DISCRETIZED QUADRATIC INTEGRATE-AND-FIRE NEU-
RON MODEL FOR DIRECT TRAINING OF SPIKING NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) are a promising alternative to traditional artificial neu-
ral networks, offering significant energy-saving potential. Conventional SNN approaches
typically utilize the Leaky Integrate-and-Fire (LIF) neuron model, where voltage decays
linearly, decreasing proportionally to its current value. However, this linear decay can
inadvertently increase energy consumption and reduce model performance due to extrane-
ous spiking activity. To address these limitations, we introduce the discretized Quadratic
Integrate-and-Fire (QIF) neuron model, which applies a non-linear transformation to the
voltage proportional to its magnitude. The QIF neuron model achieves substantial en-
ergy reductions, ranging from 1.43 — 4.21x compared to the LIF neuron model. On
static datasets (CIFAR-10, CIFAR-100) and neuromorphic datasets (CIFAR-10 DVS, N-
Caltech-101, N-Cars, DVS128-Gesture), the QIF neuron model demonstrates competitive
performance and improved accuracy over state-of-the-art results. Furthermore, the QIF
neuron model produces smoother loss landscapes and larger local minima, leading to faster
training convergence. Our findings suggest that the QIF neuron model offers a promising
alternative to the widely adopted LIF neuron model.

1 INTRODUCTION

Artificial Neural Networks (ANNs) have seen mainstream adoption in recent years thanks to their success
in domains from computer vision (Chai et al., [2021)) to natural language processing (Khan et al.| 2023).
However, the energy demands of ANNs continue to grow (Yamazaki et al.| 2022)). In contrast, Spiking
Neural Networks (SNNs) have gained attention as a more energy-efficient alternative. Unlike traditional
ANNSs, which synchronously process continuous-valued data, SNNs operate asynchronously on discrete
events known as spikes. These spikes, driven by biologically inspired neuron dynamics, allow SNNs to
replicate the brain’s sparse connectivity and energy-efficient structure (Gerstner et al., 2014). As a result,
when SNNs are implemented on hardware tailored to these characteristics, they have the potential to operate
with lower energy consumption than traditional ANN models (Rathi & Royl [2023)). This type of hardware
is typically called neuromorphic hardware. Examples of SNNs implemented on neuromorphic hardware
can be seen from always-on speech recognition for edge devices (Tsai et al., [2017), using IBM TrueNorth
(Akopyan et al.l 2015)), and ultra-low-power image classification (Lenz et al.| 2023)), using Intel Loihi 2
(Intel, 2021)).

In the context of deep learning, Wu et al.|(2018) introduced the widely adopted neuron model by discretizing
the Leaky Integrate-and-Fire (LIF) neuron model |Gerstner et al.|(2014). Despite its popularity, the LIF
model’s dynamics are limited to linear decay proportional to its voltage. The impact of this linear decay on
energy consumption, performance, and convergence speed has yet to be studied. Therefore, in this work, we

propose the discretized Quadratic Integrate-and-Fire (QIF) neuron model for deep spiking neural networks.
Unlike the LIF neuron model, the QIF neuron model incorporates non-linear decay and growth dynamics that
scale with the magnitude of the neuron’s voltage. Our QIF neuron model is compared to recent approaches
on static datasets such as CIFAR-10 and CIFAR-100, as well as on neuromorphic datasets, including CIFAR-
10 DVS, N-Caltech-101, N-Cars, and DVS128-Gesture. Furthermore, we compare the LIF and QIF neuron
models, analyzing their energy efficiency, accuracy, loss landscapes, training performance, and robustness
to hyperparameter selection. To summarize, the contributions of our work are as follows:

* We introduce a discretized Quadratic Integrate-and-Fire neuron model for deep learning applica-
tions which showcases 1.43 — 4.21 x better energy efficiency than the LIF neuron model.

* We derive and prove an analytical equation for calculating surrogate gradient windows directly
from the QIF neuron model parameters, minimizing the risk of naive initialization and significant
gradient mismatch during training.

¢ Our QIF neuron model is compared to recent state-of-the-art approaches, demonstrating competi-
tive performance on static datasets and improved accuracy on several neuromorphic datasets. Ad-
ditionally, our analysis reveals the QIF neuron model can exhibit smoother loss landscapes, larger
local minima, and greater robustness to hyperparameter selection, resulting in faster convergence
and superior performance compared to the LIF neuron model.

2 RELATED WORK

2.1 DEEP LEARNING WITH SPIKING NEURAL NETWORKS

In recent years, two training techniques have stood out when training deep-spiking neural networks. ANN-
to-SNN conversion was the first training technique to show promising and competitive performance for
SNNs. Typically, these works first train a traditional ANN that utilizes the ReLU activation function (Cao
et al.| 2015). The ANN then has all activation functions replaced with a spiking neuron model (Ding et al.|
2021). Then, the threshold for each layer of neurons is adjusted to approximate the ReLU function. Recent
works use approaches such as modifying the ReLU function to better match the dynamics of an SNN (Li
et al.,[2021a; |Wang et al.| [2023; [Bu et al.,|2022), incorporating learnable parameters into the ReL U function
(Ho & Chang} 2021; Ding et al., [2021]), and developing new SNN neuron models to better fit the ReLU
structure (Gao et all 2023). The main disadvantage of conversion techniques is their inability to utilize
temporal dynamics and require many timesteps to achieve high accuracy (Duan et al., [2022).

Direct training with backpropagation can also be used with SNNs. Several techniques have been developed
to overcome the non-differentiability of spikes (Yi et al.l [2023). One of the most well-adopted techniques
is surrogate gradients. Surrogate gradients attempt to approximate the derivative of the Heaviside function
(a common function used to obtain spiking behavior) with respect to the membrane potential using a differ-
entiable function (Wu et al, [2018). In addition to surrogate gradients, works employ various techniques to
improve direct training performance. Some of these techniques include batch or membrane potential normal-
ization (Zheng et al|2021; Duan et al.| 2022; Guo et al.| 2023), developing new loss functions (Deng et al.,
2022} |Guo et al., 2022)), and learning surrogate gradient behavior (Li et al [2021b} |Lian et al., 2023; |Deng
et al., [2023). Due to the lack of support for training on neuromorphic datasets when using ANN-to-SNN
conversion techniques, we restrict any comparisons to direct training techniques.

2.2 NEURON MODELS AND PARAMETER LEARNING

When using direct training techniques, a few works such as |[Fang et al.| (2021); [Yao et al.| (2022); Rathi
& Roy| (2023); [Lian et al.| (2023 |2024) make modifications to the Leaky Integrate-and-Fire (LIF) neuron
model by either changing its dynamics or incorporating learnable parameters. [Fang et al.| (2021) propose a

learnable decay factor for the LIF neuron model, which can be independently optimized for each layer. Rathi
& Roy| (2023)) takes this a step further by co-optimizing the decay and threshold of each spiking layer. [Yao
et al.[(2022)) proposed gating features, similar to long-short term memory, that can choose between various
biological features implemented in their model. [Lian et al.|(2023)) propose using a learnable decay parameter
to dynamically adjust the surrogate gradient window to fit the LIF neuron’s voltage distribution throughout
the training process. |[Lian et al.| (2024) proposes using a temporal-wise attention mechanism to selectively
establish connections between current and past temporal data.

While the LIF neuron model has seen various improvements and has showcased promising performance in
many deep-learning applications, its dynamics are fundamentally constrained to linear decay proportional
to the neuron’s voltage. The effect of these linear dynamics on the energy efficiency, model accuracy, and
convergence of deep spiking neural networks remains unknown. Inspired by this, we look towards other
neuron models to quantify and address this limitation.

3 BACKGROUND

3.1 SPIKING NEURAL NETWORKS

While ANNs use continuous-valued data to transmit information, SNNs use discrete events called spikes. In
modern deep SNN research, the Leaky Integrate-and-Fire (LIF) |Gerstner et al.| (2014} neuron model is the
most widely adopted, with its dynamics governed by
du

T% = Upest 7U+RI, (l)
where 7 is a membrane time constant, u is the membrane potential, u,.s; is the resting potential, R is a linear
resistor, and I is pre-synaptic input. When using the LIF neuron in deep learning scenarios, discretization
is required |Duan et al.|(2022)). The most commonly used discretization was introduced by Wu et al.| (2018)),
who utilized Euler’s method to solve Equation[I} They defined their model as

u(t+ 1) = pu(t) + I1(t). 2)

In Equation [2] ¢ denotes the current timestep, 3 is a membrane potential decay factor, u is the membrane
potential of a neuron, and I are pre-synaptic inputs into the neuron. Given a threshold, w;p, when w(t) > wuyp,
a spike is produced and is denoted o(t + 1). [Wu et al.|(2018) further define an iterative update rule for both
spatial and temporal domains as

w(t+1) = pu(t)(1—o(t—1)) + I(t) 3)
o(t+1) =O(u(t+ 1) — up),)
where O is the Heaviside function with ©(z) = 0 if < 0, else ©(x) = 1. Equations |3| and {4] allow

for forward and backward backpropagation to be implemented in both the spatial and temporal domains
automatically using modern deep learning frameworks |Zheng et al.| (202 1}).

Both the ordinary differential equation, shown in Equation([T] and the discretized equation, shown in Equation
[] of the LIF neuron model are constrained to a linear decay directly proportional to the voltage.

3.2 SURROGATE GRADIENTS

One challenge with spiking neural networks is that the Heaviside function, ©, is not suitable for
backpropagation-based training as its derivative is either undefined or 0. To overcome this issue, [Wu et al.
(2018) proposed using the derivative of an approximation to the Heaviside function with useful gradient
information. This technique is called a surrogate gradient. One of the most popular surrogate gradient

functions is the rectangle function |Zheng et al.|(2021)); Deng et al.| (2022); |Lian et al.| (2023) and is defined
by

0o, ()
Ou, (t)

1 o
R —si t) — < =) 5
—sign(fun(t) — uan| < 5))
« determines the width and area of the surrogate gradient and typically remains constant throughout training.
The choice of a greatly affects the learning process of SNNs, with improper choices leading to gradient
mismatch and approximation errors.

3.3 THRESHOLD-DEPENDENT BATCH NORMALIZATION

loffe & Szegedy| (2015) first introduced the concept of batch normalization for ANNs to accelerate the
training process by reducing the internal covariant shift of each layer. Batch normalization was only designed
to normalize spatial data, not spatial-temporal data. On this note, Zheng et al.| (2021)) proposed threshold-
dependent Batch Normalization (tdBN) which works by normalizing the channels of pre-synaptic input, I,
in both the spatial and temporal domains based on the neuron’s threshold, u;;,. Suppose Iy (¢) represents the
Ky, feature map of I at timestep ¢. Then, we normalize each feature map Iy, = (I)(1), I (2), ..., I(T)) in
the temporal domain by

i nuen (I — E[Ii])
Var(I) + €
Iy =L, + ¢,)

where E and Var compute the mean and variance of [in the channel dimension, 7 is used for residual
connections, and «y and £ are learnable parameters. Following tdBN, I satisfies I ~ A (0,u2,).

(6)

3.4 TRAINING SPIKING NEURAL NETWORKS

We adopt the Spatial-Temporal Back Propagation (STBP) algorithm and training procedure described by
Wu et al.|(2018)) to train our network. First, we infer our model on temporal data for 7" timesteps. Then,
similarly to|Lian et al.|(2023)), to decode the model’s output, we turn off the firing behavior of the final output
neurons and accumulate their voltage over time as follows

T

1 () .
; = — E _ 1,2,...
U; T < Wn_10n l(t)a 1€ { y &y ac}v (8)

where ¢ is the number of neurons in the output layer, W is a weight matrix, and o,,—1 (¢) are spikes from
the previous layer. The element, u;, with the largest value, is the predicted class. Using our output vector
u = (uy,us,...,u.) and a label vector y = (y1,y2, - . ., Y), we compute the cross entropy loss, L, between
u and y. Then, using the STBP algorithm and surrogate gradients, we can train our network. As described
by (Guo et al.[(2023)), we use the chain rule to update weights by

OL <~ OL don(t) AL Oun(t+1)\ dun(t)
> ()

oW, 9o (t) Qun(t) ' Oun(t+1) Oun(t) oW, ©)

t=1

where n is the layer of the network. In the above equation, 32" ((?) is replaced with a surrogate gradient, such

as the one seen in Equation[3}

4 METHOD

4.1 QUADRATIC INTEGRATE-AND-FIRE NEURON MODEL

The Hodkin-Huxley (HH) neuron model was created to mimic the activity of neurons found within a giant
squid and has proven itself invaluable in the field of neuroscience (Gerstner et al., 2014). Over the years,
simplifications of the HH neuron model have been introduced to reduce the computational complexity of
its various equations and non-linear dynamics. The LIF neuron model is an extreme simplification that has
proven itself to be a computationally efficient alternative. However, the LIF neuron model does not contain
non-linear dynamics dependent on voltage as seen in the HH neuron model. We aim to bridge this gap by
looking at other neuron models that contain non-linear dynamics without introducing large computational
overhead. This initially led us to the Exponential Integrate-and-Fire (ExLIF) neuron model (Gerstner et al.|
2014). The ExLIF neuron model simplifies the HH neuron model and maintains much of its non-linear
dynamics. However, due to the large computational cost of the EXLIF neuron, an approximation called
the Quadratic Integrate-and-Fire (QIF) neuron model is often used in experimental settings (Gerstner et al.|
2014). Therefore, we examine the QIF neuron model as a promising alternative to the LIF neuron model.
The QIF neuron model is defined by

du
T— =
dt
where 7 is a membrane time constant, a is a sharpness parameter controlling the rate of decay, w is the
membrane potential, u,.s; is the resting potential, . is the critical spiking threshold, R is a resistor, and
1 is the pre-synaptic input. Additionally, it must hold that ¢ > 0 and u,.s; < u.. Unlike the LIF neuron
model, the QIF neuron model contains non-linear voltage dynamics which are proportional to the square of
the voltage. This allows the QIF neuron to have varying dynamics based on the neuron’s current voltage.
For example, the QIF neuron can decay rapidly when u < wyp, or increase rapidly, as u approaches and
exceeds u. (Gerstner et al., 2014]).

a(u - urest)(u - UC) + RIv (10)

As with the LIF model, the QIF model requires discretization for usage in a deep learning setting (Duan
et al., 2022)). Therefore, we introduce our discretized QIF neuron model, defined as

w(t +1) = a(u(t) — tpest) (u(t) — ue) + I(t) (11)

where u(t) and I(t) are the membrane potential and pre-synaptic input at timestep ¢ with all other parameters
and constraints following that of Equation Details on the discretization can be found in Appendix
When incorporating this neuron model into existing deep spiking neural network architectures, we adopt
and modify the iterative update rule proposed by Wu et al.| (2018)) to obtain

I(t) = Wi_1 0 0p_1(t) (12)
Un (t +1) = a(un(t) — Urest) (Un(t) — uc) + In(t) (13)
on(t+1) = O(un(t +1) — ug) (14)
Up(t+1) = up(t +1)(1 — 0, (t + 1)) + Upeston(t +1). (15)

In the above equation, ¢ denotes the timestep, n denotes the layer of the network, o denotes either matrix
multiplication or convolution between a synaptic weight w and spikes o, [is pre-synaptic input, u is the
membrane potential, uyy, is the firing threshold, and © is the Heaviside function. When the membrane
potential exceeds the firing threshold u, a spike will be produced, and its potential will be reset to ts¢.

4.2 SURROGATE GRADIENT WINDOW

When using a surrogate gradient with the LIF model, like in equation [} a common assumption is that the
voltage distribution is mean centered around zero. However, the quadratic dynamics of the QIF neuron model

usually do not conform to this assumption. Instead, the QIF neuron produces a voltage distribution with a
non-zero mean and a variance that can widely change based on the chosen neuron parameter set. Therefore,
determining an appropriate surrogate gradient window for the QIF neuron model can be challenging. To
alleviate this issue, we derive a surrogate gradient window based on the statistical properties of our neuron
model when the pre-synaptic input I has been normalized with the tdBN technique in Equation[6] Assuming
that during forward propagation, all pre-synaptic input is normalized with tdBN such that I ~ N(0,u2,),
we propose Theorem [I]to explain the statistical properties of the QIF neuron model.

Theorem 1. Under the discrete QIF neuron model using tdBN to normalize pre-synaptic input I such that
I ~ N(0,u?,), the membrane potential u follows u ~ N (i, 02) with pr, = af (U, Urest, uc) and

= ufhh(uth, Upest, Ue, @) where i, and o2 are directly proportional to the functions f and h respectively.

The functions f and h can be approximated as f(Utp, Urest, Ue) = U, + Urestte and h(Uih, Urest, Ue, @) =
1+ a?(2u2, + (ve — Vrest)?).

The proof of Theorem [I] can be seen in Appendix [D]and is inspired by Theorem 2 in [Zheng et al. (2021).
Theorem|l|states that after integrating tdBN normalized pre-synaptic inputs into the QIF neuron according to
Equation |11} the membrane potential follows u ~ N (i, 02). Therefore, we approximate the values of /i,
and UZ using Theorem to calculate the surrogate gradient window based on the parameters a, usp, Urest,
and u., reducing the risk of poor window choice and potential gradient mismatch. We define our new
surrogate gradient as

— < <
don(t) {1 poy — 0y < up(t) < oy + 0y (16)

dun(t) ~ |0 else.

To validate Theorem|T]and our new surrogate gradient window in Equation[I6] Figure[I|shows our analytical
window compared to a static choice of the hyperparameter « across several parameter sets for the QIF neuron
model. We compare our window with a common choice for the surrogate gradient window, o = 1, as used
in|Guo et al.| (2023); Deng et al.| (2023)); Duan et al.| (2022); Li et al.|(2022). In the left histogram, the naive
window almost encompasses the entire distribution, which can lead to a substantial gradient mismatch.
Conversely, our analytical window dynamically scales based on the parameter set, fitting the distribution
more accurately. The chosen parameter set in the middle figure aligns well with the naive and analytical
windows. However, in the rightmost figure, the naive window only covers a small portion of the distribution.
Since this distribution is not zero-centered, the naive window additionally fails to account for a significant
portion of the spiking activity in the network. Our analytical window addresses this issue by adjusting both
the center and width to match the distribution. Therefore, our approach adapts to diverse distribution shapes
without requiring detailed knowledge of the underlying voltage distribution or manual window tuning. This
minimizes the risk of gradient mismatch and suboptimal surrogate gradient initialization with our QIF neuron
model.

5 EXPERIMENTS

In this section, we first compare the energy consumption of our QIF neuron model against the standard LIF
neuron model across a variety of model architectures and datasets. We then discuss the potential overheads
of the QIF neuron model in hardware. Next, we validate the performance of our QIF neuron model using
a classification task on static and neuromorphic datasets and compare our results to state-of-the-art works.
Finally, we examine the loss landscape, training graphs, and hyperparameter robustness of the QIF and LIF
neuron models.

5.1 EXPERIMENTAL SETUP

We run our experiments on an Nvidia RTX 3090 GPU and an Intel-12600k CPU with 64 GBs of memory,
running Ubuntu 23.04. We use Python 3.12 along with Pytorch 2.4 (Paszke et al., 2019)) for the creation and

a=0.5um=0.5, a=0.25um=1.0,
Uc=0.25,Urest = 0.0 Uc=0.75,Urest = — 0.5
T

0.7
0.6
0.5
0.4

125

=]
~
a

0.3

Frequency

0.2

0.1

0.0
2 4 -4 -2

-4 -2 2 4 2 4

0
Voltage

0
Voltage

0
Voltage

~ = Analytical Window —-+ Naive Window (a=1)

Figure 1: Surrogate gradient window comparison using a naive and statistical choice of window length with
the QIF neuron model using various parameter sets.

training of networks along with loading the CIFAR-10 and CIFAR-100 datasets (Krizhevsky| [2009), Norse

1.1 (Pehle & Pedersenl, as the foundation for our SNN simulations, Tonic 1.4 (Lenz et al., 2021)) for
loading the N-Cars (Viale et al, 2021) dataset, and SpikingJelly for loading CIFAR-
10 DVS [2017), N-Caltech-101 2015), and DVS128-Gesture (Amir et al.| [2017).
We use several model architectures, such as ResNet-19 (Zheng et all, 2021), VGGSNN (Deng et al.|, 2022),
VGG-11 (Kim & Panda, [2021), and DVSGestureNet (Fang et al., 2021), trained on commonly used datasets,
such as CIFAR-10/CIFAR-100 (Krizhevsky, 2009), CIFAR-10 DVS 2017), N-Caltech-101
[2015), N-Cars (Sironi et al., [2018), and DVS128-Gesture 2017). We averaged all

QIF training results over three training runs using different random number generation seeds and presented
the mean =+ standard deviation of our results. Additional details on each dataset, data augmentations, and
training setups can be found in Appendices[A]and[B]

5.2 SPIKE RATE AND ENERGY CONSUMPTION

To calculate the energy consumption of an SNN, we adopt the same approach as[Su et al|(2023), where they
approximate it as Esyn ~), E;. Ej is the energy consumption of layer 7 and is defined as

E, =T -(fr-Eac -OPac+ Enac - OPrrac) (17)

where T is the number of timesteps, fr is the firing rate of layer i, Eac and Fj;4¢ are the energy con-
sumption of accumulate (AC) and multiply-and-accumulate (MAC) operations respectively, and O P4 and
O Py ¢ are the number of AC and MAC operations of layer i. We assume operations take place with 32-bit
floating point values on 45nm technology where Ey;ac = 4.6pJ and E c = 0.9p.J, as done by
and other works. We compare the energy consumption of each SNN architecture trained with the
QIF and the LIF neuron models with our results showcased in Table [T} To obtain a comparison with the
LIF model, we train each model with our implementation of the LIF neuron model. The training setup and
hyperparameters for the models trained with the LIF neuron are available in Appendix [B] Figure[8] in Ap-

Neuron Model CIFAR-10 CIFAR-100 CIFAR-10 DVS N-Caltech-101 N-Cars DVS128-Gesture

v /ResNet-19 /ResNet-19 / VGGSNN /VGG-11 /VGGSNN /DVSGestureNet
LIF 0.968mJ 0.958m.J 0.848m.J 0.788mJ 1.090mJ 1.095mJ
QIF 0.531mJ 0.778mJ 0.361mJ 0.374mJ 0.259m.J 0.724mJ
Improvement 1.82x 1.23x 2.35% 2.11x 4.21x 1.51x

Table 1: Energy consumption comparison between QIF and LIF neuron models in milliJoules (mJ).

CIFAR-10 CIFAR-100 CIFAR-10 DVS N-Caltech-101 N-Cars DVS128-Gesture
Neuron Model

/ ResNet-19 / ResNet-19 / VGGSNN /VGG-11 /VGGSNN /DVSGestureNet
LIF 5.923s 6.356s 2.230s 2.658s 14.999s 1.482s
QIF 6.733s 7.602s 2.671s 2.772s 18.030s 2.065s
Overhead 1.14x 1.20x 1.20x 1.04x 1.20x 1.39x

Table 2: Inference time comparison between QIF and LIF neuron models in seconds (s).

pendix [G] showcases the average spike rate of each layer of a ResNet-19 model trained on CIFAR-10 with
the QIF and LIF neuron models. On average, our QIF neuron produces around 46% less spiking activity
than the LIF neuron. We include similar figures for each of our models and datasets in Appendix [G]

Using Equation we calculate the energy consumption of each neuron model in Table [l We observe
energy reduction ranging from 1.23 — 4.21 x for the QIF neuron models. These savings are attributed to the
non-linear dynamics of the QIF neuron, which tends to induce a voltage distribution with neurons further
away from the threshold, as seen in Figure[0] These dynamics increase the difficulty for a neuron to spike,
reducing the rate at which less important neurons may fire due to noise or low-quality features. Additionally,
neuromorphic datasets show greater energy savings on average than static datasets. This difference may stem
from the high sparsity and noise typical of these datasets that cause LIF models to follow noise and produce
excess spikes while the QIF models handle this noise more effectively, reducing unnecessary spikes.

To discuss potential concerns related to computational complexity, we showcase the additional latency of a
QIF neuron compared to a LIF neuron. A single LIF neuron requires one multiplication and one addition
while a single QIF neuron requires three additions and two multiplications. Assuming the two additions
required to compute (u — Uyest) and (u — u.), from Equation can be done in parallel, the QIF neuron
has one addition and multiplication more than the LIF neuron, leading to roughly 2x the computational
complexity. On our non-neuromorphic experimental setup, we observe that this leads to inference time
overheads between 1.04—1.39x, as shown in Table[2] Due to the limited public availability of neuromorphic
hardware, it is difficult to calculate the exact computational overhead incurred by these additional operations.
However, we do know that many neuromorphic hardware implementations, such as Intel Loihi 2|Intel (2021)),
follow event-driven paradigms. This means the lower spike rate of the QIF neuron has the potential to
lower the computational overhead we observed on non-neuromorphic hardware. To put this in perspective,
across all datasets and models, the QIF neuron produces an average of 45.47% less spiking activity than the
LIF neuron. Therefore, the QIF neuron will only require around half the number of active neurons during
inference on average. This suggests that implementing these models on neuromorphic hardware can offset
the additional computational complexity of the QIF neuron through its decreased spiking activity.

5.3 AccCURACY COMPARISON TO RECENT WORKS

In this section, we compare our QIF model’s accuracy to state-of-the-art works that make modifications to
the LIF neuron model. Additionally, we include comparisons to recent state-of-the-art results that don’t
modify the LIF neuron as these techniques could potentially be modified and applied to our QIF model.

As shown in Table [3] our neuron model demonstrates competitive performance on the CIFAR-10 dataset,
matching the performance of other neuron model optimizations within 1% accuracy on average, such as
those presented in [Lian et al.|(2024;|2023); [Yao et al.| (2022); [Fang et al.| (2021) with 2 timesteps and being
slightly outperformed by these works with 4 timesteps. When compared with alternative approaches, our
method surpasses most others, though we observe approximately a 2% decrease in accuracy relative to the
top-performing methods in Mukhoty et al.|(2023); |Guo et al|(2023); Deng et al.| (2023). On CIFAR-100,
our model matches or outperforms other neuron model works at 2 timesteps and is marginally outperformed
by |[Lian et al.[(2024) and |Yao et al.| (2022)) with 4 timesteps. Compared to dissimilar techniques, only the

Work Method Timesteps CIFAR-10 Accuracy CIFAR-100 Accuracy
STDP-tdBN Zheng et al. (2021} Batch Normalization 6 93.16% 71.12%
TEBN Duan et al. [(2022) Batch Normalization 6 94.71% 76.41%
MPBN | Guo et al. (2023} Membrane Normalization 2 96.47% 79.51%
TET |Deng et al. (2022) Loss Function 6 94.50% 74.72%
Surrogate Module Deng et al. (2023) Hybrid 4 96.82% 79.18%
LocalZO + TET Mukhoty et al.|(2023]) Direct Training 2 95.03% 76.36%
Dspike |Li et al. (2021b) Surrogate Gradient 2 93.13% 71.68%
IM-Loss|Guo et al. [(2022) Loss Function + SG 2 93.85% 70.18%
: 4 94.85% 77.05%
GLIF|Yao et al.|(2022} Neuron Model 2 94.44% 75.48%

- 1 4 95.17% 76.85%
LSG|Lian et al. |(2023)} Neuron Model + SG 2 04.41% 76.32%
IM-LIF|Lian et al.|(2024) Neuron Model 3 95.29% 77.21%

4 94.52 + 0.12% 76.89 £+ 0.17%
QIF (Ours) Neuron Model 2 94.44 + 0.07% 76.80 + 0.06%

Table 3: Summary and comparison of results on static datasets. Acronyms: Surrogate Gradient (SG).

work of [Deng et al.[(2023)) and |Guo et al.| (2023) showed significantly better results. All compared works,
including ours, use the ResNet-19 architecture on CIFAR-10 and CIFAR-100.

Next, we look at the training results on neuromorphic datasets in Table[d] On CIFAR-10 DVS, we exceed the
accuracy of all other neuron model approaches on average by 7%. Even when compared to dissimilar meth-
ods, we outperform the best-performing approach from |Deng et al.| (2023) by over 3% and surpass all other
methods by more than 8%. For the N-Caltech-101 dataset, our model achieves the highest accuracy, outper-
forming the LIF neuron model work of [Li et al.| (2022) under identical conditions by nearly 2%. Similarly,
on N-Cars, we see a 3% or greater accuracy boost over the LIF neuron, without requiring data augmenta-
tions. Lastly, on the DVS128-Gesture dataset, we fall short of [Fang et al.| (2021) and Lian et al.[(2024)) by
1% accuracy. However, we only use half and a quarter of the timesteps as these works, respectively. Still,
we outperform most works utilizing other methods, with only [Mukhoty et al.|(2023) outperforming the QIF
model by just over 1% accuracy.

These results showcase the QIF model’s ability to match or outperform the LIF model on a variety of neuro-
morphic and static datasets. Although works employing dissimilar techniques demonstrate superior perfor-
mance on specific datasets, exploring how these methods can be adapted and integrated with the QIF neuron
model to enhance performance remains an interesting path. We include additional experiments with a larger
ResNet model and vision transformer architectures in Appendix [E}

5.4 LoSS LANDSCAPES

To evaluate the training improvements of deep spiking neural networks using the QIF neuron model, we
analyze the loss landscape of identical model architectures trained with both QIF and LIF neurons. The
loss landscapes are visualized using the method described in [Li et al| (2018). As shown in Figure[I3] the
loss landscape for a model trained with QIF neurons is significantly broader compared to a model trained
with LIF neurons. This broader landscape includes a wider local minimum and smoother surface which can
facilitate faster convergence and improved performance, as seen in Figure In contrast, the narrower loss
landscape of the LIF model necessitated reducing the initial learning rate when training on the CIFAR-10
and CIFAR-100 datasets. As discussed in Section 5.2, the non-linear dynamics of the QIF neuron introduce
greater spiking difficulty, which allows QIF models to focus on learning the most relevant features rather
than noise, contributing to its faster convergence relative to LIF models.

Dataset Work Method Architecture Timesteps Accuracy
TEBN |Duan et al. |(2022) Batch Normalization 7-Layer CNN 10 75.10%
MPBN|Guo et al. (2023} Membrane Normalization ResNet-20 10 78.70%
Dspike|Li et al. |[(2021b) Surrogate Gradient ResNet-18 10 75.40%
TET Deng et al. [(2022) Loss Function VGGSNN 10 77.40%
IM-Loss|Guo et al. (2022} Loss Function + SG ResNet-19 10 72.60%
CIFAR-10 DVS Surrogate Module |Deng et al. [(2023) Hybrid ResNet-18 10 83.19%
LocalZO + TETMukhoty et al. (2023} Direct Training VGGSNN 10 75.62%
LIF w/ NDA [Li et al. (2022} Data Augmentations VGG-11 10 79.60%
PLIF Fang et al. |(2021) Neuron Model 7-Layer CNN 20 74.80%
GLIF|Yao et al.|(2022} Neuron Model ResNet-19 16 78.10%
LSG/|Lian et al. |(2023) Neuron Model + SG VGGSNN 10 77.90%
IM-LIF|Lian et al. |(2023) Neuron Model VGGSNN 10 80.50%
QIF (Ours) Neuron Model VGGSNN 10 86.80 + 1.12%
HATS |Sironi et al. (2018 Histogram SVM X 64.20%
DART Ramesh et al. (2020} Histogram SVM X 66.80%
N-Caltech-101 SALT|Kim & Panda|(2021) BN + SALT VGG-11 20 55.00%
LocalZO + TET Mukhoty et al. |(2023} Direct Training VGGSNN 10 79.86%
LIF w/ NDA [Li et al. [(2022) Data Augmentations VGG-11 10 78.20%
QIF w/ NDA (Ours) Neuron Model VGG-11 10 80.01 + 0.05%
HATS |Sironi et al. |(2018) Histogram SVM X 81.00%
CarSNN |Viale et al. (2021) Direct Training 4-Layer CNN 10 77.0%
N-Cars LocalZO + TET Mukhoty et al. |(2023} Direct Training VGGSNN 10 96.78%
LIF w/ NDA [Li et al. [(2022) Data Augmentations VGG-11 10 90.10%
QIF (Ours) Neuron Model VGGSNN 10 93.68 + 0.15%
RSNN Xu et al. [(2024) Recurrent SNN 4-Layer RSNN 20 95.80%
DECOLLE [Kaiser et al. (2020} Online Learning 6-Layer SCNN 500 95.54%
SLAYER |Shrestha & Orchard|(2018) Direct Training 8-Layer SCNN 5 93.64%
DVS128-Gesture LocalZO + TET Mukhoty et al. (2023} Direct Training VGGSNN 10 98.04%
PLIF |Fang et al. (2021} Neuron Model DVSGestureNet 20 97.57%
IM-LIF|Lian et al. (2023} Neuron Model VGGSNN 40 97.33%
QIF (Ours) Neuron Model DVSGestureNet 10 96.76 + 0.43%

Table 4: Comparison between state-of-the-art techniques and the QIF neuron model on neuromorphic
datasets. Acronyms: Spiking Convolutional Neural Network (SCNN), Recurrent SNN (RSNN), Neuro-
morphic Data Augmentations (NDA), Surrogate Gradient (SG).

Additional visualizations of loss contours, loss surfaces, and training graphs for all models and datasets are
provided in Appendix [H} Furthermore, we include a robustness study for the QIF and LIF neurons to their
hyperparameters in Appendix

6 CONCLUSION

In this work, we introduced a discretized Quadratic Integrate-and-Fire (QIF) neuron model to address the
limitations of the LIF neuron models’ linear voltage dependence. We provide an analytical method for
calculating surrogate gradient windows enables efficient training of these networks, reducing the risk of
gradient mismatch and improving training stability. Additionally, we showcased substantial energy savings
when comparing model architectures using the QIF and LIF neuron models and discussed how neuromorphic
hardware can reduce the computational overhead of the QIF neuron model. Our evaluation also demonstrates
that the QIF model not only performs competitively on static datasets but can also achieve significant accu-
racy improvements on neuromorphic datasets. Overall, our results show that the QIF neuron model offers
a promising direction for energy efficiency and performance in deep-spiking neural networks, particularly
when deployed on neuromorphic hardware.

7 REPRODUCIBILITY STATEMENT

To recreate our results, one can look at the following information. Appendix [A] details each dataset and
augmentation applied, and Appendix [B]provides references to model architectures along with hyperparam-
eters used for training. Additionally, an anonymous repository of our project has been included with this
submission, providing details on recreating and running our experiments. The exact system setup and core
dependencies are detailed in Section with versioning of other dependencies detailed in the included
repository. This repository also details the steps required to recreate our figures, such as the ones found in
Appendices [G|and [H] Finally, we have included the discretization steps for the QIF neuron in Appendix [C]
and proofs of novel claims in Appendix [D]

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla, Nabil
Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, Brian Taba, Michael Beakes, Bernard Brezzo,
Jente B. Kuang, Rajit Manohar, William P. Risk, Bryan Jackson, and Dharmendra S. Modha. Truenorth:
Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 34(10):1537-1557, 2015. doi: 10.1109/
TCAD.2015.2474396.

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan Nayak,
Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz, Michael Debole, Steve
Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha. A low power, fully event-based gesture
recognition system. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
7388-7397,2017. doi: 10.1109/CVPR.2017.781.

Tong Bu, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei Yu, and Tiejun Huang. Optimal ANN-SNN
conversion for high-accuracy and ultra-low-latency spiking neural networks. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=7B3IJMM1k_
M.

Yongqgiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. [International Journal of Computer Vision, 113(1):54-66, May
2015. ISSN 1573-1405. doi: 10.1007/s11263-014-0788-3. URL https://doi.org/10.1007/
511263-014-0788-3.

Junyi Chai, Hao Zeng, Anming Li, and Eric W.T. Ngai. Deep learning in computer vision: A criti-
cal review of emerging techniques and application scenarios. Machine Learning with Applications, 6:
100134, 2021. ISSN 2666-8270. doi: https://doi.org/10.1016/j.mlwa.2021.100134. URL https:
//www.sciencedirect.com/science/article/pii/S2666827021000670.

Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Autoaugment: Learn-
ing augmentation strategies from data. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 113-123, 2019. doi: 10.1109/CVPR.2019.00020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255,
2009. doi: 10.1109/CVPR.2009.52068438.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking neural
network via gradient re-weighting. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=_XNtisL32jv.

https://openreview.net/forum?id=7B3IJMM1k_M
https://openreview.net/forum?id=7B3IJMM1k_M
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s11263-014-0788-3
https://www.sciencedirect.com/science/article/pii/S2666827021000670
https://www.sciencedirect.com/science/article/pii/S2666827021000670
https://openreview.net/forum?id=_XNtisL32jv

Shikuang Deng, Hao Lin, Yuhang Li, and Shi Gu. Surrogate module learning: Reduce the gradient error
accumulation in training spiking neural networks. ””, 2023.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast and
accurate inference in deep spiking neural networks. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2328-2336. International Joint
Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/321. URL https:
//doi.org/10.24963/1ijcai.2021/321. Main Track.

Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective batch
normalization in spiking neural networks. Advances in Neural Information Processing Systems, 35:
34377-34390, December 2022.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. Incorporating
learnable membrane time constant to enhance learning of spiking neural networks. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 2641-2651, 2021. doi: 10.1109/ICCV48922.
2021.00266.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang, Huihui
Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning infrastructure
platform for spike-based intelligence. Science Advances, 9(40):eadil480, 2023. doi: 10.1126/sciadv.
adil480. URL https://www.science.org/doi/abs/10.1126/sciadv.adi1480.

Haoran Gao, Junxian He, Haibing Wang, Tengxiao Wang, Zhengqing Zhong, Jianyi Yu, Ying Wang, Min
Tian, and Cong Shi. High-accuracy deep ANN-to-SNN conversion using quantization-aware training
framework and calcium-gated bipolar leaky integrate and fire neuron. Front Neurosci, 17:1141701, March
2023.

Waulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski. Neuronal Dynamics: From Single
Neurons to Networks and Models of Cognition. Cambridge University Press, 2014.

Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, and Zhe Ma. Im-loss:
Information maximization loss for spiking neural networks. ””,””, 2022.

Yufei Guo, Yuhan Zhang, Yuanpei Chen, Weihang Peng, Xiaode Liu, Liwen Zhang, Xuhui Huang, and Zhe
Ma. Membrane potential batch normalization for spiking neural networks. In 2023 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 19363-19373, 2023. doi: 10.1109/ICCV51070.2023.
01779.

Nguyen-Dong Ho and Ik-Joon Chang. Tcl: an ann-to-snn conversion with trainable clipping layers. In 2021
58th ACM/IEEE Design Automation Conference (DAC), pp. 793-798, 2021. doi: 10.1109/DAC18074.
2021.9586266.

Intel. Taking neuromorphic computing to the next level with loithi 2 technol-
ogy brief. https://www.intel.com/content/www/us/en/research/
neuromorphic—computing—loihi-2-technology—-brief.html, 2021. Accessed:
03-19-2024.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reduc-
ing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
448-456, Lille, France, 07-09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/
ioffel5.html.

https://doi.org/10.24963/ijcai.2021/321
https://doi.org/10.24963/ijcai.2021/321
https://www.science.org/doi/abs/10.1126/sciadv.adi1480
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing-loihi-2-technology-brief.html
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html

Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep continu-
ous local learning (decolle). Frontiers in Neuroscience, 14, 2020. ISSN 1662-453X. doi: 10.
3389/fnins.2020.00424. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2020.00424.

Wahab Khan, Ali Daud, Khairullah Khan, Shakoor Muhammad, and Rafiul Haq. Exploring the frontiers of
deep learning and natural language processing: A comprehensive overview of key challenges and emerg-
ing trends. Natural Language Processing Journal, 4:100026, 2023. ISSN 2949-7191. doi: https://doi.org/
10.1016/j.n1p.2023.100026. URL https://www.sciencedirect.com/science/article/
P1ii1/S2949719123000237.

Youngeun Kim and Priyadarshini Panda. Optimizing deeper spiking neural networks for dynamic vi-
sion sensing. Neural Networks, 144:686—698, 2021. ISSN 0893-6080. doi: https://doi.org/10.1016/
j-neunet.2021.09.022. URL https://www.sciencedirect.com/science/article/pii/
S50893608021003841.

Alex Krizhevsky. Learning multiple layers of features from tiny images. ””, pp. 32-33, 2009. URL
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

Gregor Lenz, Kenneth Chaney, Sumit Bam Shrestha, Omar Oubari, Serge Picaud, and Guido Zarrella. Tonic:
event-based datasets and transformations, 2021.

Gregor Lenz, Garrick Orchard, and Sadique Sheik. Ultra-low-power image classification on neuromorphic
hardware, 2023.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifarl0-dvs: An event-stream
dataset for object classification. Frontiers in Neuroscience, 11, 2017. ISSN 1662-453X. doi: 10.
3389/fnins.2017.00309. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2017.00309.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards efficient,
accurate spiking neural networks calibration. In Marina Meila and Tong Zhang (eds.), Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 6316-6325. PMLR, 18-24 Jul 2021a. URL https://proceedings.mlr.press/
v139/1i21d.html.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differ-
entiable spike: Rethinking gradient-descent for training spiking neural networks. In Advances
in Neural Information Processing Systems, volume 34, pp. 23426-23439. Curran Associates, Inc.,
2021b. URL https://proceedings.neurips.cc/paper_files/paper/2021/hash/
c4cad238a0b923820dcc509a6f75849p—-Abstract.html.

Yuhang Li, Youngeun Kim, Hyoungseob Park, Tamar Geller, and Priyadarshini Panda. Neuromorphic data
augmentation for training spiking neural networks. In Shai Avidan, Gabriel Brostow, Moustapha Cissé,
Giovanni Maria Farinella, and Tal Hassner (eds.), Computer Vision — ECCV 2022, pp. 631-649, Cham,
2022. Springer Nature Switzerland. ISBN 978-3-031-20071-7.

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.00424
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.00424
https://www.sciencedirect.com/science/article/pii/S2949719123000237
https://www.sciencedirect.com/science/article/pii/S2949719123000237
https://www.sciencedirect.com/science/article/pii/S0893608021003841
https://www.sciencedirect.com/science/article/pii/S0893608021003841
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00309
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00309
https://proceedings.mlr.press/v139/li21d.html
https://proceedings.mlr.press/v139/li21d.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/c4ca4238a0b923820dcc509a6f75849b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/c4ca4238a0b923820dcc509a6f75849b-Abstract.html

Shuang Lian, Jiangrong Shen, Qianhui Liu, Ziming Wang, Rui Yan, and Huajin Tang. Learnable surro-
gate gradient for direct training spiking neural networks. In Proceedings of the Thirty-Second Inter-
national Joint Conference on Artificial Intelligence, pp. 3002-3010, Macau, SAR China, August 2023.
International Joint Conferences on Artificial Intelligence Organization. ISBN 978-1-956792-03-4. doi:
10.24963/ijcai.2023/335. URL https://www.1ijcai.org/proceedings/2023/335.

Shuang Lian, Jiangrong Shen, Ziming Wang, and Huajin Tang. Im-lif: Improved neuronal dynamics with
attention mechanism for direct training deep spiking neural network. IEEE Transactions on Emerging
Topics in Computational Intelligence, 8(2):2075-2085, 2024. doi: 10.1109/TETCI.2024.3359539.

Bhaskar Mukhoty, Velibor Bojkovic, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan Xiong,
and Bin Gu. Direct training of SNN using local zeroth order method. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
eTF3VDH2bo6.

Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and Nitish Thakor. Converting static image datasets
to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9, 2015. ISSN 1662-
453X. doi: 10.3389/fnins.2015.00437. URL https://www.frontiersin.org/journals/
neuroscience/articles/10.3389/fnins.2015.00437.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. =~ Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alche
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Christian Pehle and Jens Egholm Pedersen. Norse - a deep learning library for spiking neural net-
works, jan 2021. URL |https://doi.org/10.5281/zenodo.4422025. Documentation:
https://norse.ai/docs/.

Bharath Ramesh, Hong Yang, Garrick Orchard, Ngoc Anh Le Thi, Shihao Zhang, and Cheng Xiang. Dart:
Distribution aware retinal transform for event-based cameras. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(11):2767-2780, 2020. doi: 10.1109/TPAMI.2019.2919301.

Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input encoding
and leakage and threshold optimization. IEEE Transactions on Neural Networks and Learning Systems,
34(6):3174-3182, 2023. doi: 10.1109/TNNLS.2021.3111897.

Sumit Bam Shrestha and Garrick Orchard. Slayer: spike layer error reassignment in time. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp. 1419-1428,
Red Hook, NY, USA, 2018. Curran Associates Inc.

A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman. Hats: Histograms of averaged time
surfaces for robust event-based object classification. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1731-1740, Los Alamitos, CA, USA, jun 2018. IEEE Computer
Society. doi: 10.1109/CVPR.2018.00186. URL https://doi.ieeecomputersociety.org/
10.1109/CVPR.2018.00186

https://www.ijcai.org/proceedings/2023/335
https://openreview.net/forum?id=eTF3VDH2b6
https://openreview.net/forum?id=eTF3VDH2b6
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00437
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00437
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5281/zenodo.4422025
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00186
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00186

Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and Guogqi Li. Deep directly-
trained spiking neural networks for object detection. In 2023 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 6532-6542, Paris, France, October 2023. IEEE. ISBN 9798350307184.
doi: 10.1109/ICCV51070.2023.00603. URL jhttps://ieeexplore.ieee.org/document/
10376840/

Wei-Yu Tsai, Davis R. Barch, Andrew S. Cassidy, Michael V. DeBole, Alexander Andreopoulos, Bryan L.
Jackson, Myron D. Flickner, John V. Arthur, Dharmendra S. Modha, John Sampson, and Vijaykrishnan
Narayanan. Always-on speech recognition using truenorth, a reconfigurable, neurosynaptic processor.
IEEE Transactions on Computers, 66(6):996-1007, 2017. doi: 10.1109/TC.2016.2630683.

Alberto Viale, Alberto Marchisio, Maurizio Martina, Guido Masera, and Muhammad Shafique. Carsnn:
An efficient spiking neural network for event-based autonomous cars on the loihi neuromorphic research
processor, 2021. URL https://arxiv.org/abs/2107.00401l

Bingsen Wang, Jian Cao, Jue Chen, Shuo Feng, and Yuan Wang. A new ann-snn conversion method with
high accuracy, low latency and good robustness. In Edith Elkind (ed.), Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 3067-3075. International Joint
Conferences on Artificial Intelligence Organization, 8 2023. doi: 10.24963/ijcai.2023/342. URL https:
//doi.org/10.24963/1ijcai.2023/342, Main Track.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training high-
performance spiking neural networks. Frontiers in Neuroscience, 12, 2018. ISSN 1662-453X. doi: 10.
3389/tnins.2018.00331. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2018.00331.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747,

Qi Xu, Xuanye Fang, Yaxin Li, Jiangrong Shen, De Ma, Yi Xu, and Gang Pan. RSNN: Recurrent spiking
neural networks for dynamic spatial-temporal information processing. In ACM Multimedia 2024, 2024.
URL https://openreview.net/forum?id=FFIh7vYgyx.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and their
applications: A review. Brain Sci, 12(7), June 2022.

Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo XU, and Guoqi Li. Spike-
driven transformer v2: Meta spiking neural network architecture inspiring the design of next-generation
neuromorphic chips. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=1SIBN5Xyw7.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. GLIF: A unified gated leaky integrate-and-fire neuron
for spiking neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=UmFSx2c4ubT.

Zexiang Yi, Jing Lian, Qidong Liu, Hegui Zhu, Dong Liang, and Jizhao Liu. Learning rules in spiking neural
networks: A survey. Neurocomputing, 531:163—179, 2023. ISSN 0925-2312. doi: https://doi.org/10.1016/
j-neucom.2023.02.026. URL https://www.sciencedirect.com/science/article/pii/
S0925231223001662.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained larger
spiking neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):11062—
11070, May 2021. doi: 10.1609/aaai.v35i12.17320. URL https://ojs.aaai.org/index.php/
AAAI/article/view/17320.

https://ieeexplore.ieee.org/document/10376840/
https://ieeexplore.ieee.org/document/10376840/
https://arxiv.org/abs/2107.00401
https://doi.org/10.24963/ijcai.2023/342
https://doi.org/10.24963/ijcai.2023/342
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00331
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00331
https://arxiv.org/abs/1708.07747
https://openreview.net/forum?id=FFIh7vYgyx
https://openreview.net/forum?id=1SIBN5Xyw7
https://openreview.net/forum?id=UmFSx2c4ubT
https://openreview.net/forum?id=UmFSx2c4ubT
https://www.sciencedirect.com/science/article/pii/S0925231223001662
https://www.sciencedirect.com/science/article/pii/S0925231223001662
https://ojs.aaai.org/index.php/AAAI/article/view/17320
https://ojs.aaai.org/index.php/AAAI/article/view/17320

A DATASETS AND AUGMENTATIONS

A.1 CIFAR-10

CIFAR-10 (Krizhevskyl 2009) is a widely used dataset for traditional ANN and SNN models. It consists of
60, 000, 32 x 32 colored images consisting of 10 classes, with some examples being airplanes, automobiles,
cats, and horses. There are 6,000 images per class. Additionally, the dataset is split into standardized
training and testing sets with 50,000 and 10,000 images, respectively. When training, we perform the
following dataset augmentations: Random cropping after adding 4 pixels of zero padding to the outside of
the image, random horizontal flipping, cutout, and normalization of each image by the mean and standard
deviation of the dataset.

A.2 CIFAR-100

CIFAR-100 (Krizhevsky, 2009) is also a widely used dataset for traditional ANN and SNN models. It
contains the same shape and number of images as CIFAR-10. However, CIFAR-100 contains 100 unique
classes instead of 10, with several examples being bed, rocket, apples, and otter. There are only 600 images
per class, with each class being evenly split between standardized training and testing sets the same size as
CIFAR-10. We use the same augmentations as with CIFAR-10 in addition to AutoAugment (Cubuk et al.|
2019).

A.3 CIFAR-10DVS

CIFAR-10 DVS (Li et al., 2017) uses a subset of CIFAR-10 with 1, 000 images from each class. To create
this dataset, the authors first place images from their subset on a large LCD monitor. Then, they aim a
Digitial Vision Sensor (DVS) at the LCD monitor and perform a pan and tilt to generate spiking events
with size 128 x 128 with two polarity channels. These events can then be accumulated for a set number
of timesteps to generate frames of spiking activity. When using this dataset, we accumulate events into 10
frames and resize them to 48 x 48. Additionally, we apply random horizontal flipping and randomly rotate
the image up to £10°.

A.4 N-CALTECH-101

N-Caltech-101 (Orchard et al.,|2015) was created similarly to CIFAR-10 DVS. First, the authors select 8831
images from the original Caltech-101 dataset, removing the "Faces’ class due to conflicts with the ’Faces
Easy’ class. Next, the authors use a DVS, similar to the CIFAR-10 DVS dataset, to transform the dataset
into spiking events. Similarly to CIFAR-10 DVS, we accumulate events into 10 frames and resize them to
48 x 48. We then apply the M 1 N1 neuromorphic data augmentation policy described by (Li et al.| [2022).

A.5 N-CARS

N-Cars (Sironi et al.l |2018) contains two classes, Car and Background, with 12,336 and 11,693 samples
respectively being the same size and shape of CIFAR-10 DVS samples. The dataset was generated by
attaching a DVS camera to the windshield of a car and driving around in various sessions. The dataset
contains a standard training and testing set with 15,422 and 8,607 samples, respectively. The only pre-
processing we perform on this dataset is rescaling images to be 48 x 48 after accumulating events into 10
frames.

A.6 DVS128-GESTURE

DVS128-Gesture (Amir et al., 2017) contains 1,342 samples of various gestures, such as waving, being
performed by 29 different individuals in front of a DVS camera under 3 different lighting conditions. These
gestures are recorded with the same size and shape as CIFAR-10 DVS samples. After accumulating events
into 10 frames, we randomly roll the pixels of the frames by up to 5 pixels in either the x or y axis.

B TRAINING SETUP

We use the following model architectures: ResNet-19 Zheng et al.[(2021), VGGSNN |Deng et al.| (2022),
VGG-11 Kim & Pandal (2021), and DVSGestureNet |Fang et al.| (2021). Complete details of the training
setup and hyperparameters used for each dataset and model can be seen in Table[5] We use a cosine decay
learning rate scheduler to slowly decay the learning rate to 0 for all models. When using stochastic gradient
descent (SGD), we use a momentum of 0.9. When using Adam, we set 5; = 0.9, S = 0.999. For all models
trained with the QIF neuron model, we use the following parameters: u;;, = 0.5, u. = 0.5, Upes¢ = 0, and
a = 0.25. When training with the LIF neuron model, we adopt the same model and training setup in Table
Bl except we use a learning rate of 1e — 3 when training with the ResNet-19 model. We set the LIF neuron
parameters as u, = 0.5, urest = 0, § = 0.25, and we use the surrogate gradient defined in Equation
witha = 1.

Parameters CIFAR-10 CIFAR- CIFAR-10 N-Caltech- N-Cars DVS128-
100 DVS 101 Gesture
Model ResNet-19 ResNet-19 VGGSNN VGG-11 VGGSNN DVSGestureNet
Optimizer SGD SGD Adam Adam Adam Adam
Weight Decay | le — 4 le—4 5e —4 le—4 le—4 le—4
Learning Rate | 0.1 0.1 le—3 le—3 le—3 le -3
Epochs 350 350 100 100 100 100
Batch Size 128 128 64 64 64 32
Timesteps 2 2 10 10 10 10
Dropout X X 0.6 0.6 0.6 0.75

Table 5: Training setup for each dataset

C QUADRATIC INTEGRATE-AND-FIRE NEURON MODEL DISCRETIZATION

The QIF neuron model is defined as
du
T% =
where 7 is a membrane time constant, u is the neurons voltage, a is a sharpness parameter, ,es; 1S the
resting voltage, u,. is the critical spiking threshold, R is a resistor, and [is pre-synaptic input. We use

Euler’s method to discretize Equation as done by Wu et al.|(2018)). First, we replace the derivative with
the following approximation

a(u - urest)(u - uc) + RI, (18)

du _u(t+1)—ult)
dt At '
Substituting this into Equation [T8] we have
u(t+1) — u(t)
A

19)

~ a(u(t) — Urest) (u(t) — ue) + RI(t), (20)

with ¢ being some discrete timestep and At being some small step size. Then, solving for u(t + 1) gives us
u(t+1) = u(t) + T[Q(u(t) — Upest) (u(t) — ue) + RI(t)]. 21

Next, assuming that At = 1, g =1, and % has been folded into a, we can simplify our equation to
u(t +1) = u(t) + a(u(t) — trest) (w(t) — ue) + I(t). (22)

When Equation |18 has zero input, i.e. I(¢t) = 0 for all ¢, its u..s; and u, are the roots of the polynomial
(Gerstner et al., 2014). Therefore, to ensure our discretized model satisfies this behavior, we drop the
additional u(t) term in Equation|22|and obtain our final discretization defined as

u(t +1) = a(u(t) — tpest) (u(t) — ue) + I(t). (23)

We believe that dropping the u(t) term allows for better interpretability of the dynamics invoked by different
parameter choices for the QIF neuron. We performed preliminary testing with the additional u(¢) where we
observed higher spiking activity with no noticeable performance improvement.

D PROOFS OF THEOREMS

Theorem 1. Under the discrete QIF neuron model using tdBN to normalize pre-synaptic input I such that

I ~ N(0,u?,), the membrane potential u follows u ~ N (iy,02) with 1, = af (U, Urest, tc) and

02 = uZ, h(Uth, Upest, Ue, a) where j1,, and o2 are directly proportional to the functions f and h respectively.

The functions f and h can be approximated as f(uip, Urest, Ue) = ufh + Upestte and h(Uip, Urest, Ue, @) =
1 + GQ(Q’U/%}L + (UC - Urest)2)

Proof. We define the discrete QIF neuron model as

u(t +1) = a(u(t) — tpest) (u(t) — ue) + I(2), 24)

where ¢ is the timestep, u is the membrane potential, a is a sharpness parameter, u,..4; is the resting voltage,
u, is the critical firing voltage, and I is pre-synaptic input. Considering the membrane potential u(¢) and
assuming the last firing time was ¢’ < ¢, we have

ult+1)~ Y a NIk = 1) = tpew) (I(k = 1) — ue) + I(k). (25)
k=t'41

This approximation only holds if a is a relatively small constant. In our work, a is typically set to 0.25.
Small values of a ensure that input into the neuron more than two timesteps ago has a minuscule impact on
the voltage at timestep ¢ + 1, meaning we can simply Equation [25]as

u(t+ 1) ma(l(t —1) — tpest) (It — 1) —ue) + I(2). (26)
Then, under the tdBN assumption that I ~ N(0,u?,) and assuming that () is an independent and identi-
cally distribution sample (i.i.d) for all ¢, we can approximate the expectation of u(t + 1) as
Elu(t + 1)) ~ Ela(I(t — 1) — tyee) (I(t — 1) —) + I(1)]
=Ela(I(t —1)* = I(t — 1) (trest + te) + tresetic) + 1(1)]
— Ela(t — 1)%] — Elal(t — 1)(ttreat + te)] + Elatuyesru] + E[I()] (i.id)
= aB[I(t — 1)%] — a(trest + ue)E[I(t — 1)] + aUrestue

= a(ufh + UpestUe)-

Likewise, we can approximate the variance of u(t + 1) as
Varfu(t+ 1)) = Varfa(I(t — 1) — tpest) (I (t — 1) — ue) + I(1)]
= Varla(I(t —1)* = I(t — 1) (Upest + te) + Upesttie) + 1(1)]
= Var[al(t — 1))+ VarlaI(t — 1)(trest + te)] + Varfauyesiue] + Var[I(t)] (iid)
= a*Var[I(t — 1)?] + a®(trest + ue)*Var[I(t — 1)] + Var[I(t)]
= uiy (14 a®(2uf), + (ve + vrest)?))-
Therefore, we can define functions f : R = Rand h: R* — Ras
F(Uhs Urests Ue) = Ufy + Uresttic
h(uth, Urest, U, a) = 1+ a2(2u%h + (ve + v,«est)Q).

Then fiy, & af(uth, Urest, Ue) and 02 & uZ;, h(ueh, Urest, Ue, a), thus showing that u ~ N (piy, 02). O

E ADDITIONAL EXPERIMENTS

E.1 RESNET-34 oN CIFAR-10

To showcase the QIF neuron model’s ability to scale to larger and deeper model architectures, we train a
ResNet-34 |Zheng et al.|(2021) on CIFAR-10 with the images scaled up to 64 x 64. We choose ResNet-34
as it has around 2x the parameters as the ResNet-19 architecture. We use mostly the same hyperparameters
and dataset augmentations as we did when using ResNet-19, only changing two parameters. The surrogate
gradient window of the LIF model is set to o = 0.5 and the learning rate for the LIF model is set to 0.01.

Spiking ResNet-34 Training Spiking ResNet-34 Validation
Accuracy on CIFAR-10 64x64 (T=2) Accuracy on CIFAR-10 64x64 (T=2)
100 90

80 i A ”‘"»"”"‘”‘A"';%"'WmﬁwrﬁW
A
80
70
50
40
40

| — LIF
20 QIF

Accuracy %

30

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Epoch Epoch

Figure 2: Training and validation accuracy comparison of ResNet-34 on CIFAR-10 64x64 validation using
QIF and LIF neuron models.

Figure 2] showcases the training of the QIF and LIF neuron models. In this figure, we see that the LIF neuron
model starts to outperform the QIF neuron model in terms of training accuracy at around 50 epochs into
training. However, we see much more volatility in the LIF neuron model validation accuracy, leading us
to believe the LIF model is overfitting. On the other hand, the QIF neuron model has a much smoother
and less volatile validation accuracy throughout the training process. Both models obtain similar validation
accuracies at 88.24% for the LIF model and 88.50% for the QIF model.

o ResNet-34 Average Spike Rate Per Layer on CIFAR-10 (64x64)

. LIF

0| ™= QIF

50

40 1

30

Spike Rate (%)

201

10 A

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Spiking Neuron Layer

Figure 3: Average spike rate comparison of ResNet-19 over the CIFAR-10 validation set using QIF and LIF
neuron models.

Figure 3| showcases the average spike rate per layer of the QIF and LIF neuron models where we see signifi-
cant reductions in spiking activity from the QIF neuron model. Using these spike rates to calculate the energy
consumption of both models we get that the LIF model consumes approximately 3m.J while the QIF model
consumes approximately 2.15x less energy at 1.4m.J. These results showcase the QIF neuron model’s
ability to scale to larger CNN architectures while providing competitive performance and maintaining high
energy savings.

E.2 META-SPIKEFORMER ON TINY IMAGENET

To showcase the QIF neuron models’ performance on a non-convolutional architecture, we perform a pre-
liminary training experiment using the 31.3 million parameter Meta-SpikeFormer architecture
on the Tiny ImageNet dataset Deng et al (2009). We use the same hyperparameters as noted in the
work of for both neuron models. We use the same dataset augmentations that we applied
to CIFAR-10. We use the same neuron parameters as we did for ResNet-19, except we change the surrogate
gradient window for the LIF neuron model to o = 0.5. Additionally, we replace all batch normalizations
with Threshold-Dependent Batch Normalizations (tdBN) Zheng et al.|(2021}).

Meta-SpikeFormer Training Meta-SpikeFormer Validation

Accuracy on Tiny ImageNet (T=2) Accuracy on Tiny ImageNet (T=2)
100 40
35
80
30
X
2. 60 25
o
e 20
=
E 40 15
20 10
— LIF 5
— Ql
o] QIF 0
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
Epoch Epoch

Figure 4: Training and validation accuracy comparison of ResNet-34 on CIFAR-10 64x64 validation using
QIF and LIF neuron models.

The training results in Figure d]show that the LIF model maintains a slight lead in training accuracy through-
out training. When looking at validation accuracy, we see the LIF model outperforms the QIF model up until
around epoch 65, where both neuron models have similar accuracy. At around epoch 80, the QIF neuron
starts to pull away, consistently having higher validation accuracy for the rest of the training. The QIF and
LIF models achieve validation accuracies of 39.16% and 38.16%, respectively.

w© Meta-SpikeFormer Average Spike Rate Per Layer on Tiny ImageNet (T=2)
- LF
= QIF

20

1D| | I | | || |I | || |I || |I II I Il I

ol M F MM MENWENY EELELENLLELY
123456789

10111213141516 17 181920 21 22 2324 2526 27 28 29 30 31 32 3334 35 36 37 38 30 40 41 424344 4546 47 484950 51 52 5354 5556 57 58 59 60 61 62 63 64 65 66 67 686970 717273747576 77
Spiking Neuron Layer

Spike Rate (%)
w
8

Figure 5: Average spike rate comparison of ResNet-19 over the CIFAR-10 validation set using QIF and LIF
neuron models.

Figure[5]showcases the spiking activity of both neuron models in each layer of the network. On average, the
QIF neuron model spikes 4% less than the LIF neuron model. When calculating the energy consumption
difference, the QIF model consumes approximately 8.20m.J while the LIF model consumes approximately
0.99x less energy at 8.14m.J. Due to the marginal difference in spike rate, energy consumption, and val-

idation accuracy, the LIF neuron model may be preferred for this task due to its reduced computational
complexity.

As a side note, tdBN is required for the analytical calculation of the QIF neuron model’s surrogate gradient
window, so we modified the architecture accordingly. While tdBN has been extensively tested on convolu-
tional neural network architectures, existing spiking vision transformer works do not utilize tdBN techniques

to the best of our knowledge. Therefore, we are unsure of how this decision affected model performance and
spike rate. Examining whether tdBN is appropriate for usage within spiking vision transformer architectures
remains an interesting future research direction.

F ROBUSTNESS ANALYSIS

In this section, we examine the robustness of the QIF and LIF neuron models in relation to hyperparameter
choice. To do this, we use the LeNet-5 (Lecun et al., |1998)) architecture trained on the Fashion-MNIST (F-
MNIST) dataset (Xiao et al.,|2017) and DVSGestureNet Fang et al.|(2021) architecture trained on DVS128-
Gesture (Amir et al., 2017). We alter the LeNet-5 architecture in two ways. We perform tdBN after each
convolutional layer, and we alter the classifier to now only contain two layers with 120 and 10 hidden units,
respectively. Additionally, for the LeNet-5 architecture, each model was trained for 10 epochs using the
Adam optimizer with a learning rate of 1le — 3, weight decay of 1e — 4, batch size of 128, 2 timesteps, and
the same random number generation seed for all models. For the DVSGestureNet architecture, we follow
the same training setup noted in Appendix [B|with two modifications. We reduce the training time to just 20
epochs and remove the dropout layers. The LIF neuron used oo = 1 for its surrogate gradient for both models
while the QIF model used our analytical equation. For LIF neurons, we sweep through the threshold, wu;p,,
and decay, /3, hyperparameters while for QIF neurons, we sweep through the threshold, w.y, critical voltage
threshold, u., and sharpness parameter, a. For both models, we keep the resting voltage at a constant zero.
We perform a grid search over all hyperparameters listed above with the values {0.2,0.4,0.6,0.8,1.0}

Figure [6] and [7] showcase the results of our hyperparameter sweep. While these figures showcase the re-
sults of our hyperparameter sweep, they include parameter combinations that don’t make sense under the
assumptions in the proof of Theorem 1. Specifically, when using tdBN, we assume that a is a relatively small
constant. Therefore, parameter sets with a > 0.4 are unrealistic choices. However, we include values of
a > 0.4 in our figures to showcase the performance of the QIF neuron model with naive parameter choices.
We report the mean =+ standard deviation, minimum, and maximum of each neuron model’s accuracy values
in Table [6] When calculating the values in Table [6] we exclude results from parameter sets with a > 0.4.
These figures and the table showcase that under reasonable parameter selection, the QIF model outperforms
the LIF in terms of minimum, average, and maximum accuracies while having a smaller standard deviation.
In the case of LeNet-5, the results are relatively close with only minor differences. However, with DVSGes-
tureNet, we see the QIF model greatly outperforming the LIF model in all metrics. These results indicate
the QIF neuron model matches or surpasses the LIF neuron model in terms of hyperparameter robustness.

Model Mean Accuracy ~ Minimum Accuracy Maximum Accuracy
LIF LeNet-5 88.32 £ 0.41% 87.26% 88.99%
QIF LeNet-5 (a < 0.4) 88.73 £ 0.25% 88.00% 89.08%
LIF DVSGestureNet 79.08 £4.91% 69.44% 86.81%
QIF DVSGestureNet (a < 0.4) 91.33 £ 2.38% 84.72% 95.14%

Table 6: Mean, minimum, and maximum accuracies obtained from hyperparameter sweep using LeNet-5
trained on Fashion-MNIST and DVSGestureNet trained on DVS128-Gesture with the QIF and LIF neuron
models.

LIF LeNet-5 on F-MNIST QIF LeNet-5 on F-MNIST: a=0.2

0@ @ o . 10/ ® e e o 89.0 o
[} [¥]
1+ 1]
osi® e @ 88.5 ‘g ogi® e e o 5
2 88.8 ¢
@ o6i® © e o 880- =S 06@ @ o o c
2 S
0418 e @ [8753 0.4 1 e o o 88.6 G
G G
0210 @ o o ¢ T 028 e e e ¢ g
02 04 06 08 10 02 04 06 08 10
Uth Uth
QIF LeNet-5 on F-MNIST: a = 0.4 QIF LeNet-5 on F-MNIST: a=0.6
10{® e e o 89.00 . 107 ® o o o -
[} u
© 89.0 m
0.81 e o o o 88.75 3 0.8 1 e o o o 5
() [}
Yoo o e o o Mot Yoce o e e e 8857
0.4 88.252 0.41® [] [L] o 88.02
0.21® e o = 0.21@ e o e >
. T T T T T 88.00 . T T T T T 87.5
02 04 06 08 10 02 04 06 08 10
Uth Uth
QIF LeNet-5 on F-MNIST: a=0.8 QIF LeNet-5 on F-MNIST: a=1.0
0@ ® @ ® @® . 10/® ® @® @& @ 89.0
89.0 § @
0.8® ® e]) § 0.8@ ® ® o [] 88.5 é
88.5 % b
8] i o i
5 06 e o o o c F06® e o o 88.0 £
= =
0.4 e e o o @807 04i®@ o @ o .3
g © S
0219 o ¢ o e s 0210_© o e e
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Uth Uth

Figure 6: Hyperparameter sweep for LeNet-5 trained with both the QIF and LIF neuron models on Fashion-
MNIST.

LIF DVSGestureNet on QIF DVSGestureNet on

DVS128-Gesture DVS128-Gesture: a=0.2
1.0{® [] ® ® [] > 1.0{® ® 95.0 5,
&4 8
osie @ 2 0.8 @ ™ Y 925 3
80 & &
. 0.6 1@ ® L g 5 0.61@) 90.0 ¢
75 & b=
0.41@ ® o o g 0.4@® [] ® 87.55
o2l o o - oM o2e o e e >
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Uth Uth
QIF DVSGestureNet on QIF DVSGestureNet on
DVS128-Gesture: a=0.4 DVS128-Gesture: a=0.6
1.0{® ® > 10/ ® ® ® o [[">
1] ©
0.8{® o o o |[¥35 os® e e e e | %03
(.} (=]
5 0.61{®@ e 90.0 < 5 06® e o 85 =
[=] o
= =]
0.41@ ® W8755 0.4® ® o B
0.21® : : o o Bsso® 0.2 14 . : ‘ ® >
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Uth Uth
QIF DVSGestureNet on QIF DVSGestureNet on
DVS128-Gesture: a=0.8 DVS128-Gesture: a=1.0
1.0{@ [] [] [] [] > 1.01@® [] [] [] [] ap >
90 (9] (o)
o o
0.8{® ® ® ® ® a5 2 0.8-@ ® ®] ® 2
< 80 <
5 0.61 e o o goc 060 o o e e c
2 °
+ =]
0.4 ® ® 75 E 0.4 1 ® ® ® 20 E
02ia o e e B> 028 © e e e 5
02 04 06 08 1.0 02 04 06 08 10
Uth Uth

Figure 7: Hyperparameter sweep for DVSGestureNet trained with both the QIF and LIF neuron models on
DVS128-Gesture.

G SPIKE RATES OF SNN MODELS

In this section, we showcase the average spike rate per layer of each model and dataset averaged over the
entire validation set. We train the same model architecture twice using the LIF and QIF neurons. Across all
models, the average spike rate across all layers is lower for the QIF neuron model. We also provide greater
introspection into the spike rate by analyzing the voltage distributions of the LIF and QIF neuron models.

ResNet-19 Average Spike Rate Per Layer on CIFAR-10

. LIF
1 W QIF

Spike Rate (%)
G 8 &8 8 & 8

[
o

w

(=)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Spiking Neuron Layer

Figure 8: Average spike rate comparison of ResNet-19 over the CIFAR-10 validation set using QIF and LIF
neuron models.

LIF ResNet-19 Voltage QIF ResNet-19 Voltage
Distribution on CIFAR-10 1e6 Distribution on CIFAR-10
800000 4 144 === Vi =0.5 i
1
700000 124 :
1
600000 - Lo :
9 |
5 500000 - 05 :
3 400000 |
@ 0.6 1
L~ 300000 | !
0.4 1 1
200000 :
1
100000 - 02 7 !
1
0 0.0 ; ; — = .
-15 -10 -5 0 5 10 -2 -1 0 1 2
Voltage Voltage

Figure 9: Voltage distribution comparison of the LIF and QIF neuron models using ResNet-19 trained on
CIFAR-10. The distributions are taken from the 6th layer of neurons in the network when inferencing across
the entire validation set. On the left, the LIF neuron model creates a broad distribution, with around 16% of
all neurons being greater than the threshold (v, = 0.5). On the right, the QIF neuron model creates a much
narrower distribution with tight grouping around zero. This leads to only around 4% of the neurons being
above the threshold (v, = 0.5).

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

ResNet-19 Average Spike Rate Per Layer on CIFAR-100

50

I

Spike Rate (%)
N
o

104

Figure

. LIF
= QIF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Spiking Neuron Layer

10: Average spike rate comparison of ResNet-19 over the CIFAR-100 validation set using QIF and

LIF neuron models.

Spike Rate (%)
~
w

5.01

2.5

0.0

Figure

1 . LIF

VGGSNN Average Spike Rate Per Layer on CIFAR-10 DVS

= QIF

lLl.I;I,.,.;

Spiking Neuron Layer

11: Average spike rate comparison of VGGSNN over the CIFAR-10 DVS validation set using QIF

and LIF neuron models.

VGG-11 Average Spike Rate Per Layer on N-Caltech-101

25 A . LIF

= QIF

111

Spiking Neuron Layer

= =]
o w o

Spike Rate (%)

w

(=)

Figure 12: Average spike rate comparison of VGG-11 over the N-Caltech-101 validation set using QIF and
LIF neuron models.

VGGSNN Average Spike Rate Per Layer on NCars

=
[=)]

. LIF
= QIF

Spiking Neuron Layer

Spike Rate (%)
= = =
£l [=}] co o N JI=

N

Figure 13: Average spike rate comparison of VGGSNN over the N-Cars validation set using QIF and LIF
neuron models.

DVSGestureNet Average Spike Rate Per Layer on DVS128-Gesture

507w LIF

s QIF
50 A

) - L—L—L l
0
1 2 3 4 5

Spiking Neuron Layer

Spike Rate (%)
S 5

N
o

|

Figure 14: Average spike rate comparison of DVSGestureNet over the DVS128-Gesture validation set using
QIF and LIF neuron models.

H Loss CONTOUR PLOTS AND SURFACES

In this section, we present contour and surface plots of the loss landscape and training graphs for each model

following the method described by (2018]). We train the same model architecture twice using LIF
and QIF neurons.

LIF ResNet-19 Loss Landscape QIF ResNet-19 Loss Landscape
on CIFAR-10 on CIFAR-10

1.00 1.00
0.751 0.75
0.501 0.50
0.251 0.25
0.004 0.001
-0.251 -0.25
—=0.50 =0.501
-0.751 -0.75

-1.00 T T T T T T T -1.00 T T T T T T T

-1.00 -0.75 -050 -0.25 000 025 050 075 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 050 075 100

Figure 15: Post training loss landscape contour plot of ResNet-19 on CIFAR-10 using QIF and LIF neuron
models.

LIF ResNet-19 Loss Landscape QIF ResNet-19 Loss Landscape
on CIFAR-10 on CIFAR-10

1.00 -1.00

Figure 16: Post training loss surface of ResNet-19 over the CIFAR-10 validation set using QIF and LIF
neuron models.

Spiking ResNet-19 Training Spiking ResNet-19 Validation
Accuracy on CIFAR-10 (T=2) Accuracy on CIFAR-10 (T=2)
100
90
80 80
° 70
§ 60 60
3 50
<
40 40
— uF | 30
20 — QF | 50l
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Epoch Epoch

Figure 17: Training and validation accuracy comparison of ResNet-19 on CIFAR-10 using QIF and LIF
neuron models.

Figures [I3] [T6] and [I7] show a contour plot of loss surface, 3D visualization of the contour plot, and the
training graphs of the QIF and LIF models trained on CIFAR-10 using ResNet-19.

1363

1364 LIF ResNet-19 Loss Landscape QIF ResNet-19 Loss Landscape
on CIFAR-100 on CIFAR-100
1365 1.00 1.00
1366
1367 0.75 A 0.75 A
1368 Y
1369 0.507" 0.50
10 0.25 A 0.25
1371
1372 0.00 - 0.00
1373
1374 -0.25 1 TN -0.25 1
1375
1376 —0.50 A —0.50 A
1377
1378 —0.75 1 -0.75 A
1379
-1.00 T T T T T T T -1.00 T T T T T T T
1380 -1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 050 075 100
1381
1382

1985 Figure 18: Post training loss landscape contour plot of ResNet-19 on CIFAR-100 using QIF and LIF neuron
1384 models.
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

1408
1409 Figure 19: Post training loss surface of ResNet-19 on CIFAR-100 using QIF and LIF neuron models.

LIF ResNet-19 Loss Landscape QIF ResNet-19 Loss Landscape
on CIFAR-100 on CIFAR-100

Nm-ﬁ-mmqmw
R Y N S

Spiking ResNet-19 Training Spiking ResNet-19 Validation

Accuracy on CIFAR-100 (T=2) 80 Accuracy on CIFAR-100 (T=2)
80 - 704
60 A
60 -
R 50 1
0
© 40 A
S 40 A
g 301
20 201
— LF 10
— QIF
01 Q ol
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Epoch Epoch

Figure 20: Training and validation accuracy comparison of ResNet-19 on CIFAR-100 using QIF and LIF
neuron models.

Figures [I8] [19] and 20| showcase the loss surfaces and training graphs of an LIF and QIF model trained on
CIFAR-100. We see broader minima when using the QIF neuron model, which translates to superior training
performance under the same conditions.

LIF VGGSNN Loss Landscape QIF VGGSNN Loss Landscape
on CIFAR-10 DVS on CIFAR-10 DVS

0.75 A 0.75 A

0501 0.50 1
0.25 | 0.251

0.00 0.00

—-0.251 -0.25
—0.50 —0.50 -
—-0.751 -0.75

-1

.00 ; ; T ; T T T .00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100 -1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

Figure 21: Post training loss landscape contour plot of VGGSNN on CIFAR-10 DVS using QIF and LIF
neuron models.

LIF VGGSNN Loss Landscape
on CIFAR-10 DVS

QIF VGGSNN Loss Landscape
on CIFAR-10 DVS

17.5
15.0
12.5
10.0

Figure 22: Post training loss surface of VGGSNN on CIFAR-10 DVS using QIF and LIF neuron models.

100

90+

80 1

Accuracy %

501

40

301

Accuracy on CIFAR-10 DVS

VGGSNN Training

VGGSNN Validation
Accuracy on CIFAR-10 DVS

701

60 1

801
701
60
501
401
— uF
—— QF
25 50 75 100 25 50 75 100
Epoch Epoch

Figure 23: Training and validation accuracy comparison of VGGSNN on CIFAR-10 DVS using QIF and
LIF neuron models.

Figures 21} 22] and 23| showcase the loss surfaces and training graphs of an LIF and QIF model trained on
CIFAR-10 DVS. We see roughly the same size and shape minima for both neuron models, however, the
LIF model’s loss landscape is flatter. Both models obtain similar training trends, but the QIF model can
generalize better.

LIF VGG-11 Loss Landscape QIF VGG-11 Loss Landscape
on N-Caltech-101 _ on N-Caltech-101

~0.50 1 ~0.50
-0.75 —0.75 1
b
-1.00 ; ; . : . . . -1.00 . \ \ : . . :
-1.00 -0.75 -0.50 -0.25 000 025 050 075 1.00 -1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

Figure 24: Post training loss landscape contour plot of VGG-11 on N-Caltech-101 using QIF and LIF neuron
models.

LIF VGG-11 Loss Landscape QIF VGG-11 Loss Landscape
on N-Caltech-101 on N-Caltech-101

7075 -1.00

Figure 25: Post training loss surface of VGG-11 on N-Caltech-101 using QIF and LIF neuron models.

VGG-11 Training VGG-11 Validation

Accuracy on N-Caltech-101 Accuracy on N-Caltech-101
80 804
70 1 704
601
< 60 1
3
g 50 504
=}
8 40 4
< 40
301 |
—
20 — QIF 20
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

Figure 26: Training and validation accuracy comparison of VGG-11 on N-Caltech-101 using QIF and LIF
neuron models.

Figures[24] [25] and [26] showcase the loss surfaces and training graphs of an LIF and QIF model trained on
N-Caltech-101. Both loss surfaces have similar shapes similar to our results with CIFAR-10 DVS. When
looking at the training graphs, we again see that the QIF model generalizes better and outperforms the LIF
model by a significant margin.

LIF VGGSNN Loss Landscape QIF VGGSNN Loss Landscape
on N-Cars on N-Cars

0.75 | 0.75 4

0.50 1 0.50 1
0.25 0.25

0.00 0.00 -

—-0.251 -0.25
—0.50 —0.50 -
—-0.751 -0.75

-1

.00 ; ; T ; T T T .00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100 -1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

Figure 27: Post training loss landscape contour plot of VGGSNN on N-Cars using QIF and LIF neuron
models.

LIF VGGSNN Loss Landscape QIF VGGSNN Loss Landscape
on N-Cars on N-Cars

Figure 28: Post training loss surface of VGGSNN on N-Cars using QIF and LIF neuron models.

VGGSNN Training VGGSNN Validation
Accuracy on NCars Accuracy on NCars
100.0 1
97.51 901
95.01 851
N
2. 92,51 801
Q
e
5 90.01 751
st
< 8751 701
85.0 1 65
— LUF
82.5 1 —— QIF | 60+
0 25 50 75 100 0 25 50 75 100
Epoch Epoch

Figure 29: Training and validation accuracy comparison of VGGSNN on N-Cars using QIF and LIF neuron
models.

Figures [27] 28] and 29) showcase the loss surfaces and training graphs of an LIF and QIF model trained on
N-Cars. Both loss surfaces have many sharp peaks and valleys, with the QIF model producing many minima
that are broader than those of the LIF model. The sharpness of both loss surfaces is reflected in the volatility
of validation accuracy during training. The QIF model still manages to generalize better.

QIF DVSGestureNet Loss Landscape

LIF DVSGestureNet Loss Landscape
on DVS128 Gesture

on DVS128 Gesture

T

0.50

0.25 1
0.00
-0.251
~0.501
-0.751 -0.75 —7\?]
(=]

-1.00 : ‘ . : , . : -1.00 J : . . : , . :

-1.00 -0.75 —-0.50 -0.25 0.00 025 050 075 1.00 -1.00 -0.75 -0.50 —0.25 0.00 025 050 075 100

Figure 30: Post training loss landscape contour plot of DVSGestureNet on DVS128-Gesture using QIF and

LIF neuron models.

LIF DVSGestureNet Loss Landscape QIF DVSGestureNet Loss Landscape
on DVS128 Gesture on DVS5128 Gesture

L Y

L T - R

Figure 31: Post training loss surface of DVSGestureNet on DVS128-Gesture using QIF and LIF neuron

models.

100

90 1

80

Accuracy %

50 A

40

701

60 1

DVSGestureNet Training
Accuracy on DVS128 Gesture

DVSGestureNet Validation
Accuracy on DVS128 Gesture

901
801
701
601
— LF
— QIF 50 A
0 25 50 75 100 0 25 50 75 100
Epoch Epoch

Figure 32: Training and validation accuracy comparison of DVSGestureNet on DVS128-Gesture using QIF
and LIF neuron models.

Figures [30}

[31] and [32] showcase the loss surfaces and training graphs of an LIF and QIF model trained on

DVS128-Gesture. The QIF model’s loss surface is overall much flatter than the LIF model with a smoother
trajectory toward the minima. This is reflected in the training graphs, where the QIF model converges faster
than the LIF model and generalizes better.

0.75 9"

0.50 1

0.25

0.00

—-0.251

—0.50 1

—-0.751

-1

LIF ResNet-34 Loss Landscape
on CIFAR-10 (64x64)

QIF ResNet-34 Loss Landscape
on CIFAR-10 (64x64)

0.75 |

0.50 A

0.25

0.00 -

0.25 A

0.50 A

0.75 A

2

.00 ; T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100

.00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75

1.00

Figure 33: Post training loss landscape contour plot of ResNet-34 on CIFAR-10 (64x64) using QIF and LIF
neuron models.

LIF ResNet-34 Loss Landscape
on CIFAR-10 (64x64)

QIF ResNet-34 Loss Landscape
on CIFAR-10 (64x64)

Figure 34: Post training loss surface of ResNet-34 on CIFAR-10 (64x64) using QIF and LIF neuron models.

Figures 33| and [34] showcase the loss surfaces of QIF and LIF models trained on CIFAR-10 (64x64). The
QIF model has a sharper peak in the middle of its loss surface but has an overall flatter and smaller loss
landscape than the LIF model. Additionally, the QIF loss landscape contains larger local minima.

LIF Meta-SpikeFormer Loss Landscape

on Tiny ImageNet

QIF Meta-SpikeFormer Loss Landscape

0.75 A

0.50 1

0.25

0.00

—-0.251

—0.50 1

—-0.751

-1

{

o
o
4

-0.25

—0.50

0.75 A

0.50 1

0.25 A

0.00 -

on Tiny ImageNet

=]

L)

~0.75 1 f\ﬂ 6o
. BRSSO

.00 ; T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 075

1.00

.00 T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

Figure 35: Post training loss landscape contour plot of Meta-SpikeFormer on Tiny ImageNet using QIF and

LIF neuron models.

LIF Meta-SpikeFormer Loss Landscape QIF Meta-SpikeFormer Loss Landscape
on Tiny ImageNet on Tiny ImageNet

Figure 36: Post training loss surface of Meta-SpikeFormer on Tiny ImageNet using QIF and LIF neuron
models.

Figures [35] and 36| showcase the loss surfaces of QIF and LIF models trained on Tiny ImageNet. The QIF
model has larger local minima along with an overall flatter appearance. Both landscapes have sharp peaks.

	Introduction
	Related Work
	Deep Learning with Spiking Neural Networks
	Neuron Models and Parameter Learning

	Background
	Spiking Neural Networks
	Surrogate Gradients
	Threshold-Dependent Batch Normalization
	Training Spiking Neural Networks

	Method
	Quadratic Integrate-and-Fire Neuron Model
	Surrogate Gradient Window

	Experiments
	Experimental Setup
	Spike Rate and Energy Consumption
	Accuracy Comparison to Recent Works
	Loss Landscapes

	Conclusion
	Reproducibility Statement
	Datasets and Augmentations
	CIFAR-10
	CIFAR-100
	CIFAR-10 DVS
	N-Caltech-101
	N-Cars
	DVS128-Gesture

	Training Setup
	Quadratic Integrate-and-Fire Neuron Model Discretization
	Proofs of Theorems
	Additional Experiments
	ResNet-34 on CIFAR-10
	Meta-SpikeFormer on Tiny ImageNet

	Robustness Analysis
	Spike Rates of SNN Models
	Loss Contour Plots and Surfaces

