
Challenges in Training PINNs: A Loss Landscape Perspective

Pratik Rathore 1 Weimu Lei 2 Zachary Frangella 3 Lu Lu 4 Madeleine Udell 2 3

Abstract
This paper explores challenges in training Physics-
Informed Neural Networks (PINNs), emphasiz-
ing the role of the loss landscape in the training
process. We examine difficulties in minimizing
the PINN loss function, particularly due to ill-
conditioning caused by differential operators in
the residual term. We compare gradient-based
optimizers Adam, L-BFGS, and their combina-
tion Adam+L-BFGS, showing the superiority of
Adam+L-BFGS, and introduce a novel second-
order optimizer, NysNewton-CG (NNCG), which
significantly improves PINN performance. Theo-
retically, our work elucidates the connection be-
tween ill-conditioned differential operators and
ill-conditioning in the PINN loss and shows the
benefits of combining first- and second-order op-
timization methods. Our work presents valuable
insights and more powerful optimization strate-
gies for training PINNs, which could improve
the utility of PINNs for solving difficult partial
differential equations.

1. Introduction
The study of Partial Differential Equations (PDEs) grounds
a wide variety of scientific and engineering fields, yet these
fundamental physical equations are often difficult to solve
numerically. Recently, neural network-based approaches
including physics-informed neural networks (PINNs) have
shown promise to solve both forward and inverse prob-
lems involving PDEs (Raissi et al., 2019; E & Yu, 2018; Lu
et al., 2021a;b; Karniadakis et al., 2021; Cuomo et al., 2022).
PINNs parameterize the solution to a PDE with a neural
network, and are often fit by minimizing a least-squares

1Department of Electrical Engineering, Stanford University,
Stanford, CA, USA 2ICME, Stanford University, Stanford, CA,
USA 3Department of Management Science & Engineering, Stan-
ford University, Stanford, CA, USA 4Department of Statistics and
Data Science, Yale University, New Haven, CT, USA. Correspon-
dence to: Pratik Rathore <pratikr@stanford.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

0 10000 20000 30000 40000
Iterations

10−4

10−3

10−2

10−1

100

L
os

s

Wave, β = 5

Adam L-BFGS NNCG

Figure 1. On the wave PDE, Adam converges slowly due to ill-
conditioning and the combined Adam+L-BFGS optimizer stalls
after about 40000 steps. Running NNCG (our method) after
Adam+L-BFGS provides further improvement.

loss involving the PDE residual, boundary condition(s), and
initial condition(s). The promise of PINNs is the potential to
obtain solutions to PDEs without discretizing or meshing the
space, enabling scalable solutions to high-dimensional prob-
lems that currently require weeks on advanced supercom-
puters. This loss is typically minimized with gradient-based
optimizers such as Adam (Kingma & Ba, 2014), L-BFGS
(Liu & Nocedal, 1989), or a combination of both.

However, the challenge of optimizing PINNs restricts the ap-
plication and development of these methods. Previous work
has shown that the PINN loss is difficult to minimize (Krish-
napriyan et al., 2021; Wang et al., 2021a; 2022b; De Ryck
et al., 2023) even in simple settings. As a result, the PINN
often fails to learn the solution. Furthermore, optimiza-
tion challenges can obscure the effectiveness of new neural
network architectures for PINNs, as an apparently inferior
performance may stem from insufficient loss function opti-
mization rather than inherent limitations of an architecture.
A simple, reliable training paradigm is critical to enable
wider adoption of PINNs.

This work explores the loss landscape of PINNs and the
challenges this landscape poses for gradient-based optimiza-
tion methods. We provide insights from optimization theory

1

Challenges in Training PINNs

that explain slow convergence of first-order methods such as
Adam and show how ill-conditioned differential operators
make optimization difficult. We also use our theoretical in-
sights to improve the PINN training pipeline by combining
existing and new optimization methods.

The most closely related works to ours are Krishnapriyan
et al. (2021); De Ryck et al. (2023), which both identify
ill-conditioning in the PINN loss. Unlike Krishnapriyan
et al. (2021), we empirically confirm the ill-conditioning
of the loss by visualizing the spectrum of the Hessian and
demonstrating how quasi-Newton methods improve the con-
ditioning. Our theoretical results directly show how an
ill-conditioned linear operator induces an ill-conditioned ob-
jective, in contrast to the approach in De Ryck et al. (2023)
which relies on a linearization.

Contributions. We highlight contributions of this paper:

• We demonstrate that the loss landscape of PINNs is ill-
conditioned due to differential operators in the residual
term and show that quasi-Newton methods improve the
conditioning by 1000× or more (Section 5).

• We compare three optimizers frequently used for train-
ing PINNs: (i) Adam, (ii) L-BFGS, and (iii) Adam
followed by L-BFGS (referred to as Adam+L-BFGS).
We show that Adam+L-BFGS is superior across a vari-
ety of network sizes (Section 6).

• We show the PINN solution resembles the true PDE so-
lution only for extremely small loss values (Section 4).
However, we find that the loss returned by Adam+L-
BFGS can be improved further, which also improves
the PINN solution (Section 7).

• Motivated by the ill-conditioned loss landscape, we
introduce a novel second-order optimizer, NysNewton-
CG (NNCG). We show NNCG can significantly im-
prove the solution returned by Adam+L-BFGS (Fig-
ure 1 and Section 7).

• We prove that ill-conditioned differential operators lead
to an ill-conditioned PINN loss (Section 8). We also
prove that combining first- and second-order methods
(e.g., Adam+L-BFGS) leads to fast convergence, pro-
viding justification for the importance of the combined
method (Section 8).

Notation. We denote the Euclidean norm by ∥ · ∥2 and use
∥M∥ to denote the operator norm of M ∈ Rm×n. For a
smooth function f : Rp → R, we denote its gradient at
w ∈ Rp by ∇f(w) and its Hessian by Hf (w). We write
∂wi

f for ∂f/∂wi. For Ω ⊂ Rd, we denote its boundary by
∂Ω. For any m ∈ N, we use Im to denote the m×m identity
matrix. Finally, we use ⪯ to denote the Loewner ordering
on the convex cone of positive semidefinite matrices.

2. Problem Setup
This section introduces physics-informed neural networks as
optimization problems and our experimental methodology.

2.1. Physics-informed Neural Networks

The goal of physics-informed neural networks is to solve
partial differential equations. Similar to prior work (Lu
et al., 2021b; Hao et al., 2023), we consider the following
system of partial differential equations:

D[u(x), x] = 0, x ∈ Ω, (1a)
B[u(x), x] = 0, x ∈ ∂Ω, (1b)

where D is a differential operator defining the PDE, B is an
operator associated with the boundary and/or initial condi-
tions, and Ω ⊆ Rd. To solve (1), PINNs model u as a neural
network u(x;w) (often a multi-layer perceptron (MLP)) and
approximate the true solution by the network whose weights
solve the following non-linear least-squares problem:

minimize
w∈Rp

L(w) :=
1

2nres

nres∑
i=1

(
D[u(xi

r;w), x
i
r]
)2

(2)

+
1

2nbc

nbc∑
i=1

(
B[u(xj

b;w), x
j
b]
)2

.

Here {xi
r}nres

i=1 are the residual points and {xj
b}nbc

j=1 are the
boundary/initial points. The first loss term measures how
much u(x;w) fails to satisfy the PDE, while the second
term measures how much u(x;w) fails to satisfy the bound-
ary/initial conditions.

For this loss, L(w) = 0 means that u(x;w) exactly satis-
fies the PDE and boundary/initial conditions at the training
points. In deep learning, this condition is called interpola-
tion (Zhang et al., 2021; Belkin, 2021). There is no noise in
(1), so the true solution of the PDE would make (2) equal
to zero. Hence a PINN approach should choose an architec-
ture and an optimizer to achieve interpolation. Moreover,
smaller training error corresponds to better generalization
for PINNs (Mishra & Molinaro, 2023). Common optimizers
for (2) include Adam, L-BFGS, and Adam+L-BFGS (Raissi
et al., 2019; Krishnapriyan et al., 2021; Hao et al., 2023).

2.2. Experimental Methodology

We conduct experiments on optimizing PINNs for convec-
tion, wave PDEs, and a reaction ODE. These equations have
been studied in previous works investigating difficulties in
training PINNs; we use the formulations in Krishnapriyan
et al. (2021); Wang et al. (2022b) for our experiments. The
coefficient settings we use for these equations are consid-
ered challenging in the literature (Krishnapriyan et al., 2021;
Wang et al., 2022b). Appendix A contains additional details.

2

Challenges in Training PINNs

We compare the performance of Adam, L-BFGS, and
Adam+L-BFGS on training PINNs for all three classes of
PDEs. For Adam, we tune the learning rate by a grid search
on {10−5, 10−4, 10−3, 10−2, 10−1}. For L-BFGS, we use
the default learning rate 1.0, memory size 100, and strong
Wolfe line search. For Adam+L-BFGS, we tune the learn-
ing rate for Adam as before, and also vary the switch from
Adam to L-BFGS (after 1000, 11000, 31000 iterations).
These correspond to Adam+L-BFGS (1k), Adam+L-BFGS
(11k), and Adam+L-BFGS (31k) in our figures. All three
methods are run for a total of 41000 iterations.

We use multilayer perceptrons (MLPs) with tanh activations
and three hidden layers. These MLPs have widths 50, 100,
200, or 400. We initialize these networks with the Xavier
normal initialization (Glorot & Bengio, 2010) and all biases
equal to zero. Each combination of PDE, optimizer, and
MLP architecture is run with 5 random seeds.

We use 10000 residual points randomly sampled from a
255× 100 grid on the interior of the problem domain. We
use 257 equally spaced points for the initial conditions and
101 equally spaced points for each boundary condition.

We assess the discrepancy between the PINN solution and
the ground truth using ℓ2 relative error (L2RE), a standard
metric in the PINN literature. Let y = (yi)

n
i=1 be the PINN

prediction and y′ = (y′i)
n
i=1 the ground truth. Define

L2RE =

√∑n
i=1(yi − y′i)

2∑n
i=1 y

′2
i

=

√
∥y − y′∥22
∥y′∥22

.

We compute the L2RE using all points in the 255×100 grid
on the interior of the problem domain, along with the 257
and 101 points used for the initial and boundary conditions.

We develop our experiments in PyTorch 2.0.0 (Paszke
et al., 2019) with Python 3.10.12. Each experiment is
run on a single NVIDIA Titan V GPU using CUDA
11.8. The code for our experiments is available at
https://github.com/pratikrathore8/opt for pinns.

3. Related Work
Here we review common approaches for solving PDEs
with physics-informed machine learning and PINN training
strategies proposed in the literature.

3.1. Physics-informed ML for Solving PDEs

A variety of ML-based methods for solving PDEs have been
proposed, including PINNs (Raissi et al., 2019), the Fourier
Neural Operator (FNO) (Li et al., 2021), and DeepONet
(Lu et al., 2021a). The PINN approach solves the PDE by
using the loss function to penalize deviations from the PDE
residual, boundary, and initial conditions. Notably, PINNs
do not require knowledge of the solution to solve the forward

PDE problem. On the other hand, the FNO and DeepONet
sample and learn from known solutions to a parameterized
class of PDEs to solve PDEs with another fixed value of
the parameter. However, these operator learning approaches
may not produce predictions consistent with the underlying
physical laws that produced the data, which has led to the
development of hybrid approaches such as physics-informed
DeepONet (Wang et al., 2021c). Our theory shows that the
ill-conditioning issues we study in PINNs are unavoidable
for any ML-based approach that penalizes deviations from
the known physical laws.

3.2. Challenges in Training PINNs

The vanilla PINN (Raissi et al., 2019) can perform poorly
when trying to solve high-dimensional, non-linear, and/or
multi-scale PDEs. Researchers have proposed a variety
of modifications to the vanilla PINN to address these is-
sues, many of which attempt to make the optimization prob-
lem easier to solve. Wang et al. (2021a; 2022a;b); Nabian
et al. (2021); Wu et al. (2023a;b) propose loss reweight-
ing/resampling to balance different components of the loss,
Yao et al. (2023); Müller & Zeinhofer (2023) propose scale-
invariant and natural gradient-based optimizers for PINN
training, Jagtap et al. (2020a;b); Wang et al. (2023) propose
adaptive activation functions which can accelerate conver-
gence of the optimizer, and Liu et al. (2024) propose an
approach to precondition the PINN loss itself. Other ap-
proaches include innovative loss functions and regulariza-
tions (E & Yu, 2018; Lu et al., 2021c; Kharazmi et al., 2021;
Khodayi-Mehr & Zavlanos, 2020; Yu et al., 2022) and new
architectures (Jagtap et al., 2020c; Jagtap & Karniadakis,
2020; Li et al., 2020; Moseley et al., 2023). These strategies
work with varying degrees of success, and no single strategy
improves performance across all PDEs.

Our work attempts to understand and tame the ill-
conditioning in the (vanilla) PINN loss directly. We ex-
pect our ideas to work well with many of the above training
strategies for PINNs; none of these training strategies rid the
objective of the differential operator that generates the ill-
conditioning in the PINN loss (with the possible exception
of Liu et al. (2024)). However, Liu et al. (2024) precon-
ditions the PINN loss directly, which is equivalent to left
preconditioning, while our work studies the effects of pre-
conditioned optimization methods on the PINN loss, which
is equivalent to right preconditioning (Appendix C.1). There
is potential in combining the approach of Liu et al. (2024)
and our approach to obtain a more reliable framework for
training PINNs.

Our work analyzes the spectrum (eigenvalues) of the Hes-
sian HL of the loss. Previous work (Wang et al., 2022b)
studies the conditioning of the loss using the neural tangent
kernel (NTK), which requires an infinite-width assumption

3

https://github.com/pratikrathore8/opt_for_pinns

Challenges in Training PINNs

on the neural network; our work studies the conditioning of
the loss through the lens of the Hessian and yields useful
results for finite-width PINN architectures. Several works
have also studied the spectral bias of PINNs (Wang et al.,
2021b; 2022b; Moseley et al., 2023), which refers to the in-
ability of neural networks to learn high-frequency functions.
Note that our paper uses the word spectrum to refer to the
Hessian eigenvalues, not the spectrum of the PDE solution.

4. Good Solutions Require Near-zero Loss
First, we show that PINNs must be trained to near-zero loss
to obtain a reasonably low L2RE. This phenomenon can
be observed in Figure 2, demonstrating that a lower loss
generally corresponds to a lower L2RE. For example, on
the convection PDE, a loss of 10−3 yields an L2RE around
10−1, but decreasing the loss by a factor of 100 to 10−5

yields an L2RE around 10−2, a 10× improvement. This
relationship between loss and L2RE in Figure 2 is typical
of many PDEs (Lu et al., 2022).

The relationship in Figure 2 underscores that high-accuracy
optimization is required for a useful PINN. There are in-
stances (especially on the reaction ODE), where the PINN
solution has a L2RE around 1, despite a near-zero loss; we
provide insight into why this is occurring in Appendix B. In
Sections 5 and 7, we show that ill-conditioning and under-
optimization make reaching a solution with sufficient accu-
racy difficult.

5. The Loss Landscape is Ill-conditioned
We show empirically that the ill-conditioning of the PINN
loss is mainly due to the residual loss, which contains the dif-
ferential operator. We also show that quasi-Newton methods
like L-BFGS improve the conditioning of the problem.

5.1. The PINN Loss is Ill-conditioned

The conditioning of the loss L plays a key role in the perfor-
mance of first-order optimization methods (Nesterov, 2018).
We can understand the conditioning of an optimization prob-
lem through the eigenvalues of the Hessian of the loss, HL.
Intuitively, the eigenvalues of HL provide information about
the local curvature of the loss function at a given point along
different directions. The condition number is defined as the
ratio of the largest magnitude’s eigenvalue to the smallest
magnitude’s eigenvalue. A large condition number implies
the loss is very steep in some directions and flat in others,
making it difficult for first-order methods to make suffi-
cient progress toward the minimum. When HL(w) has a
large condition number (particularly, for w near the opti-
mum), the loss L is called ill-conditioned. For example, the
convergence rate of gradient descent (GD) depends on the
condition number (Nesterov, 2018), which results in GD

converging slowly on ill-conditioned problems.

To investigate the conditioning of the PINN loss L, we
would like to examine the eigenvalues of the Hessian. For
large matrices, it is convenient to visualize the set of eigen-
values via spectral density, which approximates the distribu-
tion of the eigenvalues. Fast approximation methods for the
spectral density of the Hessian are available for deep neural
networks (Ghorbani et al., 2019; Yao et al., 2020). Figure 3
shows the estimated Hessian spectral density (solid lines)
of the PINN loss for the convection, reaction, and wave
problems after training with Adam+L-BFGS. For all three
problems, we observe large outlier eigenvalues (> 104 for
convection, > 103 for reaction, and > 105 for wave) in the
spectrum, and a significant spectral density near 0, implying
that the loss L is ill-conditioned. The plots also show how
the spectrum is improved by preconditioning (Section 5.3).

5.2. The Ill-conditioning is Due to the Residual Loss

We use the same method to study the conditioning of each
component of the PINN loss. Figures 3 and 7 show the esti-
mated spectral density of the Hessian of the residual, initial
condition, and boundary condition components of the PINN
loss for each problem after training with Adam+L-BFGS.
We see residual loss, which contains the differential operator
D, is the most ill-conditioned among all components. Our
theory (Section 8) shows this ill-conditioning is likely due
to the ill-conditioning of D.

5.3. L-BFGS Improves Problem Conditioning

Preconditioning is a popular technique for improving con-
ditioning in optimization. A classic example is Newton’s
method, which uses second-order information (i.e., the Hes-
sian) to (locally) transform an ill-conditioned loss landscape
into a well-conditioned one. L-BFGS is a quasi-Newton
method that improves conditioning without explicit access
to the problem Hessian. To examine the effectiveness of
quasi-Newton methods for optimizing L, we compute the
spectral density of the Hessian after L-BFGS precondition-
ing. (For details of this computation and how L-BFGS
preconditions, see Appendix C.) Figure 3 shows this pre-
conditioned Hessian spectral density (dashed lines). For
all three problems, the magnitude of eigenvalues and the
condition number has been reduced by at least 103. In addi-
tion, the preconditioner improves the conditioning of each
individual loss component of L (Figures 3 and 7). These ob-
servations offer clear evidence that quasi-Newton methods
improve the conditioning of the loss, and show the impor-
tance of quasi-Newton methods in training PINNs, which
we demonstrate in Section 6.

4

Challenges in Training PINNs

10−5 10−4 10−3 10−2 10−1 100

Loss

10−2

10−1

100

L
2R

E

Convection, β = 40

10−4 10−2 100

Loss

10−1

100

L
2R

E

Reaction, ρ = 5

10−3 10−2 10−1

Loss

10−1

100

L
2R

E

Wave, β = 5

Adam L-BFGS Adam + L-BFGS (1k) Adam + L-BFGS (11k) Adam + L-BFGS (31k)

Figure 2. We plot the final L2RE against the final loss for each combination of network width, optimization strategy, and random seed.
Across all three PDEs, a lower loss generally corresponds to a lower L2RE.

0 100 101 102 103 104

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Convection, β = 40

−101 −100 0 100 101 102 103

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Reaction, ρ = 5

0 100 101 102 103 104 105

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Wave, β = 5

−101 −100 0 100 101 102 103 104

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Residual

−101 −100 0 100 101 102 103

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Initial Condition

0 100 101 102 103

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Boundary Condition

Total Loss

Loss Components for Convection, β = 40

Hessian Preconditioned Hessian

Figure 3. (Top) Spectral density of the Hessian and the preconditioned Hessian after 41000 iterations of Adam+L-BFGS. The plots show
that the PINN loss is ill-conditioned and that L-BFGS improves the conditioning, reducing the top eigenvalue by 103 or more.
(Bottom) Spectral density of the Hessian and the preconditioned Hessian of each loss component after 41000 iterations of Adam+L-BFGS
for convection. The plots show that each component loss is ill-conditioned and that the conditioning is improved by L-BFGS.

6. Adam+L-BFGS Optimizes the Loss Better
Than Other Methods

We demonstrate that the combined optimization method
Adam+L-BFGS consistently provides a smaller loss and
L2RE than using Adam or L-BFGS alone. We justify this
finding using intuition from optimization theory.

6.1. Adam+L-BFGS vs Adam or L-BFGS

Figure 8 in Appendix D compares Adam+L-BFGS, Adam,
and L-BFGS on the convection, reaction, and wave prob-
lems at difficult coefficient settings noted in the literature
(Krishnapriyan et al., 2021; Wang et al., 2022b). Across
each network width, the lowest loss and L2RE is always
delivered by Adam+L-BFGS. Similarly, the lowest median
loss and L2RE are almost always delivered by Adam+L-
BFGS (Figure 8). The only exception is the reaction prob-
lem, where Adam outperforms Adam+L-BFGS on loss at
width = 100 and L2RE at width = 200 (Figure 8).

Table 1. Lowest loss for Adam, L-BFGS, and Adam+L-BFGS
across all network widths after hyperparameter tuning. Adam+L-
BFGS attains both smaller loss and L2RE vs. Adam or L-BFGS.

Optimizer Convection Reaction Wave
Loss L2RE Loss L2RE Loss L2RE

Adam 1.40e-4 5.96e-2 4.73e-6 2.12e-2 2.03e-2 3.49e-1
L-BFGS 1.51e-5 8.26e-3 8.93e-6 3.83e-2 1.84e-2 3.35e-1

Adam+L-BFGS 5.95e-6 4.19e-3 3.26e-6 1.92e-2 1.12e-3 5.52e-2

Table 1 summarizes the best performance of each optimizer.
Again, Adam+L-BFGS is better than running either Adam
or L-BFGS alone. Notably, Adam+L-BFGS attains 14.2×
smaller L2RE than Adam on the convection problem and
6.07× smaller L2RE than L-BFGS on the wave problem.

6.2. Intuition From Optimization Theory

The success of Adam+L-BFGS over Adam and L-BFGS
can be explained by existing results in optimization theory.
In neural networks, saddle points typically outnumber local

5

Challenges in Training PINNs

minima (Dauphin et al., 2014; Lee et al., 2019). A saddle
point can never be a global minimum. We want to reach a
global minimum when training PINNs.

Newton’s method (which L-BFGS attempts to approximate)
is attracted to saddle points (Dauphin et al., 2014), and
quasi-Newton methods such as L-BFGS also converge to
saddle points since they ignore negative curvature (Dauphin
et al., 2014). On the other hand, first-order methods such
as gradient descent and AdaGrad (Duchi et al., 2011) avoid
saddle points (Lee et al., 2019; Antonakopoulos et al., 2022).
We expect that (full-gradient) Adam also avoids saddles for
similar reasons, although we are not aware of such a result.

Alas, first-order methods converge slowly when the prob-
lem is ill-conditioned. This result generalizes the well-
known slow convergence of conjugate gradient (CG) for
ill-conditioned linear systems: O(√κ log(1ϵ)) iterations to
converge to an ϵ-approximate solution of a system with con-
dition number κ. In optimization, an analogous notion of a
condition number in a set S near a global minimum is given
by κf (S) := supw∈S ∥Hf (w)∥/µ, where µ is the PŁ⋆-
constant (see Section 8). Then gradient descent requires
O(κf (S) log(1ϵ)) iterations to converge to an ϵ-suboptimal
point. For PINNs, the condition number near a solution is
often > 104 (Figure 3), which leads to slow convergence
of first-order methods. However, Newton’s method and
L-BFGS can significantly reduce the condition number (Fig-
ure 3), which yields faster convergence.

Adam+L-BFGS combines the best of both first- and second-
order/quasi-Newton methods. By running Adam first, we
avoid saddle points that would attract L-BFGS. By running
L-BFGS after Adam, we can reduce the condition number
of the problem, which leads to faster local convergence.
Figure 1 exemplifies this, showing faster convergence of
Adam+L-BFGS over Adam on the wave equation.

This intuition also explains why Adam sometimes performs
as well as Adam+L-BFGS on the reaction problem. Figure 3
shows the largest eigenvalue of the reaction problem is
around 103, while the largest eigenvalues of the convection
and wave problems are around 104 and 105, suggesting the
reaction problem is less ill-conditioned.

7. The Loss is Often Under-optimized
In Section 6, we show that Adam+L-BFGS improves on
running Adam or L-BFGS alone. However, even Adam+L-
BFGS does not reach a critical point of the loss: the loss
is still under-optimized. We show that the loss and L2RE
can be further improved by running a damped version of
Newton’s method.

7.1. Why is the Loss Under-optimized?

Figure 4 shows the run of Adam+L-BFGS with smallest
L2RE for each PDE. For each run, L-BFGS stops making
progress before reaching the maximum number of iterations.
L-BFGS uses strong Wolfe line search, as it is needed to
maintain the stability of L-BFGS (Nocedal & Wright, 2006).
L-BFGS often terminates because it cannot find a positive
step size satisfying these conditions—we have observed
several instances where L-BFGS picks a step size of zero
(Figure 9 in Appendix E), leading to early stopping. Per-
versely, L-BFGS stops in these cases without reaching a
critical point: the gradient norm is around 10−2 or 10−3

(see the bottom row of Figure 4). The gradient still contains
useful information for improving the loss.

7.2. NysNewton-CG (NNCG)

We can avoid premature termination by using a damped
version of Newton’s method with Armijo line search. The
Armijo conditions use only a subset of the strong Wolfe con-
ditions. Under only Armijo conditions, L-BFGS is unstable;
we require a different approximation to the Hessian (p× p
for a neural net with p parameters) that does not require
storing (O(p2)) or inverting (O(p3)) the Hessian. Instead,
we run a Newton-CG algorithm that solves for the Newton
step using preconditioned conjugate gradient (PCG). This al-
gorithm can be implemented efficiently with Hessian-vector
products. These can be computed O ((nres + nbc)p) time
(Pearlmutter, 1994). Section 5 shows that the Hessian is ill-
conditioned with fast spectral decay, so CG without precon-
ditioning will converge slowly. Hence we use NyströmPCG,
a PCG method that is designed to solve linear systems with
fast spectral decay (Frangella et al., 2023). The resulting
algorithm is called NysNewton-CG (abbreviated NNCG); a
full description of the algorithm appears in Appendix E.

7.3. Performance of NNCG

Figure 4 shows that NNCG significantly improves both the
loss and gradient norm of the solution when applied after
Adam+L-BFGS, while Figure 5 visualizes how NNCG im-
proves the absolute error (pointwise) of the PINN solution
when applied after Adam+L-BFGS. Furthermore, Table 2
shows that NNCG also improves the L2RE of the PINN
solution. In contrast, applying gradient descent (GD) af-
ter Adam+L-BFGS improves neither the loss nor the L2RE.
This result is unsurprising, as our theory predicts that NNCG
will work better than GD for an ill-conditioned loss (Sec-
tion 8).

7.4. Why Not Use NNCG Directly After Adam?

Since NNCG improves the PINN solution and uses sim-
pler line search conditions than L-BFGS, it is tempting to

6

Challenges in Training PINNs

0 10000 20000 30000 40000
Iterations

10−5

10−3

10−1

101

L
os

s

Convection, β = 40

0 10000 20000 30000 40000
Iterations

10−5

10−3

10−1

L
os

s

Reaction, ρ = 5

0 10000 20000 30000 40000
Iterations

10−4

10−3

10−2

10−1

100

L
os

s

Wave, β = 5

0 10000 20000 30000 40000
Iterations

10−3

10−1

101

G
ra

d
ie

n
t

N
or

m

Convection, β = 40

0 10000 20000 30000 40000
Iterations

10−4

10−2

100

102

G
ra

d
ie

n
t

N
or

m

Reaction, ρ = 5

0 10000 20000 30000 40000
Iterations

10−2

10−1

100

G
ra

d
ie

n
t

N
or

m

Wave, β = 5

Adam L-BFGS NNCG GD

Figure 4. Performance of NNCG and GD after Adam+L-BFGS. (Top) NNCG reduces the loss by a factor greater than 10 in all instances,
while GD fails to make progress. (Bottom) Furthermore, NNCG significantly reduces the gradient norm on the convection and wave
problems, while GD fails to do so.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam + L-BFGS

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6
x

Adam + L-BFGS + NNCG

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam + L-BFGS

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Adam + L-BFGS + NNCG

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

Adam

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

Adam + L-BFGS

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

Adam + L-BFGS + NNCG

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

0.0

0.2

0.4

0.6

0.8

0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

0.08

0.00

0.25

0.50

0.75

1.00

1.25

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Convection, β = 40

Reaction, ρ = 5

Wave, β = 5

Figure 5. Absolute errors of the PINN solution at optimizer switch points. The first column shows errors after Adam, the second
column shows errors after running L-BFGS following Adam, and the third column shows the errors after running NNCG folllowing
Adam+L-BFGS. L-BFGS improves the solution obtained from first running Adam, and NNCG further improves the solution even after
Adam+L-BFGS stops making progress. Note that Adam solution errors (left-most column) are presented at separate scales as these
solutions are far off from the exact solutions.

7

Challenges in Training PINNs

Table 2. Loss and L2RE after fine-tuning by NNCG and GD. NNCG outperforms both GD and the original Adam+L-BFGS results.

Optimizer Convection Reaction Wave
Loss L2RE Loss L2RE Loss L2RE

Adam+L-BFGS 5.95e-6 4.19e-3 5.26e-6 1.92e-2 1.12e-3 5.52e-2
Adam+L-BFGS+NNCG 3.63e-7 1.94e-3 2.89e-7 9.92e-3 6.13e-5 1.27e-2

Adam+L-BFGS+GD 5.95e-6 4.19e-3 5.26e-6 1.92e-2 1.12e-3 5.52e-2

replace L-BFGS with NNCG entirely. However, NNCG
is slower than L-BFGS: the L-BFGS update can be com-
puted in O(mp) time, where m is the memory parameter,
while just a single Hessian-vector product for computing
the NNCG update requires O ((nres + nbc)p) time. Table 3
shows NNCG takes 5, 20, and 322 more times per-iteration
as L-BFGS on convection, reaction, and wave respectively.
Consequently, we should run Adam+L-BFGS to make as
much progress as possible before switching to NNCG.

8. Theory
We relate the conditioning of the differential operator to the
conditioning of the PINN loss function (2) in Theorem 8.4.
When the differential operator is ill-conditioned, gradient
descent takes many iterations to reach a high-precision solu-
tion. As a result, first-order methods alone may not deliver
sufficient accuracy.

Algorithm 1 Gradient-Damped Newton Descent (GDND)
input # of gradient descent iterations KGD, gradient descent

learning rate ηGD, # of damped Newton iterations KDN, damped
Newton learning rate ηDN, damping parameter γ
Phase I: Gradient descent
for k = 0, . . . ,KGD − 1 do

wk+1 = wk − ηGD∇L(wk)
end for
Phase II: Damped Newton
Set w̃0 = wKGD

for k = 0, . . . ,KDN − 1 do
w̃k+1 = w̃k − ηDN (HL(w̃k) + γI)−1 ∇L(w̃k)

end for
output approximate solution w̃KDN

To address this issue, we develop and analyze a hybrid
algorithm, Gradient Damped Newton Descent (GDND, Al-
gorithm 1), that switches from gradient descent to damped
Newton’s method after a fixed number of iterations. We
show that GDND gives fast linear convergence independent
of the condition number. This theory supports our empirical
results, which show that the best performance is obtained by
running Adam and switching to L-BFGS. Moreover, it pro-
vides a theoretical basis for using Adam+L-BFGS+NNCG
to achieve the best performance.

GDND differs from Adam+L-BFGS+NNCG, the algorithm
we recommend in practice. We analyze GD instead of Adam
because existing analyses of Adam (Défossez et al., 2022;

Zhang et al., 2022) do not mirror its empirical performance.
The reason we run both L-BFGS and damped Newton is to
maximize computational efficiency (Section 7.4).

8.1. Preliminaries

We begin with the main assumption for our analysis.

Assumption 8.1 (Interpolation). LetW⋆ denote the set of
minimizers of (2). We assume that

L(w⋆) = 0, for all w⋆ ∈ W⋆,

i.e., the model perfectly fits the training data.

From a theoretical standpoint, Assumption 8.1 is natural
in light of various universal approximation theorems (Cy-
benko, 1989; Hornik et al., 1990; De Ryck et al., 2021),
which show neural networks are capable of approximating
any continuous function to arbitrary accuracy. Moreover, in-
terpolation in neural networks is common in practice (Zhang
et al., 2021; Belkin, 2021).

PŁ⋆-condition. In modern neural network optimization, the
PŁ⋆-condition (Liu et al., 2022; 2023) is key to showing
convergence of gradient-based optimizers. It is a local ver-
sion of the celebrated Polyak-Łojasiewicz condition (Polyak,
1963; Karimi et al., 2016), specialized to interpolation.

Definition 8.2 (PŁ⋆-condition). Suppose L satisfies As-
sumption 8.1. Let S ⊂ Rp. Then L is µ-PŁ⋆in S if

∥∇L(w)∥2
2µ

≥ L(w), ∀w ∈ S.

The PŁ⋆-condition relates the gradient norm to the loss and
implies that any minimizer in S is a global minimizer. Im-
portantly, the PŁ⋆-condition can hold for non-convex losses
and is known to hold, with high probability, for sufficiently
wide neural nets with the least-squares loss (Liu et al., 2022).

Definition 8.3 (Condition number for PŁ⋆ loss functions).
Let S be a set for which L is µ-PŁ⋆. Then the condition
number of L over S is given by

κL(S) =
supw∈S ∥HL(w)∥

µ
,

where HL(w) is the Hessian matrix of the loss function.

Gradient descent over S converges to ϵ-suboptimality in
O
(
κL(S) log

(
1
ϵ

))
iterations (Liu et al., 2022).

8

Challenges in Training PINNs

8.2. Ill-conditioned Differential Operators Lead to
Challenging Optimization

Here, we show that when the differential operator defining
the PDE is linear and ill-conditioned, the condition number
of the PINN objective (in the sense of Definition 8.3) is
large. Our analysis in this regard is inspired by the recent
work of De Ryck et al. (2023), who prove a similar result
for the population PINN residual loss. However, De Ryck
et al. (2023)’s analysis is based on the lazy training regime,
which assumes the NTK is approximately constant. This
regime does not accurately capture the behavior of practical
neural networks (Allen-Zhu & Li, 2019; Chizat et al., 2019;
Ghorbani et al., 2020; 2021). Moreover, gradient descent
can converge even with a non-constant NTK (Liu et al.,
2020). Our theoretical result is more closely aligned with
deep learning practice as it does not assume lazy training
and pertains to the empirical loss rather than the population
loss.

Theorem 8.4 provides an informal version of our result in
Appendix F that shows that ill-conditioned differential op-
erators induce ill-conditioning in the loss (2). The theorem
statement involves a kernel integral operator, K∞ (defined
in (6) in Appendix F), evaluated at the optimum w⋆.

Theorem 8.4 (Informal). Suppose Assumption 8.1 holds
and p ≥ nres + nbc. Fix w⋆ ∈ W⋆ and set A = D∗D. For
some α > 1/2, suppose the eigenvalues ofA◦K∞(w⋆) sat-
isfy λj(A◦K∞(w⋆)) = O

(
j−2α

)
. If
√
nres = Ω

(
log
(
1
δ

))
,

then for any set S that contains w⋆ and for which L is µ-
PŁ⋆,

κL(S) = Ω (nα
res) , with probability ≥ 1− δ.

Theorem 8.4 relates the conditioning of the PINN optimiza-
tion problem to the conditioning of the operatorA◦K∞(w⋆),
where A is the Hermitian square of D. If the spectrum of
A◦K∞(w⋆) decays polynomially, then, with high probabil-
ity, the condition number grows with nres. As nres typically
ranges from 103 to 104, Theorem 8.4 shows the condition
number of the PINN problem is generally large, and so
first-order methods will be slow to converge to the optimum.
Figure 10 in Appendix F.5 empirically verifies the claim of
Theorem 8.4 for the convection equation.

8.3. Efficient High-precision Solutions via GDND

We now analyze the convergence behavior of Algorithm 1.
Theorem 8.5 provides an informal version of our result in
Appendix G.

Theorem 8.5 (Informal). Suppose L(w) satisfies the µ-
PŁ⋆-condition in a certain ball about w0. Then there exists
ηGD > 0 and KGD < ∞ such that Phase I of Algorithm 1
outputs a point wKGD , for which Phase II of Algorithm 1

with ηDN = 5/6 and appropriate damping γ > 0, satisfies

L(w̃k) ≤
(
2

3

)k

L(wKGD).

Hence after KDN ≥ 3 log
(

L(wKGD)

ϵ

)
iterations, Phase II of

Algorithm 1 outputs a point satisfying L(w̃KDN) ≤ ϵ.

Theorem 8.5 shows only a fixed number of gradient de-
scent iterations are needed before Algorithm 1 can switch
to damped Newton’s method and enjoy linear convergence
independent of the condition number. As the convergence
rate of Phase II with damped Newton is independent of the
condition number, Algorithm 1 produces a highly accurate
solution to (2).

Note that Theorem 8.5 is local; Algorithm 1 must find a
point sufficiently close to a minimizer with gradient descent
before switching to damped Newton’s method and achieving
rapid convergence. It is not possible to develop a second-
order method with a fast rate that does not require a good
initialization, as in the worst-case, global convergence of
second-order methods may fail to improve over first-order
methods (Cartis et al., 2010; Arjevani et al., 2019). More-
over, Theorem 8.5 is consistent with our experiments, which
show L-BFGS is inferior to Adam+L-BFGS.

9. Conclusion
In this work, we explore the challenges posed by the loss
landscape of PINNs for gradient-based optimizers. We
demonstrate ill-conditioning in the PINN loss and show it
hinders effective training of PINNs. By comparing Adam,
L-BFGS, and Adam+L-BFGS, and introducing NNCG, we
have demonstrated several approaches to improve the train-
ing process. Our theory supports our experimental find-
ings: we connect ill-conditioned differential operators to
ill-conditioning in the PINN loss and prove the benefits of
second-order methods over first-order methods for PINNs.

Acknowledgements
We would like to acknowledge helpful comments from the
anonymous reviewers and area chairs, which have improved
this submission. MU, PR, WL, and ZF gratefully acknowl-
edge support from the National Science Foundation (NSF)
Award IIS-2233762, the Office of Naval Research (ONR)
Award N000142212825 and N000142312203, and the Al-
fred P. Sloan Foundation. LL gratefully acknowledges sup-
port from the U.S. Department of Energy [DE-SC0022953].

Impact Statement
This paper presents work whose goal is to advance the field
of scientific machine learning. There are many potential

9

Challenges in Training PINNs

societal consequences of our work, none which we feel must
be specifically highlighted here.

References
Allen-Zhu, Z. and Li, Y. What Can ResNet Learn Effi-

ciently, Going Beyond Kernels? In Advances in Neural
Information Processing Systems, 2019.

Antonakopoulos, K., Mertikopoulos, P., Piliouras, G., and
Wang, X. AdaGrad Avoids Saddle Points. In Proceed-
ings of the 39th International Conference on Machine
Learning, 2022.

Arjevani, Y., Shamir, O., and Shiff, R. Oracle complexity
of second-order methods for smooth convex optimization.
Mathematical Programming, 178:327–360, 2019.

Bach, F. Sharp analysis of low-rank kernel matrix approxi-
mations. In Conference on learning theory, 2013.

Belkin, M. Fit without fear: remarkable mathematical phe-
nomena of deep learning through the prism of interpola-
tion. Acta Numerica, 30:203–248, 2021.

Cartis, C., Gould, I. N., and Toint, P. L. On the complexity
of steepest descent, Newton’s and regularized Newton’s
methods for nonconvex unconstrained optimization prob-
lems. SIAM Journal on Optimization, 20(6):2833–2852,
2010.

Chizat, L., Oyallon, E., and Bach, F. On Lazy Training
in Differentiable Programming. In Advances in Neural
Information Processing Systems, 2019.

Cohen, M. B., Musco, C., and Musco, C. Input sparsity
time low-rank approximation via ridge leverage score
sampling. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, 2017.

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi,
M., and Piccialli, F. Scientific Machine Learning Through
Physics–Informed Neural Networks: Where We Are and
What’s Next. J. Sci. Comput., 92(3), 2022.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Gan-
guli, S., and Bengio, Y. Identifying and attacking the
saddle point problem in high-dimensional non-convex op-
timization. In Advances in Neural Information Processing
Systems, 2014.

De Ryck, T., Lanthaler, S., and Mishra, S. On the approx-
imation of functions by tanh neural networks. Neural
Networks, 143:732–750, 2021.

De Ryck, T., Bonnet, F., Mishra, S., and de Bézenac,
E. An operator preconditioning perspective on training
in physics-informed machine learning. arXiv preprint
arXiv:2310.05801, 2023.

Défossez, A., Bottou, L., Bach, F., and Usunier, N. A simple
convergence proof of Adam and Adagrad. Transactions
on Machine Learning Research, 2022.

Duchi, J., Hazan, E., and Singer, Y. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimiza-
tion. Journal of Machine Learning Research, 12(61):
2121–2159, 2011.

E, W. and Yu, B. The Deep Ritz Method: A Deep Learning-
Based Numerical Algorithm for Solving Variational Prob-
lems. Communications in Mathematics and Statistics, 6
(1):1–12, 2018.

Frangella, Z., Tropp, J. A., and Udell, M. Randomized
Nyström Preconditioning. SIAM Journal on Matrix Anal-
ysis and Applications, 44(2):718–752, 2023.

Ghorbani, B., Krishnan, S., and Xiao, Y. An Investigation
into Neural Net Optimization via Hessian Eigenvalue
Density. In Proceedings of the 36th International Confer-
ence on Machine Learning, 2019.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A.
When Do Neural Networks Outperform Kernel Methods?
In Advances in Neural Information Processing Systems,
2020.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A.
Linearized two-layers neural networks in high dimension.
The Annals of Statistics, 49(2):1029–1054, 2021.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 2010.

Golub, G. H. and Meurant, G. Matrices, moments and
quadrature with applications, volume 30. Princeton Uni-
versity Press, 2009.

Hao, Z., Yao, J., Su, C., Su, H., Wang, Z., Lu, F., Xia,
Z., Zhang, Y., Liu, S., Lu, L., and Zhu, J. PINNa-
cle: A Comprehensive Benchmark of Physics-Informed
Neural Networks for Solving PDEs. arXiv preprint
arXiv:2306.08827, 2023.

Horn, R. A. and Johnson, C. R. Matrix Analysis. Cambridge
University Press, 2nd edition, 2012.

Hornik, K., Stinchcombe, M., and White, H. Universal
approximation of an unknown mapping and its derivatives
using multilayer feedforward networks. Neural networks,
3(5):551–560, 1990.

10

Challenges in Training PINNs

Jagtap, A. D. and Karniadakis, G. E. Extended physics-
informed neural networks (xpinns): A generalized space-
time domain decomposition based deep learning frame-
work for nonlinear partial differential equations. Commu-
nications in Computational Physics, 28(5):2002–2041,
2020.

Jagtap, A. D., Kawaguchi, K., and Karniadakis, G. E. Adap-
tive activation functions accelerate convergence in deep
and physics-informed neural networks. Journal of Com-
putational Physics, 404:109136, 2020a.

Jagtap, A. D., Kawaguchi, K., and Karniadakis, G. E. Lo-
cally adaptive activation functions with slope recovery
for deep and physics-informed neural networks. Proceed-
ings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 2020b.

Jagtap, A. D., Kharazmi, E., and Karniadakis, G. E. Con-
servative physics-informed neural networks on discrete
domains for conservation laws: Applications to forward
and inverse problems. Computer Methods in Applied
Mechanics and Engineering, 365:113028, 2020c.

Karimi, H., Nutini, J., and Schmidt, M. Linear Convergence
of Gradient and Proximal-Gradient Methods under the
Polyak-Łojasiewicz Condition. In Machine Learning and
Knowledge Discovery in Databases, 2016.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kharazmi, E., Zhang, Z., and Karniadakis, G. E. hp-
VPINNs: Variational physics-informed neural networks
with domain decomposition. Computer Methods in Ap-
plied Mechanics and Engineering, 374:113547, 2021.

Khodayi-Mehr, R. and Zavlanos, M. VarNet: Variational
Neural Networks for the Solution of Partial Differential
Equations. In Proceedings of the 2nd Conference on
Learning for Dynamics and Control, pp. 298–307, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. In Advances in
Neural Information Processing Systems, 2021.

Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M., Jor-
dan, M. I., and Recht, B. First-order methods almost
always avoid strict saddle points. Mathematical Program-
ming, 176(1):311–337, 2019.

Li, K., Tang, K., Wu, T., and Liao, Q. D3M: A Deep Domain
Decomposition Method for Partial Differential Equations.
IEEE Access, 8:5283–5294, 2020.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
Neural Operator for Parametric Partial Differential Equa-
tions. In International Conference on Learning Represen-
tations, 2021.

Lin, L., Saad, Y., and Yang, C. Approximating spectral
densities of large matrices. SIAM review, 58(1):34–65,
2016.

Liu, C., Zhu, L., and Belkin, M. On the linearity of large
non-linear models: when and why the tangent kernel is
constant. Advances in Neural Information Processing
Systems, 2020.

Liu, C., Zhu, L., and Belkin, M. Loss landscapes and opti-
mization in over-parameterized non-linear systems and
neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.

Liu, C., Drusvyatskiy, D., Belkin, M., Davis, D., and Ma,
Y.-A. Aiming towards the minimizers: fast convergence
of SGD for overparametrized problems. arXiv preprint
arXiv:2306.02601, 2023.

Liu, D. C. and Nocedal, J. On the limited memory BFGS
method for large scale optimization. Mathematical Pro-
gramming, 45(1):503–528, 1989.

Liu, S., Su, C., Yao, J., Hao, Z., Su, H., Wu, Y., and Zhu,
J. Preconditioning for physics-informed neural networks,
2024.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021a.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. Deep-
XDE: A Deep Learning Library for Solving Differential
Equations. SIAM Review, 63(1):208–228, 2021b.

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., and
Johnson, S. G. Physics-informed neural networks with
hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021c.

Lu, L., Pestourie, R., Johnson, S. G., and Romano, G. Mul-
tifidelity deep neural operators for efficient learning of
partial differential equations with application to fast in-
verse design of nanoscale heat transport. Physical Review
Research, 4(2):023210, 2022.

Mishra, S. and Molinaro, R. Estimates on the generalization
error of physics-informed neural networks for approxi-
mating pdes. IMA Journal of Numerical Analysis, 43(1):
1–43, 2023.

11

Challenges in Training PINNs

Moseley, B., Markham, A., and Nissen-Meyer, T. Finite
basis physics-informed neural networks (FBPINNs): a
scalable domain decomposition approach for solving dif-
ferential equations. Advances in Computational Mathe-
matics, 49(4):62, 2023.

Müller, J. and Zeinhofer, M. Achieving High Accuracy with
PINNs via Energy Natural Gradient Descent. In Proceed-
ings of the 40th International Conference on Machine
Learning, 2023.

Nabian, M. A., Gladstone, R. J., and Meidani, H. Efficient
training of physics-informed neural networks via impor-
tance sampling. Comput.-Aided Civ. Infrastruct. Eng., 36
(8):962–977, 2021.

Nesterov, Y. Lectures on Convex Optimization. Springer
Publishing Company, Incorporated, 2nd edition, 2018.

Nocedal, J. and Wright, S. J. Numerical Optimization.
Springer, 2nd edition, 2006.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. arXiv
preprint arXiv:1912.01703, 2019.

Pearlmutter, B. A. Fast exact multiplication by the hessian.
Neural computation, 6(1):147–160, 1994.

Polyak, B. T. Gradient methods for minimizing function-
als. Zhurnal vychislitel’noi matematiki i matematicheskoi
fiziki, 3(4):643–653, 1963.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Rohrhofer, F. M., Posch, S., Gößnitzer, C., and Geiger, B. C.
On the Role of Fixed Points of Dynamical Systems in
Training Physics-Informed Neural Networks. Transac-
tions on Machine Learning Research, 2023.

Rudi, A., Carratino, L., and Rosasco, L. FALKON: An
Optimal Large Scale Kernel Method. In Advances in
Neural Information Processing Systems, 2017.

Tropp, J. A. An introduction to matrix concentration inequal-
ities. Foundations and Trends® in Machine Learning, 8
(1-2):1–230, 2015.

Wang, H., Lu, L., Song, S., and Huang, G. Learning Special-
ized Activation Functions for Physics-Informed Neural

Networks. Communications in Computational Physics,
34(4):869–906, 2023.

Wang, S., Teng, Y., and Perdikaris, P. Understanding
and Mitigating Gradient Flow Pathologies in Physics-
Informed Neural Networks. SIAM Journal on Scientific
Computing, 43(5):A3055–A3081, 2021a.

Wang, S., Wang, H., and Perdikaris, P. On the eigenvector
bias of Fourier feature networks: From regression to
solving multi-scale PDEs with physics-informed neural
networks. Computer Methods in Applied Mechanics and
Engineering, 384:113938, 2021b.

Wang, S., Wang, H., and Perdikaris, P. Learning the solution
operator of parametric partial differential equations with
physics-informed DeepONets. Science Advances, 7(40):
eabi8605, 2021c.

Wang, S., Sankaran, S., and Perdikaris, P. Respecting causal-
ity is all you need for training physics-informed neural
networks. arXiv preprint arXiv:2203.07404, 2022a.

Wang, S., Yu, X., and Perdikaris, P. When and why PINNs
fail to train: A neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, 2022b.

Wu, C., Zhu, M., Tan, Q., Kartha, Y., and Lu, L. A compre-
hensive study of non-adaptive and residual-based adaptive
sampling for physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering,
403:115671, 2023a.

Wu, W., Daneker, M., Jolley, M. A., Turner, K. T., and Lu, L.
Effective data sampling strategies and boundary condition
constraints of physics-informed neural networks for iden-
tifying material properties in solid mechanics. Applied
mathematics and mechanics, 44(7):1039–1068, 2023b.

Yao, J., Su, C., Hao, Z., Liu, S., Su, H., and Zhu, J. Mul-
tiAdam: Parameter-wise Scale-invariant Optimizer for
Multiscale Training of Physics-informed Neural Net-
works. In Proceedings of the 40th International Con-
ference on Machine Learning, 2023.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W.
PyHessian: Neural Networks Through the Lens of the
Hessian. In 2020 IEEE International Conference on Big
Data (Big Data), 2020.

Yu, J., Lu, L., Meng, X., and Karniadakis, G. E. Gradient-
enhanced physics-informed neural networks for forward
and inverse PDE problems. Computer Methods in Applied
Mechanics and Engineering, 393:114823, 2022.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

12

Challenges in Training PINNs

Zhang, Y., Chen, C., Shi, N., Sun, R., and Luo, Z.-Q. Adam
Can Converge Without Any Modification On Update
Rules. In Advances in Neural Information Processing
Systems, 2022.

13

Challenges in Training PINNs

A. Additional Details on Problem Setup
Here we present the differential equations that we study in our experiments.

A.1. Convection

The one-dimensional convection problem is a hyperbolic PDE that can be used to model fluid flow, heat transfer, and
biological processes. The convection PDE we study is

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ (0, 2π), t ∈ (0, 1),

u(x, 0) = sin(x), x ∈ [0, 2π],

u(0, t) = u(2π, t), t ∈ [0, 1].

The analytical solution to this PDE is u(x, t) = sin(x− βt). We set β = 40 in our experiments.

A.2. Reaction

The one-dimensional reaction problem is a non-linear ODE which can be used to model chemical reactions. The reaction
ODE we study is

∂u

∂t
− ρu(1− u) = 0, x ∈ (0, 2π), t ∈ (0, 1)

u(x, 0) = exp

(
− (x− π)2

2(π/4)2

)
, x ∈ [0, 2π],

u(0, t) = u(2π, t), t ∈ [0, 1].

The analytical solution to this ODE is u(x, t) = h(x)eρt

h(x)eρt+1−h(x) , where h(x) = exp
(
− (x−π)2

2(π/4)2

)
. We set ρ = 5 in our

experiments.

A.3. Wave

The one-dimensional wave problem is a hyperbolic PDE that often arises in acoustics, electromagnetism, and fluid dynamics.
The wave PDE we study is

∂2u

∂t2
− 4

∂2u

∂x2
= 0, x ∈ (0, 1), t ∈ (0, 1),

u(x, 0) = sin(πx) +
1

2
sin(βπx), x ∈ [0, 1],

∂u(x, 0)

∂t
= 0, x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1].

The analytical solution to this PDE is u(x, t) = sin(πx) cos(2πt) + 1
2 sin(βπx) cos(2βπt). We set β = 5 in our experi-

ments.

B. Why can Low Losses Correspond to Large L2RE?
In Figure 2, there are several instances on the convection PDE and reaction ODE where the PINN loss is close to 0, but the
L2RE of the PINN solution is close to 1. Rohrhofer et al. (2023) demonstrate that PINNs can be attracted to points in the
loss landscape that minimize the residual portion of the PINN loss, 1

2nres

∑nres
i=1

(
D[u(xi

r;w), x
i
r]
)2

, to 0. However, these can
correspond to trivial solutions: for the convection PDE, the residual portion is equal to 0 for any constant function u; for the
reaction ODE, the residual portion is equal to 0 for constant u = 0 or u = 1.

14

Challenges in Training PINNs

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Exact solution

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

PINN solution

0 2 4 6
x

−1.0

−0.5

0.0

0.5

1.0

u
(x
,0

)

Initial condition

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.0

−0.5

0.0

0.5

1.0

u
(0
,t

)
or
u

(2
π
,t

)

Boundary condition

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

Exact solution

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

PINN solution

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

u
(x
,0

)

Initial condition

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.01

0.02

0.03

0.04

u
(0
,t

)
or
u

(2
π
,t

)

Boundary condition

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Convection, β = 40

Reaction, ρ = 5

Exact solution PINN solution PINN solution at x = 0 PINN solution at x = 2π

Figure 6. The first two columns from the left display the exact solutions and PINN solutions. The PINN fails to learn the exact solution,
which leads to large L2RE. Moreover, the PINN solutions are effectively constant over the domain. The third and fourth columns from the
left display the PINN solutions at the initial time (t = 0) and the boundaries (x = 0 and x = 2π). The PINN solutions learn the initial
conditions, but they do not learn the boundary conditions.

To show that the PINN is indeed learning a trivial solution, we visualize two solutions with small residual loss but large
L2RE in Figure 6. The second column of Figure 6 shows the PINN solutions are close to 0 almost everywhere in the domain.
Interestingly, the PINN solutions correctly learn the initial condition. However, the PINN solutions for the convection PDE
and reaction ODE do not match the exact solution at the boundaries. One approach for alleviating this training issue would
be to (adaptively) reweight the residual, initial condition, and boundary condition terms in the PINN loss (Wang et al.,
2021a; 2022b).

C. Computing the Spectral Density of the L-BFGS-preconditioned Hessian
C.1. How L-BFGS Preconditions

To minimize (2), L-BFGS uses the update

wk+1 = wk − ηHk∇L(wk), (3)

where Hk is a matrix approximating the inverse Hessian. We now show how (3) is equivalent to preconditioning the
objective (2). Define the coordinate transformation w = H

1/2
k z. By the chain rule,∇L(z) = H

1/2
k ∇L(w) and HL(z) =

H
1/2
k HL(w)H

1/2
k . Thus, (3) is equivalent to

zk+1 = zk − η∇L(zk), (4)

wk+1 = H
1/2
k zk+1.

Equation (4) reveals how L-BFGS preconditions (2). L-BFGS first takes a step in the preconditioned z-space, where the
conditioning is determined by HL(z), the preconditioned Hessian. Since Hk approximates H−1

L (w), H1/2
k HL(w)H

1/2
k ≈

Ip, so the condition number of HL(z) is much smaller than that of HL(w). Consequently, L-BFGS can take a step that
makes more progress than a method like gradient descent, which performs no preconditioning at all. In the second phase,
L-BFGS maps the progress in the preconditioned space back to the original space. Thus, L-BFGS is able to make superior
progress by transforming (2) to another space where the conditioning is more favorable, which enables it to compute an
update that better reduces the loss in (2).

15

Challenges in Training PINNs

C.2. Preconditioned Spectral Density Computation

Here we discuss how to compute the spectral density of the Hessian after preconditioning by L-BFGS. This is the procedure
we use to generate the figures in Section 5.3.

L-BFGS stores a set of vector pairs given by the difference in consecutive iterates and gradients from most recent m
iterations (we use m = 100 in our experiments). To compute the update direction Hk∇fk, L-BFGS combines the stored
vector pairs with a recursive scheme (Nocedal & Wright, 2006). Defining

sk = xk+1 − xk, yk = ∇fk+1 −∇fk, ρk =
1

yTk sk
, γk =

sTk−1yk−1

yTk−1yk−1
, Vk = I − ρkyks

T
k , H0

k = γkI,

the formula for Hk can be written as

Hk = (V T
k−1V

T
k−m)H0

k(Vk−mVk−1) +

m∑
l=2

ρk−l(V
T
k−1 · · ·V T

k−l+1)sk−ls
T
k−l(Vk−l+1 · · ·Vk−1) + ρk−1sk−1s

T
k−1.

Expanding the terms, we have for j ∈ {1, 2, . . . , i},

Vk−i · · ·Vk−1 = I −
i∑

j=1

ρk−jyk−j ṽ
T
k−j where ṽk−j = sk−j −

j−1∑
l=1

(ρk−ly
T
k−lsk−j)ṽk−l.

It follows that

Hk = (I − Ỹ Ṽ T)T γkI(I − Ỹ Ṽ T) + S̃S̃T =
[√

γk(I − Ỹ Ṽ T)T S̃
] [√γk(I − Ỹ Ṽ T)

S̃T .

]
= H̃kH̃

T
k ,

where

Ỹ =

 | |
ρk−1yk−1 · · · ρk−myk−m

| |

 ,

Ṽ =

 | |
ṽk−1 · · · ṽk−m

| |

 ,

S̃ =

 | |
s̃k−1 · · · s̃k−m

| |

 , s̃k−1 =
√
ρk−1sk−1, s̃k−l =

√
ρk−l(V

T
k−1 · · ·V T

k−l+1)sk−l for 2 ≤ l ≤ m.

We now apply Algorithm 2 to unroll the above recurrence relations to compute columns of Ỹ , S̃ and Ṽ .

Algorithm 2 Unrolling the L-BFGS Update

input saved directions {yi}k−m
i=k−1, saved steps {si}k−m

i=k−1, saved inverse of inner products {ρi}k−m
i=k−1

ỹk−1 = ρk−1yk−1

ṽk−1 = sk−1

s̃k−1 =
√
ρk−1sk−1

for i = k − 2, . . . , k −m do
ỹi = ρiyi
Set α = 0
for j = k − 1, . . . , i+ 1 do
α = α+ (ỹTj si)ṽj

end for
ṽi = si − α
s̃i =

√
ρi(si − α)

end for
output vectors {ỹi, ṽi, s̃i}k−m

i=k−1

16

Challenges in Training PINNs

0 100 101 102 103

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Residual

0 100 101 102

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Initial Condition

0 100 101 102

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Boundary Condition

Reaction, ρ = 5

Hessian Preconditioned Hessian

0 100 101 102 103 104 105

Eigenvalue

10−10

10−6

10−2

102

D
en

si
ty

Residual

−102−101 −1000 100 101 102 103 104 105

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Initial Condition

0 100 101 102 103

Eigenvalue

10−10

10−7

10−4

10−1

102

D
en

si
ty

Boundary Condition

Wave, β = 5

Hessian Preconditioned Hessian

Figure 7. Spectral density of the Hessian and the preconditioned Hessian of each loss component after 41000 iterations of Adam+L-BFGS
for the reaction and wave problems. The plots show the loss landscape of each component is ill-conditioned, and the conditioning of each
loss component is improved by L-BFGS.

Since (non-zero) eigenvalues of H̃T
k HL(w)H̃k equal the eigenvalues of the preconditioned Hessian HkHL(w) =

H̃kH̃
T
k HL(w) (Theorem 1.3.22 of Horn & Johnson (2012)), we can analyze the spectrum of H̃T

k HL(w)H̃k instead.
This is advantageous since methods for calculating the spectral density of neural network Hessians are only compatible with
symmetric matrices.

Since H̃T
k HL(w)H̃k is symmetric, we can use stochastic Lanczos quadrature (SLQ) (Golub & Meurant, 2009; Lin et al.,

2016) to compute spectral density of this matrix. SLQ only requires matrix-vector products with H̃k and Hessian-vector
products, the latter of which may be efficiently computed via automatic differentiation; this is precisely what PyHessian
does to compute spectral densities (Yao et al., 2020).

Algorithm 3 Performing matrix-vector product

input matrices Ỹ , Ṽ , S̃ formed from resulting vectors from unrolling, vector v, and saved scaling factor for initializing
diagonal matrix γk
Split vector v of length size(w) +m into v1 of size size(w) and v2 of size m
v′ =

√
γk(v1 − Ṽ Ỹ T v1) + S̃v2

Perform Hessian-vector-product on v′, and obtain v′′

Stack
√
γk(v

′′ − Ỹ Ṽ T v′′) and S̃T v′′, and obtain v′′′

output resulting vector v′′′

By combining the matrix-vector product procedure described in Algorithm 3 with the Hessian-vector product operation, we
are able to obtain spectral information of the preconditioned Hessian.

D. Adam+L-BFGS Generally Gives the Best Performance
Figure 8 shows that Adam+L-BFGS typically yields the best performance on both loss and L2RE across network widths.

17

Challenges in Training PINNs

50 100 200 400
Network Width

10−5

10−4

10−3

10−2
L

os
s

Convection, β = 40

50 100 200 400
Network Width

10−5

10−4

10−3

10−2

10−1

L
os

s

Reaction, ρ = 5

50 100 200 400
Network Width

10−3

10−2

10−1

L
os

s

Wave, β = 5

50 100 200 400
Network Width

10−2

10−1

100

L
2R

E

Convection, β = 40

50 100 200 400
Network Width

10−1

100

L
2R

E

Reaction, ρ = 5

50 100 200 400
Network Width

10−1

L
2R

E

Wave, β = 5

Adam Adam + L-BFGS (1k) Adam + L-BFGS (11k) Adam + L-BFGS (31k) L-BFGS

Figure 8. Performance of Adam, L-BFGS, and Adam+L-BFGS after tuning. We find the learning rate η⋆ for each network width and
optimization strategy that attains the lowest loss (L2RE) across all random seeds. The min, median, and max loss (L2RE) are calculated
by taking the min, median, and max of the losses (L2REs) for learning rate η∗ across all random seeds. Each bar on the plot corresponds
to the median, while the top and bottom error bars correspond to the max and min, respectively. The smallest min loss and L2RE are
always attained by one of the Adam+L-BFGS strategies; the smallest median loss and L2RE are nearly always attained by one of the
Adam+L-BFGS strategies.

E. Additional details on Under-optimization
E.1. Early Termination of L-BFGS

Figure 9 explains why L-BFGS terminates early for the convection, reaction, and wave problems. We evaluate the loss at
104 uniformly spaced points in the interval [0, 1]. The orange stars in Figure 9 are step sizes that satisfy the strong Wolfe
conditions and the red dots are step sizes that L-BFGS examines during the line search.

E.2. NysNewton-CG (NNCG)

Here we present the NNCG algorithm (Algorithm 4) introduced in Section 7.2 and its associated subroutines Randomized-
NyströmApproximation (Algorithm 5), NyströmPCG (Algorithm 6), and Armijo (Algorithm 7). At each iteration, NNCG
first checks whether the Nyström preconditioner (stored in U and Λ̂) for the NyströmPCG method needs to be updated. If
so, the preconditioner is recomputed using the RandomizedNyströmApproximation subroutine. From here, the Newton
step dk is computed using NyströmPCG; we warm start the PCG algorithm using the Newton step dk−1 from the previous
iteration. After computing the Newton step, we compute the step size ηk using Armijo line search — this guarantees that the
loss will decrease when we update the parameters. Finally, we update the parameters using ηk and dk.

In our experiments, we set η = 1,K = 2000, s = 60, F = 20, ϵ = 10−16,M = 1000, α = 0.1, and β = 0.5. We tune
µ ∈ [10−5, 10−4, 10−3, 10−2, 10−1]; we find that µ = 10−2, 10−1 work best in practice. Figures 1 and 4 show the NNCG
run that attains the lowest loss after tuning µ.

18

Challenges in Training PINNs

0.00 0.25 0.50 0.75 1.00
Stepsize

5.949× 10−6

5.95× 10−6

5.951× 10−6

5.952× 10−6

5.953× 10−6

5.954× 10−6

5.955× 10−6

L
os

s

Convection, β = 40

0.00 0.25 0.50 0.75 1.00
Stepsize

6.5188× 10−6

6.519× 10−6

6.5192× 10−6

6.5194× 10−6

L
os

s

Reaction, ρ = 5

0.00 0.25 0.50 0.75 1.00
Stepsize

1.55784× 10−3

1.55786× 10−3

1.55788× 10−3

1.5579× 10−3

1.55792× 10−3

L
os

s

Wave, β = 5

Satisfactory stepsize Assessed stepsize

Figure 9. Loss evaluated along the L-BFGS search direction at different stepsizes after 41000 iterations of Adam+L-BFGS. For convection
and wave, the line search does not find a stepsize that satisfies the strong Wolfe conditions, even though there are plenty of such points.
For reaction, the slope of the objective used in the line search procedure at the current iterate is less than a pre-defined threshold 10−9, so
L-BFGS terminates without performing any line-search.

Algorithm 4 NysNewton-CG (NNCG)
input Initialization w0, max. learning rate η, number of iterations K, preconditioner sketch size s, preconditioner update

frequency F , damping parameter µ, CG tolerance ϵ, CG max. iterations M , backtracking parameters α, β
d−1 = 0
for k = 0, . . . ,K − 1 do

if k is a multiple of F then
[U, Λ̂] = RandomizedNyströmApproximation(HL(wk), s) ▷ Update Nyström preconditioner every F iterations

end if
dk = NyströmPCG(HL(wk),∇L(wk), dk−1, U, Λ̂, s, µ, ϵ,M) ▷ Damped Newton step (HL(wk) + µI)−1∇L(wk)
ηk = Armijo(L,wk,∇L(wk),−dk, η) ▷ Compute step size via line search
wk+1 = wk − ηkdk ▷ Update parameters

end for

The RandomizedNyströmApproximation subroutine (Algorithm 5) is used in NNCG to compute the preconditioner for
NyströmPCG. The algorithm returns the top-s approximate eigenvectors and eigenvalues of the input matrix M . Within
NNCG, the sketch computation Y = MQ is implemented using Hessian-vector products. The portion in red is a fail-safe
that allows for the preconditioner to be computed when H is an indefinite matrix. For further details, please see Frangella
et al. (2023).

19

Challenges in Training PINNs

Algorithm 5 RandomizedNyströmApproximation
input Symmetric matrix M , sketch size s

S = randn(p, s) ▷ Generate test matrix
Q = qr econ(S)
Y = MQ ▷ Compute sketch
ν =
√
peps(norm(Y, 2)) ▷ Compute shift

Yν = Y + νQ ▷ Add shift for stability
λ = 0 ▷ Additional shift may be required for positive definiteness
C = chol(QTYν) ▷ Cholesky decomposition: CTC = QTYν

if chol fails then
Compute [W,Γ] = eig(QTYν) ▷ QTYν is small and square
Set λ = λmin(Q

TYν)
R = W (Γ + |λ|I)−1/2WT

B = Y R ▷ R is psd
else
B = Y C−1 ▷ Triangular solve

end if
[V̂ ,Σ,∼] = svd(B, 0) ▷ Thin SVD
Λ̂ = max{0,Σ2 − (ν + |λ|I)} ▷ Compute eigs, and remove shift with element-wise max
Return: V̂ , Λ̂

The NyströmPCG subroutine (Algorithm 6) is used in NNCG to compute the damped Newton step. The preconditioner P
and its inverse P−1 are given by

P =
1

λ̂s + µ
U(Λ̂ + µI)UT + (I − UUT)

P−1 = (λ̂s + µ)U(Λ̂ + µI)−1UT + (I − UUT).

Within NNCG, the matrix-vector product involving the Hessian (i.e., A = HL(wk)) is implemented using Hessian-vector
products. For further details, please see Frangella et al. (2023).

Algorithm 6 NyströmPCG

input Psd matrix A, right-hand side b, initial guess x0, approx. eigenvectors U , approx. eigenvalues Λ̂, sketch size s,
damping parameter µ, CG tolerance ϵ, CG max. iterations M
r0 = b− (A+ µI)x0

z0 = P−1r0
p0 = z0
k = 0 ▷ Iteration counter
while ∥r0∥2 ≥ ε and k < M do

v = (A+ µI)p0
α = (rT0 z0)/(p

T
0 v0) ▷ Compute step size

x = x0 + αp0 ▷ Update solution
r = r0 − αv ▷ Update residual
z = P−1r
β = (rT z)/(rT0 z0)
x0 ← x, r0 ← r, p0 ← z + βp0, z0 ← z, k ← k + 1

end while
Return: x

The Armijo subroutine (Algorithm 7) is used in NNCG to guarantee that the loss decreases at every iteration. The function
oracle is implemented in PyTorch using a closure. At each iteration, the subroutine checks whether the sufficient decrease
condition has been met; if not, it shrinks the step size by a factor of β. For further details, please see Nocedal & Wright
(2006).

20

Challenges in Training PINNs

Table 3. Per-iteration times (in seconds) of L-BFGS and NNCG on each PDE.

Optimizer Convection Reaction Wave
L-BFGS 4.6e-2 3.6e-2 9.0e-2
NNCG 2.5e-1 7.2e-1 2.9e1

Time Ratio 5.43 20 322.22

Algorithm 7 Armijo
input Function oracle f , current iterate x, current gradient ∇f(x), search direction d, initial step size t, backtracking

parameters α, β
while f(x+ td) > f(x) + αt(∇f(x)T d) do
t← βt ▷ Shrink step size

end while
Return: t

E.3. Wall-clock Times for L-BFGS and NNCG

Table 3 summarizes the per-iteration wall-clock times of L-BFGS and NNCG on each PDE. The large gap on wave (compared
to reaction and convection) is because NNCG has to compute hessian-vector products involving second derivatives, while
this is not the case for the two other PDEs.

F. Ill-conditioned Differential Operators Lead to Difficult Optimization Problems
In this section, we state and prove the formal version of Theorem 8.4. The overall structure of the proof is based on
showing the conditioning of the Gauss-Newton matrix of the population PINN loss is controlled by the conditioning of the
differential operator. We then show the empirical Gauss-Newton matrix is close to its population counterpart by using matrix
concentration techniques. Finally, as the conditioning of HL at a minimizer is controlled by the empirical Gauss-Newton
matrix, we obtain the desired result.

F.1. Preliminaries

Similar to De Ryck et al. (2023), we consider a general linear PDE with Dirichlet boundary conditions:

D[u](x) = f(x), x ∈ Ω,
u(x) = g(x), x ∈ ∂Ω,

where u : Rd 7→ R, f : Rd 7→ R and Ω is a bounded subset of Rd. The “population” PINN objective for this PDE is

L∞(w) =
1

2

∫
Ω

(D[u(x;w)]− f(x))
2
dµ(x) +

λ

2

∫
∂Ω

(u(x;w)− g(x))
2
dσ(x).

λ can be any positive real number; we set λ = 1 in our experiments. Here µ and σ are probability measures on Ω and ∂Ω
respectively, from which the data is sampled. The empirical PINN objective is given by

L(w) =
1

2nres

nres∑
i=1

(
D[u(xi

r;w)]− f(xi)
)2

+
λ

2nbc

nbc∑
j=1

(
u(xj

b;w)− g(xj)
)2

.

Moreover, throughout this section we use the notation ⟨f, g⟩L2(Ω) to denote the standard L2-inner product on Ω:

⟨f, g⟩L2(Ω) =

∫
Ω

fgdµ(x).

21

Challenges in Training PINNs

Lemma F.1. The Hessian of the L∞(w) is given by

HL∞(w) =

∫
Ω

D[∇wu(x;w)]D[∇wu(x;w)]
T dµ(x) +

∫
Ω

D[∇2
wu(x;w)] (D[∇wu(x;w)]− f(x)) dµ(x)

+ λ

∫
∂Ω

∇wu(x;w)∇wu(x;w)
T dσ(x) + λ

∫
∂Ω

∇2
wu(x;w) (u(x;w)− g(x)) dσ(x).

The Hessian of L(w) is given by

HL(w) =
1

nres

nres∑
i=1

D[∇wu(x
i
r;w)]D[∇wu(x

i
r;w)]

T +
1

nres

nres∑
i=1

D[∇2
wu(x

r
i ;w)]

(
D[∇wu(x

i
r;w)]− f(xi

r)
)

(5)

+
λ

nbc

nbc∑
j=1

∇wu(x
j
b;w)∇wu(x

j
b;w)

T +
λ

nbc

nbc∑
j=1

∇2
wu(x

j
b;w)

(
u(xj

b;w)− g(xj)
)
.

In particular, for w⋆ ∈ W⋆

HL(w⋆) = Gr(w) +Gb(w).

Here

Gr(w) :=
1

nres

nres∑
i=1

D[∇wu(xi;w⋆)]D[∇wu(xi;w⋆)]
T , Gb(w) =

λ

nbc

nbc∑
j=1

∇wu(x
j
b;w⋆)∇wu(x

j
b;w⋆)

T .

Define the maps Fres(w) =

 D[u(x
1
r;w)]

...
D[u(xnres

r ;w)]

, and Fbc(w) =

 u(x1
b ;w)
...

u(xnbc
b ;w)]

. We have the following important lemma,

which follows via routine calculation.

Lemma F.2. Let n = nres + nbc. Define the map F : Rp → Rn, by stacking Fres(w),Fbc(w). Then, the Jacobian of F is
given by

JF (w) =

[
JFres(w)
JFbc(w).

]
Moreover, the tangent kernel KF (w) = JF (w)JF (w)

T is given by

KF (w) =

[
JFres(w)JFres(w)

T JFres(w)JFbc(w)
T

JFbc(w)JFres(w)
T JFbc(w)JFbc(w)

T

]
=

[
KFres(w) JFres(w)JFbc(w)

T

JFbc(w)JFres(w)
T KFbc(w)

]
.

F.2. Relating G∞(w) to D
Isolate the population Gauss-Newton matrix for the residual:

G∞(w) =

∫
Ω

D[∇wu(x;w)]D[∇wu(x;w)]
T dµ(x).

Analogous to De Ryck et al. (2023) we define the functions ϕi(x;w) = ∂wi
u(x;w) for i ∈ {1 . . . , p}. From this and the

definition of G∞(w), it follows that (G∞(w))ij = ⟨D[ϕi],D[ϕj]⟩L2(Ω).

Similar to De Ryck et al. (2023) we can associate each w ∈ Rp with a space of functions H(w) =
span (ϕ1(x;w), . . . , ϕp(x;w)) ⊂ L2(Ω). We also define two linear maps associated withH(w):

T (w)v =

p∑
i=1

viϕi(x;w),

T ∗(w)f =
(
⟨f, ϕ1⟩L2(Ω), . . . , ⟨f, ϕp⟩L2(Ω)

)
.

From these definitions, we establish the following lemma.

22

Challenges in Training PINNs

Lemma F.3 (Characterizing G∞(w)). Define A = D∗D. Then the matrix G∞(w) satisfies

G∞(w) = T ∗(w)AT (w).

Proof. Let ei and ej denote the ith and jth standard basis vectors in Rp. Then,

(G∞(w))ij = ⟨D[ϕi](w),D[ϕj](w)⟩L2(Ω) = ⟨ϕi(w),D∗D[ϕj(w)]⟩L2(Ω) = ⟨Tei,D∗D[Tej]⟩L2(Ω)

= ⟨ei, (T ∗D∗DT)[ej]⟩L2(Ω),

where the second equality follows from the definition of the adjoint. Hence, using A = D∗D, we conclude G∞(w) =
T ∗(w)AT (w).

Define the kernel integral operator K∞(w) : L2(Ω)→ H by

K∞(w)[f](x) = T (w)T ∗(w)f =

p∑
i=1

⟨f, ϕi(x;w)⟩ϕi(x;w), (6)

and the kernel matrix A(w) with entries Aij(w) = ⟨ϕi(x;w), ϕj(x;w)⟩L2(Ω).

Using Lemma F.3 and applying the same logic as in the proof of Theorem 2.4 in De Ryck et al. (2023), we obtain the
following theorem.

Theorem F.4. Suppose that the matrix A(w) is invertible. Then the eigenvalues of G∞(w) satisfy

λj(G∞(w)) = λj(A ◦ K∞(w)), for all j ∈ [p].

F.3. Gr(w) Concentrates Around G∞(w)

In order to relate the conditioning of the population objective to the empirical objective, we must relate the population
Gauss-Newton residual matrix to its empirical counterpart. We accomplish this by showing Gr(w) concentrates around
G∞(w). To this end, we recall the following variant of the intrinsic dimension matrix Bernstein inequality from Tropp
(2015).

Theorem F.5 (Intrinsic Dimension Matrix Bernstein). Let {Xi}i∈[n] be a sequence of independent mean zero random
matrices of the same size. Suppose that the following conditions hold:

∥Xi∥ ≤ B,

n∑
i=1

E[XiX
T
i] ⪯ V1,

n∑
i=1

E[XT
i Xi] ⪯ V2.

Define

V =

[
V1 0
0 V2

]
, ς2 = max{∥V1∥, ∥V2∥},

and the intrinsic dimension dint =
trace(V)
∥V∥ .

Then for all t ≥ ς + B
3 ,

P

(∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≥ t

)
≤ 4dint exp

(
−3

8
min

{
t2

ς2
,
t

B

})
.

Next, we recall two key concepts from the kernel ridge regression literature and approximation via sampling literature:
γ-effective dimension and γ-ridge leverage coherence (Bach, 2013; Cohen et al., 2017; Rudi et al., 2017).

Definition F.6 (γ-Effective dimension and γ-ridge leverage coherence). Let γ > 0. Then the γ-effective dimension of
G∞(w) is given by

dγeff(G∞(w)) = trace
(
G∞(w)(G∞(w) + γI)−1

)
.

The γ-ridge leverage coherence is given by

χγ(G∞(w)) = sup
x∈Ω

∥∥(G∞(w) + γI)−1/2D[∇wu(x;w)]
∥∥2

Ex∼µ

∥∥(G∞(w) + γI)−1/2D[∇wu(x;w)]
∥∥2 =

supx∈Ω

∥∥(G∞(w) + γI)−1/2D[∇wu(x;w)]
∥∥2

dγeff(G∞(w))
.

23

Challenges in Training PINNs

Observe that dγeff(G∞(w)) only depends upon γ and w, while χγ(G∞(w)) only depends upon γ,w, and Ω. Moreover,
χγ(G∞(w)) <∞ as Ω is bounded.

We prove the following lemma using the γ-effective dimension and γ-ridge leverage coherence in conjunction with
Theorem F.5.

Lemma F.7 (Finite-sample approximation). Let 0 < γ < λ1(G∞(w)). If nres ≥
40χγ(G∞(w))dγeff(G∞(w)) log

(
8dγ

eff(G∞(w))

δ

)
, then with probability at least 1− δ

1

2
[G∞(w)− γI] ⪯ Gr(w) ⪯

1

2
[3G∞(w) + γI.]

Proof. Let xi = (G∞(w)+γI)−1/2D[∇wu(xi;w)], and Xi =
1

nres

(
xix

T
i −Dγ

)
, where Dγ = G∞(w) (G∞(w) + γI)

−1.
Clearly, E[Xi] = 0. Moreover, the Xi’s are bounded as

∥Xi∥ = max

{
λmax(Xi)

nres
,−λmin(Xi)

nres

}
≤ max

{∥xi∥2
nres

,
λmax(−Xi)

nres

}
≤ max

{
χγ(G∞(w))dγeff(G∞(w))

nres
,

1

nres

}
=

χγ(G∞(w))dγeff(G∞(w))

nres
.

Thus, it remains to verify the variance condition. We have

nres∑
i=1

E[XiX
T
i] = nresE[X2

1] = nres ×
1

n2
res
E[(x1x

T
1 −Dγ)

2] ⪯ 1

nres
E[∥x1∥2x1x

T
1]

⪯ χγ(G∞(w))dγeff(G∞(w))

nres
Dγ .

Hence, the conditions of Theorem F.5 hold with B =
χγ(G∞(w))dγ

eff(G∞(w))

nres
and V1 = V2 =

χγ(G∞(w))dγ
eff(G∞(w))

nres
Dγ .

Now 1/2 ≤ ∥V∥ ≤ 1 as nres ≥ χγ(G∞(w))dγeff(G∞(w)) and γ ≤ λ1 (G∞(w)). Moreover, as V1 = V2 we have
dint ≤ 4dγeff(G∞(w)). So, setting

t =

√√√√8χγ(G∞(w))dγeff(G∞(w)) log
(

8dγ
eff(G∞(w))

δ

)
3nres

+
8χγ(G∞(w))dγeff(G∞(w)) log

(
8dγ

eff(G∞(w))

δ

)
3nres

and using nres ≥ 40χγ(G∞(w))dγeff(G∞(w)) log
(

8dγ
eff(G∞(w))

δ

)
, we conclude

P

(∥∥∥∥∥
nres∑
i=1

Xi

∥∥∥∥∥ ≥ 1

2

)
≤ δ.

Now, ∥∑nres
i=1 Xi∥ ≤ 1

2 implies

−1

2
[G∞(w) + γI] ⪯ Gr(w)−G∞(w) ⪯ 1

2
[G∞(w) + γI] .

The claim now follows by rearrangement.

By combining Theorem F.4 and Lemma F.7, we show that if the spectrum of A ◦ K∞(w) decays, then the spectrum of the
empirical Gauss-Newton matrix also decays with high probability.

Proposition F.8 (Spectrum of empirical Gauss-Newton matrix decays fast). Suppose the eigenvalues of A ◦ K∞(w)
satisfy λj(A ◦ K∞(w)) ≤ Cj−2α, where α > 1/2 and C > 0 is some absolute constant. Then if

√
nres ≥

40C1χ
γ(G∞(w)) log

(
1
δ

)
, for some absolute constant C1, it holds that

λnres(Gr(w)) ≤ n−α
res

with probability at least 1− δ.

24

Challenges in Training PINNs

Proof. The hypotheses on the decay of the eigenvalues implies dγeff(G∞(w)) ≤ C1γ
− 1

2α (see Appendix C of Bach (2013)).

Consequently, given γ = n−α
res , we have dγeff(G∞(w)) ≤ C1n

1
2
res. Combining this with our hypotheses on nres, it follows

nres ≥ 40C1χ
γ(G∞(w))dγeff(G∞(w)) log

(
8dγ

eff(G∞(w))

δ

)
. Hence Lemma F.7 implies with probability at least 1− δ that

Gr(w) ⪯
1

2
(3G∞(w) + γI) ,

which yields for any 1 ≤ r ≤ n

λnres(Gr(w)) ≤
1

2
(3λr(G∞(w)) + γ) .

Combining the last display with nres ≥ 3dγeff(G∞(w)), Lemma 5.4 of Frangella et al. (2023) guarantees λr(G∞(w)) ≤ γ/3,
and so

λnres(Gr(w)) ≤
1

2
(3λr(G∞(w)) + γ) ≤ γ ≤ n−α

res .

F.4. Formal Statement of Theorem 8.4 and Proof

Theorem F.9 (An ill-conditioned differential operator leads to hard optimization). Fix w⋆ ∈ W⋆, and let S be a set
containing w⋆ for which S is µ-PŁ⋆. Let α > 1/2. If the eigenvalues of A ◦ K∞(w⋆) satisfy λj(A ◦ K∞(w⋆)) ≤ Cj−2α

and
√
nres ≥ 40C1χ

γ(G∞(w⋆)) log
(
1
δ

)
, then

κL(S) ≥ C2n
α
res,

with probability at least 1− δ. Here C,C1, and C2 are absolute constants.

Proof. By the assumption on nres, the conditions of Proposition F.8 are met, so,

λnres(Gr(w⋆)) ≤ n−α
res .

with probability at least 1− δ. By definition Gr(w⋆) = JFres(w⋆)
TJFres(w⋆), consequently,

λnres(KFres(w⋆)) = λnres(Gr(w⋆)) ≤ n−α
res .

Now, the PŁ⋆-constant for S, satisfies µ = infw∈S λn(KF (w)) (Liu et al., 2022). Combining this with the expression for
KF (w⋆) in Lemma F.2, we reach

µ ≤ λn(KF (w⋆)) ≤ λnres(KFres(w⋆)) ≤ n−α
res ,

where the second inequality follows from Cauchy’s Interlacing theorem. Recalling that κL(S) =
supw∈S ∥HL(w)∥

µ , and
HL(w⋆) is symmetric psd, we reach

κL(S) ≥
λ1(HL(w⋆))

µ

(1)

≥ λ1(Gr(w⋆)) + λp(Gb(w⋆))

µ

(2)
=

λ1(Gr(w⋆))

µ

(3)

≥ C3λ1(G∞(w⋆))n
α
res.

Here (1) uses HL(w⋆) = Gr(w⋆) + Gb(w⋆) and Weyl’s inequalities, (2) uses p ≥ nres + nbc, so that λp(Gb(w⋆)) = 0.
Inequality (3) uses the upper bound on µ and the lower bound on Gr(w) given in Lemma F.7. Hence, the claim follows
with C2 = C3λ1(G∞(w⋆)).

F.5. κ Grows with the Number of Residual Points

Figure 10 plots the ratio λ1(HL)/λ129(HL) near a minimizer w⋆. This ratio is a lower bound for the condition number of
HL, and is computationally tractable to compute. We see that the estimate of the κ grows polynomially with nres, which
provides empirical verification for Theorem 8.4.

G. Convergence of GDND (Algorithm 1)
In this section, we provide the formal version of Theorem 8.5 and its proof. However, this is delayed till Appendix G.4, as
the theorem is a consequence of a series of results. Before jumping to the theorem, we recommend reading the statements in
the preceding subsections to understand the statement and corresponding proof.

25

Challenges in Training PINNs

8 9 10 11 12 13
log2 nres

104

λ
1
/λ

1
2
9

Convection, β = 1

Figure 10. Estimated condition number after 41000 iterations of Adam+L-BFGS with different number of residual points from 255× 100
grid on the interior. Here λi denotes the ith largest eigenvalue of the Hessian. The model has 2 layers and the hidden layer has width 32.
The plot shows κL grows polynomially in the number of residual points.

G.1. Overview and Notation

Recall, we are interested in minimizing the objective in (2):

L(w) =
1

2nres

nres∑
i=1

(
D[u(xi

r;w)]
)2

+
1

2nbc

nbc∑
j=1

(
B[u(xj

b;w)]
)2

,

where D is the differential operator defining the PDE and B is the operator defining the boundary conditions. Define

F(w) =



1√
nres
D[u(x1

r;w)]

...
1√
nres
D[u(xnres

r ;w)]
1√
nbc
B[u(x1

b ;w)]

...
1√
nbc
B[u(xnbc

b ;w)]


, y = 0

Using the preceding definitions, our objective may be rewritten as:

L(w) =
1

2
∥F(w)− y∥2.

Throughout the appendix, we work with the condensed expression for the loss given above. We denote the (nres + nbc)× p
Jacobian matrix of F by JF (w). The tangent kernel at w is given by the n × n matrix KF (w) = JF (w)JF (w)

T . The
closely related Gauss-Newton matrix is given by G(w) = JF (w)

TJF (w).

G.2. Global Behavior: Reaching a Small Ball About a Minimizer

We begin by showing that under appropriate conditions, gradient descent outputs a point close to a minimizer after a fixed
number of iterations. We first start with the following assumption which is common in the neural network literature (Liu
et al., 2022; 2023).

Assumption G.1. The mapping F(w) is LF -Lipschitz, and the loss L(w) is βL-smooth.

Under Assumption G.1 and a PŁ⋆-condition, we have the following theorem of Liu et al. (2022), which shows gradient
descent converges linearly.

Theorem G.2. Let w0 denote the network weights at initialization. Suppose Assumption G.1 holds, and that L(w) is µ-PŁ⋆

in B(w0, 2R) with R =
2
√

2βLL(w0)

µ . Then the following statements hold:

1. The intersection B(w0, R) ∩W⋆ is non-empty.

26

Challenges in Training PINNs

2. Gradient descent with step size η = 1/βL satisfies:

wk+1 = wk − η∇L(wk) ∈ B(w0, R) for all k ≥ 0,

L(wk) ≤
(
1− µ

βL

)k

L(w0).

For wide neural neural networks, it is known that the µ-PŁ⋆condition in Theorem G.2 hold with high probability, see Liu
et al. (2022) for details.

We also recall the following lemma from Liu et al. (2023).

Lemma G.3 (Descent Principle). Let L : Rp 7→ [0,∞) be differentiable and µ-PŁ⋆in the ball B(w, r). Suppose
L(w) < 1

2µr
2. Then the intersection B(w, r) ∩W⋆ is non-empty, and

µ

2
dist2(w,W⋆) ≤ L(w).

Let LHL
be the Hessian Lipschitz constant in B(w0, 2R), and LJF = supw∈B(w0,2R) ∥HF (w)∥, where ∥HF (w)∥ =

maxi∈[n] ∥HFi
(w)∥. Define M = max{LHL

,LJF ,LFLJF , 1}, εloc = εµ3/2

4M , where ε ∈ (0, 1). By combining Theo-
rem G.2 and Lemma G.3, we are able to establish the following important corollary, which shows gradient descent outputs a
point close to a minimizer.

Corollary G.4 (Getting close to a minimizer). Set ρ = min

{
εloc

19
√

βL
µ

,
√
µR,R

}
. Run gradient descent for k =

βL

µ log
(

4max{2βL,1}L(w0)
µρ2

)
iterations, gradient descent outputs a point wloc satisfying

L(wloc) ≤
µρ2

4
min

{
1,

1

2βL

}
,

∥wloc − w⋆∥HL(w⋆)+µI ≤ ρ, for some w⋆ ∈ W⋆.

Proof. The first claim about L(wloc) is an immediate consequence of Theorem G.2. For the second claim, consider the
ball B(wloc, ρ). Observe that B(wloc, ρ) ⊂ B(w0, 2R), so L is µ-PŁ⋆ in B(wloc, ρ). Combining this with L(wloc) ≤ µρ2

4 ,

Lemma G.3 guarantees the existence of w⋆ ∈ B(wloc, ρ) ∩W⋆, with ∥wloc − w⋆∥ ≤
√

2
µL(wloc). Hence Cauchy-Schwarz

yields

∥wloc − w⋆∥HL(w⋆)+µI ≤
√

βL + µ∥wloc − w⋆∥ ≤
√

2βL∥wloc − w⋆∥

≤ 2

√
βL

µ
L(wloc) ≤ 2×

√
βL

µ

µρ2

8βL
≤ ρ,

which proves the claim.

G.3. Fast Local Convergence of Damped Newton’s Method

In this section, we show damped Newton’s method with fixed stepsize exhibits fast linear convergence in an appropriate
region about the minimizer w⋆ from Corollary G.4. Fix ε ∈ (0, 1), then the region of local convergence is given by:

Nεloc(w⋆) =
{
w ∈ Rp : ∥w − w⋆∥HL(w⋆)+µI ≤ εloc

}
,

where εloc =
εµ3/2

4M as above. Note that wloc ∈ Nεloc(w⋆).

We now prove several lemmas, that are essential to the argument. We begin with the following elementary technical result,
which shall be used repeatedly below.

27

Challenges in Training PINNs

Lemma G.5 (Sandwich lemma). Let A be a symmetric matrix and B be a symmetric positive-definite matrix. Suppose that
A and B satisfy ∥A−B∥ ≤ ελmin(B) where ε ∈ (0, 1). Then

(1− ε)B ⪯ A ⪯ (1 + ε)B.

Proof. By hypothesis, it holds that
−ελmin(B)I ⪯ A−B ⪯ ελmin(B)I.

So using B ⪰ λmin(B)I , and adding B to both sides, we reach

(1− ε)B ⪯ A ⪯ (1 + ε)B.

The next result describes the behavior of the damped Hessian in Nεloc(w⋆).

Lemma G.6 (Damped Hessian in Nεloc(w⋆)). Suppose that γ ≥ µ and ε ∈ (0, 1).

1. (Positive-definiteness of damped Hessian in Nεloc(w⋆)) For any w ∈ Nεloc(w⋆),

HL(w) + γI ⪰
(
1− ε

4

)
γI.

2. (Damped Hessians stay close in Nεloc(w⋆)) For any w,w′ ∈ Nεloc(w⋆),

(1− ε) [HL(w) + γI] ⪯ HL(w
′) + γI ⪯ (1 + ε) [HL(w) + γI] .

Proof. We begin by observing that the damped Hessian at w⋆ satisfies

HL(w⋆) + γI = G(w⋆) + γI +
1

n

n∑
i=1

[F(w⋆)− y]i HFi
(w⋆)

= G(w⋆) + γI ⪰ γI.

Thus, HL(w⋆) + γI is positive definite. Now, for any w ∈ Nεloc(w⋆), it follows from Lipschitzness of HL that

∥(HL(w) + γI)− (HL(w⋆) + γI)∥ ≤ LHL
∥w − w⋆∥ ≤

LHL√
γ
∥w − w⋆∥HL(w⋆)+γI ≤

εµ

4
.

As λmin (HL(w⋆) + γI) ≥ γ > µ, we may invoke Lemma G.5 to reach(
1− ε

4

)
[HL(w⋆) + γI] ⪯ HL(w) + γI ⪯

(
1 +

ε

4

)
[HL(w⋆) + γI] .

This immediately yields

λmin (HL(w) + γI) ≥
(
1− ε

4

)
γ ≥ 3

4
γ,

which proves item 1. To see the second claim, observe for any w,w′ ∈ Nεloc(w⋆) the triangle inequality implies

∥(HL(w
′) + γI)− (HL(w) + γI)∥ ≤ εµ

2
≤ 2

3
ε

(
3

4
γ

)
.

As λmin (HL(w) + γI) ≥ 3
4γ, it follows from Lemma G.5 that(
1− 2

3
ε

)
[HL(w) + γI] ⪯ HL(w

′) + γI ⪯
(
1 +

2

3
ε

)
[HL(w) + γI] ,

which establishes item 2.

28

Challenges in Training PINNs

The next result characterizes the behavior of the tangent kernel and Gauss-Newton matrix in Nεloc(w⋆).

Lemma G.7 (Tangent kernel and Gauss-Newton matrix in Nεloc(w⋆)). Let γ ≥ µ. Then for any w,w′ ∈ Nεloc(w⋆), the
following statements hold:

1. (Tangent kernels stay close) (
1− ε

2

)
KF (w⋆) ⪯ KF (w) ⪯

(
1 +

ε

2

)
KF (w⋆)

2. (Gauss-Newton matrices stay close)(
1− ε

2

)
[G(w) + γI] ⪯ G(w⋆) + γI ⪯

(
1 +

ε

2

)
[G(w) + γI]

3. (Damped Hessian is close to damped Gauss-Newton matrix)

(1− ε) [G(w) + γI] ⪯ HL(w) + γI ⪯ (1 + ε) [G(w) + γI] .

4. (Jacobian has full row-rank) The Jacobian satisfies rank(JF (w)) = n.

Proof. 1. Observe that

∥KF (w)−KF (w⋆)∥ = ∥JF (w)JF (w)T − JF (w⋆)JF (w⋆)
T ∥

=
∥∥∥[JF (w)− JF (w⋆)] JF (w)

T + JF (w⋆) [JF (w)− JF (w⋆)]
T
∥∥∥

≤ 2LFLJF ∥w − w⋆∥ ≤
2LFLJF√

γ
∥w − w⋆∥HL(w⋆)+γI ≤

εµ3/2

√
γ
≤ ε

2
µ,

where in the first inequality we applied the fundamental theorem of calculus to reach

∥JF (w)− JF (w⋆)∥ ≤ LJF ∥w − w⋆∥.

Hence the claim follows from Lemma G.5.

2. By an analogous argument to item 1, we find

∥(G(w) + γI)− (G(w⋆) + γI)∥ ≤ ε

2
µ,

so the result again follows from Lemma G.5.

3. First observe HL(w⋆) + γI = G(w⋆) + γI . Hence the proof of Lemma G.6 implies,(
1− ε

4

)
[G(w⋆) + γI] ⪯ HL(w) + γI ⪯

(
1 +

ε

4

)
[G(w⋆) + γI] .

Hence the claim now follows from combining the last display with item 2.

4. This last claim follows immediately from item 1, as for any w ∈ Nεloc(w⋆),

σn (JF (w)) =
√
λmin(KF (w)) ≥

√(
1− ε

2

)
µ > 0.

Here the last inequality uses λmin(KF (w⋆)) ≥ µ, which follows as w⋆ ∈ B(w0, 2R).

The next lemma is essential to proving convergence. It shows in Nεloc(w⋆) that L(w) is uniformly smooth with respect to
the damped Hessian, with nice smoothness constant (1 + ε). Moreover, it establishes that the loss is uniformly PŁ⋆with
respect to the damped Hessian in Nεloc(w⋆).

29

Challenges in Training PINNs

Lemma G.8 (Preconditioned smoothness and PŁ⋆). Suppose γ ≥ µ. Then for any w,w′, w′′ ∈ Nεloc(w⋆), the following
statements hold:

1. L(w′′) ≤ L(w′) + ⟨∇L(w′), w′′ − w′⟩+ 1+ε
2 ∥w′′ − w′∥2HL(w)+γI .

2.
∥∇L(w)∥2

(HL(w)+γI)−1

2 ≥ 1
1+ε

1
(1+γ/µ)L(w).

Proof. 1. By Taylor’s theorem

L(w′′) = L(w′) + ⟨∇L(w′), w′′ − w′⟩+
∫ 1

0

(1− t)∥w′′ − w′∥2HL(w′+t(w′′−w′))dt

Note w′ + t(w′′ − w′) ∈ Nεloc(w⋆) as Nεloc(w⋆) is convex. Thus we have,

L(w′′) ≤ L(w′) + ⟨∇L(w′), w′′ − w′⟩+
∫ 1

0

(1− t)∥w′′ − w′∥2HL(w′+t(w′′−w′))+γIdt

≤ L(w′) + ⟨∇L(w′), w′′ − w′⟩+
∫ 1

0

(1− t)(1 + ε)∥w′′ − w′∥2HL(w)+γIdt

= L(w′) + ⟨∇L(w′), w′′ − w′⟩+ (1 + ε)

2
∥w′′ − w′∥2HL(w)+γI .

2. Observe that

∥∇L(w)∥2(HL(w)+γI)−1

2
=

1

2
(F(w)− y)T

[
JF (w) (HL(w) + γI)

−1
JF (w)

T
]
(F(w)− y).

Now,

JF (w) (HL(w) + γI)
−1

JF (w)
T ⪰ 1

(1 + ε)
JF (w) (G(w) + γI)

−1
JF (w)

T

=
1

(1 + ε)
JF (w)

(
JF (w)

TJF (w) + γI
)−1

JF (w)
T

Lemma G.7 guarantees JF (w) has full row-rank, so the SVD yields

JF (w)
(
JF (w)

TJF (w) + γI
)−1

JF (w)
T = UΣ2(Σ2 + γI)−1UT ⪰ µ

µ+ γ
I.

Hence
∥∇L(w)∥2(HL(w)+γI)−1

2
≥ µ

(1 + ε)(µ+ γ)

1

2
∥F(w)− y∥2 =

µ

(1 + ε)(µ+ γ)
L(w).

Lemma G.9 (Local preconditioned-descent). Run Phase II of Algorithm 1 with ηDN = (1 + ε)−1 and γ = µ. Suppose that
w̃k, w̃k+1 ∈ Nεloc(w⋆), then

L(w̃k+1) ≤
(
1− 1

2(1 + ε)2

)
L(w̃k).

Proof. As w̃k, w̃k+1 ∈ Nεloc(w⋆), item 1 of Lemma G.8 yields

L(w̃k+1) ≤ L(w̃k)−
∥∇L(w̃k)∥2(HL(w̃k)+µI)−1

2(1 + ε)
.

Combining the last display with the preconditioned PŁ⋆condition, we conclude

L(w̃k+1) ≤
(
1− 1

2(1 + ε)2

)
L(w̃k).

30

Challenges in Training PINNs

The following lemma describes how far an iterate moves after one-step of Phase II of Algorithm 1.

Lemma G.10 (1-step evolution). Run Phase II of Algorithm 1 with ηDN = (1 + ε)−1 and γ ≥ µ. Suppose w̃k ∈ N ε
3
(w⋆),

then w̃k+1 ∈ Nεloc(w⋆).

Proof. Let P = HL(w̃k) + γI . We begin by observing that

∥w̃k+1 − w⋆∥HL(w⋆)+µI ≤
√
1 + ε∥w̃k+1 − w⋆∥P .

Now,

∥w̃k+1 − w⋆∥P =
1

1 + ε
∥∇L(w̃k)−∇L(w⋆)− (1 + ε)P (w⋆ − w̃k)∥P−1

=
1

1 + ε

∥∥∥∥∫ 1

0

[
∇2L(w⋆ + t(wk − w⋆))− (1 + ε)P

]
dt(w⋆ − w̃k)

∥∥∥∥
P−1

=
1

1 + ε

∥∥∥∥∫ 1

0

[
P−1/2∇2L(w⋆ + t(wk − w⋆))P

−1/2 − (1 + ε)I
]
dtP 1/2(w⋆ − w̃k)

∥∥∥∥
≤ 1

1 + ε

∫ 1

0

∥∥∥P−1/2∇2L(w⋆ + t(wk − w⋆))P
−1/2 − (1 + ε)I

∥∥∥ dt∥w̃k − w⋆∥P

We now analyze the matrix P−1/2∇2L(w⋆ + t(wk − w⋆))P
−1/2. Observe that

P−1/2∇2L(w⋆ + t(wk − w⋆))P
−1/2 = P−1/2(∇2L(w⋆ + t(wk − w⋆)) + γI − γI)P−1/2

= P−1/2(∇2L(w⋆ + t(wk − w⋆)) + γI)P−1/2 − γP−1 ⪰ (1− ε)I − γP−1 ⪰ −εI.

Moreover,

P−1/2∇2L(w⋆ + t(wk − w⋆))P
−1/2 ⪯ P−1/2(∇2L(w⋆ + t(wk − w⋆)) + γI)P−1/2 ⪯ (1 + ε)I.

Hence,
0 ⪯ (1 + ε)I − P−1/2∇2L(w⋆ + t(wk − w⋆))P

−1/2 ⪯ (1 + 2ε)I,

and so
∥w̃k+1 − w⋆∥P ≤

1 + 2ε

1 + ε
∥w̃k − w⋆∥P .

Thus,

∥w̃k+1 − w⋆∥HL(w⋆)+µI ≤
1 + 2ε√
1 + ε

∥w̃k − w⋆∥P ≤ (1 + 2ε)∥w̃k − w⋆∥HL(w⋆)+µI ≤ εloc.

The following lemma is key to establishing fast local convergence; it shows that the iterates produced by damped Newton’s
method remain in Nεloc(w⋆), the region of local convergence.

Lemma G.11 (Staying inNεloc(w⋆)). Suppose that wloc ∈ Nρ(w⋆), where ρ = εloc

19
√

βL/µ
. Run Phase II of Algorithm 1 with

γ = µ and η = (1 + ε)−1, then w̃k+1 ∈ Nεloc(w⋆) for all k ≥ 1.

Proof. In the argument that follows κP = 2(1 + ε)2. The proof is via induction. Observe that if wloc ∈ Nϱ(w⋆) then by
Lemma G.10, w̃1 ∈ Nεloc(w⋆). Now assume w̃j ∈ Nεloc(w⋆) for j = 2, . . . , k. We shall show w̃k+1 ∈ Nεloc(w⋆). To this
end, observe that

∥w̃k+1 − w⋆∥HL(w⋆)+µI ≤ ∥wloc − w⋆∥HL(w⋆)+µI +
1

1 + ε

k∑
j=1

∥∇L(wj)∥(HL(w⋆)+µI)−1

31

Challenges in Training PINNs

Now,

∥∇L(wj)∥(HL(w⋆)+µI)−1 ≤ 1√
µ
∥∇L(wj)∥2 ≤

√
2βL

µ
L(wj)

≤
√

2βL

µ

(
1− 1

κP

)j/2√
L(wloc),

Here the second inequality follows from ∥∇L(w)∥ ≤
√

2βLL(w), and the last inequality follows from Lemma G.9, which
is applicable as w̃0, . . . , w̃k ∈ Nεloc(w⋆). Thus,

∥w̃k+1 − w⋆∥HL(w⋆)+µI ≤ ρ+

√
2βL

µ

k∑
j=1

(
1− 1

κP

)j/2√
L(w̃0)

≤ ρ+

√
(1 + ε)βL

2µ
∥wloc − w⋆∥HL(w⋆)+µI

k∑
j=1

(
1− 1

κP

)j/2

≤

1 +

√
βL

µ

∞∑
j=0

(
1− 1

κP

)j/2
 ρ

=

1 +

√
βL/µ

1−
√
1− 1

κP

 ρ ≤ εloc.

Here, in the second inequality we have used L(w̃0) ≤ 2(1 + ε)∥wloc −w⋆∥2HL(w⋆)+µI , which is an immediate consequence
of Lemma G.8. Hence, w̃k+1 ∈ Nεloc(w⋆), and the desired claim follows by induction.

Theorem G.12 (Fast-local convergence of Damped Newton). Let wloc be as in Corollary G.4. Consider the iteration

w̃k+1 = w̃k −
1

1 + ε
(HL(w̃k) + µI)−1∇L(w̃k), where w̃0 = wloc.

Then, after k iterations, the loss satisfies

L(w̃k) ≤
(
1− 1

2(1 + ε)2

)k

L(wloc).

Thus after k = O
(
log
(
1
ϵ

))
iterations

L(w̃k) ≤ ϵ.

Proof. Lemma G.11 ensure that w̃k ∈ Nεloc(w⋆) for all k. Thus, we can apply item 1 of Lemma G.8 and the definition of
w̃k+1, to reach

L(w̃k+1) ≤ L(w̃k)−
1

2(1 + ε)
∥∇L(w̃k)∥2P−1 .

Now, using item 2 of Lemma G.8 and recursing yields

L(w̃k+1) ≤
(
1− 1

2(1 + ε)2

)
L(w̃k) ≤

(
1− 1

2(1 + ε)2

)k+1

L(wloc).

The remaining portion of the theorem now follows via a routine calculation.

G.4. Formal Convergence of Algorithm 1

Here, we state and prove the formal convergence result for Algorithm 1.

32

Challenges in Training PINNs

Theorem G.13. Suppose that Assumption 8.1 and Assumption G.1 hold, and that the loss is µ-PŁ⋆in B(w0, 2R), where

R =
2
√

2βLL(w0)

µ . Let εloc and ρ be as in Corollary G.4, and set ε = 1/6 in the definition of εloc. Run Algorithm 1

with parameters: ηGD = 1/βL,KGD = βL

µ log
(

4max{2βL,1}L(w0)
µρ2

)
, ηDN = 5/6, γ = µ and KDN ≥ 1. Then Phase II of

Algorithm 1 satisfies

L(w̃k) ≤
(
2

3

)k

L(wKGD).

Hence after KDN ≥ 3 log
(

L(wKGD)

ϵ

)
iterations, Phase II of Algorithm 1 outputs a point satisfying

L(w̃KDN) ≤ ϵ.

Proof. By assumption the conditions of Corollary G.4 are met, therefore wKGD satisfies ∥wKGD − w⋆∥HL(w⋆)+µI ≤ ρ, for
some w⋆ ∈ W⋆. Hence, we may invoke Theorem G.12 to conclude the desired result.

33

