
TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

Lusen Zhao 1 Zihan Huang 1 Jianhao Ding 1 Zhaofei YuB 1

Abstract

ANN-to-SNN conversion has emerged as a key
approach to train Spiking Neural Networks
(SNNs), particularly for Transformer architec-
tures, as it maps pre-trained ANN parameters to
SNN equivalents without requiring retraining,
thereby preserving ANN accuracy while elim-
inating training costs. Among various coding
methods used in ANN-to-SNN conversion,
time-to-first-spike (TTFS) coding, which allows
each neuron to at most one spike, offers signif-
icantly lower energy consumption. However,
while previous TTFS-based SNNs have achieved
comparable performance with convolutional
ANNs, the attention mechanism and nonlinear
layers in Transformer architectures remains a
challenge by existing SNNs with TTFS coding.
This paper proposes a new neuron structure for
TTFS coding that expands its representational
range and enhances the capability to process
nonlinear functions, along with detailed designs
of nonlinear neurons for different layers in
Transformer. Experimental results on different
models demonstrate that our proposed method
can achieve high accuracy with significantly
lower energy consumption. To the best of our
knowledge, this is the first work to focus on
converting Transformer to SNN with TTFS
coding. The source code of the proposed method
is available at https://github.com/
ForestOnTheLand/TTFSFormer.git.

1. Introduction
Spiking Neural Networks (SNNs), known as the third gener-
ation of neural networks (Maass, 1996), are promising due
to their low computational cost and biological plausibility.
Inspired by biological neurons, SNNs utilize binary spikes

1 Peking University, China. Correspondence to: Zhaofei Yu
<yuzf12@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

for communication between neurons instead of numerical
values. Compared to traditional Artificial Neural Networks
(ANNs), SNNs achieve higher energy efficiency due to the
sparsity of event-driven signaling, particularly on neuromor-
phic hardware (Davies et al., 2018; DeBole et al., 2019; Pei
et al., 2019).

The Transformer architecture (Vaswani et al., 2017) has been
demonstrating its strong ability in a wide range of tasks with
its special self-attention mechanism, from natural language
processing to computer vision (Dosovitskiy et al., 2020).
Recent efforts to integrate Transformers with SNNs seek to
combine the information processing ability of Transformers
with the energy efficiency of SNNs, achieving promising
results in many tasks (Wang et al., 2023; Yao et al., 2023).

Currently, there are two primary approaches for training
spiking transformers: direct training and ANN-to-SNN con-
version. Direct training methods (Yao et al., 2023; Zhou
et al., 2023b;a) rely on surrogate gradients (Neftci et al.,
2019) to perform backpropagation on networks, which ap-
proximates the non-differentiable spike series with continu-
ous functions (e.g., sigmoid or tanh) during gradient compu-
tation. However, direct training of large-scale SNNs from
scratch (Yao et al., 2023; Zhou et al., 2023a) requires high
computational resources, posing a major challenge in its
scalability and efficiency. In contrast, ANN-to-SNN con-
version (Wang et al., 2023; Jiang et al., 2024; Huang et al.,
2024) maps pre-trained ANN parameters to SNN counter-
parts without requiring retraining, thereby preserving ANN
accuracy while eliminating training costs. However, pre-
vious Transformer-to-SNN methods primarily rely on rate
coding, where information is encoded through spike counts
over time. A key limitation is that precise value represen-
tation often requires multiple spikes, which reduces energy
efficiency.

Recent evidence from neuroscience suggests that biolog-
ical neural systems encode information not only through
firing rates but also via precise spike timing (Gütig & Som-
polinsky, 2006; Montemurro et al., 2008; Park et al., 2019).
Temporal coding methods leverage this observation by repre-
senting values through spike timing rather than spike counts.
Notably, time-to-first-spike (TTFS) coding achieves high
energy efficiency by encoding information in the latency of
a single spike (Rueckauer & Liu, 2018). However, TTFS-

1

https://github.com/ForestOnTheLand/TTFSFormer.git
https://github.com/ForestOnTheLand/TTFSFormer.git

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

based ANN-to-SNN approaches have so far been limited to
Multi-Layer Perceptrons (MLPs) and Convolutional Neural
Network (CNN). In this work, we propose the first TTFS
coding framework for Transformer conversion, which si-
multaneously maintains high accuracy and reduces energy
consumption through precise spike timing. Our main contri-
butions are summarized as follows.

• We analyze the limitations of the representation ability
of previous TTFS-based methods.

• We propose a generalized type of TTFS-based neuron,
enabling the lossless conversion of all layers in the
Transformer architecture into an SNN while signifi-
cantly reducing energy consumption.

• We evaluate our method on various pre-trained Trans-
former models, including ViT and EVA, using the
ImageNet-1K dataset. Experimental results demon-
strate that our approach achieves performance compa-
rable to ANN counterparts. Specifically, the accuracy
loss of the converted ViT and EVA models, across
different parameter sizes, remains below 0.1% with
precise representation of TTFS spike timing.

• To the best of our knowledge, this is the first work
to explore TTFS-based SNNs within the Transformer
architecture.

2. Related Works
2.1. Transformer for Visual Tasks

With its specialized attention mechanism that captures con-
textual information, the Transformer (Vaswani et al., 2017)
has become dominant across various fields of machine learn-
ing, including natural language processing and computer vi-
sion. By dividing an image into blocks and converting them
into tokens, the Vision Transformer (ViT) (Dosovitskiy et al.,
2020) successfully adapted the Transformer architecture for
visual tasks, effectively processing spatial information. The
EVA model (Fang et al., 2023; 2024) further introduced ad-
ditional techniques, such as the gated linear unit and various
activation functions, significantly enhancing performance.

2.2. Spikes Coding Methods in SNN

One of the key differences between SNNs and ANNs is that
SNNs use spikes to transmit information between layers,
whereas ANNs rely on floating-point numbers or integers.
The representation method, which defines the mapping be-
tween the value and the pattern of emitted spikes, plays a
crucial role in both encoding external inputs and decoding
model predictions. This makes it a critical issue in SNN ar-
chitectures. Considering the trade-off between performance
and energy efficiency, previous studies have focused on

two primary representation methods in SNNs: rate-based
encoding and temporal-based encoding.

Rate-based SNNs map the value to the frequency of spikes.
Specifically, if a neuron emits N spikes over T time steps,
it represents the value N

T ∈ [0, 1]. Rate coding has been
widely adopted in previous studies, demonstrating compara-
ble performance to ANNs, including both directly trained
SNNs and those converted from ANNs. However, rate-
coding typically requires multiple time steps to efficiently
approximate the value with spikes, which results in higher
energy consumption.

Temporal-based SNNs, inspired by the temporal informa-
tion observed in biological neural systems, map the value to
the timing of spikes. These methods include time-to-first-
spike (Thorpe et al., 2001), reverse coding (Zhang et al.,
2019; Park et al., 2020), phase coding (Montemurro et al.,
2008) and burst coding (Park et al., 2019). TTFS repre-
sents the value by the exact time of the single spike emitted,
where a higher value results in an earlier spike. Reverse
coding (Zhang et al., 2019; Park et al., 2020), in contrast,
make the convention that the stronger the input stimulus
is, the later the corresponding neuron fires a spike. Phase
coding generates the post-synaptic potential (PSP) based on
the phase of a periodic oscillatory function. Burst coding
encodes information through a sequence of spikes with short
inter-spike intervals. Temporal-based methods are typically
more energy-efficient than rate-based methods, as they re-
quire fewer spikes to represent a value. However, despite
the variety of temporal-based SNNs, previous studies have
largely focused on simple network architectures, such as
MLPs and CNNs.

2.3. ANN-to-SNN Conversion

To address the challenges posed by the non-differentiable
spike generation function in SNN training, the ANN-
to-SNN conversion method effectively leverages well-
established techniques from ANN training to achieve high
performance. Cao et al. (2015) initially proposed obtain-
ing an SNN by training an ANN and then converting it.
The resulting SNN conveys information through spike rates,
commonly referred to as a rate-based SNN. Building on this,
Diehl et al. (2015) reduced the accuracy gap between the
source ANN and the converted SNN through weight normal-
ization. Subsequent studies have further narrowed this gap
by employing tailored activation functions or specialized
adjustments to spiking neurons (Ding et al., 2021; Bu et al.,
2022; Hao et al., 2023). It is important to note that these
approaches are primarily based on deep CNNs.

With the growing significance of Transformer architectures
across various tasks (Dosovitskiy et al., 2020; Fang et al.,
2023), recent studies have also explored rate-based con-
verted SNN Transformers. Wang et al. (2023) were the first

2

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

to apply the conversion method on Transformer architec-
tures. Jiang et al. (2024) introduced the Spatio-Temporal
Approximation (STA) method, which approximates nonlin-
ear operations using multiple neurons, referred to as the
universal group operator. STA bridges the gap between
Transformers and SNNs but results in higher energy con-
sumption and increased latency. Huang et al. (2024) further
improved the performance by incorporating an expectation
compensation module (ECM) and multi-threshold neurons,
achieving lower accuracy loss with fewer time steps. How-
ever, multiplication operations still remain present in the
activation layers.

While rate-based conversion has demonstrated high per-
formance, some ANN-to-SNN conversions also leverage
temporal-based encoding methods. Rueckauer et al. (2018)
first proposed several temporal-based conversion methods.
Zhang et al. (2019) explored the effective conversion of
deeper ANNs into SNNs using TTFS coding, and Park
et al. (2020) further improved the performance. Previous
TTFS-based studies introduced conversion errors across lay-
ers until Stanojevic et al. (2023; 2024) demonstrated an ex-
act mapping from ReLU network to SNN. Building on this,
they further developed a TTFS-based training method. How-
ever, while TTFS-based SNNs can achieve performance
comparable to their corresponding CNN models, no previ-
ous TTFS-based SNN has involved Transformer architec-
ture, which can achieve superior task performance.

3. Preliminaries
In this section, we introduce key techniques from previous
studies that implement TTFS encoding and enable TTFS-
based ANN-to-SNN conversion. These techniques address
the challenges of directly training SNNs while leveraging
the advantages of TTFS encoding.

3.1. TTFS Encoding

Inspired by biological observations that precise spike tim-
ing is important for communications between neurons,
TTFS-based SNNs can operate with at most one spike per
time window per neuron by utilizing precise spike timing,
achieving higher energy efficiency compared to rate-based
SNNs (Rueckauer & Liu, 2018).

Recent studies have adopted a linear relationship between
input values and spike times, effectively enabling the con-
version of ReLU-based ANNs to SNNs while preserving
accuracy and computational efficiency (Stanojevic et al.,
2023; 2024). The linear relationship of TTFS between the
spike time t and the represented value x is defined as

x =
tmax − t

tmax − tmin
, (1)

where [tmin, tmax] defines the available range of spike times,

ensuring that the corresponding value x remains within
[0, 1].

3.2. TTFS-based Neurons

Inspired by biological neurons, TTFS-based neurons receive
spikes from the previous layer and maintain a membrane po-
tential V that evolves over time. Once the potential reaches
the threshold θ, the neuron emits a spike. The temporal dy-
namics of the membrane potential in a TTFS-based neuron
can be described by the following equation:

τ
d

dt
V (t) =

N∑

i=1

wiK(t− ti) + C, (2)

where ti represents the presynaptic spike time of the i-th
neuron in the previous layer, and wi is the corresponding
synaptic weight. Each presynaptic spike induces a postsy-
naptic potential (PSP), modeled by the kernel function K(·).
C is a constant, and τ represents the time constant.

Various kernel functions have been proposed for construct-
ing TTFS-based SNNs. Stanojevic et al. (2023) utilized the
Heaviside function as the kernel function to establish an
exact mapping from ReLU neurons to TTFS-based neurons:

K(t− ti) = H(t− ti) = I[t− ti ≥ 0], (3)

where I(·) denotes the indicator function. The use of the
Heaviside function enforces a linear relationship between
presynaptic spike times and their corresponding postsynap-
tic spikes, making it challenging to construct complex non-
linear mappings.

Another recent work by Goltz et al. employed the current-
based (CuBa) neuron model (Göltz et al., 2021), where the
kernel function is defined as:

K(t− ti) = H(t− ti) exp(−
t− ti
τ

), (4)

where τ is a constant. This kernel function, also known
as the alpha-PSP response function, facilitates the gradi-
ent computation with respect to spike times. Goltz et al.
constructed a TTFS-based SNN using the CuBa neuron
model and directly trained the network. However, the SNNs
were only evaluated on small datasets, and their scalability
remains unverified.

3.3. TTFS-based ANN-to-SNN Conversion Method

The TTFS-based ANN-to-SNN conversion method requires
precise spike timing to represent the layer-by-layer activa-
tions of deep ANNs. Currently, an exact conversion ap-
proach involves dividing the activation process of spiking
neurons into two stages: the receiving stage and the emit-
ting stage. During the receiving stage, the neuron receives

3

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

time

receive emit

receive emit

receive emit

T
(n−1)
recv T

(n−1)
emit = T

(n)
recv

T
(n−1)
end = T

(n)
emit = T

(n+1)
recv T

(n)
end = T

(n+1)
emit T

(n+1)
end

· · ·

Layer (n+ 1)

Layer n

Layer (n− 1)

· · ·

Figure 1. The pipeline of the receiving and emitting stages.

spikes from the previous layer, with its activation inhibited
by setting a sufficiently large threshold. In the emitting
stage, the neuron emits a spike to the next layer once the
potential exceeds the threshold. Dividing the activation pro-
cess into two stages effectively prevents the severe accuracy
loss that occurs in a single-stage activation process, where
early spike emissions from preceding neurons interfere with
the complete processing of incoming information (Rueck-
auer & Liu, 2018).

An overview of the receiving and emitting process in the
network is shown in Figure 1. For convenience, we assume
that the receiving stage of layer n corresponds exactly to the
emitting stage of layer (n+1). We denote the time range of
the receiving stage as [T (n)

recv, T
(n)
emit] and the emitting stage

as [T (n)
emit, T

(n)
end] in the n-th layer. Thus, T (n)

recv = T
(n−1)
emit and

T
(n)
end = T

(n+1)
emit . The membrane potential dynamics of the

i-th neuron in layer n are given by (Stanojevic et al., 2023;
2024):

d

dt
V

(n)
i =

A
(n)
i +

∑
j w

(n)
ij H(t− t

(n−1)
j)

t ∈ [T
(n)
recv, T

(n)
emit),

B
(n)
i t ∈ [T

(n)
emit, T

(n)
end),

(5)

where A(n)
i and B(n)

i are predefined constants, w(n)
ij repre-

sents the synaptic weight, and t(n−1)
j denotes the spike time

of the j-th presynaptic neuron.

Despite TTFS-based ANN-to-SNN conversion methods
have been explored, their application to Transformers re-
mains limited. This limitation arises mainly from two as-
pects.

First, TTFS-based neuron is limited by its representational
range. Using the widely adopted mapping of spike time
to values defined in Equation (1), the spike time can
only represent values in the range of [0, 1], which works
well for ReLU-based networks. However, Transformer
architectures often use complex activation functions like
GELU (Hendrycks & Gimpel, 2016) and SiLU (Elfwing
et al., 2018), which retain negative values and offer better

performance than ReLU. Extending the representational
range is necessary for effective TTFS-based conversion.

Secondly, the existing TTFS-based conversion methods
struggle to handle the attention mechanism and Layer Norm
in Transformers. The attention mechanism relies on the
softmax operator, which is nonlinear, rendering existing
TTFS-based methods inapplicable. Additionally, no TTFS-
based implementation of Layer Norm has been proposed in
previous studies. Addressing these challenges is essential
for adapting TTFS-based SNNs to Transformer models.

4. Method: TTFSFormer
In this section, we propose generalized nonlinear neurons
for converting Transformer activation functions. Using these
neurons, we construct key Transformer layers and outline
the complete conversion process, which we refer to as TTFS-
Former.

4.1. Neuronal Dynamics in TTFSFormer

To overcome challenges in effectively representing nonlin-
ear activations and accommodating extended value ranges,
we incorporate two flexible kernel functions in the dynamics
of TTFSFormer neurons and introduce the zero reference
time mechanism.

With the initial value V (n)
i (T

(n)
recv) = 0., the change of the

potential of the neuron in layer n satisfies the following
equation:

d

dt
V

(n)
i =

1
τ(n) ·

(∑
j w

(n)
ij η

(n)
ij (t− t

(n−1)
j) + C

(n)
i

)

t ∈ [T
(n)
recv, T

(n)
emit),

ψ
(n)
i (t− T

(n)
emit) t ∈ [T

(n)
emit, T

(n)
end),

(6)

where w(n)
ij are the weights of the n-th layer, t(n−1)

j is the
spike time of the j-th input, the input transform kernel
η
(n)
ij is a function satisfying η(n)ij (s) = 0,∀s < 0, C(n)

i

is a constant, the output transform kernel ψ(n)
i is a non-

negative function, and τ (n) is the time constant of the n-th
layer.

The relation between the spike time t(n)i ∈ [T
(n)
emit, T

(n)
end)

in the n-th layer of SNN and the corresponding activation
value x(n)i in the n-th layer of ANN is

x
(n)
i τ (n) = T

(n)
ref − t(n), (7)

where the zero reference time T (n)
ref is manually selected.

A spike at time T (n)
ref represents 0, and a larger value will

result in an earlier spike. For simplicity, in the following
discussion we denote δ(n) = T

(n)
end − T

(n)
emit as the time step

4

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

of layer n. We assume the length of the time step is the
same across all layers.

By modifying T
(n)
ref and τ (n), we can adjust the repre-

sentational range [a(n), b(n)] in layer n flexibly, where

a(n) =
T

(n)
ref −T

(n)
end

τ(n) and b(n) =
T

(n)
ref −T

(n)
emit

τ(n) . We denote the
difference between these bounds as d(n) = b(n) − a(n).

4.2. Representational Ability of TTFSFormer Neurons

We theoretically prove that TTFSFormer neurons possess
the representational capacity to convert Transformer archi-
tectures into SNNs by modifying the input and output trans-
formation kernels η, ψ.

4.2.1. INPUT TRANSFORM

V
(n)
i (T

(n)
emit) can be regarded as a linear combination of

transformed input values. The coefficient of combination is
determined by w while the transformation for input values
is determined by η. Here is a generalized way to construct
η for a given transformation f .

Theorem 4.1. Let fij : [a(n−1), b(n−1)] → R be differen-
tiable functions. If we let

η
(n)
ij (s) =

{
f ′ij
(

s
τ(n−1) + a(n−1)

)
s ≥ 0

0 s < 0

C
(n)
i =

∑

j

wij
fij(a

(n−1))

d(n−1)
,

(8)

then the potential at time T (n)
emit is

V
(n)
i (T

(n)
emit) =

∑

j

w
(n)
ij fij(x

(n−1)
j), (9)

We call the potential at time T (n)
emit of a neuron in layer n

as its accumulated potential. Previous works use identity
input transforms, which is a special version of Theorem 4.1.

Corollary 4.2. In particular, if we let

ηij(s) = H
(s

τ (n−1)
+ a(n−1)

)
,

C
(n)
i =

∑

j

a(n−1)

d(n−1)
wij ,

(10)

Then
V

(n)
i (T

(n)
emit) =

∑

j

w
(n)
ij x

(n−1)
j . (11)

which is called an identity input transform.

4.2.2. OUTPUT TRANSFORM

Now consider the relation between V
(n)
i (T

(n)
emit) and the

output spike. For simplicity, we omit the subscript and

t

V

Receiving Stage Emitting Stage

x = 3 x = 1 x = −1

y = 2.86 y = 0.73 y = −0.27

Figure 2. The dynamics of SiLU neuron, with input range [−3, 3]
and output range [−1, 3]. By Equation (16), in receiving stage,
the potential increases and then decreases, and finally the rate of
change tends to 1.

superscript since only one neuron is involved in emitting
stage.

For simplicity, denote the clip function as

clip(x, a, b) =

a x < a,

x x ∈ [a, b],

b x > b.

(12)

A general method to construct output transform by modify-
ing ψ is shown in Theorem 4.3.

Theorem 4.3. Let h : A→ R be a differentiable monotone
increasing function, and its inverse h−1 is well-defined on
(a, b]. If we let

ψ(s) =
1

τh′
(
h−1

(
b− s

τ

)) , s ∈ [0, δ),

θ = h−1(b),

(13)

then the value x represented by the output spike is

x = clip(h(V (Temit)), a, b). (14)

Previous works adopt an identity output transform, which is
a special version of Theorem 4.1.

Corollary 4.4. In particular, if we let ψ(s) = 1
τ , θ = b,

then the value x represented by the output spike is

x = clip(V (Temit), a, b). (15)

which is called an identity output transform.

The identity output transform is equivalent to what is used
in previous work.

5

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

x1
x2

xn

log
n∑

i=1

exi

Figure 3. Structure of softmax operator for x1, · · · , xn (black
lines). The brown part is the log-sum-exp neuron, with the blue
arrows as its input and red arrows as its output.

4.3. Constructing TTFSFormer Layers

The Transformer architecture involves several non-linear
layers. In this part, we will design their construction using
spiking neurons.

4.3.1. ACTIVATIONS

Every activation function can be implemented in the input
transform stage according to Theorem 4.1. SiLU and GELU
are two widely used activations in Transformer architec-
tures, which can be constructed in TTFSFormer using the
dynamics below.

Corollary 4.5 (Construction of SiLU/GELU). A neuron
with input range [a, b], time step δ and the identity output
transform in Corollary 4.4 can represent SiLU function with

η(s) = I[s ≥ 0] · σ(u) · (u+ 1− u · σ(u)),

where u = a+
δ

b− a
s, σ(x) =

1

1 + e−x
,

(16)

or GELU function with

η(s) = I[s ≥ 0] ·
[
1

2
+

erf(u√
2
)

2
+

u√
2π
e−

u2

2

]
,

where u = a+
δ

b− a
s, erf(x) =

2√
π

∫ x

0

e−t2 dt.

(17)

A full example of SiLU neurons is shown in Figure 2.

4.3.2. SOFTMAX

Softmax is another important operation in the attention
mechanism. The softmax of a row vector (x1, · · · , xn) is
defined as

Softmax(x1, · · · , xn) =
(

ex1

∑
j e

xj
, · · · , exn

∑
j e

xj

)
.

(18)

Firstly, we construct the log-sum-exp neuron.

Theorem 4.6. The log-sum-exp of n inputs x1, x2, · · · , xn,

i.e. log
∑n

i=1 e
xi , can be calculated in a single neuron with

η(1)(x) = exp
(s

τ (0)
+ a(0)

)

C(1) =
n

d(0)
ea

(0)

ψ(1)(s) =
1

τ (1)
exp

(
b− s

τ (1)

)
(19)

where the current layer is layer 1.

With the log-sum-exp neuron, we can obtain the softmax
operator. We can calculate the logarithm of softmax, i.e.

log
exi

∑n
j=1 e

xj
= xi − log

n∑

j=1

exj , (20)

by subtracting the log-sum-exp from xi. Finally, we can
obtain the output after an exponential layer. The whole
process is shown in Figure 3.

4.3.3. LAYERNORM

LayerNorm is a normalization method widely used in trans-
former architecture, achieving better results than Batch-
Norm, which is a linear operation. LayerNorm is defined
as

LayerNorm(x) =
x− E(x)√
Var(x) + ε

· γ + β. (21)

The LayerNorm operator can be obtained by the following
parts. Firstly, the mean x̄ can be calculated directly by a
single neuron, after which we subtract x̄ from each xi. Then,
we can obtain the variance Var(x) by a single neuron with

η(1)(s) = 2
(s

τ (0)
+ a(0)

)

C(1) =
(a(0))2

nd(0)
w

(1)
i =

1

n

(22)

and identity output transform. After that, we can get 1√
Var+ε

by single neuron with

η(2)(s) =
1

2

(s

τ (1)
+ a(1)

)− 3
2

C(2) =
1

d(1)
√
a(1) + ε

w(2) = 1
(23)

and identity output transform. Finally, multiply xi with
1√

Var+ε
, which is discussed in Section 4.3.4.

4.3.4. MULTIPLICATION

Multiplication is one of the core operations in the attention
mechanism of Transformer. We first consider the multiplica-
tion of two neurons x1, x2 ∈ [a(0), b(0)], with which we can
implement matrix product and pointwise product directly.

6

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

Table 1. Comparison between our method and previous works on ImageNet1k dataset

Work Method Architecture Param. SNN Acc. ANN Acc.

Spikingformer
(Zhou et al., 2023a) Direct Training Spikingformer-8-512 29.68M 74.79% -

Spikingformer-8-768 66.34M 75.85% -

Spike-Driven
(Yao et al., 2023; 2024) Direct Training SpikeDriven-V1 66.34M 77.07% -

SpikeDriven-V2 55.4M 80.0% -

E-Spikeformer
(Yao et al., 2025) Direct Training E-Spikeformer 83.0M 85.2% -

E-Spikeformer 173.0M 86.2% -

SRP
(Hao et al., 2023) CNN-to-SNN ResNet-34 21.8M 68.61% 74.32%

VGG-16 138M 69.43% 74.29%

Lossless TTFS
(Stanojevic et al., 2023; 2024)

CNN-to-SNN
(TTFS-based)

ResNet-34 21.8M 75.36% 74.32%
VGG-16 138M 75.66% 74.29%

MST (Wang et al., 2023) Transformer-to-SNN Swin-T(BN) 28.5M 78.51% 89.51%

STA (Jiang et al., 2024) Transformer-to-SNN ViT-B/32 86M 82.79% 85.10%

ECMT
(Huang et al., 2024) Transformer-to-SNN ViT-L/16 307M 84.60% 85.83%

EVA-G 1074M 88.60% 88.88%

SpikeZIP-TF
(You et al., 2024) Transformer-to-SNN

ViT-S/16 22M 81.45% 81.38%
ViT-B/16 86M 82.71% 85.10%
ViT-L/16 307M 83.42% 85.83%

AdaFire
(Wang et al., 2025) Burst Coding ViT-S/16 22M 77.09% 81.38%

ResNet-34 21.8M 75.38% 74.32%

TTFSFormer (Ours) Transformer-to-SNN
(TTFS-based)

ViT-S/16 22M 81.40% 81.38%
ViT-B/16 86M 85.07% 85.10%
ViT-L/16 307M 85.78% 85.83%
EVA-G 1074M 88.90% 88.88%

EVA02-S 22.1M 85.68% 85.72%
EVA02-L 305M 90.03% 90.05%

Now we construct a two-layer network that computes their
product x1 · x2.

Layer I. The neuron on layer I takes x1, x2 ∈ [a(0), b(0)] as
its input value. Let constant c = −a(0)+1. By Theorem 4.1,
with

η
(1)
i (s) =

1
s

τ(0) + a(0) + c
=

1

1 + s
τ(0)

C
(1)
i = 0 w

(1)
i = 1

(24)

the accumulated potential is

V (1)(T
(1)
emit) = log(x1 + c) + log(x2 + c)

= log(x1x2 + cx1 + cx2 + c2)
(25)

By taking the identity output transform illustrated in Corol-
lary 4.4, the neuron produces the output y = log(x1x2 +
cx1 + cx2 + c2).

Layer II. The neuron on layer II takes y, x1, x2 as its input

value. By Theorem 4.1, with

η
(2)
0 (s) = exp

(s

τ (1)
+ a(1)

)
(26)

for the input y, the identity input transform settings illus-
trated in Corollary 4.2 for input x1, x2 and

C
(2)
0 =

1

d(1)
ea

(1)

+
2ca(1)

d(1)

w
(2)
0 = 1 w

(2)
1 = w

(2)
2 = −c

(27)

for y, x1, x2 respectively, the accumulated potential is
V (2)(T

(2)
emit) = x1x2 + c2. In the output transform, by

letting ψ(2)(s) = 1
τ(2) and θ(2) = b(2) − c2, we get the final

output representing x1x2.

5. Experiments
In this section, we evaluate our TTFS-based converted SNN
methods on the ImageNet-1k dataset (Deng et al., 2009) and

7

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

compare with the corresponding ANNs and other previously
proposed SNN methods. Moreover, we estimate the energy
efficiency and explore the robustness of our method.

We test the conversion method on various architectures with
different model sizes, including ViT (ViT-S, ViT-B, ViT-
L) (Dosovitskiy et al., 2020; Steiner et al., 2022) and EVA
(EVA-S, EVA-L) (Fang et al., 2023; 2024). The weights
are sourced from public repositories on Hugging Face. Us-
ing pre-trained ANN models, SNNs are obtained through
Algorithm 1 in the supplementary material. The detailed
results are presented in Table 1, along with comparisons to
state-of-the-art SNN methods.

5.1. Experimental Results

Generally speaking, our method achieve comparable perfor-
mance to the original ANN architecture, with less than 0.1%
drop in accuracy. Specifically, we achieve accuracies of
85.8% and 90.0% for the ViT-L/16 and EVA-L architectures
respectively. Furthermore, the results of these large models
demonstrate the superior scalability of our approach.

Our work outperforms previously proposed SNN Transform-
ers. By leveraging pre-trained ANN models, we achieve sig-
nificantly higher accuracy than directly trained SNN Trans-
formers, while maintaining low computational cost.

Compared to rate-coding based SNN conversion methods
on Transformer architectures, such as STA (Jiang et al.,
2024), ECMT (Huang et al., 2024), and SpikeZIP-TF (You
et al., 2024), our proposed method further bridges the gap
between the accuracy of SNNs and the original ANN. SNNs
obtained from rate-coding methods require multiple spikes
to approximate the activation value, which creates a gap
between the activation values of an ANN layer and the mean
firing rates of the corresponding SNN layer, especially for
non-linear layers. In contrast, the TTFS encoding method
conveys the output of a layer in a single spike, allowing
the next layer to receive complete information as soon as it
receives spikes.

Compared to previous TTFS-based conversion meth-
ods (Stanojevic et al., 2023; 2024), we successfully integrate
Transformer architectures into SNNs by utilizing the pro-
posed neuron model and achieve significantly better results
than TTFS-based convolutional SNNs.

5.2. Energy Estimation

Since in TTFS coding, the input activation is encoded into
one spike before it reaches the first layer. Consequently,
there is no need to perform multiplication operations in the
first layer. The energy cost can then be expressed using the

Table 2. Energy consumption for different architectures

Architecture OPSNN (×109) ESNN
ESNN
EANN

ViT-S/16 5.42 4.9mJ 22.3%
ViT-B/16 19.2 17mJ 21.0%
ViT-L/16 65.7 59mJ 20.7%

Precise 4096 1024 512 384

Time precision p

40

50

60

70

80

90

A
cc

u
ra

cy

ViT-S

ViT-B

Figure 4. Accuracy of ViT under different time precision of TTFS

equation provided in (Rathi & Roy, 2023):

ESNN

EANN
=

OPSNN · EAC

OPANN · EMAC
(28)

The operation counts OPSNN are summarized in Table 3 in
Appendix C. We set EAC = 0.9pJ and EMAC = 4.6pJ
according to (Horowitz, 2014). The calculated energy con-
sumption is shown in Table 2. The results indicates that our
method achieves comparable performance to the original
ANN architecture with only about 20% energy consump-
tion.

5.3. Robustness

In previous sections, the emitting and receiving processes
are simulated by passing the time-to-first-spike across dif-
ferent layers using floating-point values for TTFS. However,
due to the limitation of hardware implementation, the accu-
racy of TTFS can hardly be as accurate as 32-bit floating-
point numbers. Thus, we explore the robustness of our
implementation in this section.

In hardware implementation, we define the time precision p
of TTFS as the ratio of the time step δ to the maximum error
ϵmax of the simulated values for TTFS, given by p = δ

ϵmax
.

We test the accuracy loss of ViT models under different
TTFS time precision, as shown in Figure 4. Our method
can obtain comparable performance to the original ANN
without fine-tuning at a time precision of 1024 or higher.
However, the performance declines with decreasing time
precision, which requires a trade-off between latency and

8

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

accuracy.

6. Conclusion
In this paper, we propose a novel conversion method of
the transformer architecture with TTFS-coding, which is
the first work on TTFS-based spiking transformer to our
best knowledge. With the proposed structure of general-
ized neurons in TTFSFormer, our method is able to convert
transformer architecture into SNN with little accuracy loss.
Taking full advantage of the energy efficiency of SNN, our
method achieves a comparable accuracy to the original ANN
architecture with much lower energy cost.

The TTFS-coding demonstrates both strong representational
capability in representing information and perfect energy
efficiency. The TTFS-coding method might be a promis-
ing direction for future works. While our method focuses
on ANN-to-SNN conversion, future works can explore a
training framework for TTFS-coding transformer SNN.

Acknowledgments
This work was supported by the National Natural Sci-
ence Foundation of China (62422601, U24B20140, and
62088102), Beijing Municipal Science and Technology
Program (Z241100004224004), Beijing Nova Program
(20230484362, 20240484703), and National Key Labora-
tory for Multimedia Information Processing.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bu, T., Ding, J., Yu, Z., and Huang, T. Optimized poten-

tial initialization for low-latency spiking neural networks.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 36(1):11–20, Jun. 2022.

Cao, Y., Chen, Y., and Khosla, D. Spiking deep convolu-
tional neural networks for energy-efficient object recog-
nition. International Journal of Computer Vision, 113(1):
54–66, May 2015. ISSN 1573-1405.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y.,
Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain,
S., Liao, Y., Lin, C.-K., Lines, A., Liu, R., Mathaikutty,
D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G.,
Weng, Y.-H., Wild, A., Yang, Y., and Wang, H. Loihi: A

neuromorphic manycore processor with on-chip learning.
IEEE Micro, 38(1):82–99, 2018.

DeBole, M. V., Taba, B., Amir, A., Akopyan, F., Andreopou-
los, A., Risk, W. P., Kusnitz, J., Ortega Otero, C., Nayak,
T. K., Appuswamy, R., Carlson, P. J., Cassidy, A. S.,
Datta, P., Esser, S. K., Garreau, G. J., Holland, K. L.,
Lekuch, S., Mastro, M., McKinstry, J., di Nolfo, C.,
Paulovicks, B., Sawada, J., Schleupen, K., Shaw, B. G.,
Klamo, J. L., Flickner, M. D., Arthur, J. V., and Modha,
D. S. Truenorth: Accelerating from zero to 64 million
neurons in 10 years. Computer, 52(5):20–29, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 248–255, 2009.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and
Pfeiffer, M. Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing. In
2015 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, 2015.

Ding, J., Yu, Z., Tian, Y., and Huang, T. Optimal ANN-SNN
conversion for fast and accurate inference in deep spiking
neural networks. In Zhou, Z.-H. (ed.), Proceedings of the
Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI-21, pp. 2328–2336. International Joint
Conferences on Artificial Intelligence Organization, 8
2021. Main Track.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929, 2020.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural Networks, 107:3–11,
2018. ISSN 0893-6080. Special issue on deep reinforce-
ment learning.

Fang, Y., Wang, W., Xie, B., Sun, Q., Wu, L., Wang, X.,
Huang, T., Wang, X., and Cao, Y. Eva: Exploring the
limits of masked visual representation learning at scale.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 19358–
19369, June 2023.

Fang, Y., Sun, Q., Wang, X., Huang, T., Wang, X., and
Cao, Y. Eva-02: A visual representation for neon genesis.
Image and Vision Computing, 149:105171, 2024. ISSN
0262-8856.

9

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Bre-
itwieser, O., Cramer, B., Dold, D., Kungl, A. F., Senn, W.,
Schemmel, J., Meier, K., and Petrovici, M. A. Fast and
energy-efficient neuromorphic deep learning with first-
spike times. Nature Machine Intelligence, 3(9):823–835,
Sep 2021.

Gütig, R. and Sompolinsky, H. The tempotron: a neuron
that learns spike timing–based decisions. Nature Neuro-
science, 9(3):420–428, Mar 2006. ISSN 1546-1726.

Hao, Z., Bu, T., Ding, J., Huang, T., and Yu, Z. Reduc-
ing ann-snn conversion error through residual membrane
potential. volume 37, pp. 11–21, Jun. 2023.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(GELUs), 2016.

Horowitz, M. 1.1 computing’s energy problem (and what we
can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pp. 10–14, 2014.

Huang, Z., Shi, X., Hao, Z., Bu, T., Ding, J., Yu, Z., and
Huang, T. Towards high-performance spiking transform-
ers from ann to snn conversion. In Proceedings of the
32nd ACM International Conference on Multimedia, MM
’24, pp. 10688–10697, New York, NY, USA, 2024. Asso-
ciation for Computing Machinery. ISBN 9798400706868.

Jiang, Y., Hu, K., Zhang, T., Gao, H., Liu, Y., Fang, Y.,
and Chen, F. Spatio-temporal approximation: A training-
free SNN conversion for transformers. In The Twelfth
International Conference on Learning Representations,
2024.

Maass, W. Networks of spiking neurons: The third gener-
ation of neural network models. Electron. Colloquium
Comput. Complex., TR96, 1996.

Montemurro, M. A., Rasch, M. J., Murayama, Y., Logo-
thetis, N. K., and Panzeri, S. Phase-of-firing coding of
natural visual stimuli in primary visual cortex. Current
Biology, 18(5):375–380, 2008. ISSN 0960-9822.

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient
learning in spiking neural networks: Bringing the power
of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Park, S., Kim, S., Choe, H., and Yoon, S. Fast and efficient
information transmission with burst spikes in deep spik-
ing neural networks. In 2019 56th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, 2019.

Park, S., Kim, S., Na, B., and Yoon, S. T2fsnn: Deep
spiking neural networks with time-to-first-spike coding.
In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6, 2020.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S.,
Wang, G., Zou, Z., Wu, Z., He, W., Chen, F., Deng, N.,
Wu, S., Wang, Y., Wu, Y., Yang, Z., Ma, C., Li, G.,
Han, W., Li, H., Wu, H., Zhao, R., Xie, Y., and Shi, L.
Towards artificial general intelligence with hybrid Tianjic
chip architecture. Nature, 572(7767):106–111, Aug 2019.
ISSN 1476-4687.

Rathi, N. and Roy, K. Diet-snn: A low-latency spiking
neural network with direct input encoding and leakage
and threshold optimization. IEEE Transactions on Neural
Networks and Learning Systems, 34(6):3174–3182, 2023.
doi: 10.1109/TNNLS.2021.3111897.

Rueckauer, B. and Liu, S.-C. Conversion of analog to spik-
ing neural networks using sparse temporal coding. In
2018 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pp. 1–5, 2018.

Stanojevic, A., Woźniak, S., Bellec, G., Cherubini, G., Pan-
tazi, A., and Gerstner, W. An exact mapping from ReLU
networks to spiking neural networks. Neural Networks,
168:74–88, 2023. ISSN 0893-6080.

Stanojevic, A., Woźniak, S., Bellec, G., Cherubini, G., Pan-
tazi, A., and Gerstner, W. High-performance deep spiking
neural networks with 0.3 spikes per neuron. Nature Com-
munications, 15(1):6793, Aug 2024. ISSN 2041-1723.

Steiner, A. P., Kolesnikov, A., Zhai, X., Wightman, R.,
Uszkoreit, J., and Beyer, L. How to train your vit? data,
augmentation, and regularization in vision transformers.
Transactions on Machine Learning Research, 2022. ISSN
2835-8856.

Thorpe, S., Delorme, A., and Van Rullen, R. Spike-based
strategies for rapid processing. Neural Networks, 14(6):
715–725, 2001. ISSN 0893-6080.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Wang, Z., Fang, Y., Cao, J., Zhang, Q., Wang, Z., and Xu,
R. Masked spiking transformer. In 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pp.
1761–1771, 2023.

Wang, Z., Fang, Y., Cao, J., Ren, H., and Xu, R. Adaptive
calibration: A unified conversion framework of spiking
neural networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 39(2):1583–1591, Apr. 2025. doi:
10.1609/aaai.v39i2.32150.

Yao, M., Hu, J., Zhou, Z., Yuan, L., Tian, Y., XU, B., and
Li, G. Spike-driven transformer. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023.

10

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

Yao, M., Hu, J., Hu, T., Xu, Y., Zhou, Z., Tian, Y., XU,
B., and Li, G. Spike-driven transformer v2: Meta spik-
ing neural network architecture inspiring the design of
next-generation neuromorphic chips. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Yao, M., Qiu, X., Hu, T., Hu, J., Chou, Y., Tian, K.,
Liao, J., Leng, L., Xu, B., and Li, G. Scaling spike-
driven transformer with efficient spike firing approxima-
tion training. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 47(4):2973–2990, 2025. doi:
10.1109/TPAMI.2025.3530246.

You, K., Xu, Z., Nie, C., Deng, Z., Guo, Q., Wang, X.,
and He, Z. SpikeZIP-TF: Conversion is all you need for
Transformer-based SNN. In ICML, 2024.

Zhang, L., Zhou, S., Zhi, T., Du, Z., and Chen, Y. TD-
SNN: From deep neural networks to deep spike neural
networks with temporal-coding. Proceedings of the AAAI
Conference on Artificial Intelligence, 33:1319–1326, 07
2019.

Zhou, C., Yu, L., Zhou, Z., Ma, Z., Zhang, H., Zhou, H., and
Tian, Y. Spikingformer: Spike-driven residual learning
for transformer-based spiking neural network, 2023a.

Zhou, Z., Zhu, Y., He, C., Wang, Y., YAN, S., Tian, Y., and
Yuan, L. Spikformer: When spiking neural network meets
transformer. In The Eleventh International Conference
on Learning Representations, 2023b.

11

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

Algorithm 1 Converting ANN into TTFS-based SNN
Input: ANN P .
Select the time step δ according to hardware.
Set the constants T (n)

emit = T
(0)
emit + nδ and T (n)

end = T
(n)
emit + δ, where T (0)

emit is the tick when simulation begins.
for layer Ln in P do

Monitor the range of output Xn = [an, bn].
Select the time constant as τ (n) = δ

bn−an
.

Set T (n)
ref = T

(n)
emit + bnτ

(n).
if Ln is Softmax or Ln is LayerNorm then

Simulate the spiking counterpart illustrated in Sections 4.3.2 and 4.3.3.
Monitor the range of the output in each intermediate layer.

end if
end for
for layer Ln in P do

Convert Ln into a Spiking Layer according to Section 4.3.
end for

A. Experiment Details
The whole conversion process is shown in Algorithm 1. We’ll discuss some details in this part.

A.1. Setting the Constants

Since we’re using adjustable parameters τ and Tref , we can set the [a, b] such that nearly all outputs lie within the range.
More specifically, if the output range is [a, b], we can set

bτ = Tref − Temit,

aτ = Tref − Tend,
(29)

which indicates that τ = δ
b−a and Tref = Temit + bτ .

A.2. Evaluating

Evaluating the SNN is similar to ANN except for the conversion between spikes and values. Since the network takes spikes
as its input, a pixel value x ∈ R is turned to a spike at time t = T

(0)
ref − xτ . Besides, as the output of the network are actually

spikes, the spikes should be turned back into real values. However, in image classification, the prediction is given by the
index of the earliest spike, and there is no need to convert the spike back into real values.

12

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

B. Proof of Theorem
B.1. Proof of Theorem 4.1

Proof. Consider the potential change in the receiving stage.

V
(n)
i (T

(n)
emit) =

1

τ

∫ T
(n−1)
end

T
(n−1)
emit

∑

j

w
(n)
ij η

(n)
ij (t− t

(n−1)
j) + C

(n)
i dt

=
1

τ

∑

j

w
(n)
ij

∫ T
(n−1)
end −t

(n−1)
j

0

η
(n)
ij (s) ds+ d(n−1) · C(n)

i

=
∑

j

w
(n)
ij

1

τ (n−1)

∫ T
(n−1)
end −T

(n−1)
ref +τ(n−1)x

(n−1)
j

0

η
(n)
ij (s) ds+ d(n−1) · C(n)

i

=
∑

j

w
(n)
ij fij

(s

τ (n−1)
+ a(n−1)

)∣∣∣
τ(n−1)(x

(n−1)
j +a(n−1))

0
+ d(n−1) · C(n)

i

=
∑

j

w
(n)
ij

(
fij(x

(n−1)
j)− fij(a

(n−1))
)
+ d(n−1) · C(n)

i

=
∑

j

w
(n)
ij fij(x

(n−1)
j)

(30)

B.2. Proof of Theorem 4.3

Proof. Denote g = h−1. Since h(g(x)) = x, we have

h′(g(x)) · g′(x) = 1 (31)

by taking the derivative of both side.

If the spike is emitted at time t ∈ [Temit, Tend), i.e. the corresponding value x ∈ (a, b]. Then

θ = V (Temit) +

∫ t−Temit

0

ψ(s) ds

= V (Temit) +

∫ Tref−Temit−τx

0

1

τ
g′
(
b− s

τ

)
ds

= V (Temit)− g
(
b− s

τ

)∣∣∣
τ(b−x)

0

= V (Temit)− g(x) + g(b)

(32)

Thus
g(x) = V (Temit) (33)

which indicates that
x = h(V (Temit)) ∈ (a, b] (34)

If h(V (Temit)) > b, then V (Temit) > g(b) = θ, which means that a spike is emitted once the emitting window begins, i.e.
at Temit, representing the value Tref−Temit

τ = b. If h(V (Temit)) < a, then the potential at time Tend is (according what we
calculated before)

V (Temit) +

∫ δ

0

ψ(s) ds = V (Temit)− g
(
b− s

τ

)∣∣∣
δ

0
= V (Temit)− g(a) + g(b) < g(b) = θ (35)

which means that there will be no spike, representing the value a.

13

TTFSFormer: A TTFS-based Lossless Conversion of Spiking Transformer

Table 3. Energy consumption for all layers

Layer Operand Size Number of Neurons Operation Counts

MatMul(A,B) A ∈ RM×K and B ∈ RK×N MN(K + 1) MN(3K + 2)
Softmax(x) x ∈ RN 2(N + 1) 6N

LayerNorm(x) x ∈ RN 3N + 3 9N + 1
Activation (GELU/SiLU) f(A) A ∈ RM×N MN MN

C. Detailed Construction of Operators
In this part, we give detailed construction of the operators mentioned before, along with some less important optimization
techniques.

C.1. Multiplication

The product of two neurons can be calculated by a two-layer network, as described in Section 4.3.4.

In the multiplication of matrix A ∈ RM×K and matrix B ∈ RK×N , we need MNK neurons in the first layer, each taking
Aik, Bkj as input for 1 ≤ i ≤M, 1 ≤ k ≤ K, 1 ≤ j ≤ N . In the second layer, we should combine the neuron that shares
the same k, i.e. each neuron takes {Aik, Bkj , yikj |1 ≤ k ≤ K} as input for 1 ≤ i ≤M, 1 ≤ j ≤ N . The threshold should
be changed into θ(2) = b(2) −Kc2.

C.2. Softmax

Consider n neurons with input x1, x2, · · · , xn ∈ [a(0), b(0)].

Layer 0 (Optional). The result of softmax wouldn’t change if we subtract a constant for all xi, which can improve the
numerical stability of softmax. If we choose to subtract maxi xi, we may need to add a layer 0.

More specifically, we can add a “maximum” neuron taking x1, · · · , xn as its input, and emit a spike the first time it receives
any input spike. The neuron represents the maximum value among all xi. Layer 0 contains n neurons in addition to the
maximum neuron, where the i-th neuron do the subtraction of xi and maxj xj .

Layer I. The first layer contains 1 neuron described in Theorem 4.6, whose output is y = log
∑

i e
xi .

Layer II. The second layer contains n neurons, where the i-th neuron takes xi and y as its input. With identity input
transform and weight 1 for xi and −1 for y, we can get the accumulated potential xi − y. With

h(2)(x) = ex

ψ(2)(s) =
1

Tref − Temit − s

θ(2) = log b(2)

(36)

We can get the output

exp

xi − log

n∑

j=1

exj

 =

exi

∑n
j=1 e

xj
(37)

The result of softmax function must be in (0, 1), so we can set a(2) = 0, b(2) = 1.

14

