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Figure 1: An overview of GUI-aware simulation of human web shopper behavior with a VLM agent.
Given a sequence of past actions at−3...t−1 accompanied by corresponding website observations
ct−3...t, the model predicts the next action ât and its underlying rationale rt by reasoning over the
accumulated action history and the current website context, which includes both text-based HTML ct
and image-based GUI screenshot vt.

Abstract

Large Language Models (LLMs) have recently demonstrated strong potential in2

simulating online shopper behavior. Prior work has improved action prediction3

by applying supervised fine-tuning (SFT) on action traces with LLM-generated4

rationales, and by leveraging reinforcement learning (RL) to further enhance5

reasoning capabilities. Despite these advances, current approaches rely solely on6

text-based inputs (e.g., such as HTML content and action histories) and overlook the7

essential role of visual perception in shaping human decision-making during web8

GUI interactions. In this paper, we investigate the integration of visual information,9

specifically webpage screenshots, into behavior simulation via vision-language10

models (VLMs), leveraging the publicly available OPeRA dataset. By grounding11

agent decision-making in both textual and visual modalities, we aim to narrow the12

gap between synthetic agents and real-world users, thereby enabling more faithful13

and cognitively aligned simulations of online shopping behavior. Specifically, we14

employ SFT for joint action prediction and rationale generation, conditioning on the15

full interaction context, which comprises action history, past HTML observations,16

and the current webpage screenshot. To further enhance reasoning capabilities, we17

integrate RL with a hierarchical reward structure, scaled by a difficulty-aware factor18

that prioritizes challenging decision points. Empirically, our studies show that19

incorporating visual grounding yields substantial gains: the combination of text20

and image inputs improves exact match accuracy by more than 6% over text-only21

inputs. These results indicate that multi-modal grounding not only boosts predictive22
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accuracy but also enhances simulation fidelity in visually complex environments,23

which captures nuances of human attention and decision-making that text-only24

agents often miss. Finally, we revisit the design space of behavior simulation25

frameworks, identify key methodological limitations, and propose future research26

directions toward building efficient and effective human behavior simulators. 127

1 Introduction28

Simulating human behavior in web-based environments has emerged as a promising research direction,29

enabling a wide range of applications including digital assistant training, GUI design optimization, and30

large-scale user behavior forecasting [1–12]. Recent advances in Large Language Models (LLMs)31

have demonstrated remarkable capabilities in this domain, offering fluent reasoning, contextual32

awareness. Researchers have begun leveraging LLMs to simulate human behavior in web-based33

environments, aiming to generate realistic human action sequences on digital platforms, which has34

promising applications across domains such as e-commerce [13–17], education [18–20], and social35

computing [21–23]. A growing body of work has focused on enhancing human behavior simulation36

performance in the web-based shopping scenario through LLM-based methods. One line of research37

augments training datasets with LLM-synthesized rationales to provide richer supervision signals38

and employs supervised fine-tuning (SFT) to improve action prediction accuracy [13]. Another39

complementary direction leverages reinforcement learning (RL) to align model-generated reasoning40

with realistic user trajectories, refining the model’s ability to mimic decision-making patterns observed41

in human users [14]. However, these approaches share a fundamental limitation: they rely exclusively42

on text-based inputs such as HTML content and action histories. While textual signals are critical,43

they only provide a partial view of the online shopping experience. In contrast, real users heavily rely44

on visual perception when navigating and making decisions on modern, image-rich webpages [24–27].45

Ignoring the visual modality hinders the model’s ability to faithfully capture the full spectrum of user46

behavior, especially in tasks that require understanding product layouts, button salience, or the visual47

composition of search results [28–30].48

To bridge the gap between current text-only simulation methods and human decision-making pro-49

cesses, we incorporate visual information (e.g., webpage screenshots) into the behavior simulation50

pipeline. Specifically, we leverage vision-language models (VLMs) as a natural extension of large51

language models (LLMs) to jointly process textual and visual modalities [31, 32]. As illustrated52

in Fig. 1, the model input consists of a sequence of past actions at−3...t−1 together with the corre-53

sponding website observations ct−3...t. Given this context, the model predicts the next action ât and54

its associated rationale rt by reasoning over the accumulated action history and the current website55

state, which incorporates both the text-based HTML ct and the image-based GUI screenshot vt.56

We adopt two complementary training schemes: supervised fine-tuning (SFT) and reinforcement57

learning (RL). For SFT, we follow the training paradigm of [13], where each action is paired with58

a corresponding rationale automatically generated by Claude-3.5-Sonnet. For RL, we build on the59

hierarchical reward design in Shop-R1 [14], assigning structured rewards for action prediction and60

self-confidence score for rationale generation, thereby enhancing the model’s reasoning capabilities.61

Our study postprocess the raw data from the OPeRA dataset [17], a publicly available dataset of online62

shopping sessions with aligned screenshots, HTML states, and action traces. To adapt OPeRA for63

VLM-based behavior simulation, we reorganize and preprocess the data into a task-ready benchmark.64

Our key contributions are as follows:65

• Task-specific GUI-aware dataset construction. We reorganize and preprocess the raw66

OPeRA dataset to create a benchmark tailored for simulating human online shopping67

behavior with VLM agents. Each input instance consists of the current webpage screenshot,68

the full action history, and past pruned HTML observations (retaining only elements visible69

in the screenshot) within the same session.70

• GUI-aware simulation of online shopper behavior. We present, to our knowledge, the first71

systematic integration of textual context and visual perception for online shopper behavior72

simulation. Leveraging VLMs, we align agent decision-making with realistic human online73

shopping patterns. Experimental results show that incorporating image input alongside text74

improves exact match accuracy by over 6% compared to text-only baselines.75

1The code and model checkpoints will be released upon paper acceptance.
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• Revisiting limitations and envisioning futures. We identify and discuss critical limitations76

in existing simulation pipelines, including action-prediction formatting, multi-modal context77

fusion, long-context compression, and personalization of behavior simulation, and outline78

promising future research directions for each.79

2 Related Work80

LLM for human behavior simulation. Large Language Models (LLMs) have recently demon-81

strated remarkable capabilities in modeling human behavior across a variety of domains. From82

social science simulations [33, 34] to recommender systems [35], and user experience (UX) re-83

search [36], LLM-driven agents are being used to predict user actions by conditioning on interaction84

histories and persona attributes. These models utilize contextual cues such as user preferences,85

demographics, and session-based activity traces to generate contextually appropriate and personalized86

behavior predictions. In parallel, there has been growing interest in enhancing these simulations87

with explicit reasoning chains. Techniques like ReAct [37] and reflexion-based prompting [38, 39]88

encourage LLMs to articulate intermediate thoughts before producing actions, thus improving both89

interpretability and the alignment of agent decisions with human reasoning patterns. Systems in-90

cluding WebAgent [40] and UX-Agent [36] advance this paradigm by structuring complex tasks91

into subgoals, relying on dedicated reasoning modules for better planning and control, particularly92

in interactive web environments. Moreover, agent-based LLM frameworks are increasingly being93

explored for simulating collaborative and multi-agent scenarios. Frameworks such as CoCo [41],94

MobileAgents [42], and Operator [43] model complex environments where agents assume modular95

roles (e.g., planner, executor) and engage in cooperative reasoning [44, 45]. These architectures offer96

valuable insights into emergent behaviors and social dynamics in interactive settings. Despite recent97

advancements, the VLMs for simulating realistic human behaviors in web-based shopping scenarios98

remains largely underexplored. Existing approaches predominantly focus on text-only inputs [13, 14],99

overlooking the critical role that visual context (e.g., webpage layouts, product imagery, and interface100

affordances) plays in shaping human decisions during online interactions. VLMs, with their ability101

to jointly process textual and visual modalities, offer a promising pathway to bridge this gap. By102

grounding agent actions in real-time visual observations of web environments, VLMs have the103

potential to produce behaviors that more faithfully mirror human attention patterns, preferences, and104

task-driven strategies. This work aims to take a step toward realizing this vision by investigating how105

visual grounding through VLMs can enhance the fidelity and realism of human behavior simulation106

in online shopping contexts.107

VLMs. Recent advancements in Vision-Language Models (VLMs) have unlocked new capabilities108

across diverse multimodal tasks, including visual question answering [46, 47], visual dialogue [48],109

image editing [49], and tool-augmented reasoning [50, 51]. Most existing work focuses on task110

completion, where the VLM interprets visual inputs to directly solve goal-oriented problems, such as111

navigating web pages, generating image-based responses, or executing commands. These approaches112

commonly optimize for correctness or utility of outcomes, using single-turn or sequential inputs113

derived from the environment. In contrast, our work explores a complementary perspective: rather114

than using VLMs purely for task solving, we leverage them to enrich the cognitive fidelity115

of simulated user behavior. Specifically, we aim to align behavior generation with the visual116

context observed by users, modeling how visual stimuli shape human decision-making in real-world117

web environments. This focus is especially relevant in domains like online shopping, where user118

interactions are often driven by visual layouts, item appearances, and interface structure, which119

not fully captured by textual context alone. While prior multi-modal agents [52–55] have shown120

strong performance through either LLM- or VLM-driven control, they typically operate with explicit121

tool usage and target efficiency or accuracy in task execution. In contrast, our method uses visual122

inputs not to execute actions more effectively, but to generate more realistic human action sequences.123

This leads to a behavior simulator that better mimics how real users explore and interact with web124

interfaces, offering broader utility in applications such as user experience evaluation, digital twin125

modeling, and behavior forecasting. Our approach bridges the gap between vision-conditioned126

decision-making and personalized behavior simulation, demonstrating the potential of VLMs beyond127

their traditional role as perception modules for task agents.128
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3 Methodology129

In this section, we first formalize the problem of simulating human behavior in web-based shopping130

environments. We then describe the dataset construction process tailored for Vision-Language Model131

(VLM) agents, followed by the training schemes designed to adapt the model for this task.132

Problem formulation. A web shopping session can be represented as a sequential interaction133

trajectory consisting of multi-step user actions, denoted as a1...t...N . At each time step t, the agent134

observes contextual information that defines the current state of the web environment. This context135

is captured through a simplified HTML representation, as proposed in Lu et al. [5], Wang et al.136

[17], Zhang et al. [14], which retains essential layout and content elements while filtering out137

irrelevant structures such as scripts and styling metadata. Complementing the HTML context, we138

incorporate a visual observation vt such as a screenshot of the current webpage to provide GUI-level139

perception. The objective of human behavior simulation is to learn a function f that predicts the140

user’s next-step rationale and action, conditioned on the cumulative interaction history and the current141

visual context:142

f(c1...t, a1...t−1, vt) = rt, at, (1)

where c1...t denotes the contextual HTML states up to step t, a1...t−1 represents the sequence of past143

user actions, and vt provides the visual snapshot of the current webpage. The model is trained to144

output the next rationale rt, reflecting the user’s intent or reasoning, and the corresponding action at.145

For ease of downstream parsing and evaluation, the model output is required to be in JSON format,146

represented as a dictionary with two keys, ‘rationale’ and ‘action’, whose values correspond to rt147

and at, respectively.148

Dataset construction. We postprocess the raw OPeRA dataset [17] to align with the requirements149

of VLM-based behavior simulation. Specially, the raw data in the OPeRA dataset were collected150

using the ShoppingFlow plugin, which records real human shopping behavior over a four-week151

period. In total, the dataset comprises 692 sessions from 51 unique users, yielding 28,904 real-world152

⟨action, observation⟩ pairs. To ensure the task is well-defined and that sufficient information is153

available for model prediction, the action space is distilled into three primary categories: ‘input’,154

‘click’, and ‘scroll’. Notably, sequences of consecutive ‘scroll’ actions are merged into a single unified155

action, as the dataset does not capture visual state changes during scrolling. This limitation prevents156

the agent from discerning directional scroll intents (e.g., ‘scroll up’ vs. ‘scroll down’). Therefore, the157

rationale behind scroll actions is abstracted to reflect the user’s general information-seeking behavior158

within the visible portion of the webpage. More details about action spaces can be found in App. A.159

To ensure coherence between the text-based context (HTML) and the visual-based observation160

(screenshots), we further prune the HTML structure by retaining only elements that are present161

within the current visual viewport. This pruning step reduces noise, minimizes unnecessary context162

length, and provides a consistent alignment between textual and visual modalities. Additionally, as163

the original dataset contains a limited number of user-written rationales, we augment the dataset by164

generating rationale annotations for each action step. Specifically, we utilize Claude-3.5-Sonnet via165

Amazon Bedrock to synthesize plausible rationale sentences rt that capture the user’s underlying166

motivations for performing action at. This augmentation ensures that every interaction step is paired167

with an interpretable reasoning trace, which is critical for training rationale-aware VLM agents.168

Training schemes. To adapt VLMs to the task of human behavior simulation in web shopping169

environments, we adopt two training paradigms proposed by recent state-of-the-art LLM-based170

methods [13, 14]. The first approach follows the supervised fine-tuning (SFT) paradigm introduced in171

[13]. Here, the behavior simulation model f is trained to jointly generate rationales and corresponding172

actions by maximizing the likelihood of annotated rationale-action trajectories. Given an input query173

qt, which includes the contextual HTML up to step t (c1...t), past actions (a1...t−1), past rationales174

(r1...t−1), and current screen observation vt, the objective is formulated as:175

Lsft = −
N∑
t=1

log p(rt, at | qt), (2)

where the model learns to align its predictions with the human-annotated rationale-action pairs. This176

supervised learning phase establishes a strong foundation for behavior simulation by teaching the177

model explicit reasoning and decision-making patterns.178
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The second training scheme proposed by Shop-R1 [14] utilizes reinforcement learning (RL) with179

hierarchical reward design and difficulty-aware reward scaling (DARS) to refine the policy. In180

particular, DARS scales rewards across different action types according to their relative difficulty,181

thereby discouraging reward hacking and encouraging more robust policy optimization. Unlike SFT,182

which passively mimics annotated data, RL optimizes agent behavior through tailored reward signals183

that promote interpretability, structured output, and task alignment. Specifically, rationale generation184

and action prediction are decoupled, each receiving customized rewards. First of all, to ensure model185

outputs remain machine-parsable and structurally valid, a binary reward signal Rformat is utilized to186

incentivize responses formatted in a strict JSON schema. This addresses parsing ambiguities often187

observed in open-ended LLM outputs. For rationale generation, a self-certainty score [56, 57] is188

computed to measure the model’s confidence in its generated rationale. This score is calculated by189

measuring the KL divergence between the model’s token-level predictive distribution and a uniform190

distribution:191

s(rt | qt) =
1

N |V |

N∑
j=1

|V |∑
i=1

pij log

(
pij
Ui

)
, (3)

where N is the length of the generated rationale rt, pij denotes the predicted probability of token192

i at position j, and Ui = 1
|V | represents a uniform distribution over vocabulary V. Higher scores193

correspond to more confident and coherent reasoning traces. For action prediction, the reward194

landscape for action prediction is shaped hierarchically. At a coarse level, correctly identifying the195

high-level action type (e.g., ‘click’, ‘input’, ‘scroll’) yields a base reward Rtype, ensuring dense and196

stable policy gradients. However, additional rewards Rsubaction are unlocked only when fine-grained197

subaction components (e.g., clickable element or input text) are accurately predicted. This hierarchical198

structure discourages trivial action spamming (e.g., repeatedly issuing ‘scroll’ actions) and shifts the199

optimization towards executing complete, meaningful action sequences. Recognizing that complex200

actions involving long-text or fine-grained selections are inherently harder (e.g., identifying specific201

product variants or form fields among thousands of candidates), the predefined value of DARS is202

utilized to amplify rewards for correctly predicting these challenging sub-actions. This reward scaling203

mechanism adjusts the reward magnitude based on task difficulty, encouraging the model to invest204

effort into harder but more impactful actions. Bringing these components together, the overall reward205

signal for reinforcement learning is formulated as:206

Rtotal = Rformat + s(rt | qt) +Rtype + DARS ×Rsubaction, (4)

4 Experiments207

Table 1: Action type distribution within the reorga-
nized OPeRA for the task of web shopper behavior
simulation using VLMs.

Dataset Split ‘input’ ‘click’ ‘scroll’

Train 499 4379 3334
Test 107 856 545

Datasets and Models. Our experiments are208

conducted on the raw OPeRA dataset, which209

comprises 692 web shopping sessions collected210

from 51 unique users. Each session records211

multi-turn interactions between a human shop-212

per and a website interface, capturing a sequence213

of user actions alongside contextual webpage214

states. The distribution of action types across215

sessions is summarized in Tab. 1. For contex-216

tual inputs, we utilize the simplified HTML representation proposed by Lu et al. [5], which preserves217

essential structural elements (e.g., DOM hierarchy, text nodes) while discarding irrelevant compo-218

nents such as scripts, styling attributes, and user-identifiable data. To ensure coherence between the219

textual HTML context and the corresponding visual web observations, we further prune the HTML220

by retaining only those elements visible within the screenshot viewport. This alignment step reduces221

modality mismatch and provides the model with a unified cross-modal observation space. For SFT,222

we augment the dataset by annotating each recorded action with a natural language rationale. These223

rationales are synthesized using Claude-3.5-Sonnet, following a carefully crafted prompting strategy224

detailed in App. B. During training, the model is tasked with producing assistant responses that225

contain both the rationale and a structured action prediction, conditioned on the provided interaction226

history (action traces and past HTMLs) as well as the current screenshot. All experiments are227

conducted using the publicly available Qwen-2.5-VL-3B-Instruct model as the backbone. We228
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Table 2: Performance comparison of next action prediction with exact match accuracy, and action
type with F1 across various models, input modalities, and training configurations for the task of web
shopper behavior simulation.

Model Input Format Settings Next Action Pred. Action Type Action Type
Acc. Acc. F1

Qwen2.5-VL-3B-Instruct

Text + Image
Zero-shot Prompt 2.81% 16.03% 22.92%
SFT 24.16% 60.59% 55.30%
SFT + RL 44.57% 57.86% 57.53%

Text-only
Zero-shot Prompt 6.41% 34.45% 38.79%
SFT 20.23% 60.86% 53.95%
SFT + RL 38.44% 57.27% 57.69%

Image-only
Zero-shot Prompt 10.81% 44.79% 43.82%
SFT 19.92% 59.31% 53.60%
SFT + RL 24.71% 60.23% 57.83%

Claude-3.5-Sonnet
Text + Image Zero-shot Prompt 9.46% 58.64% 45.32%
Text-only Zero-shot Prompt 7.66% 58.83% 45.61%
Image-only Zero-shot Prompt 7.95% 60.00% 47.04%

select the 3B parameter variant, enabling practical experimentation while maintaining sufficient229

model capacity for multi-modal reasoning.230

Baselines for Comparison. We compare our proposed approach against the following baseline231

methods: (a) Zero-Shot Prompting: The model is prompted to generate outputs based solely232

on task instructions, without any additional fine-tuning; (b) SFT [13]: The model is trained via233

supervised learning on annotated trajectories, where each action is paired with an LLM-generated234

rationale; (c) SFT + RL [14]: a RL framework that incorporates hybrid reward design to further235

refine simulation-oriented behavior modeling.236

Training Setups. Our training pipelines are built upon the Qwen2.5-VL fine-tuning framework [32]237

for SFT, and the VERL framework [58] for reinforcement learning. All experiments are conducted on238

NVIDIA A100 GPUs (80GB), utilizing Fully Sharded Data Parallelism (FSDP) in PyTorch [59] to239

ensure efficient memory and compute utilization. For policy optimization, we adopt Group Relative240

Policy Optimization (GRPO) [60] as our default RL algorithm. Input sequences are padded or241

truncated to a maximum context length of 25k tokens. We employ a sampling temperature of 0.6 for242

generation tasks. Training is performed with a per-device batch size of 1, aggregating to a global243

batch size of 64 across distributed GPUs. Training hyperparameters are configured as follows: (a)244

for SFT: 10 epochs, learning rate of 2× 10−7; (b) for RL: 100 policy update steps, learning rate of245

2× 10−8. DARS Factor is set to 10,000 by default, scaling rewards based on task difficulty.246

Evaluation Metrics. We adopt an exact match criterion to assess the accuracy of predicted user247

actions. A prediction is considered correct only if all relevant components align perfectly with the248

ground truth. For example, in a ‘click’ action, both the click subtype (e.g., filter, search bar, product249

option) and the target element must match. Similarly, for input’ actions, the model must reproduce250

text input with equivalent semantic meaning. In addition to exact match accuracy, we report coarse-251

grained action type accuracy and F1 scores. These metrics evaluate whether the model correctly252

identifies the high-level action category (e.g., ‘click’, ‘input’, ‘scroll’) regardless of fine-grained253

details. The comparison between exact match scores and action type metrics allows us to quantify254

whether residual errors arise from misclassifying the primary action type or from inaccuracies in255

finer-grained attributes (such as button names or input content).256

Performance analysis. As shown in Tab. 2, we present a comprehensive comparison of exact match257

accuracy, action type accuracy, and action type F1 scores across various models, input modalities,258

and training regimes. Several key observations emerge from these results. First, incorporating both259

textual and visual inputs consistently enhances performance for the Qwen2.5-VL-3B-Instruct260

model. While zero-shot prompting with combined text and image inputs does not yield the best261

results, fine-tuning significantly unlocks the benefits of multi-modal grounding. This underscores262

the importance of aligning model representations with human decision-making processes in visually263

complex environments. The alignment that cannot be achieved through zero-shot prompting alone, but264

requires task-specific adaptation. Notably, although additional visual cues do not provide significant265

gains for coarse-grained action type prediction, they yield clear improvements for fine-grained266
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Table 3: Distribution of predicted action types (‘input’, ‘click’, ‘scroll’, ‘others’) and invalid outputs
(‘incorrect format’) across different models, input modalities, and training settings.

Model Input Format Settings Input Click Scroll Others Incorrect Format

Qwen2.5-VL-3B-Instruct

Text + Image
Zero-shot Prompt 2.58% 25.72% 6.88% 0.08% 64.74%
SFT 0% 84.36% 15.48% 0% 0.16%
SFT + RL 0% 58.09% 41.04% 0% 0.07%

Text-only
Zero-shot Prompt 1.25% 51.95% 12.89% 0.39% 33.52%
SFT 0% 88.20% 11.41% 0% 0.39%
SFT + RL 0% 44.77% 55.00% 0% 0.23%

Image-only
Zero-shot Prompt 5.10% 68.80% 25.87% 0% 0.23%
SFT 0% 89.27% 5.87% 0% 4.86%
SFT + RL 0% 76.45% 21.00% 0% 2.55%

Claude-3.5-Sonnet
Text + Image Zero-shot Prompt 2.77% 96.56% 0.07% 0% 0.60%
Text-only Zero-shot Prompt 3.20% 96.41% 0.32% 0% 0.07%
Image-only Zero-shot Prompt 1.32% 97.22% 1.39% 0% 0.07%

subaction prediction, such as identifying detailed button names or input content, which rely on the267

model’s ability to perform precise grounding and reasoning.268

SFT provides substantial performance improvements across all input formats, effectively narrowing269

the performance gap between Text-only and Image-only modalities. After SFT, action type F1 scores270

rise to 53.95% for Text-only and 53.60% for Image-only inputs, indicating that both modalities,271

when fine-tuned on aligned action traces, can independently capture task-relevant semantics. Beyond272

SFT, RL further boosts model performance, particularly in exact match accuracy, which measures273

sequence-level consistency. For instance, the Text+Image input format achieves an exact match274

accuracy of 44.57% under SFT+RL, a significant jump from 24.16% under SFT alone. Similarly,275

Image-only exact match accuracy improves from 13.06% to 24.71%, demonstrating that RL fine-276

tuning enhances the model’s decision precision and reduces its dependency on textual cues. Across277

all modalities, RL consistently pushes action type F1 scores above 57%, suggesting that its primary278

contribution lies in refining sequence-level alignment without compromising semantic understanding.279

When compared with Claude-3.5-Sonnet, we observe that its performance across different input280

modalities appears similar, exhibiting extremely low exact match accuracy but disproportionately281

high action type accuracy. This discrepancy arises from a strong prediction bias toward the ‘click’282

action, with the model often defaulting to predict ‘click’ regardless of context. These results suggest283

that even strong closed-source models like Claude, while capable of producing outputs in the284

correct format as specified in the system prompt, may still underutilize cross-modal signals in285

structured interaction tasks unless explicitly adapted through task-aware fine-tuning. Overall, these286

findings highlight three critical insights: (a) multi-modal grounding is essential for aligning model287

predictions with human behavior in visually rich web environments; (b) SFT distills modality-specific288

reasoning, enabling both textual and visual inputs to capture task semantics effectively; (c) RL289

fine-tuning enhances sequence-level precision, ensuring coherent and high-fidelity simulation of290

human interaction behaviors.291

Prediction distribution analysis. To further investigate the behavioral patterns of different models,292

we analyze the distribution of predicted action types, as shown in Tab. 3. Specifically, we categorize293

predictions into four main groups: ‘input’, ‘click’, ‘scroll’, and ‘others’. The ‘others’ category294

captures outputs that fall outside the predefined action space, including ambiguous or semantically295

invalid actions. Additionally, we report the proportion of predictions that fail to adhere to the required296

structured output format, labeled as incorrect format. A few trends are immediately apparent. First,297

without any task-specific fine-tuning, all models demonstrate a substantial failure rate in producing298

outputs that conform to the expected structured format. This issue is especially pronounced in zero-299

shot settings, where the lack of explicit guidance leads to a surge in malformed or unparsable outputs.300

For instance, Qwen2.5-VL-3B-Instruct generates incorrect outputs 64.74% of the time under the301

Text + Image zero-shot setting, while the rate drops dramatically to under 0.2% after SFT or SFT + RL.302

This highlights the importance of task-specific alignment for structured output formatting. Second,303

action type bias differs significantly across modalities and training stages. Notably, Qwen2.5-VL-3B-304

Instruct exhibits a strong preference for ‘click’ actions after SFT, with over 84% (Text + Image) and305

88% (Text-only) of predictions falling into this category. However, with RL fine-tuning, the model306

adjusts toward a more realistic distribution by increasing the proportion of ‘scroll’ actions, reaching307

41.04% and 55.00% in the Text + Image and Text-only settings respectively. This shift suggests that308

RL helps calibrate action distribution to better match user interaction patterns. Interestingly, while309
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Image-only inputs also produce reasonably balanced action types after RL (76.45% ‘click’, 21.00%310

‘scroll’), they suffer from a slightly higher formatting error rate (2.55%), indicating a potential need311

for further grounding visual inputs in structured generation tasks. In contrast, Claude-3.5-Sonnet312

maintains extremely low error rates even in zero-shot settings and exhibits a dominant bias toward313

‘click’ actions across all modalities (over 96%), but rarely predicts ‘scroll’ or ‘input’ actions. This314

further confirms that while generalist models can produce well-formed outputs, their behavioral315

realism is limited without task-specific training. These findings reinforce the necessity of combining316

supervised fine-tuning with reinforcement learning to both correct structural errors and recover317

realistic action distributions.318

5 Limitations and Future Directions319

Simulation prediction format. Current web shopper behavior simulation tasks predominantly320

frame action prediction as a structured JSON generation problem, requiring models to output exact321

element names and action types in a parse-friendly format [14]. However, this design introduces a322

disconnect between human cognitive processes and model outputs. Humans rarely refer to interface323

elements by their DOM descriptors; instead, they rely on visual cues such as spatial location, shape,324

and saliency [61]. VLMs with their capability to process visual observations offer a promising325

pathway to bridge this gap by enabling models to predict not only fine-grained element names but also326

coarse-grained spatial regions of interest within a webpage screenshot. Future datasets that record327

user eye-tracking data [62] or approximate attention maps during web interactions could enable more328

human-like simulation of attention and decision-making patterns. Such gaze-aware datasets would329

allow models to predict user focus areas, leading to richer simulation outputs that align more closely330

with real human behavior. This capability could open up new application scenarios, such as the331

evaluation of personalized recommender systems through offline simulations, reducing reliance on332

costly and slow A/B testing cycles [63, 64].333

Multi-modal context fusion. Existing approaches often adopt naïve concatenation strategies for334

multi-modal fusion, treating textual and visual contexts as independent modalities to be sequentially335

processed [31]. However, images carry sparse yet spatially rich information that requires task-specific336

processing pipelines to extract meaningful signals. Web screenshots, in particular, are cluttered337

with non-informative regions such as whitespace, banners, or decorative elements, which dilute338

the effectiveness of simple image embeddings. Future research can consider to explore structured339

pipelines that include: (1) visual region detection and segmentation [65], (2) semantic classification of340

interface components (e.g., buttons, text fields, product images), and (3) modular encoding strategies341

where segmented visual patches are contextually grounded and re-integrated into the HTML DOM342

tree. This hybrid representation can bridge textual and spatial semantics, providing models with a343

richer, interaction-centric context. An ambitious but plausible future direction would be to eliminate344

the reliance on HTML altogether, allowing VLMs to simulate web shopping behavior solely based345

on visual observations, akin to how humans perceive interfaces.346

Context compression. The necessity of encoding long action histories and complex web contexts347

imposes significant memory and compute overhead during model training and inference. While prior348

works have attempted to simplify HTML structures by pruning irrelevant nodes [5], this strategy faces349

an inevitable bottleneck due to the intrinsic complexity of web interfaces. A promising direction is the350

development of context summarization techniques that compress historical interaction sequences and351

user preferences into concise token sequences or latent embeddings, without sacrificing behavioral352

fidelity. Techniques like hierarchical memory architectures [66], learned summarizers [67], or353

retrieval-augmented models [68] could be adapted to condense past context dynamically, reducing354

token length while retaining necessary critical decision-making cues. This is crucial for scaling355

behavior simulation models to real-world deployment scenarios where long-context processing356

remains a bottleneck.357

Personalized human behavior simulation. One significant limitation of current datasets is the lack358

of longitudinal, user-specific shopping sessions. Most existing corpora aggregate behaviors across359

many users, modeling general human behavior rather than capturing individual idiosyncrasies [42].360

Consequently, current simulations fail to reflect user-specific preferences, browsing habits, or behav-361

ioral evolution over time. Constructing large-scale, longitudinal datasets that capture the shopping362

trajectories of individual users over extended periods (e.g., months or years) would enable personal-363

ized human behavior modeling. Such datasets would facilitate research in continual learning [69],364
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preference drift adaptation, and long-term user-agent co-adaptation. Moreover, this would allow365

simulation frameworks to move beyond “one-size-fits-all” models and towards agents capable of366

learning and evolving alongside unique users, much like personalized assistants.367

6 Applications368

The development of realistic online shopper behavior simulators unlocks a broad spectrum of369

impactful applications spanning e-commerce, human-computer interaction (HCI), recommender370

system evaluation, and intelligent agent training. First, in customer behavior simulation for UX testing,371

such simulators can serve as scalable and adaptive tools for automated user experience evaluation.372

By capturing both the diversity and realism of human interaction patterns unlike traditional scripted373

bots [70] or generic LLM agents [34], they enable robust stress testing of new website features,374

layout designs, and checkout flows under varied behavioral scenarios. Second, in personalized375

recommender system evaluation, synthetic but high-fidelity interaction traces can act as reliable376

proxies for measuring how different user personas engage with recommendation algorithms [63].377

This facilitates benchmarking of personalization quality across heterogeneous contexts while reducing378

dependence on costly and time-consuming A/B testing. Third, training of digital shopping assistants379

can directly benefit from simulators that incorporate both reasoning and action generation stages.380

By grounding agent decisions in multi-modal cues such as HTML context and visual observations,381

these assistants can be pretrained or fine-tuned to exhibit more intuitive, adaptive, and human-aligned382

shopping behaviors [40]. Fourth, vision-language evaluation of product pages becomes feasible383

by integrating VLMs [31, 32] into simulation pipelines. This allows automated assessment of how384

effectively product detail pages convey key attributes (e.g., discounts, usability, and product variants)385

through visual and textual cues, providing actionable insights for optimizing visual merchandising386

and page design. In summary, advances in online shopper behavior simulation promise to improve387

personalization, increase design efficiency, and enable the development of adaptive, user-centric388

systems across diverse digital commerce services.389

7 Conclusion390

In this work, we explored the critical role of visual perception in simulating human web shopper391

behavior by integrating VLMs into existing text-based simulation frameworks. Through systematic392

dataset construction, tailored fine-tuning strategies, and RL with structured reward design, we393

demonstrated that VLMs significantly enhance the fidelity of behavior simulation, particularly394

in visually complex e-commerce environments. Our empirical results indicate that multi-modal395

grounding is essential to bridge the gap between synthetic agents and real user behaviors, and that396

fine-tuning with task-specific supervision is crucial to fully unlock the potential of cross-modal signals.397

Beyond performance improvements, our study sheds light on broader methodological considerations.398

We highlight the importance of designing simulation paradigms that align with human cognitive399

processes, moving away from rigid DOM-based predictions towards visually-grounded spatial400

reasoning. Moreover, we advocate for more principled approaches to multi-modal context fusion,401

emphasizing the need for structured pipelines that can effectively disentangle and re-integrate visual402

and textual semantics. Addressing the challenges of context compression and personalized behavior403

modeling further opens avenues for future research, especially in scaling simulation frameworks404

to real-world applications where long-term user modeling and efficient inference are indispensable.405

Ultimately, this work marks a step towards more faithful and robust human behavior simulators,406

enabling scalable evaluation of interactive systems, such as digital assistants and recommender407

systems, without relying on expensive human trials. By leveraging VLMs as cognitive amplifiers,408

we envision a new generation of simulation frameworks that not only mimic human actions but also409

capture the nuanced reasoning patterns that drive real-world user interactions.410
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Appendix600

A Action Space601

602
# Action Space603

An action is represented in JSON format, and there are three primary types of604

actions:605

606

##1. ‘input‘:607

Click on an input field and type text into it.608

{609

"type": "input",610

"text": "input_text"611

}612

613

## 2. ‘click‘:614

Click on a button or clickable element identified by ‘name‘.615

It’s further classified with ‘click_type‘ including:616

- ‘purchase‘: Click on any purchase intention related buttons, including add cart,617

buy now, subscibe, checkout, etc.618

- ‘search‘: Click on search buttons or search boxes619

- ‘review‘: Click on review-related elements620

- ‘filter‘: Click on filters621

- ‘quantity‘: Click on quantity-related elements (quantity increase/decrease, delete622

item)623

- ‘product_option‘: Click on product option selections624

- ‘cart_side_bar‘: Click on shopping cart sidebar elements625

- ‘suggested_term‘: Click on suggested search terms626

- ‘nav_bar‘: Click on navigation bar elements627

- ‘page_related‘: Click on pagination elements or carousel navigation buttons628

- ‘cart_page_select‘: Click on cart page selection elements (e.g. item checkbox)629

- ‘product_link‘: Click on product links or product images630

- ‘other‘: Other types of clicks not covered by the above categories631

{632

"type": "click",633

"click_type": "click_type",634

"name": "element_name"635

}636

637

## 3. ‘scroll‘:638

Scroll the page up or down for more products.639

{640

"type": "scroll"641

}642643

B Reasoning Synthesize Prompt644

645
<IMPORTANT>646

You are given a customer’s shopping journey on amazon.com. For each step, you will647

be provided with the context (what the user sees) and the action (what the user648

does). Your task is to predict the rationale behind the action from a first-649

person perspective.650

651

Here is an example:652

{example}653

654

Output a one-sentence rationale in first person for the given action.655

</IMPORTANT>656657
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