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Abstract

Counterfactual explanations play a pivotal role in explainable artificial intelligence
(XAI) by offering intuitive, human-understandable alternatives that elucidate ma-
chine learning model decisions. Despite their significance, existing methods for
generating counterfactuals often require constant access to the predictive model,
involve computationally intensive optimization for each instance and lack the flex-
ibility to adapt to new user-defined constraints without retraining. In this paper,
we propose DiCoFlex, a novel model-agnostic, conditional generative framework
that produces multiple diverse counterfactuals in a single forward pass. Leveraging
conditional normalizing flows trained solely on labeled data, DiCoFlex addresses
key limitations by enabling real-time user-driven customization of constraints such
as sparsity and actionability at inference time. Extensive experiments on standard
benchmark datasets show that DiCoFlex outperforms existing methods in terms
of validity, diversity, proximity, and constraint adherence, making it a practical
and scalable solution for counterfactual generation in sensitive decision-making
domains.

1 Introduction

Counterfactual explanations (CFs) have become an integral part of explainable artificial intelligence
(XAI) by providing human-interpretable insights into complex machine learning models [13]. CFs
answer critical "what-if" questions by suggesting minimal and meaningful changes to input data that
could alter the outcome of a predictive model [44]. Such explanations have valuable applications
across sensitive domains, including finance, healthcare, and legal decisions, where understanding the
predictions of the model and potential alternative outcomes is paramount [48, 11].

According to Guidotti [13], an ideal counterfactual explanation should satisfy several key properties.
First, it must demonstrate validity by successfully changing the model’s prediction. Second, it
should maintain proximity by remaining as close as possible to the original input, minimizing the
amount of change. Third, it should exhibit sparsity by modifying only the smallest possible set of
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(a) Unconstrained
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(b) Sparsity constraints
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(c) Actionability constraints

Figure 1: Visualization of diverse counterfactual explanations generated by DiCoFlex for a single
instance using an artificial two-class moon-shaped dataset. Each subfigure demonstrates different
constraint scenarios: (a) no constraints applied, showing natural diversity; (b) sparsity constraints
enforced through the p-norm parameter, resulting in minimal feature modifications; and (c) action-
ability constraints applied via feature masks, restricting which features can be modified.

features. Fourth, it must ensure plausibility by remaining within the realm of realistic, observed data.
Finally, it should guarantee actionability by suggesting changes that are feasible for the stakeholder
to implement.

In practice, however, these criteria often conflict. For instance, the smallest possible change may
result in samples outside the realistic data distribution. To address this, Mothilal et al. [22] and Laugel
et al. [20] argue that, rather than producing a single “best” counterfactual explanation, a diverse set of
CFs should be generated. Presenting multiple realistic alternatives allows users to see different ways
to achieve the desired outcome, explore trade-offs between minimal change and realism, and gain
deeper insight into the model’s decision boundaries. This diversity, in turn, empowers stakeholders to
make more informed, feasible decisions.

Current approaches to diverse counterfactual generation face significant limitations. Optimization-
based methods like DiCE [22] and multi-objective frameworks [7] incorporate diversity directly into
their cost functions but require solving complex, separate optimizations for each explanation. This
results in high computational costs and latency, making them impractical for real-time applications.
Meanwhile, generative approaches such as those by Pawelczyk et al. [28] and Panagiotou et al. [25]
offer efficiency improvements but frequently produce redundant explanations, require access to model
gradients, and lack flexibility for adapting to user-defined constraints without extensive retraining.

To address these limitations, we introduce DiCoFlex, a novel conditional generative framework
capable of generating multiple diverse CFs in a single forward pass. DiCoFlex is model-agnostic and
does not require constant access to the underlying predictive model at any stage, relying solely on a
dataset labeled by a classification model. Our approach leverages conditional normalizing flows to
learn the distribution of counterfactual explanations that inherently satisfy user-specified constraints.

In contrast to existing methods, DiCoFlex incorporates customizable constraints such as sparsity and
actionability directly at inference time, eliminating the need for retraining when constraints change.
During inference, DiCoFlex achieves computational efficiency by generating multiple diverse CFs
through a single forward pass, thus avoiding the computational burden inherent in methods that require
separate optimization procedures for each counterfactual. As illustrated in Figure 1, our method
can operate under different constraints. DiCoFlex generates diverse and plausible counterfactual
explanations without any restrictions imposed on sparsity or actionability (as shown in Figure 1a).
Sparsity, controlled by the user-defined exponent p in Lp norm, ensures minimal modifications in
input features (as demonstrated in Figure 1b), while actionability constraints allow users to specify
immutable features through a mask, guiding the generation towards practically feasible explanations
(shown in Figure 1c). These parameters can be dynamically adjusted at inference time, providing
unprecedented flexibility in generating counterfactual explanations that satisfy domain-specific
constraints while maintaining a balance between diversity and validity without requiring explicit
diversity penalties.

The main contributions of our work are summarized as follows:
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• We propose DiCoFlex, a classifier-agnostic, conditional generative framework that generates
multiple counterfactuals efficiently in a single forward pass, without the need for model
retraining or optimization per query instance.

• Our method enables real-time customization of constraints including sparsity and actionabil-
ity, providing practical, user-centric control over counterfactual generation.

• We extensively evaluate DiCoFlex on benchmark datasets, demonstrating superior perfor-
mance in terms of validity, proximity, diversity, and constraint compliance compared to
existing state-of-the-art approaches.

2 Related Work

Counterfactual explanations (CFs) have become integral to explainable AI by providing intuitive
alternatives that elucidate model decisions [44]. Optimization-based methods formulate CF generation
as minimizing distance between instances while ensuring prediction changes, using implementations
including gradient-based approaches [44], integer programming [41], genetic algorithms [7], and
satisfiability problems [18]. Instance-based methods like FACE [29] select examples yielding desired
predictions from existing data, while CBCE [19] merges features from paired contrasting instances.
Model-specific approaches such as decision tree methods [14, 38] leverage model structure by
traversing alternative paths.

Diverse Counterfactual Explanations Generating multiple diverse counterfactuals offers sig-
nificant advantages over single explanations by providing alternative paths for recourse and better
illustrating decision boundaries [20, 22]. DiCE [22] directly incorporates diversity into its loss func-
tion but requires separate optimization for each explanation, increasing computational costs. Other
approaches achieve diversity through various strategies: DiVE [33] employs determinantal point
processes, while methods like [39, 35, 5] partition the feature space. Multi-objective approaches like
MOC [7] generate solutions representing different trade-offs between properties such as proximity
and sparsity, while CARE [30] and OrdCE [17] incorporate user preferences into the generation
process.

Generative Models for Counterfactuals Generative models have gained popularity for counter-
factual generation due to their ability to produce more plausible explanations that remain on the data
manifold. VAE-based approaches include ReViSE [16], C-CHVAE [28], CLUE [2], and CRUDS [10],
which learn latent representations of the data distribution. GAN-based methods such as GeCo [36]
and SCGAN [48] use adversarial training to balance validity and realism. Recent transformer-based
approaches like TABCF [25] specifically target tabular data with mixed types. Normalizing flows
have also been explored for counterfactual generation [46, 12], where they model the class-conditional
distribution for plausibility assessment during gradient-based optimization. However, many of these
approaches still require access to model gradients, produce redundant explanations, or lack flexibility
in handling user-defined constraints.

Handling Constraints in Counterfactual Generation Practical counterfactual explanations must
satisfy various constraints including sparsity (minimizing modified features) and actionability (en-
suring feasible changes). CERTIFAI [37] employs genetic algorithms to enforce constraints, while
MCCE [31] conditions on immutable features. Methods focused on actionable recourse, such as
CSCF [23], account for downstream effects of feature modifications, while Russell [34] and Verma
et al. [43] generate explanations representing different modification strategies. However, most exist-
ing approaches require retraining or reoptimization when constraints change, limiting their flexibility
in real-world applications.

Limitations of Current Approaches Current counterfactual methods face substantial limitations
for tabular data: optimization-based approaches require high computational costs for diverse explana-
tions [22], and generative models often produce redundant explanations, require model gradients,
or lack constraint flexibility [28]. Our proposed approach, DiCoFlex, addresses these limitations
through a conditional generative framework that efficiently produces diverse counterfactuals in a
single forward pass, enables real-time constraint customization, operates without requiring model
access, and naturally handles mixed feature types.
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3 DiCoFlex Method

Given a classification model h and an initial input example x0 within a d-dimensional real space Rd,
one seeks to determine a counterfactual instance x′ ∈ Rd. A counterfactual x′ represents a sample,
which (i) is classified to desired class y′ by the model h (i.e. h(x′) = y′), (ii) lies close enough to x0

according to some distance measure, d(x0,x
′), and (iii) is plausible (in-distribution sample).

This problem formulation focuses on the deterministic extraction of counterfactuals, where, for a
given example x0 and desired class y′, the model returns a single counterfactual x′. In practice,
generating more plausible candidates provides a wider spectrum of possible explanations satisfying
validity, plausibility, and proximity constraints. Therefore, we postulate an approximate conditional
distribution for counterfactuals for a given example x0 and the target class p(x′|x0, y

′).

In this section, we first introduce a general objective function for a model generating counterfactual
explanations. Next, we parametrize our model with normalizing flow and explain our strategy for
scoring counterfactual candidates in a training phase. Finally, we introduce sparsity and actionability
constraints and summarize the training algorithm.

3.1 The model objective

We consider the parameterized model pθ(x′|x0, y
′) for the distribution approximation. Direct

optimization of pθ(x′|x0, y
′) is challenging, because we do not have access to the training ground-

truth pairs composed of initial examples x0 and the corresponding counterfactuals x′ for class y′.
Therefore, we introduce conditional distribution q(x′|x0, y

′) and we utilize the expected value of
Kullback-Leibler divergence (KLD) between pθ(x

′|x0, y
′) and q(x′|x0, y

′) as training objective:

L = Ex∼pdata,y′∼π\{h(x)} [DKL(q(x
′|x, y′) ∥ pθ(x

′|x, y′))] (1)

= Ex,y′Ex′∼q(x′|x,y′)

[
log

q(x′|x, y′)
pθ(x′|x, y′)

]
(2)

= Ex,y′Ex′∼q(x′|x,y′) [log q(x
′|x, y′)− log pθ(x

′|x, y′)] , (3)

where x is an example from the data distribution pdata (training example) and y′ is sampled from
categorical distribution π representing the prior over classes, excluding the current class of x,
predicted by h(·). The component q(x′|x, y′) does not depend on parameters θ, therefore the final
objective is:

Q = −Ex,y′Ex′∼q(x′|x,y′) [log pθ(x
′|x, y′)] . (4)

We further elaborate on how pθ(x
′|x, y′) is modeled and how sample from q(x′|x, y′).

3.2 Modeling predictive conditional distribution

Our approach aims at directly optimizing the conditional negative log-likelihood given by (4) with
the data sampled from the distribution q(x′|x, y′). As a consequence, it requires access to the
parametrized density function. Several techniques, such as Kernel Density Estimation (KDE) and
Gaussian Mixture Models (GMM), can be used to model the conditional density function pθ(x

′|x, y′).
In this work, we propose using a conditional normalizing flow model [32] for this purpose. Unlike
KDE or GMM, normalizing flows do not rely on a predefined parametric form of the density function
and are well-suited for modeling high-dimensional data. Furthermore, in contrast to other generative
models, such as diffusion models or GANs, normalizing flows allow for exact density evaluation
via the change of variables formula and can be efficiently trained by minimizing the negative log-
likelihood. The general formula that represents normalizing flows can be expressed as:

pθ(x
′|x, y′) = pZ(fθ(x

′;x, y′)) · |det Jfθ (x′;x, y′)| , (5)

where fθ(x
′;x, y′) is an invertible transformation conditioned on x and y′, pZ(fθ(x′;x, y′)) is the

base distribution, typically Gaussian and Jfθ (x
′;x, y′) is Jacobian of the transformation. The biggest
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challenge in normalizing flows is the choice of the invertible function for which the determinant
of Jacobian is easy to calculate. Several solutions have been proposed in the literature to address
this issue with notable approaches, including NICE [8], RealNVP [9], and MAF [26]. Based on
superior performance on benchmark dataset, we selected MAF as our normalizing flow model (see
Appendix D).

3.3 Selecting training counterfactual explanations

The distribution q(x′|x, y′) is essential to sample data to train the flow model. Since we do not have
direct access to this distribution, we introduce the straightforward technique of querying training
counterfactual examples x′, which are similar to the input data and satisfy h(x′) = y′. For this
purpose, we use a typical KNN (K-nearest neighbors) heuristic, in which we sample K data points
labeled as y′ by the classifier that are closest to the input x. Since we are sampling training examples
from class y′, the validity and plausibility constraints hold, while the proximity is satisfied by using
the KNN approach.

Concluding, the approximation for the probability distribution q(·) is as follows:

q̂(x′|x, y′, d) =

{
1
K if x′ ∈ N(x, y′, d,K),

0 otherwise,
(6)

where N(x, y′,K, d) is set of K closest neighbors of x in class y′, considering distance measure
d(·, ·).
One could ask whether a direct use of the distribution q̂(x′ | x, y′, d) can be an alternative for gener-
ating counterfactual explanations, instead of learning a parametrized flow-based model pθ(x′ | x, y′).
Observe that the use of q̂ is inherently limited by the number of available training examples and lacks
the ability to generalize to unseen instances. Additionally, the diversity of generated examples is
constrained by the number of selected neighbors. Modeling a generative model provides smooth
changes over input examples and allows for extrapolating counterfactual generation outside training
data. Importantly, our sampling strategy provides theoretical guarantees by construction: sampled
counterfactuals are guaranteed to be valid, proximal, and plausible. We formalize these properties in
Propositions A.3, A.4, and A.5 (Appendix A).

3.4 Sparsity on continuous features

In many practical use cases, counterfactuals need to satisfy additional constraints, such as sparsity.
This means that, in addition to minimizing the Euclidean distance, a counterfactual has to minimize
the number of modified attributes. While sparsity is often implicitly achieved for categorical variables
due to the applied optimization scheme, enforcing sparsity on continuous features remains challenging.
We show that the sparsification of continuous attributes can be controlled in the inference phase by
an auxiliary conditioning factor in a flow model.

Instead of querying neighbor examples to x according to Euclidean distance in KNN search, we use
Lp distance function given by:

dp(x
′
i,x) = ||x′

i − x||p =

 D∑
j=1

|x′
j − xj |p

1/p

. (7)

We can observe that the level of modified attributes can be controlled through an appropriate choice
of the value of p. For instance, if p = 0.01, neighbors with fewer modified attributes are favored,
thereby enforcing sparsity. Making use of p = 2 gives a standard Euclidean proximity measure. Since
categorical attributes are commonly encoded by one-hot vectors, the Lp distance exhibits a discrete
jump property: the distance equals 0 if categories match and a fixed value otherwise, regardless of
p. This discrete structure naturally limits categorical changes. Therefore, the above scheme affects
mostly continuous features.

In practice, the sparsity level can be effectively controlled in the inference time by incorporating the
parameter p into the flow model pθ(x′ | x, y′, p) through additional conditioning. During training,
values of p are sampled and explicitly included in the conditioning of the model, allowing it to learn
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the relationship between p and the desired sparsity in the generated outputs. As a result, during the
inference stage, users can adjust the sparsity level of the modified attributes simply by selecting an
appropriate value of p. This mechanism provides a flexible and interpretable way to regulate the
extent of changes applied to the input x, depending on specific needs or constraints. Note, however,
that the applied Lp norm does not freeze the continuous attributes but only encourages small changes
on their portion, which can be seen as a type of soft constraint. From a theoretical perspective, using
small p values (e.g., p = 0.01) restricts the neighborhood N(x, y′, dp,K) to a more concentrated
region of the feature space, which typically corresponds to higher-density areas of the data manifold.
This explains why DiCoFlex achieves improved plausibility scores empirically, as formalized in
Proposition A.5.

3.5 Actionability constraints

One of the crucial aspects of counterfactual explanations is enforcing the manipulation of some
particular attributes. In order to accomplish that, in our approach, we introduce a further modification
in a distance function while calculating the nearest neighbors:

dp,m(x,x′) = ∥x− x′∥p,m = α

D∑
j=1

mj |xj − x′
j |p +

D∑
j=1

(1−mj)|xj − x′
j |p, (8)

where m ∈ {0, 1}D is binary vector, for which md = 1 indicates the attributes that should not be
modified. The value of hyperparameter α should be large enough to prevent attributes md = 1 from
modification.

During training the masking vectors m are sampled from some set of possible mask patterns M
and the mask is also delivered as a conditioning factor to the flow-based model, which represents
pθ(x

′ | x, y′, p,m). Once trained with a set of masks M, DiCoFlex can dynamically change the
mask during inference resulting in imposing different user expectations. Similar to enforcing sparsity,
here we do not prevent from modifying masked attributes completely but only encourage the model
to prioritize changing unmasked features first.

3.6 Training

Concluding, the training procedure for estimating θ is as follows. For each training iteration, x is
selected from data examples and the target class y′ is sampled for counterfactual explanation. Value p
that represents the sparsity level is also sampled from some predefined set P , as well as the masking
vector m from M. Next, the set N(x, y′, dp,m,K) of K nearest neighbors is calculated considering
distance measure dp,m given by (8). The counterfactual x′ is sampled from q̂(x′|x, y′, dp,m) given
by (6). Finally, θ is updated in gradient-based procedure by optimizing (4), considering conditioning
both on p and m. Appendix E contains the details of the training algorithm.

The training procedure inherits several desirable theoretical properties from the K nearest neighbors
sampling mechanism. First, all training samples are guaranteed to be valid counterfactuals by
construction (Proposition A.3). Second, proximity is controlled through an implicit upper bound
determined by the K-th nearest neighbor (Proposition A.4). Third, plausibility is ensured as all
samples originate from the training distribution (Proposition A.5). Finally, the normalizing flow
learns to preserve diversity with a formal guarantee that expected diversity remains close to the
empirical diversity, with deviation bounded by the training error (Theorem A.2). These theoretical
foundations provide principled justification for the empirical performance demonstrated in Section 4.

4 Experiments

In this section, we conduct a series of experiments that evaluate the quality of counterfactual
explanations generated by various methods2. Our main objective is to understand how effectively
these counterfactuals flip the predictions of a model while maintaining realism, requiring minimal
changes to the input, and offering diversity among the generated alternatives.

2Code available at https://github.com/ofurman/DiCoFlex
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4.1 Experimental Setup

Datasets We evaluate all methods on five well-established benchmark datasets commonly used in
counterfactual explanation research: Adult [3] (income prediction), Bank Marketing [21] (customer
response classification), Default [47] (credit card default risk prediction), Give Me Some Credit
(GMC) [28] (financial insolvency prediction), and Lending Club [15] (loan creditworthiness classifi-
cation), see Appendix B for details. These datasets are selected for their diversity in dimensionality,
feature types (mixed categorical and continuous variables), and real-world applicability, allowing us
to evaluate the robustness and generalizability of our approach across different domains.

Parameterization of DiCoFlex For our experimental evaluation, we compare two variants of our
method: DiCoFlex with default Euclidean distance (p=2.0) and DiCoFlex (p=0.01), which uses the
Lp norm with p=0.01. This latter version encourages higher sparsity for continuous features, leading
to explanations that alter fewer continuous attributes while maintaining validity, see Section 3.5.
Importantly, these configurations are not separate methods but represent different inference-time
settings of the same trained model. This design demonstrates DiCoFlex’s ability to dynamically
adjust sparsity and proximity constraints without any retraining, enabling continuous user control
over counterfactual behavior.

Baseline Methods We compare our approach against several state-of-the-art counterfactual expla-
nation methods. First of all, we consider methods, which generate multiple explanations for a single
data point. CCHVAE [28] employs a conditional variational autoencoder to generate counterfactuals
consistent with the data distribution. DiCE [22] uses gradient-based optimization to produce diverse
counterfactuals in a model-agnostic framework. For all these methods, we generate up to 100 coun-
terfactual explanations for each factual instance whenever feasible and randomly select 10 samples
based solely on the validity criterion to provide an equal number of counterfactuals for every method.

Additionally, we compare with methods focused on returning a single explanation. ReViSE [16]
introduces a probabilistic framework designed to separate sensitive and non-sensitive features with a
focus on interpretability. The approach by Wachter et al. [44] represents a pioneering optimization-
based method that minimizes a loss function balancing proximity to the input with the goal of
changing the prediction. TABCF [25] specifically targets tabular data with a transformer-based
VAE approach. This class of methods is expected to perform better because they are optimized for
producing a single best explanation while the first class of methods takes a diversity criterion as a
priority.

Evaluation Metrics We evaluate counterfactual quality using metrics aligned with key desirable
properties. For test instances originally classified as class 0, we generate corresponding counter-
factuals targeting class 1 and vice versa. Validity measures the percentage of counterfactuals that
successfully change model predictions to the target class. Hypervolume [24] is used to measure
diversity to quantify the spread and coverage of counterfactuals in the objective space. Plausibility is
assessed through Local Outlier Factor (LOF) [4] that measure isolation from the training distribu-
tion. Sparsity quantifies feature modifications, calculated as the proportion of changed features in
each category. For continuous features, we use ε-sparsity, which counts features modified beyond
a threshold of 5% of the feature range. Proximity measures distance between original instances
and the counterfactuals using the Euclidean distance only for continuous features. Observe that for
categorical features proximity coincides with the sparsity. Probability measures model confidence in
the target prediction. For the sparsity, proximity and plausibility metrics, lower values indicate better
performance (↓), while for the validity, probability and diversity metrics, higher values are preferable
(↑). We provide a detailed description of the metrics in Appendix C.

4.2 Evaluating multiple explanations

The comparison with baselines for diverse counterfactual explanations (DiCE, CCHVAE) presented
in Table 1 confirms that DiCoFlex returns more diverse explanations than competitive methods,
achieving superior hypervolume scores. In terms of plausibility evaluation, both versions of Di-
CoFlex consistently outperform other baseline methods as indicated by the LOF measure (except
the GMC dataset). Furthermore, the results reveal that the proposed method is capable of producing
counterfactual explanations with a low proximity score on continuous attributes.
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Table 1: Comparison of counterfactual generation methods across datasets. The best method, which
generates multiple counterfactual candidates for each metric is highlighted in bold (DiCoFlex,
CCHVAE, DiCE). If there is a method that generates a single counterfactual (ReViSE, TABCF,
Wachter) that is better than the bold result, it is underlined.

Classif. Proximity Sparsity ϵ-sparsity LOF Hypervol.
Dataset Model Validity. ↑ prob. ↑ cont. ↓ cat. ↓ cont. ↓ log scale ↓ log scale ↑

Lending DiCoFlex (p=2.0) 1.000 0.999 0.668 0.412 0.840 0.476 13.118
Club DiCoFlex (p=0.01) 1.000 0.997 0.704 0.635 0.737 0.453 11.373

CCHVAE 1.000 0.682 0.769 0.137 0.895 0.519 7.448
DiCE 1.000 0.978 3.444 0.146 0.840 0.567 8.252

ReViSE 0.910 0.721 0.588 0.077 0.639 0.040 -
TABCF 1.000 0.946 0.557 0.635 0.551 0.047 -
Wachter 0.950 0.530 1.268 0.000 0.696 0.943 -

Adult DiCoFlex (p=2.0) 1.000 0.998 0.581 0.515 0.498 2.156 2.036
DiCoFlex (p=0.01) 1.000 1.000 0.373 0.568 0.350 1.812 0.379
CCHVAE 1.000 0.894 0.616 0.302 0.582 2.176 1.571
DiCE 1.000 1.000 5.096 0.557 0.582 3.815 0.681

ReViSE 0.860 0.879 1.004 0.206 0.576 2.637 -
TABCF 1.000 0.986 3.129 0.263 0.348 3.746 -
Wachter 0.970 0.578 1.046 0.000 0.830 2.893 -

Bank DiCoFlex (p=2.0) 1.000 0.971 0.717 0.499 0.786 0.276 3.808
DiCoFlex (p=0.01) 1.000 0.894 0.584 0.480 0.673 0.247 3.006
CCHVAE 1.000 0.951 0.989 0.357 0.816 0.778 0.309
DiCE 1.000 0.994 7.117 0.106 0.787 0.839 0.323

ReViSE 0.230 0.823 1.119 0.285 0.615 0.320 -
TABCF 1.000 0.850 3.747 0.210 0.441 0.360 -
Wachter 0.830 0.530 3.826 0.000 0.962 0.887 -

Default DiCoFlex (p=2.0) 1.000 0.986 0.459 0.419 0.831 0.038 62.427
DiCoFlex (p=0.01) 1.000 0.988 0.489 0.514 0.787 0.034 61.593
CCHVAE 1.000 0.963 0.679 0.463 0.832 0.047 53.706
DiCE 1.000 0.914 1.039 0.263 0.692 0.373 51.184

ReViSE 0.170 0.784 0.595 0.281 0.613 0.033 -
TABCF 1.000 0.884 0.516 0.510 0.412 0.057 -
Wachter 0.930 0.557 4.494 0.000 0.976 0.658 -

GMC DiCoFlex (p=2.0) 1.000 0.969 0.690 0.755 0.765 0.861 15.667
DiCoFlex (p=0.01) 1.000 0.968 0.781 0.764 0.763 0.899 15.810
CCHVAE 1.000 0.932 0.389 0.756 0.762 0.564 9.761
DiCE 1.000 0.934 3.478 0.753 0.699 0.399 9.184

ReViSE 0.780 0.909 8.525 0.180 0.877 0.702 -
TABCF 0.130 0.630 0.521 0.359 0.835 0.303 -
Wachter 0.950 0.584 8.588 0.000 0.987 2.436 -

However, impressive diversity, plausibility, and proximity come at the price of slightly worse sparsity.
Although DiCoFlex (p=0.01) obtained the lowest ϵ-sparsity on continuous features in three out of five
cases, the categorical sparsity is higher than the one returned by DiCE and CCHAVE. It is apparent
that these two methods switch categorical variables less often than continuous ones, which is usually
caused by the applied optimization scheme and can be seen as their drawback. Observe that the use
of DiCoFlex (p=0.01) allows us to balance the level of sparsity between categorical and continuous
features.

Our analysis confirms that typical measures for evaluating counterfactual explanations are in conflict
and that there does not exist a method that optimizes all these criteria simultaneously. However, the
proposed method compares favorably with other approaches beating them in diversity, plausibility,
and proximity on continuous features.

4.3 DiCoFlex (p=2.0) vs. DiCoFlex (p=0.01)

As mentioned, lowering the value of p in the Lp norm for DiCoFlex directly results in lowering the
sparsity measure for continuous attributes. As a side effect, it allows for larger changes in values of
categorical variables to produce valid counterfactuals. An interesting consequence is that DiCoFlex
(p=0.01) generates more plausible samples than DiCoFlex (p=2.0) (see the LOF score), which may
be attributed to the way we model the distribution q used for scoring counterfactual candidates; see
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Section 3.3. For low p = 0.01, we restrict the support of q to a small region of data space, where
only a small number of coordinates are likely to be modified. Increasing this value leads to neighbors
located in a larger and more diverse region since we allow for modifying all coordinates without extra
penalty. Consequently, DiCoFlex with p = 2 can sample out-of-distribution counterfactuals more
often than DiCoFlex (p=0.01) with p = 0.01. In practice, dynamic change of p in inference allows
users to examine multiple counterfactual candidates and select the one that suits their expectations
best.

4.4 Comparison with single counterfactual methods

To present a broader view on the performance of DiCoFlex, we include an additional comparison
with commonly used methods that generate a single explanation (ReViSE, TABCF, Wachter) (see
Table 1). We note that DiCoFlex and DiCoFlex (p=0.01) still demonstrate impressive performance
in terms of LOF score in this comparison. They both achieve the lowest LOF on Adult and Bank
datasets and are comparable to the best-performing ReViSE method on the Default dataset. Moreover,
they obtained the best continuous proximity measure in 3 out of 5 cases. This means that even
though DiCoFlex produces multiple diverse counterfactuals for each instance, most of them satisfy
the highest requirements used in counterfactual analysis.

Among competitive methods, ReViSE and TabCF represent strong baselines that achieve a satisfactory
level of plausibility and sparsity. Nevertheless, these models often fail to generate valid counterfactuals
(see TABCF on GMC or ReViSE on Bank and Default), which partially limits their usefulness.
Generating multiple diverse counterfactuals (as in our method) allows the user to select suitable
candidates that meet the expected criteria. It is interesting that TABCF and ReViSE obtain more than
10 times lower LOF on the Lending Club dataset than other approaches. It might follow from the fact
that it is impossible to generate multiple good counterfactuals for this dataset, and only a few nearby
candidates represent in-distribution samples. We also note that the classical Wachter method does
not change categorical variables at all and generally gives suboptimal results, except for the validity
score.

4.5 Runtime of counterfactuals generation

DiCoFlex
(p=2.0)

DiCoFlex
(p=0.01)
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Figure 2: Average runtime (log scale).

A key advantage of our approach is that once trained, Di-
CoFlex can be used to generate multiple counterfactual
explanations in a single forward pass. To illustrate this
gain, we measure the time every method needs to generate
a single counterfactual for 100 data points. Figure 2 con-
firms that both variants of DiCoFlex achieve generation
times of 0.12± 0.05 seconds, outperforming other base-
line methods by orders of magnitude. Optimization-based
methods demonstrate substantially higher computational
costs, with DiCE, ReViSE, and TABCF all requiring over
1000 seconds on average. This efficiency enables real-
time exploration of diverse counterfactual explanations
with dynamic constraint adjustment, addressing a critical
limitation of existing approaches.

4.6 Actionability Control

DiCoFlex is capable of imposing additional constraints when generating counterfactuals without
retraining the model. As demonstrated in Section 4.3 and Table 1, the use of the Lp norm with
small p allows to minimize the modifications of the continuous features and improve plausibility. In
this experiment, we show the effect of introducing actionability constraints, which prevents severe
modification of user-defined features.

For illustration, we train DiCoFlex on the Adult dataset with four mask configurations, which cover
one or two features, as shown in Table 2. For instance, the use of "mask 1" should block changes of
"Capital Gain" and "Capital Loss" attributes. As can be observed in the result, the application of every
individual mask indeed decreases the sparsity level compared to the unconstrained version when no
mask is used. In consequence, this flexible control enables users to dynamically adjust both sparsity
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Table 2: Comparison of the unconstrained version of DiCoFlex with its masked variant, evaluated
on features selected by the given mask. We report ϵ-sparsity for numerical variables and standard
sparsity for categorical ones (lower score means less attributes affected).

mask 1 mask 2 mask 3 mask 4
Method Capital Gain Capital Loss Age Race Sex Native Country

Masked-DiCoFlex 0.023 0.037 0.069 0.052 0.045 0.030

Standard DiCoFlex 0.148 0.097 0.833 0.170 0.200 0.116

and actionability, generating counterfactuals satisfying different domain-specific requirements without
requiring model retraining. Appendix I contains additional evaluation of these models.

4.7 Sensitivity Analysis of Sparsity Parameter p

We further analyze the sensitivity of DiCoFlex to the sparsity control parameter p that governs the
Lp norm used during neighbor selection (Section 3.4). This parameter determines the strength of
sparsity constraints applied to continuous features and thus influences the trade-off between proximity,
sparsity, and diversity.

Table 3 reports the performance of DiCoFlex across several p values on the Adult dataset. Lower
values (e.g., p = 0.01) favor sparse modifications, yielding counterfactuals that stay closer to the
original instances, while larger values (e.g., p = 1 or 2) permit more flexible changes that improve
diversity at the cost of proximity.

Table 3: Effect of sparsity parameter p on DiCoFlex performance on the Adult dataset. Lower
proximity and LOF, higher validity and hypervolume indicate better performance.

Classif. Proximity Sparsity ϵ-sparsity LOF Hypervol.
Model prob. ↑ cont. ↓ cat. ↓ cont. ↓ log ↓ log ↑

DiCoFlex (p=0.01) 1.000 0.373 0.568 0.441 1.9119 0.9023
DiCoFlex (p=0.08) 0.996 0.501 0.553 0.454 1.9680 1.0801
DiCoFlex (p=0.25) 0.995 0.551 0.541 0.501 2.2380 1.3780
DiCoFlex (p=1.0) 0.996 0.577 0.537 0.589 2.6349 1.9491
DiCoFlex (p=2.0) 0.998 0.581 0.515 0.601 2.6614 1.8862

Across all p values, DiCoFlex maintains perfect validity, confirming robustness of the learned condi-
tional flow. As p increases, proximity gradually worsens while diversity (hypervolume) improves,
reflecting a smooth proximity–sparsity trade-off. The consistent trend in LOF indicates stable
plausibility across regimes.

These findings demonstrate that a single DiCoFlex model, trained with conditioning on p, can
smoothly adapt its behavior to user preferences at inference time—ranging from highly sparse to
diverse counterfactuals—without retraining or model modification.

5 Conclusion

We presented DiCoFlex, a model-agnostic conditional generative framework for counterfactual
explanations that addresses key limitations in existing approaches. By leveraging normalizing
flows, our method enables counterfactual generation without constant access to the classification
model, provides inference-time control over constraints, and efficiently produces multiple diverse
explanations in a single forward pass. Our approach is grounded in rigorous theoretical foundations:
we prove formal guarantees for validity, proximity bounds, in-distribution plausibility, and diversity
preservation (Appendix A). Empirical evaluations on five benchmark datasets demonstrate that
DiCoFlex outperforms the state-of-the-art methods in diversity and validity while achieving superior
plausibility and computational efficiency. Although optimization-based methods may achieve better
sparsity in some cases, our approach offers a more balanced trade-off between competing explanation
criteria.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction outline key contributions of generating diverse
counterfactuals in a single forward pass with flexible constraints, which are fully supported
by the detailed methodology and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Authors discuss limitations in Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper adequately presents and justifies all theoretical components of the
method in Section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides comprehensive information for reproducing the experi-
ments, including detailed descriptions of the datasets (Section 4.1 and Appendix B), baseline
methods with citations, evaluation metrics (Section 4.1 and Appendix C), and the complete
methodology (Section 3)
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The authors provide implementation code in the supplementary materials
that accompanies the submission. They also state their commitment to release a publicly
available version of the code repository with the camera-ready version of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides experimental details in Section 4, including dataset de-
scriptions, baseline methods and evaluation metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following established evaluation protocols in counterfactual explanation
literature, we report deterministic performance metrics on fixed test sets rather than statistical
aggregates.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper includes a dedicated section in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research complies with the NeurIPS Code of Ethics by using established
benchmark datasets with proper citations, conducting transparent methodology comparisons,
and advancing AI explainability to enhance fairness and transparency in decision-making
systems.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: The paper addresses societal impacts by highlighting that counterfactual
explanations enhance transparency and actionability in sensitive domains.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
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any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research focuses on counterfactual explanations for tabular data using
standard benchmark datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites all original sources for the datasets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Authors commit to releasing a publicly available repository with the camera-
ready version that will include further documentation, usage examples, and license informa-
tion.
Guidelines:

• The answer NA means that the paper does not release new assets.
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submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research is purely computational, working with established benchmark
datasets and evaluating algorithmic performance through objective metrics.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The research does not involve human subjects, user studies, or any direct
human participation.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not involved in the core method development or implementation.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Considerations

This section provides theoretical analysis of the diversity guarantees provided by DiCoFlex. We
establish a formal lower bound on the expected diversity of counterfactuals generated by our learned
conditional normalizing flow.

A.1 Preliminary Lemma

Lemma A.1 (Upper bound on difference of expected values). Let p and q be two distributions over the
same finite set X , and let the total variation distance be defined as ∥p−q∥TV = 1

2

∑
x∈X |p(x)−q(x)|.

For any function f : X → R, we have:∣∣∣∣∣∑
x∈X

f(x)(p(x)− q(x))

∣∣∣∣∣ ≤ 2 ·max
x∈X

|f(x)| · ∥p− q∥TV. (9)

Proof. By the triangle inequality and the definition of total variation distance:∣∣∣∣∣∑
x∈X

f(x)(p(x)− q(x))

∣∣∣∣∣ ≤ ∑
x∈X

|f(x)| · |p(x)− q(x)| (10)

≤ max
x∈X

|f(x)| ·
∑
x∈X

|p(x)− q(x)| (11)

= 2 ·max
x∈X

|f(x)| · ∥p− q∥TV. (12)

A.2 Main Theoretical Result

Theorem A.2 (Diversity Preservation in DiCoFlex). Let pθ(x′|x, y′, p,m) be the learned conditional
normalizing flow and q̂(x′|x, y′, dp,m) be the empirical distribution defined in Equation (6). Under
assumptions (A1)-(A3) stated below, for n samples {x′

i}ni=1 drawn from pθ, the expected diversity
satisfies:

Epθ
[D({x′

i}ni=1)] ≥ σmin(1−K1−n)−∆
√
2ϵ, (13)

where D({x′
i}ni=1) = mini̸=j ∥x′

i−x′
j∥ denotes the minimum pairwise distance among the generated

counterfactuals.

Assumptions

(A1) Minimum neighborhood separation: The neighborhood N(x, y′, dp,m,K) contains K dis-
tinct points with minimum pairwise distance σmin > 0. Specifically, for any xi, xj ∈
N(x, y′, dp,m,K) with i ̸= j,

∥xi − xj∥ ≥ σmin. (14)

(A2) Training convergence: The normalizing flow is trained sufficiently close to the empirical
distribution, satisfying:

DKL(q̂(x
′|x, y′, dp,m)∥pθ(x′|x, y′, p,m)) ≤ ϵ (15)

for all (x, y′, p,m) in the training distribution.
(A3) Bounded support: The support of pθ(· | x, y′, p,m) lies in a set of finite diameter ∆, i.e.,

for any x′, x′′ in the support,
∥x′ − x′′∥ ≤ ∆. (16)

This implies that 0 ≤ D({x′
i}ni=1) = mini ̸=j ∥x′

i − x′
j∥ ≤ ∆.

Proof. Step 1: Lower bound on empirical diversity. Consider the empirical distribution
q̂(x′|x, y′, dp,m) which samples uniformly from K distinct neighbors. When sampling n points
with replacement from these K points, the probability of selecting at least two distinct points is:

Pn(K) = 1−K ·
(

1

K

)n

= 1−K1−n. (17)
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Given assumption (A1), whenever two distinct points are selected, their distance is at least σmin.
Therefore:

Eq̂[D({x′
i}ni=1)] ≥ σmin · Pn(K) = σmin(1−K1−n). (18)

Step 2: Relating KL divergence to total variation distance. By Pinsker’s inequality [6, 40], which

states that ∥p−q∥TV ≤
√

1
2DKL(q∥p) for any two probability distributions p and q, the total variation

distance is bounded by the KL divergence:

∥pθ(·|x, y′, p,m)− q̂(·|x, y′, dp,m)∥TV ≤
√

1

2
DKL(q̂∥pθ) ≤

√
ϵ

2
. (19)

Step 3: Bounding the difference in expected diversity. The diversity measure D({x′
i}ni=1) is

bounded above by ∆ (assumption A3). Applying Lemma A.1:

|Epθ
[D]− Eq̂[D]| ≤ 2 ·∆ · ∥pθ − q̂∥TV ≤ 2∆

√
ϵ

2
= ∆

√
2ϵ. (20)

Step 4: Deriving the lower bound. Considering the worst-case scenario where pθ produces less
diversity than q̂:

Epθ
[D({x′

i}ni=1)] ≥ Eq̂[D({x′
i}ni=1)]−∆

√
2ϵ. (21)

Substituting the result from Step 1 yields the desired bound:

Epθ
[D({x′

i}ni=1)] ≥ σmin(1−K1−n)−∆
√
2ϵ. (22)

A.3 Implications

Diversity Guarantee Theorem A.2 establishes that DiCoFlex maintains strong diversity guarantees.
For sufficiently large K, the probability term (1−K1−n) approaches 1, ensuring that the expected
diversity is approximately σmin−∆

√
2ϵ. The theorem shows that the learned distribution pθ recovers

nearly the full empirical diversity, with deviation bounded by the training error ϵ.

Impact of Training Quality As training progresses and ϵ → 0, the perturbation term ∆
√
2ϵ

vanishes, and the diversity of counterfactuals generated by the learned flow converges to that of the
empirical distribution. This theoretical result validates the practical observation in Section 4 that
DiCoFlex achieves superior diversity metrics compared to baseline methods.

Sample Efficiency The bound demonstrates that generating n samples from DiCoFlex provides
diversity guarantees that scale favorably with the number of neighbors K used during training. For
fixed n and increasing K, the probability of obtaining diverse samples (1 −K1−n) approaches 1
exponentially fast, explaining the effectiveness of our KNN-based training approach.

A.4 Validity Guarantees

Our method provides inherent validity guarantees by construction. Since q̂(x′|x, y′, d) (Equation (6))
exclusively samples from the set of K-nearest neighbors N(x, y′, d,K), where h(xi) = y′, we have
the following deterministic property:

Proposition A.3 (Validity). For all training samples drawn from q̂(x′|x, y′, d), the classification
model returns the target class with probability one:

p(y′|x′) = 1, ∀x′ ∼ q̂(x′|x, y′, d), (23)

where p(y′|x′) is the class probability returned by the classification model h(·).

Proof. By definition of q̂ in Equation (6), we have q̂(x′|x, y′, d) > 0 only if x′ ∈ N(x, y′, d,K).
The neighborhood N(x, y′, d,K) consists exclusively of training examples for which h(x′) = y′ by
construction. Therefore, p(y′|x′) = 1 for all samples from q̂.
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This theoretical property explains why DiCoFlex achieves high validity in all datasets in Table 1 while
being orders of magnitude faster than optimization-based methods. The normalizing flow trained on
these valid samples inherits this property in expectation:

Ex′∼pθ
[p(y′|x′)] ≈ 1, (24)

with the approximation quality depending on the training convergence (assumption A2 in Theo-
rem A.2).

A.5 Proximity Guarantees

Our KNN sampling mechanism provides an implicit theoretical guarantee on proximity without
requiring explicit proximity optimization.
Proposition A.4 (Proximity Upper Bound). For any counterfactual x′ sampled from q̂(x′|x, y′, d)
(Equation (6)), we have:

d(x, x′) ≤ d(x, xy′

K), (25)

where xy′

K is the K-th nearest neighbor of x in class y′ under distance measure d(·, ·).

Proof. By definition of q̂ in Equation (6), we have q̂(x′|x, y′, d) > 0 if and only if x′ ∈
N(x, y′, d,K). The set N(x, y′, d,K) contains exactly the K nearest neighbors of x in class
y′ according to distance d. Therefore, any x′ with non-zero probability under q̂ must satisfy:

d(x, x′) ≤ max
xi∈N(x,y′,d,K)

d(x, xi) = d(x, xy′

K), (26)

as otherwise x′ would not be among the K nearest neighbors and would have q̂(x′|x, y′, d) = 0.

This provides an upper bound on proximity without requiring iterative optimization. The learned flow
pθ approximately respects this bound, with deviations controlled by the training error ϵ (assumption
A2). The flexibility to adjust the distance measure dp,m (Equation (8)) allows users to control
proximity characteristics at inference time through the sparsity parameter p and mask m.

A.6 Plausibility Guarantees

We now establish theoretical guarantees for plausibility, addressing a key limitation of optimization-
based methods that may generate out-of-distribution counterfactuals.
Proposition A.5 (In-Distribution Guarantee). Since the training distribution q̂(x′|x, y′, d) only
assigns non-zero probability to K-nearest neighbors from the training set D (Equation (6)), any
sampled counterfactual x′ satisfies:

pdata(x
′) ≥ min

xi∈D
pdata(xi) > 0, (27)

where pdata denotes the true data distribution.

Proof. By construction, q̂(x′|x, y′, d) assigns uniform probability 1
K to each of the K neighbors

in N(x, y′, d,K) ⊂ D and zero probability elsewhere. Therefore, any sample x′ ∼ q̂ is an actual
training point: x′ ∈ D. Since all training points are drawn from pdata, we have pdata(x

′) > 0 for all
such x′.

Enhanced Plausibility with Sparse Constraints When using small p values (e.g., p = 0.01) in
the Lp norm distance (Equation (7)), we restrict the neighborhood to samples with minimal feature
changes. These neighbors typically lie in higher-density regions of the data manifold, as points with
few modified features are more likely to remain within dense areas of the feature space. This explains
the improved Local Outlier Factor (LOF) scores for DiCoFlex (p=0.01) compared to DiCoFlex
(p=2.0) observed in Table 1.

The normalizing flow learns to interpolate between these guaranteed in-distribution points while
preserving the manifold structure through its invertible transformations. This provides a principled
approach to ensuring plausibility, as the flow is constrained to learn smooth deformations between
verified in-distribution samples rather than arbitrary transformations that might venture into low-
density regions.
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B Dataset Descriptions

This appendix provides detailed descriptions of the datasets used in our experimental evaluation.
Table 4 summarizes the key characteristics of each dataset, including the number of samples used for
our experiments, number of numerical and categorical features, and number of classes.

Table 4: Dataset characteristics and statistics.
Dataset Samples # Feat # Num # Cat Target Class Dist.
Lending Club 30,000 12 8 4 21.8% default
Give Me Some Credit 30,000 9 6 3 6.7% yes
Bank Marketing 30,000 16 7 9 11.3% yes
Credit Default 27,000 23 14 9 22.1% yes
Adult Census 32,000 12 4 8 24.5% ≥50K

B.1 Lending Club

The Lending Club dataset [15] contains detailed information about loans issued through the Lending
Club peer-to-peer lending platform. It includes borrower characteristics (such as credit score, annual
income, employment length), loan specifics (loan amount, interest rate, purpose), and performance
indicators (payment status, delinquency). The binary classification task is to predict whether a loan
will be fully paid or charged off (default). This dataset is particularly relevant for financial counter-
factual explanations as it represents real-world credit risk assessment scenarios where understanding
model decisions is crucial for both borrowers and lenders.

B.2 Give Me Some Credit

The Give Me Some Credit dataset [28] contains anonymized records of credit users with features
such as debt-to-income ratio, number of times delinquent, monthly income, age, and number of open
credit lines. The target variable indicates whether a user experienced a serious delinquency (more
than 90 days overdue) within the previous two years. This dataset provides insight into credit risk
prediction in consumer finance, where counterfactual explanations can offer actionable guidance to
consumers looking to improve their creditworthiness.

B.3 Bank Marketing

The Bank Marketing dataset [21] contains information from a direct marketing campaign conducted
by a Portuguese banking institution. The features include client data (age, job, marital status,
education), campaign contact information (communication type, day, month), economic indicators,
and previous campaign outcomes. The prediction task is to determine whether a client will subscribe
to a term deposit. This dataset represents a real-world marketing scenario where understanding model
decisions can improve campaign efficiency and provide insights for personalized marketing strategies.

B.4 Credit Default

The Credit Default dataset [47] contains information on credit card clients in Taiwan, including
demographic factors, credit data, payment history, and bill statements. The target variable indicates
whether the client defaulted on their payment in the following month. With 23 features (14 numerical
and 9 categorical), this dataset presents complex feature interdependencies common in financial data.
The dataset is valuable for counterfactual explanation research because it represents real-world credit
risk assessment with diverse feature types and nonlinear relationships.

B.5 Adult

The Adult Census dataset [3] contains demographic information extracted from the 1994 U.S. Census
database. Features include age, education, occupation, work hours per week, and capital gain/loss.
The binary classification task is to predict whether an individual’s income exceeds $50,000 per year.
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This dataset is widely used in fairness and explainability research, as it contains sensitive attributes
like race, gender, and age, making it valuable for studying how counterfactual explanations handle
demographic factors.

C Evaluation Metrics

We evaluate counterfactual quality using metrics that correspond to key desiderata. For a test set
X 0

test = {x0
n|h(x0

n) = 0}Nn=1, we generate set of N counterfactuals X ′1 = {x′1
n }Nn=1 for class 1 with

the evaluated model.

Validity measures the success rate of changing model predictions:

Validity (↑) = Nval

N
=

1

N

N∑
n=1

I(h(x′
n) = 1) (28)

Sparsity quantifies feature modifications, separately for categorical and numerical features:

Sparsity Cat/Num (↓) = 1

Nval

Nval∑
n=1

∥x0
n,cat/num − x′1

n,cat/num∥0
Dcat/num

, (29)

where x0
n,cat/num represents n-th generated counterfactual reduced to categorical numerical attributes.

For continuous features, we use ϵ-sparsity, counting features modified beyond ϵ · V (V is feature
range, ϵ = 0.05):

ϵ-Sparsity cont. (↓) = 1

Nval

Nval∑
n=1

1

D

D∑
d=1

I(|x0
n,d − x′1

n,d| > ϵ · Vg) (30)

Proximity measures distance to original instances using Gower distance for mixed data and Euclidean
for continuous features:

Proximity Num (↓) = 1

Nval

Nval∑
n=1

∥x0
n,num − x′1

n,num∥1 (31)

Predictive Performance is assessed via Validity and Classif. prob. (model confidence in target
prediction).

Diversity is measured by Hypervol. log scale [24], which quantifies spread and coverage in objective
space.

Plausibility is evaluated with LOF log scale (isolation from training distribution) and Log Density
(probability under training data distribution).

Lower values are better for sparsity, proximity, and plausibility metrics (↓), while higher values are
better for validity, model confidence, and diversity (↑).

D Generative Model Selection

We conducted an ablation study to select the most suitable normalizing flow architecture for our
framework, comparing different models based on negative log-likelihood (NLL) on the Adult dataset.

Table 5: Negative log-likelihood comparison of generative models on the Adult dataset. Lower values
indicate better performance.

MAF NICE RealNVP KDE
NLL -43.2998 26.6644 26.5827 30.5120
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We compared three normalizing flow architectures—MAF [26], NICE [8], and Real NVP [9], as well
as KDE as a non-parametric baseline. MAF significantly outperformed all alternatives, while NICE
and RealNVP showed comparable performance, and KDE exhibited the poorest results.

MAF’s superior performance stems from its autoregressive structure, which enables more expressive
transformations by conditioning each dimension on previously transformed dimensions. This property
is crucial for accurately modeling the conditional distribution of counterfactual explanations. Based
on these results, we selected MAF as the architecture for DiCoFlex, contributing significantly to its
ability to generate high-quality, diverse counterfactual explanations.

E Details of training algorithm

Algorithm 1 Training procedure

Require: number of steps T , training examples X , classification model h(·), prior class distribution
π, set of sparsity levels P , set of considered masking M, number of nearest neighbors K
Initialize θ0
for t = 1 to T do

Sample x ∼ X and class y′ ∼ π \ {h(x)}
Sample sparsity level p ∼ P and mask m ∼ M;
Sample K counterfactuals x′ ∼ q̂(x′|x, y′, dp,m) given by (6);
Update parameters θt by optimizing Q given by (4);

end for
return x0

The training procedure is outlined in Algorithm 1. In each training iteration, a data example x is
drawn from the dataset X , and a target class y′ is sampled from the class distribution excluding the
current class of x, i.e., π \ h(x). Subsequently, a sparsity level p is selected from a predefined set P ,
along with a corresponding masking vector m from the set M.

Next, the set of K nearest neighbors, denoted by N(x, y′, dp,m,K), is computed using the distance
measure dp,m defined in (8). A counterfactual example x′ is then sampled from the distribution
q̂(x′ | x, y′, dp,m) as defined in (6). Finally, the parameters θt are updated via a gradient-based
optimization procedure aimed at maximizing the objective in (4), with conditioning on both p and m.

E.1 Training Details and Hyperparameter Exploration

We report additional details of the DiCoFlex training process and hyperparameter configuration used
in all experiments. All experiments were conducted on a GPU workstation equipped with an NVIDIA
RTX 4090 (24 GB VRAM) and an AMD Ryzen Threadripper PRO 5975WX CPU with 256 GB RAM.
Each model was trained for a maximum of 1000 epochs using the Adam optimizer (lr = 10−4) and
early stopping with a patience of 300 epochs based on the validation objective.

Training times. Training times for all benchmark datasets are visualized in Figure 3. Each subfigure
corresponds to one dataset (Adult, Bank Marketing, Default, Give Me Some Credit, and Lending Club)
and reports the wall-clock time required to complete full training, including early stopping. The
training time primarily depends on the dataset size and feature dimensionality.

Hyperparameter exploration. We explored several key hyperparameters influencing model behav-
ior and training stability:

Number of nearest neighbors K ∈ {8, 16, 32}
Actionability penalty α ∈ {1, 10, 1000}
MAF hidden features ∈ {16, 32, 64}
MAF hidden layers ∈ {2, 5}

For each combination, models were trained under identical conditions with early stopping. Hyper-
parameter selection was guided by validation performance averaged across validity, proximity, and
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sparsity metrics, favoring configurations that balanced these criteria without overfitting. Unless
otherwise stated, the final configuration used K=16, α=10, 32 hidden features, and 5 hidden layers.

Sensitivity analysis. To verify robustness, we performed a limited sensitivity analysis on the Adult
dataset, varying each hyperparameter within the ranges listed above. Results confirmed that DiCoFlex
remains stable across a wide range of K, α, and model capacities, with minimal variation in validity
and plausibility metrics. Detailed quantitative sensitivity results are provided in Appendix E.2.

F Limitations of our method

DiCoFlex is deliberately designed for tabular data with mixed feature types, the most common
domain for counterfactual explanations in high-stakes decision-making contexts. Although this focus
enables strong performance where interpretability is most needed, extending to other data modalities
would require architectural adaptations. Our approach exhibits natural trade-offs between competing
explanation criteria, favoring diversity and plausibility while maintaining competitive performance in
sparsity metrics. The computational efficiency during inference requires an initial training investment,
though this one-time cost enables subsequent real-time applications that outperform existing methods
by orders of magnitude.

Recent work has demonstrated that counterfactual explanations can be exploited for model extraction
attacks, as they reveal decision boundary information [1, 45]. Furthermore, diverse counterfactual
explanations can particularly enhance extraction effectiveness. However, DiCoFlex’s design may offer
partial protection. Unlike methods exploring arbitrary feature space regions, the learned normalizing
flow captures only the conditional distribution over plausible, proximal counterfactuals, potentially
limiting information available for extraction. Nevertheless, some extraction risk remains. DiCoFlex’s
diversity may still allow adversaries to triangulate decision boundaries from multiple sparse directions.

DiCoFlex generates counterfactuals based on proximity and plausibility without explicit fairness
constraints. If the underlying model exhibits demographic biases, DiCoFlex may generate counterfac-
tuals that reflect or amplify these biases. Future work should investigate incorporating fairness-aware
constraints into the normalizing flow training to ensure protected attributes are handled appropriately.

As DiCoFlex trains on K-nearest neighbors from labeled training data (Equation 6), counterfactual
quality depends on label accuracy.

G Context Vector Architecture

The conditional normalizing flow pθ(x
′|x, y′, p,m) requires a mechanism to incorporate conditioning

information during the generative process. We achieve this through a context vector that concatenates
all conditioning inputs:

c = [x, y′, p,m] ∈ Rd+1+1+d, (32)

where x ∈ Rd is the original instance, y′ ∈ {0, 1} is the target class (one-hot encoded for multi-class
scenarios), p ∈ R is the sparsity parameter controlling the Lp norm, and m ∈ {0, 1}d is the binary
actionability mask indicating which features should remain unchanged.

Following the Masked Autoregressive Flow (MAF) architecture [26], this context vector c is passed
to each layer of the flow through the affine coupling transformations. Specifically, in MAF, each
transformation layer computes:

zi = x′
i ⊙ exp(αi(x

′
<i, c)) + µi(x

′
<i, c), (33)

where αi and µi are neural networks that produce scale and shift parameters conditioned on both
previous dimensions x′

<i and the context vector c. This autoregressive conditioning allows the flow
to learn expressive transformations that respect the user-specified constraints encoded in c.

The key advantage of this architecture is that it enables flexible control at inference time: users can
adjust p and m dynamically to generate counterfactuals satisfying different sparsity and actionability
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requirements without retraining the model. The flow learns to map these constraint specifications to
appropriate regions of the counterfactual distribution during training, as described in Algorithm 1.

H Computational Resources

Our experimental framework utilized Python [42] as the primary programming language, Addition-
ally, the open-source machine learning library PyTorch [27] is used to implement DiCoFlex. All
experiments were conducted on a GPU cluster equipped with a GeForce RTX 4090 graphics card
(24 GB VRAM) and an AMD Ryzen Threadripper PRO 5975WX 32-core processor, with 256 GB
of available RAM. These resources provide sufficient computational power and processing speed to
meet the requirements of our algorithm.

I Additional experimental results

I.1 Runtime Comparison Across Datasets

Figure 3 displays runtime comparisons between DiCoFlex and baseline methods across all datasets,
with time shown on a logarithmic scale. Both variants of DiCoFlex consistently achieve substantially
faster execution times for counterfactual generation, while competing approaches demand processing
times that are orders of magnitude longer. This substantial performance advantage stems from
fundamental architectural differences. DiCE [22] performs separate optimization procedures for
each explanation. CCHVAE [28] requires expensive latent space searching. Similarly, Wachter [44],
ReViSE [16] and TABCF [25] rely on iterative or gradient-based optimization procedures that scale
poorly with the number of counterfactuals generated. In contrast, DiCoFlex leverages conditional
normalizing flows trained solely on labeled data to generate multiple diverse counterfactuals in a
single forward pass. By eliminating iterative optimization procedures and model access at inference
time, DiCoFlex enables real-time counterfactual generation.

I.2 Impact of Actionability Constraints

Table 6 presents the evaluation of counterfactual explanations generated by DiCoFlex with different
actionability constraints imposed through feature masks. The analysis reveals complex relationships
between masking constraints and evaluation metrics. In particular, the application of different masks
results in varying impacts across metrics without following a consistent directional pattern.

Mask 1, which prevents modifications to Capital Gain and Capital Loss, achieves the lowest continu-
ous proximity score but exhibits reduced diversity, as indicated by its hypervolume score. In contrast,
mask 4 (restricting Sex and Native Country modifications) yields the highest hypervolume while
maintaining moderate performance across other metrics. Mask 3 (constraining Age) demonstrates
high classification probability but the highest proximity score, indicating a greater deviation from the
original instances.

The observed results indicate that actionability constraints introduce complex trade-offs that do
not follow simple patterns. The absence of consistent correlations between metrics under different
masking configurations suggests that performance characteristics are highly dependent on the specific
constraints applied rather than adhering to predictable trade-off relationships.

These findings further validate DiCoFlex flexibility in selecting various user-defined constraints
without retraining, while demonstrating that the selection of appropriate constraints should be guided
by domain-specific requirements rather than general optimization principles. The mechanism enables
the practical customization of counterfactual explanations according to specific application needs,
where different feature restrictions may be necessary due to legal, ethical, or practical considerations.

I.3 Statistical Uncertainty of Results

To assess the robustness of the reported metrics, we compute standard deviations across counterfactual
sets generated per factual instance. For each test point, we produce multiple counterfactuals and
evaluate the per-instance metric variance; the reported values represent the mean standard deviation
across the test set. Note that the hypervolume metric operates at the set level and thus does not admit
a standard deviation estimate.
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Figure 3: Visualization of runtime of DiCoFlex method and other baseline methods.

Notation: Standard deviations are denoted directly as metric values in this table (no ± notation used
for compactness). Metrics are averaged across counterfactuals for each instance and then aggregated
across the test set.

I.4 German Credit Dataset Results

To evaluate the generalization of DiCoFlex to smaller tabular datasets, we conduct an additional
experiment on the German Credit dataset (1,000 samples, 20 features, binary target). Despite the
limited data availability, DiCoFlex maintains consistent performance across all evaluation metrics,
demonstrating robustness in low-data regimes.

Even under constrained data conditions, both DiCoFlex variants (DiCoFlex (p=2.0) and DiCoFlex
(p=0.01)) achieve perfect validity and strong plausibility (lowest LOF), confirming their ability to
learn consistent counterfactual manifolds from limited examples. The results also show that the
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Table 6: Influence of imposing actionability constraints on the metrics used to evaluate counterfactual
explanations.

Classif. Proximity Sparsity ϵ-sparsity LOF Hypervol.
Model prob. ↑ cont. ↓ cat. ↓ cont. ↓ log scale ↓ log scale ↑

mask 1 0.987 0.496 0.557 0.483 1.881 0.881
mask 2 0.980 0.553 0.555 0.517 2.364 1.703
mask 3 0.993 0.627 0.568 0.513 2.310 2.411
mask 4 0.992 0.517 0.590 0.520 2.327 2.640
unconstrained 0.998 0.581 0.515 0.498 2.156 2.036

Table 7: Standard deviations of evaluation metrics across datasets and methods. Values indicate
variability across generated counterfactuals for each instance. Lower values correspond to more
stable generation behavior. Standard deviations are shown for all metrics except Hypervolume, which
is computed at the set level and thus not associated with instance-wise variance.

Validity ↑ Classif. Proximity Sparsity ϵ-sparsity LOF
Dataset Model prob. ↑ cont. ↓ cat. ↓ cont. ↓ log scale ↓

Lending DiCoFlex (p=2.0) 0 0.012 0.439 0.198 0.087 0.076
Club DiCoFlex (p=0.01) 0 0.031 0.432 0.209 0.100 0.053

CCHVAE 0 0.368 0.401 0.049 0.066 0.119
DiCE 0 0.037 1.358 0.004 0.053 0.167

Adult DiCoFlex (p=2.0) 0 0.011 0.518 0.099 0.127 0.256
DiCoFlex (p=0.01) 0 0.000 0.352 0.106 0.096 0.812
CCHVAE 0 0.102 0.646 0.049 0.189 0.976
DiCE 0 0.000 1.464 0.017 0.264 0.915

Bank DiCoFlex (p=2.0) 0 0.025 0.571 0.100 0.111 0.016
DiCoFlex (p=0.01) 0 0.119 0.466 0.088 0.073 0.011
CCHVAE 0 0.053 0.606 0.061 0.090 0.078
DiCE 0 0.012 1.162 0.056 0.082 0.139

Default DiCoFlex (p=2.0) 0 0.021 0.346 0.138 0.071 0.038
DiCoFlex (p=0.01) 0 0.012 0.324 0.171 0.085 0.034
CCHVAE 0 0.043 0.273 0.097 0.076 0.047
DiCE 0 0.097 1.203 0.141 0.113 0.073

GMC DiCoFlex (p=2.0) 0 0.032 0.535 0.235 0.058 0.061
DiCoFlex (p=0.01) 0 0.037 0.694 0.229 0.059 0.099
CCHVAE 0 0.052 0.507 0.148 0.076 0.064
DiCE 0 0.072 1.021 0.048 0.073 0.019

Table 8: Comparison of counterfactual generation methods on the German Credit dataset. Lower
proximity, sparsity, ϵ-sparsity, and LOF indicate better results; higher validity, classification probabil-
ity, and hypervolume indicate improved performance.

Classif. Proximity Sparsity ϵ-sparsity LOF Hypervol.
Dataset Model Validity ↑ prob. ↑ cont. ↓ cat. ↓ cont. ↓ log ↓ log ↑

German DiCoFlex (p=2.0) 1.000 0.833 0.639 0.553 0.756 0.0465 -6.030
Credit DiCoFlex (p=0.01) 1.000 0.833 0.647 0.556 0.750 0.0443 -6.115

CCHVAE 1.000 0.650 0.610 0.538 0.825 0.0747 -8.878
DiCE 0.954 0.808 1.143 0.257 0.756 0.1936 -7.456

ReViSE 0.673 0.731 0.841 0.523 0.742 0.1731 –
TABCF 1.000 0.912 0.829 0.348 0.559 0.0508 –
Wachter 0.356 0.508 1.633 0.000 0.952 0.2529 –

hypervolume metric remains competitive, suggesting that diversity is preserved even when the training
data distribution is relatively sparse.
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These findings highlight that DiCoFlex generalizes effectively to smaller datasets, further reinforcing
its practicality for real-world applications where large annotated samples may be unavailable.
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