments were based on Data Efficient
Rainbow (DER) (Van Hasselt et al., 2019), a variant of Rainbow (Hessel et al., 2018) tuned for sample efficiency. All
experiments were based on Dopamine (Castro et al., 2018), except that we used an IMPALA CNN architecture (Espeholt
et al., 2018) instead of NatureCNN. The hyperparameters are presented in Table 5.

We increase the width of the IMPALA CNN by a factor of three and evaluate three static sparsity configurations: dense (0.0),
moderate sparsity (0.4), and high sparsity (0.8). Figure 18 shows the improvement relative to the default setting, which uses
the default size and dense network. As in previous experiments, the results indicate that introducing static sparsity into DRL
networks can unlock their scaling potential and yield performance improvements. We note that the Atari-100k low-data
regime may not fully demonstrate the benefits of scaling, and more comprehensive studies with longer training would be
valuable for future work.
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Figure 18. Performance improvements on Atari-100k benchmark when scaling network width (3x default size) with different sparsity
levels using Data Efficient Rainbow (DER). Each bar represents the percentage improvement relative to the default dense network
configuration. The results demonstrate that introducing sparsity (both at 0.4 and 0.8 levels) generally yields better performance than
dense models (0.0, blue) when scaling model size, with optimal sparsity levels varying across different games. This extends our findings
from continuous control domains to discrete action spaces, suggesting that the benefits of network sparsity are robust across different
reinforcement learning environments.
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Table 5. DER hyperparameters.

Hyperparameter Value

Gray-scaling True
Observation down-sampling 84x84
Frames stacked 4
Action repetitions 4
Reward clipping [-1, 1]
Terminal on loss of life True
Update Distributional Q
Dueling True
Support of Q-distribution 51
Discount factor 0.99
Minibatch size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: ϵ 0.00015
Exploration Noisy nets
Noisy nets parameter 0.5
Training steps 100K
Evaluation trajectories 100
Min replay size for sampling 1600
Updates per step 1
Multi-step return length 10
CNN network IMPALA CNN (Espeholt et al., 2018)
Target network update period 2000
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