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ABSTRACT

Spiking Neural Networks (SNNs) are a promising alternative to traditional artificial neu-
ral networks, offering significant energy-saving potential. Conventional SNN approaches
typically utilize the Leaky Integrate-and-Fire (LIF) neuron model, where voltage decays
linearly, decreasing proportionally to its current value. However, this linear decay can
inadvertently increase energy consumption and reduce model performance due to extrane-
ous spiking activity. To address these limitations, we introduce the discretized Quadratic
Integrate-and-Fire (QIF) neuron model, which applies a non-linear transformation to the
voltage proportional to its magnitude. The QIF neuron model achieves substantial en-
ergy reductions, ranging from 1.43 − 4.21× compared to the LIF neuron model. On
static datasets (CIFAR-10, CIFAR-100) and neuromorphic datasets (CIFAR-10 DVS, N-
Caltech-101, N-Cars, DVS128-Gesture), the QIF neuron model demonstrates competitive
performance and improved accuracy over state-of-the-art results. Furthermore, the QIF
neuron model produces smoother loss landscapes and larger local minima, leading to faster
training convergence. Our findings suggest that the QIF neuron model offers a promising
alternative to the widely adopted LIF neuron model.

1 INTRODUCTION

Artificial Neural Networks (ANNs) have seen mainstream adoption in recent years thanks to their success
in domains from computer vision (Chai et al., 2021) to natural language processing (Khan et al., 2023).
However, the energy demands of ANNs continue to grow (Yamazaki et al., 2022). In contrast, Spiking
Neural Networks (SNNs) have gained attention as a more energy-efficient alternative. Unlike traditional
ANNs, which synchronously process continuous-valued data, SNNs operate asynchronously on discrete
events known as spikes. These spikes, driven by biologically inspired neuron dynamics, allow SNNs to
replicate the brain’s sparse connectivity and energy-efficient structure (Gerstner et al., 2014). As a result,
when SNNs are implemented on hardware tailored to these characteristics, they have the potential to operate
with lower energy consumption than traditional ANN models (Rathi & Roy, 2023). This type of hardware
is typically called neuromorphic hardware. Examples of SNNs implemented on neuromorphic hardware
can be seen from always-on speech recognition for edge devices (Tsai et al., 2017), using IBM TrueNorth
(Akopyan et al., 2015), and ultra-low-power image classification (Lenz et al., 2023), using Intel Loihi 2
(Intel, 2021).

In the context of deep learning, Wu et al. (2018) introduced the widely adopted neuron model by discretizing
the Leaky Integrate-and-Fire (LIF) neuron model Gerstner et al. (2014). Despite its popularity, the LIF
model’s dynamics are limited to linear decay proportional to its voltage. The impact of this linear decay on
energy consumption, performance, and convergence speed has yet to be studied. Therefore, in this work, we
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propose the discretized Quadratic Integrate-and-Fire (QIF) neuron model for deep spiking neural networks.
Unlike the LIF neuron model, the QIF neuron model incorporates non-linear decay and growth dynamics that
scale with the magnitude of the neuron’s voltage. Our QIF neuron model is compared to recent approaches
on static datasets such as CIFAR-10 and CIFAR-100, as well as on neuromorphic datasets, including CIFAR-
10 DVS, N-Caltech-101, N-Cars, and DVS128-Gesture. Furthermore, we compare the LIF and QIF neuron
models, analyzing their energy efficiency, accuracy, loss landscapes, training performance, and robustness
to hyperparameter selection. To summarize, the contributions of our work are as follows:

• We introduce a discretized Quadratic Integrate-and-Fire neuron model for deep learning applica-
tions which showcases 1.43− 4.21× better energy efficiency than the LIF neuron model.

• We derive and prove an analytical equation for calculating surrogate gradient windows directly
from the QIF neuron model parameters, minimizing the risk of naı̈ve initialization and significant
gradient mismatch during training.

• Our QIF neuron model is compared to recent state-of-the-art approaches, demonstrating competi-
tive performance on static datasets and improved accuracy on several neuromorphic datasets. Ad-
ditionally, our analysis reveals the QIF neuron model can exhibit smoother loss landscapes, larger
local minima, and greater robustness to hyperparameter selection, resulting in faster convergence
and superior performance compared to the LIF neuron model.

2 RELATED WORK

2.1 DEEP LEARNING WITH SPIKING NEURAL NETWORKS

In recent years, two training techniques have stood out when training deep-spiking neural networks. ANN-
to-SNN conversion was the first training technique to show promising and competitive performance for
SNNs. Typically, these works first train a traditional ANN that utilizes the ReLU activation function (Cao
et al., 2015). The ANN then has all activation functions replaced with a spiking neuron model (Ding et al.,
2021). Then, the threshold for each layer of neurons is adjusted to approximate the ReLU function. Recent
works use approaches such as modifying the ReLU function to better match the dynamics of an SNN (Li
et al., 2021a; Wang et al., 2023; Bu et al., 2022), incorporating learnable parameters into the ReLU function
(Ho & Chang, 2021; Ding et al., 2021), and developing new SNN neuron models to better fit the ReLU
structure (Gao et al., 2023). The main disadvantage of conversion techniques is their inability to utilize
temporal dynamics and require many timesteps to achieve high accuracy (Duan et al., 2022).

Direct training with backpropagation can also be used with SNNs. Several techniques have been developed
to overcome the non-differentiability of spikes (Yi et al., 2023). One of the most well-adopted techniques
is surrogate gradients. Surrogate gradients attempt to approximate the derivative of the Heaviside function
(a common function used to obtain spiking behavior) with respect to the membrane potential using a differ-
entiable function (Wu et al., 2018). In addition to surrogate gradients, works employ various techniques to
improve direct training performance. Some of these techniques include batch or membrane potential normal-
ization (Zheng et al., 2021; Duan et al., 2022; Guo et al., 2023), developing new loss functions (Deng et al.,
2022; Guo et al., 2022), and learning surrogate gradient behavior (Li et al., 2021b; Lian et al., 2023; Deng
et al., 2023). Due to the lack of support for training on neuromorphic datasets when using ANN-to-SNN
conversion techniques, we restrict any comparisons to direct training techniques.

2.2 NEURON MODELS AND PARAMETER LEARNING

When using direct training techniques, a few works such as Fang et al. (2021); Yao et al. (2022); Rathi
& Roy (2023); Lian et al. (2023; 2024) make modifications to the Leaky Integrate-and-Fire (LIF) neuron
model by either changing its dynamics or incorporating learnable parameters. Fang et al. (2021) propose a
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learnable decay factor for the LIF neuron model, which can be independently optimized for each layer. Rathi
& Roy (2023) takes this a step further by co-optimizing the decay and threshold of each spiking layer. Yao
et al. (2022) proposed gating features, similar to long-short term memory, that can choose between various
biological features implemented in their model. Lian et al. (2023) propose using a learnable decay parameter
to dynamically adjust the surrogate gradient window to fit the LIF neuron’s voltage distribution throughout
the training process. Lian et al. (2024) proposes using a temporal-wise attention mechanism to selectively
establish connections between current and past temporal data.

While the LIF neuron model has seen various improvements and has showcased promising performance in
many deep-learning applications, its dynamics are fundamentally constrained to linear decay proportional
to the neuron’s voltage. The effect of these linear dynamics on the energy efficiency, model accuracy, and
convergence of deep spiking neural networks remains unknown. Inspired by this, we look towards other
neuron models to quantify and address this limitation.

3 BACKGROUND

3.1 SPIKING NEURAL NETWORKS

While ANNs use continuous-valued data to transmit information, SNNs use discrete events called spikes. In
modern deep SNN research, the Leaky Integrate-and-Fire (LIF) Gerstner et al. (2014) neuron model is the
most widely adopted, with its dynamics governed by

τ
du

dt
= urest − u+RI, (1)

where τ is a membrane time constant, u is the membrane potential, urest is the resting potential, R is a linear
resistor, and I is pre-synaptic input. When using the LIF neuron in deep learning scenarios, discretization
is required Duan et al. (2022). The most commonly used discretization was introduced by Wu et al. (2018),
who utilized Euler’s method to solve Equation 1. They defined their model as

u(t+ 1) = βu(t) + I(t). (2)

In Equation 2, t denotes the current timestep, β is a membrane potential decay factor, u is the membrane
potential of a neuron, and I are pre-synaptic inputs into the neuron. Given a threshold, uth, when u(t) > uth,
a spike is produced and is denoted o(t+ 1). Wu et al. (2018) further define an iterative update rule for both
spatial and temporal domains as

u(t+ 1) = βu(t)(1− o(t− 1)) + I(t) (3)
o(t+ 1) = Θ(u(t+ 1)− uth), (4)

where Θ is the Heaviside function with Θ(x) = 0 if x < 0, else Θ(x) = 1. Equations 3 and 4 allow
for forward and backward backpropagation to be implemented in both the spatial and temporal domains
automatically using modern deep learning frameworks Zheng et al. (2021).

Both the ordinary differential equation, shown in Equation 1, and the discretized equation, shown in Equation
2, of the LIF neuron model are constrained to a linear decay directly proportional to the voltage.

3.2 SURROGATE GRADIENTS

One challenge with spiking neural networks is that the Heaviside function, Θ, is not suitable for
backpropagation-based training as its derivative is either undefined or 0. To overcome this issue, Wu et al.
(2018) proposed using the derivative of an approximation to the Heaviside function with useful gradient
information. This technique is called a surrogate gradient. One of the most popular surrogate gradient
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functions is the rectangle function Zheng et al. (2021); Deng et al. (2022); Lian et al. (2023) and is defined
by

∂on(t)

∂un(t)
≈ 1

α
sign(|un(t)− uth| <

α

2
). (5)

α determines the width and area of the surrogate gradient and typically remains constant throughout training.
The choice of α greatly affects the learning process of SNNs, with improper choices leading to gradient
mismatch and approximation errors.

3.3 THRESHOLD-DEPENDENT BATCH NORMALIZATION

Ioffe & Szegedy (2015) first introduced the concept of batch normalization for ANNs to accelerate the
training process by reducing the internal covariant shift of each layer. Batch normalization was only designed
to normalize spatial data, not spatial-temporal data. On this note, Zheng et al. (2021) proposed threshold-
dependent Batch Normalization (tdBN) which works by normalizing the channels of pre-synaptic input, I ,
in both the spatial and temporal domains based on the neuron’s threshold, uth. Suppose Ik(t) represents the
kth feature map of I at timestep t. Then, we normalize each feature map Ik = (Ik(1), Ik(2), . . . , Ik(T )) in
the temporal domain by

Îk =
ηuth(Ik − E[Ik])√

V ar(Ik) + ϵ
(6)

Īk = γÎk + ξ, (7)

where E and V ar compute the mean and variance of Ik in the channel dimension, η is used for residual
connections, and γ and ξ are learnable parameters. Following tdBN, I satisfies I ∼ N (0, u2

th).

3.4 TRAINING SPIKING NEURAL NETWORKS

We adopt the Spatial-Temporal Back Propagation (STBP) algorithm and training procedure described by
Wu et al. (2018) to train our network. First, we infer our model on temporal data for T timesteps. Then,
similarly to Lian et al. (2023), to decode the model’s output, we turn off the firing behavior of the final output
neurons and accumulate their voltage over time as follows

ui =
1

T

T∑
t=1

W
(i)
n−1on−1(t), i ∈ {1, 2, . . . , c}, (8)

where c is the number of neurons in the output layer, W is a weight matrix, and on−1(t) are spikes from
the previous layer. The element, ui, with the largest value, is the predicted class. Using our output vector
u = (u1, u2, . . . , uc) and a label vector y = (y1, y2, . . . , yc), we compute the cross entropy loss, L, between
u and y. Then, using the STBP algorithm and surrogate gradients, we can train our network. As described
by Guo et al. (2023), we use the chain rule to update weights by

∂L

∂Wn
=

T∑
t=1

(
∂L

∂on(t)

∂on(t)

∂un(t)
+

∂L

∂un(t+ 1)

∂un(t+ 1)

∂un(t)

)
∂un(t)

∂Wn
, (9)

where n is the layer of the network. In the above equation, ∂on(t)
∂un(t)

is replaced with a surrogate gradient, such
as the one seen in Equation 5.



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

4 METHOD

4.1 QUADRATIC INTEGRATE-AND-FIRE NEURON MODEL

The Hodkin-Huxley (HH) neuron model was created to mimic the activity of neurons found within a giant
squid and has proven itself invaluable in the field of neuroscience (Gerstner et al., 2014). Over the years,
simplifications of the HH neuron model have been introduced to reduce the computational complexity of
its various equations and non-linear dynamics. The LIF neuron model is an extreme simplification that has
proven itself to be a computationally efficient alternative. However, the LIF neuron model does not contain
non-linear dynamics dependent on voltage as seen in the HH neuron model. We aim to bridge this gap by
looking at other neuron models that contain non-linear dynamics without introducing large computational
overhead. This initially led us to the Exponential Integrate-and-Fire (ExLIF) neuron model (Gerstner et al.,
2014). The ExLIF neuron model simplifies the HH neuron model and maintains much of its non-linear
dynamics. However, due to the large computational cost of the ExLIF neuron, an approximation called
the Quadratic Integrate-and-Fire (QIF) neuron model is often used in experimental settings (Gerstner et al.,
2014). Therefore, we examine the QIF neuron model as a promising alternative to the LIF neuron model.
The QIF neuron model is defined by

τ
du

dt
= a(u− urest)(u− uc) +RI, (10)

where τ is a membrane time constant, a is a sharpness parameter controlling the rate of decay, u is the
membrane potential, urest is the resting potential, uc is the critical spiking threshold, R is a resistor, and
I is the pre-synaptic input. Additionally, it must hold that a > 0 and urest < uc. Unlike the LIF neuron
model, the QIF neuron model contains non-linear voltage dynamics which are proportional to the square of
the voltage. This allows the QIF neuron to have varying dynamics based on the neuron’s current voltage.
For example, the QIF neuron can decay rapidly when u < uth, or increase rapidly, as u approaches and
exceeds uc (Gerstner et al., 2014).

As with the LIF model, the QIF model requires discretization for usage in a deep learning setting (Duan
et al., 2022). Therefore, we introduce our discretized QIF neuron model, defined as

u(t+ 1) = a(u(t)− urest)(u(t)− uc) + I(t) (11)

where u(t) and I(t) are the membrane potential and pre-synaptic input at timestep t with all other parameters
and constraints following that of Equation 10. Details on the discretization can be found in Appendix C.
When incorporating this neuron model into existing deep spiking neural network architectures, we adopt
and modify the iterative update rule proposed by Wu et al. (2018) to obtain

In(t) = Wn−1 ◦ on−1(t) (12)
un(t+ 1) = a(un(t)− urest)(un(t)− uc) + In(t) (13)
on(t+ 1) = Θ(un(t+ 1)− uth) (14)
un(t+ 1) = un(t+ 1)(1− on(t+ 1)) + ureston(t+ 1). (15)

In the above equation, t denotes the timestep, n denotes the layer of the network, ◦ denotes either matrix
multiplication or convolution between a synaptic weight w and spikes o, I is pre-synaptic input, u is the
membrane potential, uth is the firing threshold, and Θ is the Heaviside function. When the membrane
potential exceeds the firing threshold uth, a spike will be produced, and its potential will be reset to urest.

4.2 SURROGATE GRADIENT WINDOW

When using a surrogate gradient with the LIF model, like in equation 5, a common assumption is that the
voltage distribution is mean centered around zero. However, the quadratic dynamics of the QIF neuron model
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usually do not conform to this assumption. Instead, the QIF neuron produces a voltage distribution with a
non-zero mean and a variance that can widely change based on the chosen neuron parameter set. Therefore,
determining an appropriate surrogate gradient window for the QIF neuron model can be challenging. To
alleviate this issue, we derive a surrogate gradient window based on the statistical properties of our neuron
model when the pre-synaptic input I has been normalized with the tdBN technique in Equation 6. Assuming
that during forward propagation, all pre-synaptic input is normalized with tdBN such that I ∼ N (0, u2

th),
we propose Theorem 1 to explain the statistical properties of the QIF neuron model.
Theorem 1. Under the discrete QIF neuron model using tdBN to normalize pre-synaptic input I such that
I ∼ N (0, u2

th), the membrane potential u follows u ∼ N (µu, σ
2
u) with µu = af(uth, urest, uc) and

σ2
u = u2

thh(uth, urest, uc, a) where µu and σ2
u are directly proportional to the functions f and h respectively.

The functions f and h can be approximated as f(uth, urest, uc) = u2
th+urestuc and h(uth, urest, uc, a) =

1 + a2(2u2
th + (vc − vrest)

2).

The proof of Theorem 1 can be seen in Appendix D and is inspired by Theorem 2 in Zheng et al. (2021).
Theorem 1 states that after integrating tdBN normalized pre-synaptic inputs into the QIF neuron according to
Equation 11, the membrane potential follows u ∼ N (µu, σ

2
u). Therefore, we approximate the values of µu

and σ2
u using Theorem 1 to calculate the surrogate gradient window based on the parameters a, uth, urest,

and uc, reducing the risk of poor window choice and potential gradient mismatch. We define our new
surrogate gradient as

∂on(t)

∂un(t)
≈

{
1 µu − σu ≤ un(t) ≤ µu + σu

0 else.
(16)

To validate Theorem 1 and our new surrogate gradient window in Equation 16, Figure 1 shows our analytical
window compared to a static choice of the hyperparameter α across several parameter sets for the QIF neuron
model. We compare our window with a common choice for the surrogate gradient window, α = 1, as used
in Guo et al. (2023); Deng et al. (2023); Duan et al. (2022); Li et al. (2022). In the left histogram, the naı̈ve
window almost encompasses the entire distribution, which can lead to a substantial gradient mismatch.
Conversely, our analytical window dynamically scales based on the parameter set, fitting the distribution
more accurately. The chosen parameter set in the middle figure aligns well with the naı̈ve and analytical
windows. However, in the rightmost figure, the naı̈ve window only covers a small portion of the distribution.
Since this distribution is not zero-centered, the naı̈ve window additionally fails to account for a significant
portion of the spiking activity in the network. Our analytical window addresses this issue by adjusting both
the center and width to match the distribution. Therefore, our approach adapts to diverse distribution shapes
without requiring detailed knowledge of the underlying voltage distribution or manual window tuning. This
minimizes the risk of gradient mismatch and suboptimal surrogate gradient initialization with our QIF neuron
model.

5 EXPERIMENTS

In this section, we first compare the energy consumption of our QIF neuron model against the standard LIF
neuron model across a variety of model architectures and datasets. We then discuss the potential overheads
of the QIF neuron model in hardware. Next, we validate the performance of our QIF neuron model using
a classification task on static and neuromorphic datasets and compare our results to state-of-the-art works.
Finally, we examine the loss landscape, training graphs, and hyperparameter robustness of the QIF and LIF
neuron models.

5.1 EXPERIMENTAL SETUP

We run our experiments on an Nvidia RTX 3090 GPU and an Intel-12600k CPU with 64 GBs of memory,
running Ubuntu 23.04. We use Python 3.12 along with Pytorch 2.4 (Paszke et al., 2019) for the creation and
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Figure 1: Surrogate gradient window comparison using a naı̈ve and statistical choice of window length with
the QIF neuron model using various parameter sets.

training of networks along with loading the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009), Norse
1.1 (Pehle & Pedersen, 2021) as the foundation for our SNN simulations, Tonic 1.4 (Lenz et al., 2021) for
loading the N-Cars (Viale et al., 2021) dataset, and SpikingJelly (Fang et al., 2023) for loading CIFAR-
10 DVS (Li et al., 2017), N-Caltech-101 (Orchard et al., 2015), and DVS128-Gesture (Amir et al., 2017).
We use several model architectures, such as ResNet-19 (Zheng et al., 2021), VGGSNN (Deng et al., 2022),
VGG-11 (Kim & Panda, 2021), and DVSGestureNet (Fang et al., 2021), trained on commonly used datasets,
such as CIFAR-10/CIFAR-100 (Krizhevsky, 2009), CIFAR-10 DVS (Li et al., 2017), N-Caltech-101 (Or-
chard et al., 2015), N-Cars (Sironi et al., 2018), and DVS128-Gesture (Amir et al., 2017). We averaged all
QIF training results over three training runs using different random number generation seeds and presented
the mean ± standard deviation of our results. Additional details on each dataset, data augmentations, and
training setups can be found in Appendices A and B.

5.2 SPIKE RATE AND ENERGY CONSUMPTION

To calculate the energy consumption of an SNN, we adopt the same approach as Su et al. (2023), where they
approximate it as ESNN ≈

∑
i Ei. Ei is the energy consumption of layer i and is defined as

Ei = T · (fr · EAC ·OPAC + EMAC ·OPMAC) (17)

where T is the number of timesteps, fr is the firing rate of layer i, EAC and EMAC are the energy con-
sumption of accumulate (AC) and multiply-and-accumulate (MAC) operations respectively, and OPAC and
OPMAC are the number of AC and MAC operations of layer i. We assume operations take place with 32-bit
floating point values on 45nm technology where EMAC = 4.6pJ and EAC = 0.9pJ , as done by Su et al.
(2023) and other works. We compare the energy consumption of each SNN architecture trained with the
QIF and the LIF neuron models with our results showcased in Table 1. To obtain a comparison with the
LIF model, we train each model with our implementation of the LIF neuron model. The training setup and
hyperparameters for the models trained with the LIF neuron are available in Appendix B. Figure 8, in Ap-

Neuron Model CIFAR-10 CIFAR-100 CIFAR-10 DVS N-Caltech-101 N-Cars DVS128-Gesture
/ ResNet-19 / ResNet-19 / VGGSNN / VGG-11 / VGGSNN / DVSGestureNet

LIF 0.968mJ 0.958mJ 0.848mJ 0.788mJ 1.090mJ 1.095mJ
QIF 0.531mJ 0.778mJ 0.361mJ 0.374mJ 0.259mJ 0.724mJ

Improvement 1.82× 1.23× 2.35× 2.11× 4.21× 1.51×

Table 1: Energy consumption comparison between QIF and LIF neuron models in milliJoules (mJ).
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Neuron Model CIFAR-10 CIFAR-100 CIFAR-10 DVS N-Caltech-101 N-Cars DVS128-Gesture
/ ResNet-19 / ResNet-19 / VGGSNN / VGG-11 / VGGSNN / DVSGestureNet

LIF 5.923s 6.356s 2.230s 2.658s 14.999s 1.482s
QIF 6.733s 7.602s 2.671s 2.772s 18.030s 2.065s

Overhead 1.14× 1.20× 1.20× 1.04× 1.20× 1.39×

Table 2: Inference time comparison between QIF and LIF neuron models in seconds (s).

pendix G, showcases the average spike rate of each layer of a ResNet-19 model trained on CIFAR-10 with
the QIF and LIF neuron models. On average, our QIF neuron produces around 46% less spiking activity
than the LIF neuron. We include similar figures for each of our models and datasets in Appendix G.

Using Equation 17, we calculate the energy consumption of each neuron model in Table 1. We observe
energy reduction ranging from 1.23− 4.21× for the QIF neuron models. These savings are attributed to the
non-linear dynamics of the QIF neuron, which tends to induce a voltage distribution with neurons further
away from the threshold, as seen in Figure 9. These dynamics increase the difficulty for a neuron to spike,
reducing the rate at which less important neurons may fire due to noise or low-quality features. Additionally,
neuromorphic datasets show greater energy savings on average than static datasets. This difference may stem
from the high sparsity and noise typical of these datasets that cause LIF models to follow noise and produce
excess spikes while the QIF models handle this noise more effectively, reducing unnecessary spikes.

To discuss potential concerns related to computational complexity, we showcase the additional latency of a
QIF neuron compared to a LIF neuron. A single LIF neuron requires one multiplication and one addition
while a single QIF neuron requires three additions and two multiplications. Assuming the two additions
required to compute (u − urest) and (u − uc), from Equation 11, can be done in parallel, the QIF neuron
has one addition and multiplication more than the LIF neuron, leading to roughly 2× the computational
complexity. On our non-neuromorphic experimental setup, we observe that this leads to inference time
overheads between 1.04−1.39×, as shown in Table 2. Due to the limited public availability of neuromorphic
hardware, it is difficult to calculate the exact computational overhead incurred by these additional operations.
However, we do know that many neuromorphic hardware implementations, such as Intel Loihi 2 Intel (2021),
follow event-driven paradigms. This means the lower spike rate of the QIF neuron has the potential to
lower the computational overhead we observed on non-neuromorphic hardware. To put this in perspective,
across all datasets and models, the QIF neuron produces an average of 45.47% less spiking activity than the
LIF neuron. Therefore, the QIF neuron will only require around half the number of active neurons during
inference on average. This suggests that implementing these models on neuromorphic hardware can offset
the additional computational complexity of the QIF neuron through its decreased spiking activity.

5.3 ACCURACY COMPARISON TO RECENT WORKS

In this section, we compare our QIF model’s accuracy to state-of-the-art works that make modifications to
the LIF neuron model. Additionally, we include comparisons to recent state-of-the-art results that don’t
modify the LIF neuron as these techniques could potentially be modified and applied to our QIF model.

As shown in Table 3, our neuron model demonstrates competitive performance on the CIFAR-10 dataset,
matching the performance of other neuron model optimizations within 1% accuracy on average, such as
those presented in Lian et al. (2024; 2023); Yao et al. (2022); Fang et al. (2021) with 2 timesteps and being
slightly outperformed by these works with 4 timesteps. When compared with alternative approaches, our
method surpasses most others, though we observe approximately a 2% decrease in accuracy relative to the
top-performing methods in Mukhoty et al. (2023); Guo et al. (2023); Deng et al. (2023). On CIFAR-100,
our model matches or outperforms other neuron model works at 2 timesteps and is marginally outperformed
by Lian et al. (2024) and Yao et al. (2022) with 4 timesteps. Compared to dissimilar techniques, only the
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Work Method Timesteps CIFAR-10 Accuracy CIFAR-100 Accuracy

STDP-tdBN Zheng et al. (2021) Batch Normalization 6 93.16% 71.12%
TEBN Duan et al. (2022) Batch Normalization 6 94.71% 76.41%
MPBN Guo et al. (2023) Membrane Normalization 2 96.47% 79.51%
TET Deng et al. (2022) Loss Function 6 94.50% 74.72%
Surrogate Module Deng et al. (2023) Hybrid 4 96.82% 79.18%
LocalZO + TET Mukhoty et al. (2023) Direct Training 2 95.03% 76.36%
Dspike Li et al. (2021b) Surrogate Gradient 2 93.13% 71.68%
IM-Loss Guo et al. (2022) Loss Function + SG 2 93.85% 70.18%

GLIF Yao et al. (2022) Neuron Model 4 94.85% 77.05%
2 94.44% 75.48%

LSG Lian et al. (2023) Neuron Model + SG 4 95.17% 76.85%
2 94.41% 76.32%

IM-LIF Lian et al. (2024) Neuron Model 3 95.29% 77.21%

QIF (Ours) Neuron Model 4 94.52 ± 0.12% 76.89 ± 0.17%
2 94.44 ± 0.07% 76.80 ± 0.06%

Table 3: Summary and comparison of results on static datasets. Acronyms: Surrogate Gradient (SG).

work of Deng et al. (2023) and Guo et al. (2023) showed significantly better results. All compared works,
including ours, use the ResNet-19 architecture on CIFAR-10 and CIFAR-100.

Next, we look at the training results on neuromorphic datasets in Table 4. On CIFAR-10 DVS, we exceed the
accuracy of all other neuron model approaches on average by 7%. Even when compared to dissimilar meth-
ods, we outperform the best-performing approach from Deng et al. (2023) by over 3% and surpass all other
methods by more than 8%. For the N-Caltech-101 dataset, our model achieves the highest accuracy, outper-
forming the LIF neuron model work of Li et al. (2022) under identical conditions by nearly 2%. Similarly,
on N-Cars, we see a 3% or greater accuracy boost over the LIF neuron, without requiring data augmenta-
tions. Lastly, on the DVS128-Gesture dataset, we fall short of Fang et al. (2021) and Lian et al. (2024) by
1% accuracy. However, we only use half and a quarter of the timesteps as these works, respectively. Still,
we outperform most works utilizing other methods, with only Mukhoty et al. (2023) outperforming the QIF
model by just over 1% accuracy.

These results showcase the QIF model’s ability to match or outperform the LIF model on a variety of neuro-
morphic and static datasets. Although works employing dissimilar techniques demonstrate superior perfor-
mance on specific datasets, exploring how these methods can be adapted and integrated with the QIF neuron
model to enhance performance remains an interesting path. We include additional experiments with a larger
ResNet model and vision transformer architectures in Appendix E.

5.4 LOSS LANDSCAPES

To evaluate the training improvements of deep spiking neural networks using the QIF neuron model, we
analyze the loss landscape of identical model architectures trained with both QIF and LIF neurons. The
loss landscapes are visualized using the method described in Li et al. (2018). As shown in Figure 15, the
loss landscape for a model trained with QIF neurons is significantly broader compared to a model trained
with LIF neurons. This broader landscape includes a wider local minimum and smoother surface which can
facilitate faster convergence and improved performance, as seen in Figure 17. In contrast, the narrower loss
landscape of the LIF model necessitated reducing the initial learning rate when training on the CIFAR-10
and CIFAR-100 datasets. As discussed in Section 5.2, the non-linear dynamics of the QIF neuron introduce
greater spiking difficulty, which allows QIF models to focus on learning the most relevant features rather
than noise, contributing to its faster convergence relative to LIF models.
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Dataset Work Method Architecture Timesteps Accuracy

CIFAR-10 DVS

TEBN Duan et al. (2022) Batch Normalization 7-Layer CNN 10 75.10%
MPBN Guo et al. (2023) Membrane Normalization ResNet-20 10 78.70%
Dspike Li et al. (2021b) Surrogate Gradient ResNet-18 10 75.40%
TET Deng et al. (2022) Loss Function VGGSNN 10 77.40%
IM-Loss Guo et al. (2022) Loss Function + SG ResNet-19 10 72.60%
Surrogate Module Deng et al. (2023) Hybrid ResNet-18 10 83.19%
LocalZO + TET Mukhoty et al. (2023) Direct Training VGGSNN 10 75.62%
LIF w/ NDA Li et al. (2022) Data Augmentations VGG-11 10 79.60%

PLIF Fang et al. (2021) Neuron Model 7-Layer CNN 20 74.80%
GLIF Yao et al. (2022) Neuron Model ResNet-19 16 78.10%
LSG Lian et al. (2023) Neuron Model + SG VGGSNN 10 77.90%
IM-LIF Lian et al. (2023) Neuron Model VGGSNN 10 80.50%

QIF (Ours) Neuron Model VGGSNN 10 86.80 ± 1.12%

N-Caltech-101

HATS Sironi et al. (2018) Histogram SVM × 64.20%
DART Ramesh et al. (2020) Histogram SVM × 66.80%
SALT Kim & Panda (2021) BN + SALT VGG-11 20 55.00%
LocalZO + TET Mukhoty et al. (2023) Direct Training VGGSNN 10 79.86%
LIF w/ NDA Li et al. (2022) Data Augmentations VGG-11 10 78.20%

QIF w/ NDA (Ours) Neuron Model VGG-11 10 80.01 ± 0.05%

N-Cars

HATS Sironi et al. (2018) Histogram SVM × 81.00%
CarSNN Viale et al. (2021) Direct Training 4-Layer CNN 10 77.0%
LocalZO + TET Mukhoty et al. (2023) Direct Training VGGSNN 10 96.78%
LIF w/ NDA Li et al. (2022) Data Augmentations VGG-11 10 90.10%

QIF (Ours) Neuron Model VGGSNN 10 93.68 ± 0.15%

DVS128-Gesture

RSNN Xu et al. (2024) Recurrent SNN 4-Layer RSNN 20 95.80%
DECOLLE Kaiser et al. (2020) Online Learning 6-Layer SCNN 500 95.54%
SLAYER Shrestha & Orchard (2018) Direct Training 8-Layer SCNN 5 93.64%
LocalZO + TET Mukhoty et al. (2023) Direct Training VGGSNN 10 98.04%

PLIF Fang et al. (2021) Neuron Model DVSGestureNet 20 97.57%
IM-LIF Lian et al. (2023) Neuron Model VGGSNN 40 97.33%

QIF (Ours) Neuron Model DVSGestureNet 10 96.76 ± 0.43%

Table 4: Comparison between state-of-the-art techniques and the QIF neuron model on neuromorphic
datasets. Acronyms: Spiking Convolutional Neural Network (SCNN), Recurrent SNN (RSNN), Neuro-
morphic Data Augmentations (NDA), Surrogate Gradient (SG).

Additional visualizations of loss contours, loss surfaces, and training graphs for all models and datasets are
provided in Appendix H. Furthermore, we include a robustness study for the QIF and LIF neurons to their
hyperparameters in Appendix F.

6 CONCLUSION

In this work, we introduced a discretized Quadratic Integrate-and-Fire (QIF) neuron model to address the
limitations of the LIF neuron models’ linear voltage dependence. We provide an analytical method for
calculating surrogate gradient windows enables efficient training of these networks, reducing the risk of
gradient mismatch and improving training stability. Additionally, we showcased substantial energy savings
when comparing model architectures using the QIF and LIF neuron models and discussed how neuromorphic
hardware can reduce the computational overhead of the QIF neuron model. Our evaluation also demonstrates
that the QIF model not only performs competitively on static datasets but can also achieve significant accu-
racy improvements on neuromorphic datasets. Overall, our results show that the QIF neuron model offers
a promising direction for energy efficiency and performance in deep-spiking neural networks, particularly
when deployed on neuromorphic hardware.
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7 REPRODUCIBILITY STATEMENT

To recreate our results, one can look at the following information. Appendix A details each dataset and
augmentation applied, and Appendix B provides references to model architectures along with hyperparam-
eters used for training. Additionally, an anonymous repository of our project has been included with this
submission, providing details on recreating and running our experiments. The exact system setup and core
dependencies are detailed in Section 5.1 with versioning of other dependencies detailed in the included
repository. This repository also details the steps required to recreate our figures, such as the ones found in
Appendices G and H. Finally, we have included the discretization steps for the QIF neuron in Appendix C
and proofs of novel claims in Appendix D.
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A DATASETS AND AUGMENTATIONS

A.1 CIFAR-10

CIFAR-10 (Krizhevsky, 2009) is a widely used dataset for traditional ANN and SNN models. It consists of
60, 000, 32× 32 colored images consisting of 10 classes, with some examples being airplanes, automobiles,
cats, and horses. There are 6, 000 images per class. Additionally, the dataset is split into standardized
training and testing sets with 50, 000 and 10, 000 images, respectively. When training, we perform the
following dataset augmentations: Random cropping after adding 4 pixels of zero padding to the outside of
the image, random horizontal flipping, cutout, and normalization of each image by the mean and standard
deviation of the dataset.

A.2 CIFAR-100

CIFAR-100 (Krizhevsky, 2009) is also a widely used dataset for traditional ANN and SNN models. It
contains the same shape and number of images as CIFAR-10. However, CIFAR-100 contains 100 unique
classes instead of 10, with several examples being bed, rocket, apples, and otter. There are only 600 images
per class, with each class being evenly split between standardized training and testing sets the same size as
CIFAR-10. We use the same augmentations as with CIFAR-10 in addition to AutoAugment (Cubuk et al.,
2019).

A.3 CIFAR-10 DVS

CIFAR-10 DVS (Li et al., 2017) uses a subset of CIFAR-10 with 1, 000 images from each class. To create
this dataset, the authors first place images from their subset on a large LCD monitor. Then, they aim a
Digitial Vision Sensor (DVS) at the LCD monitor and perform a pan and tilt to generate spiking events
with size 128 × 128 with two polarity channels. These events can then be accumulated for a set number
of timesteps to generate frames of spiking activity. When using this dataset, we accumulate events into 10
frames and resize them to 48 × 48. Additionally, we apply random horizontal flipping and randomly rotate
the image up to ±10◦.

A.4 N-CALTECH-101

N-Caltech-101 (Orchard et al., 2015) was created similarly to CIFAR-10 DVS. First, the authors select 8831
images from the original Caltech-101 dataset, removing the ’Faces’ class due to conflicts with the ’Faces
Easy’ class. Next, the authors use a DVS, similar to the CIFAR-10 DVS dataset, to transform the dataset
into spiking events. Similarly to CIFAR-10 DVS, we accumulate events into 10 frames and resize them to
48× 48. We then apply the M1N1 neuromorphic data augmentation policy described by (Li et al., 2022).

A.5 N-CARS

N-Cars (Sironi et al., 2018) contains two classes, Car and Background, with 12, 336 and 11, 693 samples
respectively being the same size and shape of CIFAR-10 DVS samples. The dataset was generated by
attaching a DVS camera to the windshield of a car and driving around in various sessions. The dataset
contains a standard training and testing set with 15, 422 and 8, 607 samples, respectively. The only pre-
processing we perform on this dataset is rescaling images to be 48 × 48 after accumulating events into 10
frames.
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A.6 DVS128-GESTURE

DVS128-Gesture (Amir et al., 2017) contains 1, 342 samples of various gestures, such as waving, being
performed by 29 different individuals in front of a DVS camera under 3 different lighting conditions. These
gestures are recorded with the same size and shape as CIFAR-10 DVS samples. After accumulating events
into 10 frames, we randomly roll the pixels of the frames by up to 5 pixels in either the x or y axis.

B TRAINING SETUP

We use the following model architectures: ResNet-19 Zheng et al. (2021), VGGSNN Deng et al. (2022),
VGG-11 Kim & Panda (2021), and DVSGestureNet Fang et al. (2021). Complete details of the training
setup and hyperparameters used for each dataset and model can be seen in Table 5. We use a cosine decay
learning rate scheduler to slowly decay the learning rate to 0 for all models. When using stochastic gradient
descent (SGD), we use a momentum of 0.9. When using Adam, we set β1 = 0.9, β2 = 0.999. For all models
trained with the QIF neuron model, we use the following parameters: uth = 0.5, uc = 0.5, urest = 0, and
a = 0.25. When training with the LIF neuron model, we adopt the same model and training setup in Table
5, except we use a learning rate of 1e − 3 when training with the ResNet-19 model. We set the LIF neuron
parameters as uth = 0.5, urest = 0, β = 0.25, and we use the surrogate gradient defined in Equation 5,
with α = 1.

Parameters CIFAR-10 CIFAR-
100

CIFAR-10
DVS

N-Caltech-
101

N-Cars DVS128-
Gesture

Model ResNet-19 ResNet-19 VGGSNN VGG-11 VGGSNN DVSGestureNet
Optimizer SGD SGD Adam Adam Adam Adam
Weight Decay 1e− 4 1e− 4 5e− 4 1e− 4 1e− 4 1e− 4
Learning Rate 0.1 0.1 1e− 3 1e− 3 1e− 3 1e− 3
Epochs 350 350 100 100 100 100
Batch Size 128 128 64 64 64 32
Timesteps 2 2 10 10 10 10
Dropout × × 0.6 0.6 0.6 0.75

Table 5: Training setup for each dataset

C QUADRATIC INTEGRATE-AND-FIRE NEURON MODEL DISCRETIZATION

The QIF neuron model is defined as

τ
du

dt
= a(u− urest)(u− uc) +RI, (18)

where τ is a membrane time constant, u is the neurons voltage, a is a sharpness parameter, urest is the
resting voltage, uc is the critical spiking threshold, R is a resistor, and I is pre-synaptic input. We use
Euler’s method to discretize Equation 18, as done by Wu et al. (2018). First, we replace the derivative with
the following approximation

du

dt
≈ u(t+ 1)− u(t)

∆t
. (19)

Substituting this into Equation 18, we have

τ
u(t+ 1)− u(t)

∆t
≈ a(u(t)− urest)(u(t)− uc) +RI(t), (20)
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with t being some discrete timestep and ∆t being some small step size. Then, solving for u(t+ 1) gives us

u(t+ 1) ≈ u(t) +
∆t

τ
[a(u(t)− urest)(u(t)− uc) +RI(t)]. (21)

Next, assuming that ∆t = 1, R
τ = 1, and 1

τ has been folded into a, we can simplify our equation to

u(t+ 1) ≈ u(t) + a(u(t)− urest)(u(t)− uc) + I(t). (22)

When Equation 18 has zero input, i.e. I(t) = 0 for all t, its urest and uc are the roots of the polynomial
(Gerstner et al., 2014). Therefore, to ensure our discretized model satisfies this behavior, we drop the
additional u(t) term in Equation 22 and obtain our final discretization defined as

u(t+ 1) ≈ a(u(t)− urest)(u(t)− uc) + I(t). (23)

We believe that dropping the u(t) term allows for better interpretability of the dynamics invoked by different
parameter choices for the QIF neuron. We performed preliminary testing with the additional u(t) where we
observed higher spiking activity with no noticeable performance improvement.

D PROOFS OF THEOREMS

Theorem 1. Under the discrete QIF neuron model using tdBN to normalize pre-synaptic input I such that
I ∼ N (0, u2

th), the membrane potential u follows u ∼ N (µu, σ
2
u) with µu = af(uth, urest, uc) and

σ2
u = u2

thh(uth, urest, uc, a) where µu and σ2
u are directly proportional to the functions f and h respectively.

The functions f and h can be approximated as f(uth, urest, uc) = u2
th+urestuc and h(uth, urest, uc, a) =

1 + a2(2u2
th + (vc − vrest)

2).

Proof. We define the discrete QIF neuron model as

u(t+ 1) = a(u(t)− urest)(u(t)− uc) + I(t), (24)

where t is the timestep, u is the membrane potential, a is a sharpness parameter, urest is the resting voltage,
uc is the critical firing voltage, and I is pre-synaptic input. Considering the membrane potential u(t) and
assuming the last firing time was t′ < t, we have

u(t+ 1) ≈
t∑

k=t′+1

at−k−1(I(k − 1)− urest)(I(k − 1)− uc) + I(k). (25)

This approximation only holds if a is a relatively small constant. In our work, a is typically set to 0.25.
Small values of a ensure that input into the neuron more than two timesteps ago has a minuscule impact on
the voltage at timestep t+ 1, meaning we can simply Equation 25 as

u(t+ 1) ≈ a(I(t− 1)− urest)(I(t− 1)− uc) + I(t). (26)

Then, under the tdBN assumption that I ∼ N (0, u2
th) and assuming that I(t) is an independent and identi-

cally distribution sample (i.i.d) for all t, we can approximate the expectation of u(t+ 1) as

E[u(t+ 1)] ≈ E[a(I(t− 1)− urest)(I(t− 1)− uc) + I(t)]

= E[a(I(t− 1)2 − I(t− 1)(urest + uc) + urestuc) + I(t)]

= E[aI(t− 1)2]− E[aI(t− 1)(urest + uc)] + E[aurestuc] + E[I(t)] (i.i.d)

= aE[I(t− 1)2]− a(urest + uc)E[I(t− 1)] + aurestuc

= a(u2
th + urestuc).
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Likewise, we can approximate the variance of u(t+ 1) as

V ar[u(t+ 1)] ≈ V ar[a(I(t− 1)− urest)(I(t− 1)− uc) + I(t)]

= V ar[a(I(t− 1)2 − I(t− 1)(urest + uc) + urestuc) + I(t)]

= V ar[aI(t− 1)2] + V ar[aI(t− 1)(urest + uc)] + V ar[aurestuc] + V ar[I(t)] (i.i.d)

= a2V ar[I(t− 1)2] + a2(urest + uc)
2V ar[I(t− 1)] + V ar[I(t)]

= u2
th(1 + a2(2u2

th + (vc + vrest)
2)).

Therefore, we can define functions f : R3 → R and h : R4 → R as

f(uth, urest, uc) = u2
th + urestuc

h(uth, urest, uc, a) = 1 + a2(2u2
th + (vc + vrest)

2).

Then µu ≈ af(uth, urest, uc) and σ2
u ≈ u2

thh(uth, urest, uc, a), thus showing that u ∼ N (µu, σ
2
u).

E ADDITIONAL EXPERIMENTS

E.1 RESNET-34 ON CIFAR-10

To showcase the QIF neuron model’s ability to scale to larger and deeper model architectures, we train a
ResNet-34 Zheng et al. (2021) on CIFAR-10 with the images scaled up to 64 × 64. We choose ResNet-34
as it has around 2× the parameters as the ResNet-19 architecture. We use mostly the same hyperparameters
and dataset augmentations as we did when using ResNet-19, only changing two parameters. The surrogate
gradient window of the LIF model is set to α = 0.5 and the learning rate for the LIF model is set to 0.01.

Figure 2: Training and validation accuracy comparison of ResNet-34 on CIFAR-10 64x64 validation using
QIF and LIF neuron models.

Figure 2 showcases the training of the QIF and LIF neuron models. In this figure, we see that the LIF neuron
model starts to outperform the QIF neuron model in terms of training accuracy at around 50 epochs into
training. However, we see much more volatility in the LIF neuron model validation accuracy, leading us
to believe the LIF model is overfitting. On the other hand, the QIF neuron model has a much smoother
and less volatile validation accuracy throughout the training process. Both models obtain similar validation
accuracies at 88.24% for the LIF model and 88.50% for the QIF model.
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Figure 3: Average spike rate comparison of ResNet-19 over the CIFAR-10 validation set using QIF and LIF
neuron models.

Figure 3 showcases the average spike rate per layer of the QIF and LIF neuron models where we see signifi-
cant reductions in spiking activity from the QIF neuron model. Using these spike rates to calculate the energy
consumption of both models we get that the LIF model consumes approximately 3mJ while the QIF model
consumes approximately 2.15× less energy at 1.4mJ . These results showcase the QIF neuron model’s
ability to scale to larger CNN architectures while providing competitive performance and maintaining high
energy savings.

E.2 META-SPIKEFORMER ON TINY IMAGENET

To showcase the QIF neuron models’ performance on a non-convolutional architecture, we perform a pre-
liminary training experiment using the 31.3 million parameter Meta-SpikeFormer architecture Yao et al.
(2024) on the Tiny ImageNet dataset Deng et al. (2009). We use the same hyperparameters as noted in the
work of Yao et al. (2024) for both neuron models. We use the same dataset augmentations that we applied
to CIFAR-10. We use the same neuron parameters as we did for ResNet-19, except we change the surrogate
gradient window for the LIF neuron model to α = 0.5. Additionally, we replace all batch normalizations
with Threshold-Dependent Batch Normalizations (tdBN) Zheng et al. (2021).
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Figure 4: Training and validation accuracy comparison of ResNet-34 on CIFAR-10 64x64 validation using
QIF and LIF neuron models.

The training results in Figure 4 show that the LIF model maintains a slight lead in training accuracy through-
out training. When looking at validation accuracy, we see the LIF model outperforms the QIF model up until
around epoch 65, where both neuron models have similar accuracy. At around epoch 80, the QIF neuron
starts to pull away, consistently having higher validation accuracy for the rest of the training. The QIF and
LIF models achieve validation accuracies of 39.16% and 38.16%, respectively.

Figure 5: Average spike rate comparison of ResNet-19 over the CIFAR-10 validation set using QIF and LIF
neuron models.

Figure 5 showcases the spiking activity of both neuron models in each layer of the network. On average, the
QIF neuron model spikes 4% less than the LIF neuron model. When calculating the energy consumption
difference, the QIF model consumes approximately 8.20mJ while the LIF model consumes approximately
0.99× less energy at 8.14mJ . Due to the marginal difference in spike rate, energy consumption, and val-
idation accuracy, the LIF neuron model may be preferred for this task due to its reduced computational
complexity.

As a side note, tdBN is required for the analytical calculation of the QIF neuron model’s surrogate gradient
window, so we modified the architecture accordingly. While tdBN has been extensively tested on convolu-
tional neural network architectures, existing spiking vision transformer works do not utilize tdBN techniques



987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

to the best of our knowledge. Therefore, we are unsure of how this decision affected model performance and
spike rate. Examining whether tdBN is appropriate for usage within spiking vision transformer architectures
remains an interesting future research direction.

F ROBUSTNESS ANALYSIS

In this section, we examine the robustness of the QIF and LIF neuron models in relation to hyperparameter
choice. To do this, we use the LeNet-5 (Lecun et al., 1998) architecture trained on the Fashion-MNIST (F-
MNIST) dataset (Xiao et al., 2017) and DVSGestureNet Fang et al. (2021) architecture trained on DVS128-
Gesture (Amir et al., 2017). We alter the LeNet-5 architecture in two ways. We perform tdBN after each
convolutional layer, and we alter the classifier to now only contain two layers with 120 and 10 hidden units,
respectively. Additionally, for the LeNet-5 architecture, each model was trained for 10 epochs using the
Adam optimizer with a learning rate of 1e − 3, weight decay of 1e − 4, batch size of 128, 2 timesteps, and
the same random number generation seed for all models. For the DVSGestureNet architecture, we follow
the same training setup noted in Appendix B with two modifications. We reduce the training time to just 20
epochs and remove the dropout layers. The LIF neuron used α = 1 for its surrogate gradient for both models
while the QIF model used our analytical equation. For LIF neurons, we sweep through the threshold, uth,
and decay, β, hyperparameters while for QIF neurons, we sweep through the threshold, uth, critical voltage
threshold, uc, and sharpness parameter, a. For both models, we keep the resting voltage at a constant zero.
We perform a grid search over all hyperparameters listed above with the values {0.2, 0.4, 0.6, 0.8, 1.0}
Figure 6 and 7 showcase the results of our hyperparameter sweep. While these figures showcase the re-
sults of our hyperparameter sweep, they include parameter combinations that don’t make sense under the
assumptions in the proof of Theorem 1. Specifically, when using tdBN, we assume that a is a relatively small
constant. Therefore, parameter sets with a > 0.4 are unrealistic choices. However, we include values of
a > 0.4 in our figures to showcase the performance of the QIF neuron model with naı̈ve parameter choices.
We report the mean ± standard deviation, minimum, and maximum of each neuron model’s accuracy values
in Table 6. When calculating the values in Table 6, we exclude results from parameter sets with a > 0.4.
These figures and the table showcase that under reasonable parameter selection, the QIF model outperforms
the LIF in terms of minimum, average, and maximum accuracies while having a smaller standard deviation.
In the case of LeNet-5, the results are relatively close with only minor differences. However, with DVSGes-
tureNet, we see the QIF model greatly outperforming the LIF model in all metrics. These results indicate
the QIF neuron model matches or surpasses the LIF neuron model in terms of hyperparameter robustness.

Model Mean Accuracy Minimum Accuracy Maximum Accuracy

LIF LeNet-5 88.32± 0.41% 87.26% 88.99%
QIF LeNet-5 (a ≤ 0.4) 88.73± 0.25% 88.00% 89.08%
LIF DVSGestureNet 79.08± 4.91% 69.44% 86.81%
QIF DVSGestureNet (a ≤ 0.4) 91.33± 2.38% 84.72% 95.14%

Table 6: Mean, minimum, and maximum accuracies obtained from hyperparameter sweep using LeNet-5
trained on Fashion-MNIST and DVSGestureNet trained on DVS128-Gesture with the QIF and LIF neuron
models.
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Figure 6: Hyperparameter sweep for LeNet-5 trained with both the QIF and LIF neuron models on Fashion-
MNIST.
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Figure 7: Hyperparameter sweep for DVSGestureNet trained with both the QIF and LIF neuron models on
DVS128-Gesture.

G SPIKE RATES OF SNN MODELS

In this section, we showcase the average spike rate per layer of each model and dataset averaged over the
entire validation set. We train the same model architecture twice using the LIF and QIF neurons. Across all
models, the average spike rate across all layers is lower for the QIF neuron model. We also provide greater
introspection into the spike rate by analyzing the voltage distributions of the LIF and QIF neuron models.
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Figure 8: Average spike rate comparison of ResNet-19 over the CIFAR-10 validation set using QIF and LIF
neuron models.

Figure 9: Voltage distribution comparison of the LIF and QIF neuron models using ResNet-19 trained on
CIFAR-10. The distributions are taken from the 6th layer of neurons in the network when inferencing across
the entire validation set. On the left, the LIF neuron model creates a broad distribution, with around 16% of
all neurons being greater than the threshold (vth = 0.5). On the right, the QIF neuron model creates a much
narrower distribution with tight grouping around zero. This leads to only around 4% of the neurons being
above the threshold (vth = 0.5).
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Figure 10: Average spike rate comparison of ResNet-19 over the CIFAR-100 validation set using QIF and
LIF neuron models.

Figure 11: Average spike rate comparison of VGGSNN over the CIFAR-10 DVS validation set using QIF
and LIF neuron models.
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Figure 12: Average spike rate comparison of VGG-11 over the N-Caltech-101 validation set using QIF and
LIF neuron models.

Figure 13: Average spike rate comparison of VGGSNN over the N-Cars validation set using QIF and LIF
neuron models.
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Figure 14: Average spike rate comparison of DVSGestureNet over the DVS128-Gesture validation set using
QIF and LIF neuron models.

H LOSS CONTOUR PLOTS AND SURFACES

In this section, we present contour and surface plots of the loss landscape and training graphs for each model
following the method described by Li et al. (2018). We train the same model architecture twice using LIF
and QIF neurons.

Figure 15: Post training loss landscape contour plot of ResNet-19 on CIFAR-10 using QIF and LIF neuron
models.
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Figure 16: Post training loss surface of ResNet-19 over the CIFAR-10 validation set using QIF and LIF
neuron models.

Figure 17: Training and validation accuracy comparison of ResNet-19 on CIFAR-10 using QIF and LIF
neuron models.

Figures 15, 16, and 17 show a contour plot of loss surface, 3D visualization of the contour plot, and the
training graphs of the QIF and LIF models trained on CIFAR-10 using ResNet-19.
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Figure 18: Post training loss landscape contour plot of ResNet-19 on CIFAR-100 using QIF and LIF neuron
models.

Figure 19: Post training loss surface of ResNet-19 on CIFAR-100 using QIF and LIF neuron models.
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Figure 20: Training and validation accuracy comparison of ResNet-19 on CIFAR-100 using QIF and LIF
neuron models.

Figures 18, 19, and 20 showcase the loss surfaces and training graphs of an LIF and QIF model trained on
CIFAR-100. We see broader minima when using the QIF neuron model, which translates to superior training
performance under the same conditions.

Figure 21: Post training loss landscape contour plot of VGGSNN on CIFAR-10 DVS using QIF and LIF
neuron models.
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Figure 22: Post training loss surface of VGGSNN on CIFAR-10 DVS using QIF and LIF neuron models.

Figure 23: Training and validation accuracy comparison of VGGSNN on CIFAR-10 DVS using QIF and
LIF neuron models.

Figures 21, 22, and 23 showcase the loss surfaces and training graphs of an LIF and QIF model trained on
CIFAR-10 DVS. We see roughly the same size and shape minima for both neuron models, however, the
LIF model’s loss landscape is flatter. Both models obtain similar training trends, but the QIF model can
generalize better.



1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Figure 24: Post training loss landscape contour plot of VGG-11 on N-Caltech-101 using QIF and LIF neuron
models.

Figure 25: Post training loss surface of VGG-11 on N-Caltech-101 using QIF and LIF neuron models.
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Figure 26: Training and validation accuracy comparison of VGG-11 on N-Caltech-101 using QIF and LIF
neuron models.

Figures 24, 25, and 26 showcase the loss surfaces and training graphs of an LIF and QIF model trained on
N-Caltech-101. Both loss surfaces have similar shapes similar to our results with CIFAR-10 DVS. When
looking at the training graphs, we again see that the QIF model generalizes better and outperforms the LIF
model by a significant margin.

Figure 27: Post training loss landscape contour plot of VGGSNN on N-Cars using QIF and LIF neuron
models.
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Figure 28: Post training loss surface of VGGSNN on N-Cars using QIF and LIF neuron models.

Figure 29: Training and validation accuracy comparison of VGGSNN on N-Cars using QIF and LIF neuron
models.

Figures 27, 28, and 29 showcase the loss surfaces and training graphs of an LIF and QIF model trained on
N-Cars. Both loss surfaces have many sharp peaks and valleys, with the QIF model producing many minima
that are broader than those of the LIF model. The sharpness of both loss surfaces is reflected in the volatility
of validation accuracy during training. The QIF model still manages to generalize better.
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Figure 30: Post training loss landscape contour plot of DVSGestureNet on DVS128-Gesture using QIF and
LIF neuron models.

Figure 31: Post training loss surface of DVSGestureNet on DVS128-Gesture using QIF and LIF neuron
models.
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Figure 32: Training and validation accuracy comparison of DVSGestureNet on DVS128-Gesture using QIF
and LIF neuron models.

Figures 30, 31, and 32 showcase the loss surfaces and training graphs of an LIF and QIF model trained on
DVS128-Gesture. The QIF model’s loss surface is overall much flatter than the LIF model with a smoother
trajectory toward the minima. This is reflected in the training graphs, where the QIF model converges faster
than the LIF model and generalizes better.

Figure 33: Post training loss landscape contour plot of ResNet-34 on CIFAR-10 (64x64) using QIF and LIF
neuron models.
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Figure 34: Post training loss surface of ResNet-34 on CIFAR-10 (64x64) using QIF and LIF neuron models.

Figures 33 and 34 showcase the loss surfaces of QIF and LIF models trained on CIFAR-10 (64x64). The
QIF model has a sharper peak in the middle of its loss surface but has an overall flatter and smaller loss
landscape than the LIF model. Additionally, the QIF loss landscape contains larger local minima.

Figure 35: Post training loss landscape contour plot of Meta-SpikeFormer on Tiny ImageNet using QIF and
LIF neuron models.
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Figure 36: Post training loss surface of Meta-SpikeFormer on Tiny ImageNet using QIF and LIF neuron
models.

Figures 35 and 36 showcase the loss surfaces of QIF and LIF models trained on Tiny ImageNet. The QIF
model has larger local minima along with an overall flatter appearance. Both landscapes have sharp peaks.
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