
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIPPER: DIRECT PREFERENCE OPTIMIZATION FOR
PRIMITIVE-ENABLED HIERARCHICAL REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical reinforcement learning (HRL) is an elegant framework for learning
efficient control policies to perform complex robotic tasks, especially in sparse
reward settings. However, concurrently learning policies at multiple hierarchi-
cal levels often suffers from training instability due to non-stationary behavior of
lower-level primitives. In this work, we introduce DIPPER, an efficient hierar-
chical framework that leverages Direct Preference Optimization (DPO) to mitigate
non-stationarity at the higher level, while using reinforcement learning to train
the corresponding primitives at the lower level. We observe that directly applying
DPO to the higher level in HRL is ineffective and leads to infeasible subgoal gen-
eration issues. To address this, we develop a novel, principled framework based
on lower-level primitive regularization of upper-level policy learning. We provide
a theoretical justification for the proposed framework utilizing bi-level optimiza-
tion. The application of DPO also necessitates the development of a novel refer-
ence policy formulation for feasible subgoal generation. To validate our approach,
we conduct extensive experimental analyses on a variety of challenging, sparse-
reward robotic navigation and manipulation tasks. Our results demonstrate that
DIPPER shows impressive performance and demonstrates an improvement of up
to 40% over the baselines in complex sparse robotic control tasks.

1 INTRODUCTION

The success of deep reinforcement learning (RL) is impeded in sparse reward scenarios due to
limitations like ineffective exploration and long-term credit assignment (Gu et al., 2016; Levine
et al., 2015; Nair et al., 2018). To overcome these issues, Hierarchical reinforcement learning (Sutton
et al., 1999; Harb et al., 2018) is an elegant framework which promises the benefits of temporal
abstraction and improved exploration (Nachum et al., 2019) . In the goal-conditioned hierarchical RL
setting (Dayan and Hinton, 1992; Vezhnevets et al., 2017) that we consider in this paper, the higher-
level policy provides subgoals to a lower-level policy, which in turn tries to achieve those subgoals
by executing primitive actions. Off-policy hierarchical reinforcement learning (HRL) approaches
(Levy et al., 2018; Nachum et al., 2018) face significant limitations, including: Limitation L1:
non-stationarity due to evolving lower-level primitive policy, and Limitation L2: infeasible subgoal
generation by higher-level policy(Chane-Sane et al., 2021). When the higher and lower level policies
are trained concurrently in HRL, due to continuously changing and sub-optimal lower level policy,
the higher level reward function and transition model become non-stationary. This phenomenon is
called non-stationarity in HRL. Further, the higher level policy may generate subgoals that are too
hard for the lower primitive to achieve, a phenomenon referred to as infeasible subgoal generation.

A recent work by Singh et al. (Singh et al., 2024) attempts to mitigate Limitation L1 by leveraging
preference learning ideas from reinforcement learning from human feedback (RLHF) (Christiano
et al., 2017; Lee et al., 2021). Specifically, their key idea is to utilize preference-based human
feedback to learn a reward function for the higher level, thereby avoiding reliance on the lower-level
policy for higher-level reward computation. While shown to be effective, this approach introduces an
additional bottleneck: first, the higher-level reward function must be learned from preference feed-
back, and then reinforcement learning is employed to optimize this reward to learn the higher-level
optimal policy. Moreover, the optimal policy learned from the preference-feedback-based reward

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Lower
primitive

Environment

Higher Policy

Maze

Pick and place Kitchen

PushLower Level
Replay Buffer Higher level

Preference Feedback

Direct Preference Optimization

RL

Human
Annotator

Figure 1: DIPPER overview (left): The higher-level policy predicts subgoals gt for the lower-level policy,
which executes primitive actions at on the environment. The lower-level policy’s replay buffer is populated
by environment interactions, and is optimized using RL. Further, using the elicited preference dataset, direct
preference optimization is used to learn the higher-level policy. Training environments (right): (i) maze
navigation, (ii) pick and place, (iii) push, and (iv) franka kitchen environment.

may still suffer from infeasible subgoal generation, failing to address Limitation L2. Hence, we
pose the following question: Is there an efficient hierarchical approach for solving robotic control
tasks using human preference data that simultaneously addresses the issues of non-stationarity and
infeasible subgoal generation in hierarchical reinforcement learning (HRL)?

In this work, we affirmatively answer the above question by proposing DIPPER: DIrect Preference
Optimization to Accelerate Primitive-Enabled Hierarchical Reinforcement Learning. DIPPER em-
ploys Direct Preference Optimization (DPO) (Rafailov et al., 2024b) to learn the higher-level policy
and RL to learn the lower-level policy. The key insight is that by leveraging DPO to learn the higher-
level policy using preference data, DIPPER decouples higher-level policy from the non-stationary
lower-level primitives, thereby mitigating non-stationarity (addressing Limitation L1) in HRL.

Further, to address Limitation L2, we regularize the higher-level policy to predict feasible subgoals
to the lower-level policy. We provide a theoretical justification for this regularization via a bi-level
optimization formulation of HRL. The regularization term ensures that we maximize higher-level
rewards while constraining the lower-level primitives to remain close to optimal. Using this bi-level
formulation, we also derive a novel reference policy for DPO that regularizes the higher-level policy
to generate feasible subgoals: which we call primitive regularization.

To summarize, the main contributions of this work are as follows.

1. Novel hierarchical approach (DIPPER): We introduce DIPPER, a new hierarchical framework
for solving complex robotic control tasks using direct preference optimization (Section 4).

2. Mitigation of non-stationarity in HRL: We show that DIPPER is able to mitigate the effect of
non-stationarity inherent in off-policy HRL in a variety of scenarios (Section 5).

3. Mitigation of infeasible subgoal generation in HRL: Utilizing our bi-level optimization for-
mulation, we derive a primitive-enabled reference policy that regularizes the higher-level policy to
generate feasible subgoals (Section 4.1.2).

4. Empirical success in complex tasks: We experimentally demonstrate that DIPPER demon-
strates an improvement of upto 40% over the baselines in most of the task environments, outper-
forming existing baselines that typically fail to make significant progress (Section 5).

2 RELATED WORKS

Hierarchical Reinforcement Learning. HRL provides an elegant framework that promises the ben-
efits of improved exploration and temporal abstraction (Nachum et al., 2019). Due to this, multiple
hierarchical approaches have been studied in literature (Sutton et al., 1999; Barto and Mahadevan,
2003; Parr and Russell, 1998; Dietterich, 1999). We consider a goal-conditioned setup in this work,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where a higher-level policy provides subgoals to a lower-level policy, and the lower-level policy
executes primitive actions directly on the environment. In this setup, multiple prior approaches have
been proposed (Dayan and Hinton, 1992; Vezhnevets et al., 2017). Although it promises these in-
tuitive benefits, HRL has been cursed with multiple issues like non-stationarity in off-policy HRL,
when multiple levels are trained simultaneously. Concretely, due to continuously changing lower-
level primitive behavior, the higher-level replay buffer experience is rendered obsolete. Some prior
works deal with this issue by either simulating an optimal lower-level primitive (Levy et al., 2018),
or relabeling replay buffer transitions using a maximum likelihood-based approach (Nachum et al.,
2018; Singh et al., 2024). In contrast, we deal with non-stationarity by using preference-based learn-
ing (Christiano et al., 2017; Lee et al., 2021). Concretely, we first derive a primitive-regularized
preference-based objective, and then directly optimize the higher-level policy by employing direct
preference optimization (Rafailov et al., 2024b). Some other approaches use hand-designed ac-
tion or behavior priors to boost downstream learning (Nasiriany et al., 2021; Dalal et al., 2021).
While such approaches effectively simplify the learning process, performance in these approaches
depends on the quality of the designed priors. If such priors are sub-optimal, the learning algorithm
fails to show good performance. Another line of work uses the option learning framework (Sutton
et al., 1999; Klissarov et al., 2017) to learn extended macro actions. However, such approaches
may lead to degenerate solutions in the absence of suitable regularization. In contrast, our approach
uses primitive-enabled regularization for conditioning the higher-level policy to produce feasible
subgoals, thus avoiding such degenerate solutions.

Preference-based Learning. In this line of work, various approaches have been proposed that
perform reinforcement leaning (RL) on human preference data (Knox and Stone, 2009; Pilarski
et al., 2011; Wilson et al., 2012b; Daniel et al., 2015). Prior approaches first collect preference data
from human annotators, then use this data for downstream learning. An important initial work in
this area is (Christiano et al., 2017), which first trains a reward model using the preference data,
then uses RL to learn an optimal policy for the resulting reward model. Other recent work uses
more sample-efficient off-policy policy gradient approaches (Haarnoja et al., 2018) for learning
the policy. Recently, direct preference optimization approach has been proposed (Rafailov et al.,
2024b;a) that circumvents the reward model learning step, by directly optimizing the policy using a
KL-regularized maximum likelihood objective. In this work, we propose a novel reference policy,
which directly optimizes the higher-level policy to generate feasible subgoals for lower-level policy.

3 PROBLEM FORMULATION

In this paper, we consider the Markov decision process (MDP) (S,A, p, r, γ) framework, where S
is the state space, A is the action space, p : S × A → ∆(S) is the transition probability function
mapping state-action pairs to probability distributions over the state space, r : S × A → R is the
reward function, and γ ∈ (0, 1) is a discount factor. At timestep t, the agent is in state st, takes action
at ∼ π(·|st) according to some policy π : S → ∆(A) mapping states to probability distributions
over the action space, receives reward rt = r(st, at), and the system transitions to a new state
st+1 ∼ p(·|st, at). In the standard RL setting, the goal is to optimize the following objective:

π∗ := argmax
π

J(π) = Eπ

[∞∑
t=0

γtrt

]
. (1)

In what follows, we will consider the standard goal-conditioned setting (Andrychowicz et al., 2017),
where the agent policy is jointly conditioned on the current state as well as a desired goal. Con-
cretely, at timestep t, the policy π predicts actions at ∼ π(·|st, gt) conditioned on both state st and
goal gt. Finally, the value function for a policy π provides the expected cumulative reward when the
start state is st and goal is gt such that Vπ(st, gt) = Eπ[

∑T
t=0 γ

trt|st, gt].

3.1 HIERARCHICAL REINFORCEMENT LEARNING

In our goal-conditioned hierarchical setup, in order to achieve the end goal, the higher-level policy
provides subgoals to the lower-level policy, while the lower-level policy takes primitive actions
oriented towards achieving the specified subgoals. Concretely, the higher-level policy πH : S →
∆(G) specifies a subgoal gt ∈ G, where G ⊂ S is the set of possible goals. The higher-level policy

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

predicts subgoal gt ∼ πH(·|st) after every k timesteps and gt = gk·⌈t/k⌉, otherwise. Thus, the
higher-level policy issues new subgoals every k timesteps and keeps subgoals fixed in the interim.

Furthermore, at each t, the lower-level policy πL : S × G → ∆(A) selects primitive actions
at ∼ πL(·|st, gt) according to the current state and subgoal specified by πH , and the state tran-
sitions to st+1 ∼ p(·|st, at). Finally, the higher-level policy provides the lower level with reward
rLt = rL(st, gt, at) = −1{∥st−gt∥2>ε}, where 1B is the indicator function on a given set B. In
the standard HRL setup where both hierarchical levels are simultaneously trained, the higher level
receives reward rHt = rH(st, g

∗, gt), where g∗ ∈ G is the end goal and rH : S × G × G → R is the
higher-level reward function. The lower level populates its replay buffer with samples of the form
(st, gt, at, r

L
t , st+1) after each timestep, whereas the higher level populates its buffer with samples

of the form (st, g
∗, gt,

∑t+k−1
i=t rHi , st+k) after k timesteps. Next, we highlight key limitations of

standard HRL methods.

3.1.1 LIMITATIONS OF STANDARD HRL APPROACHES

Although HRL promises significant advantages over non-hierarchical RL, such as improvements in
sample efficiency due to temporal abstraction and improved exploration (Nachum et al., 2018; 2019),
it suffers from serious limitations. In this work, we focus on two outstanding issues:

L1: training instability due to lower-level non-stationarity in off-policy HRL;
L2: performance degradation due to infeasible subgoal generation by higher-level policy.

As discussed in (Nachum et al., 2018) and (Levy et al., 2018), off-policy HRL suffers from non-
stationarity due to non-stationary lower primitive behavior generated by the lower-level policy. Con-
cretely, the higher-level replay transitions collected using previous lower-level policy become obso-
lete as the lower-level policy changes. Additionally, the higher level may predict infeasible subgoals
to the lower-level policy (Chane-Sane et al., 2021), thus impeding learning and degrading overall
performance. Hence, although standard HRL provides significant advantages, it often demonstrates
poor performance in practice (Nachum et al., 2018; Levy et al., 2018; Chane-Sane et al., 2021).
An important motivation of this work is to develop a novel preference-based learning approach that
directly optimizes preference-based data to address the limitations mentioned above.

3.2 CLASSICAL RLHF METHODS

In reinforcement learning from human feedback (RLHF) (Wilson et al., 2012a; Christiano et al.,
2017; Lee et al., 2021; Ibarz et al., 2018), the agent first learns a reward model using human prefer-
ence feedback, then learns a policy using RL that is optimal for the resulting reward model, typically
via a policy gradient method such as PPO (Schulman et al., 2017).

In this setting, the agent behavior over a k-length trajectory is represented as a sequence, τ , of state
observations and actions: τ = ((st, at), (st+1, at+1)...(st+k−1, at+k−1)). The reward model to
be learned is represented as r̂ϕ : S × A → R, with parameters ϕ. Accordingly, the preferences
between any two trajectories τ1, τ2 can be modeled using the Bradley-Terry model (Bradley and
Terry, 1952):

Pϕ

[
τ1 ≻ τ2

]
=

exp
∑

t r̂ϕ
(
s1t , a

1
t

)∑
i∈{1,2} exp

∑
t r̂ϕ

(
sit, a

i
t

) , (2)

where τ1 ≻ τ2 implies that τ1 is preferred over τ2. We consider the preference dataset D with
entries of the form (τ1, τ2, y), where y = (1, 0) when τ1 is preferred over τ2, y = (0, 1) when
τ2 is preferred over τ1, and y = (0.5, 0.5) when there is no preference. The standard approach in
the preference-based literature (see (Christiano et al., 2017; Lee et al., 2021)) is to learn the reward
function r̂ϕ using the following cross-entropy loss:

L(ϕ) = −
∑
D

(
y1 logPϕ

[
τ1 ≻ τ2]+ y2 logPϕ

[
τ2 ≻ τ1]) , (3)

where (τ1, τ2, y) ∈ D and y = [y1, y2].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 DIRECT PREFERENCE OPTIMIZATION

Unlike classical RLHF, direct preference optimization (DPO) circumvents the need for an RL al-
gorithm by using a closed-form solution for the optimal policy of the KL-regularized RL prob-
lem (Levine, 2018; Ziebart et al., 2008), which takes the form π∗(a|s) = 1

Z(s)πref (a|s)er(s,a),
where πref is the reference policy, π∗ is the optimal policy, and Z(s) is a normalizing partition func-
tion ensuring that π∗ provides a valid probability distribution over A for each s ∈ S. This formula-
tion is rearranged to yield an alternative expression r(s, a) = α log π∗(a|s)−α log πref (a|s)−Z(s)
for the reward function. This equation is then substituted in the standard cross-entropy loss equa-
tion 3, which yields the following objective (Rafailov et al., 2024b):

LDPO = −E(s,y1,y2)∼D

[
log σ

(
α log

πθ(y1|s)
πref (y1|s)

− α log
πθ(y2|s)
πref (y2|s)

)]
(4)

where θ are the policy parameters and σ(x) = (1 + e−x)−1 denotes the sigmoid function.

4 PROPOSED APPROACH

In this section, we introduce DIPPER: DIrect Preference Optimization to Accelerate Primitive-
Enabled Hierarchical Reinforcement Learning. To address the problem of learning control problems
for complex robotics tasks from human preference data, a natural approach is to apply a combination
of RLHF and HRL: on the outer highest tier, a reward model is learned from the human preference
data, on the middle tier RL is used to learn a corresponding higher-level policy for subgoal gener-
ation, and on the third, lowest tier RL is used to learn lower-level policies for achieving subgoals
specified by the higher-level policy. Together, the lower and middle tiers in this approach naturally
correspond to performing RLHF, while the middle and higher tiers correspond to performing HRL.
Though intuitively reasonable, the need to carry out three distinct learning procedures simultane-
ously in this approach is computationally burdensome and a more efficient method is required.

Our key idea. The key idea underlying DIPPER is twofold: we introduce a DPO-based approach to
directly learn higher-level policies from preferences, replacing the two-tier RLHF component in the
scheme described above with a simpler, more efficient single-tier approach; we replace the reference
policy inherent in DPO-based approaches, which is typically unavailable in complex robotics tasks,
with a primitive-enabled reference policy derived from a novel bi-level optimization formulation of
the HRL problem. The result is an efficient hierarchical approach that directly optimizes the higher-
level policy using preference data while simultaneously mitigating non-stationarity and infeasible
subgoal prediction issues of HRL (see Section 3.1.1) through primitive-enabled regularization.

4.1 DIPPER

We now introduce our hierarchical approach DIPPER, which uses a primitive-enabled direct pref-
erence optimization formulation to optimize the higher-level policy and RL to optimize the lower-
level policy. Recalling the HRL and RLHF settings of Sections 3.1 and 3.2, let VπL

(st, gt) denote
the lower-level value function and rϕ denote a parameterized reward model corresponding to the
preference data. In addition, let α ≥ 0 be a scalar hyperparameter controlling the magnitude of the
KL-regularization term between higher level policy πU and reference policy πref . For a trajectory
τ of length T , we consider the following KL-regularized optimization problem:

max
πU

EπU

[
T∑

t=0

(rϕ(st, gt)− αDKL[πU (·|st)∥πref (·|st)])

]
, (5)

In the standard DPO setting considered in (Rafailov et al., 2024b;a), the reference policy πref is
assumed to be given. In challenging problems such as the robotics tasks motivating this work, how-
ever, such a reference policy is often unavailable. We must therefore seek an alternative reference
policy corresponding to the HRL problem at hand. In order to achieve this, we next provide a novel
bi-level formulation of the HRL problem that we subsequently leverage to propose a suitable πref .

4.1.1 BI-LEVEL OPTIMIZATION FORMULATION OF HRL

We now present our bi-level optimization formulation of the HRL problem. For a given
higher-level policy πU , let π∗

L denote the corresponding optimal lower-level policy. Let τ =

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

((st, gt), (st+1, gt+1)...(st+k−1, gt+k−1)) represent the higher-level trajectories, where st is the
State at time t, and gt ∼ πU (.|st, g∗) is the subgoal predicted by the higher-level policy at time
t. Notably, the higher-level policy πU predicts the subgoal gt for the lower-level policy, which is
kept fixed for k timesteps while the lower level policy π∗

L executes. Hence, the next state st+1 de-
pends on the optimal lower-level policy π∗

L. We represent our hierarchical learning problem as the
following bi-level optimization problem:

max
πU

J (πU , π
∗
L(πU)) s.t. π∗

L(πU) = argmax
πL

VπL
(πU), (6)

where J (πU , π
∗
L(πU)) represents the higher level maximization objective, and VπL(πH) is the lower

level value function, conditioned on the higher level policy subgoals. Note that, in the given con-
straint, the optimal lower-level policy π∗

L is defined as the policy which maximizes the lower-level
value function VπL

. We can solve this bi-level joint optimization for the higher-level policy. In order
to optimize for both πU and πL, we can reformulate equation 6 as follows (Liu et al., 2022):

max
πU ,πL

J (πU , πL) s.t. VπL
(πU)− V ∗

πL
(πU) ≥ 0, (7)

where, V ∗
πL

(πU) = maxπL
VπL

(πU). Notably, since the left-hand side of the inequality constraint
is always non-positive due to the fact that VπL

(πU)− V ∗
πL

(πU) ≤ 0, the constraint is satisfied only
when VπL

(πU) = V ∗
πL

(πU). Finally, equation 7 can be formulated as the following Lagrangian:

max
πU ,πL

J (πU , πL) + λ(VπL
(πU)− V ∗

πL
(πU)). (8)

We now use the formulation of HRL in equation 8 to propose a novel reference policy for our DPO-
based objective. This yields an efficient HRL algorithm dealing with non-stationarity and infeasible
subgoal generation that is able to solve complex robotics tasks (cf. Section 5).

4.1.2 DIPPER REFERENCE POLICIES

A key component of the DPO-based approach is to provide a suitable reference policy (cf. equa-
tion 4), which is difficult to obtain in the robtics tasks. In light of the regularized objective equation 8
derived in Section 4.1.1, we propose the following formulation of the reference policy:

πref (gt|st) =
exp(m(VπL

(st, gt)− V ∗
πL

(st, gt)))

Z(st)
, (9)

where Z(st) =
∑

gt
exp

(
m(VπL

(st, gt)− V ∗
πL

(st, gt)
)
), V ∗

πL
(st, gt) = maxππL

VπL
(st, gt), and

m = λ
α . Note that, since the term VπL

(st, gt)−V ∗
πL

(st, gt) in the numerator is always non-positive,
for a given gt, the term is maximized when VπL

(st, gt) = V ∗
πL

(st, gt). Equivalently, the term is
maximized when, for a particular gt, the lower-level value function is optimal. We show later on in
Section 4.1.3 that, when this particular choice of reference policy is substituted in the DPO objective,
we get exactly the formulation in equation 8.

In addition to its connections to the bi-level formulation, the specific form of the reference policy
leads to significant advantages with respect to the hierarchical component of our approach. To see
this, notice that the reference policy πref (gt|st) assigns high probability to the subgoal gt, where the
corresponding lower-level value function VπL

(st, gt) is close to optimal, or alternatively, where the
corresponding lower-level policy πL(st, gt) is close to optimal. This formulation effectively handles
the non-stationarity issue (L1) and infeasible subgoal generation issue (L2) in HRL as follows:

Dealing with L1: For a particular subgoal gt, if the lower-level policy is close to optimal, it predicts
actions similar to the optimal lower-level policy. This reduces the non-stationary behavior of the
lower-level policy, which ameliorates the non-stationarity issue in HRL.

Dealing with L2: For a state st and subgoal gt, VπL
(st, gt) provides an estimate of the feasibility

of subgoal gt, since a high value of VπL
(st, gt) implies that the lower level expects to achieve high

reward for subgoal gt. Since πref assigns high probability to subgoals with large VπL
(st, gt), πref

produces achievable subgoals, thus mitigating infeasible subgoal generation issue in HRL.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1.3 DIPPER OBJECTIVE

Here, we derive our DIPPER objective. We first substitute the proposed reference policy of equa-
tion 9 into the DPO objective equation 5 to get the following formulation:

max
πU

EπU

[
T∑

t=0

(rϕ(st, gt) + λ(VπL
(st, gt)− V ∗

πL
(st, gt)) + m̂(st))

]
, (10)

where m̂(st) = (αH(st) − α logZ(st)), and H(st) = − log πU (gt|st) is the entropy term for
higher-level policy. When optimizing for the higher-level policy, we can choose to ignore the term
m̂(st), since it does not depend on the policy πU (gt|st). Note that the formulation in equation 10 is
exactly equal to the bi-level formulation of equation 8. Hence, when we plug in the proposed form
of reference policyequation 4.1.2 in KL-regularized DPO objective, this yields the formulation in
equation 8. Following prior works (Levine, 2018; Ziebart et al., 2008) and substituting the reference
policy in equation 5, we get the following optimal solution for the higher-level policy:

πU (gt|st) =
1

Z(st)
exp(

1

α
(rϕ(st, gt) + λ(VπL

(st, gt)− V ∗
πL

(st, gt)))), (11)

where Z(st) =
∑

gt
exp(1

α (rϕ(st, gt) + λ(VπL
(st, gt) − V ∗

πL
(st, gt)))) is the partition function

and λ is the primitive regularization weight hyper-parameter. Appendix A.1 contains a complete
derivation. Taking logarithm on both sides of equation 11 and using some basic algebra yields:

rϕ(st, gt) = α logZ(st) + α log πU (gt|st)− λ(VπL
(st, gt)− V ∗

πL
(st, gt)). (12)

We can reformulate the Bradley-Terry model (Bradley and Terry, 1952) to derive the following:

Ld = −E(τ1,τ2)∼D

[
log σ

(T∑
t=0

rϕ(s
1
t , g

1
t)−

T∑
t=0

rϕ(s
2
t , g

2
t)
)]

. (13)

We now substitute the preference reward formulation equation 12 into equation 13 to derive our final
maximum likelihood objective:

Ld =− E(τ1,τ2)∼D

[
log σ(

T∑
t=0

(α log πU (g
1
t |s1t)− α log πU (g

2
t |s2t)) (14)

− λ((VπL
(s1t , g

1
t)− V ∗

πL
(s1t , g

1
t))− (VπL

(s2t , g
2
t)− V ∗

πL
(s2t , g

2
t)))

]
.

This objective provides the maximum likelihood DIPPER objective for optimizing the higher-level
policy πU , while also using uses primitive-enabled regularization that regularizes the higher level
policy to predict feasible subgoals for the lower-level policy.

4.1.4 DIPPER: A PRACTICAL ALGORITHM

We now employ the derived DIPPER formulation to propose an efficient and practically appli-
cable DPO-based algorithm. Notably, equation 14 requires calculation of optimal value function
V ∗
πL

(st, gt) for a subgoal gt. Unfortunately, computing optimal value functions is computation-
ally expensive and is typically not practically feasible. We accordingly consider an approximation
V k
πL

(st, gt) to replace V ∗
πL

(st, gt), where k represents the number of training iterations for updating
V k
L (st, gt). Further, we make an approximation and ignore the term VπL

in equation 14. We explain
our rationale to ignore VπL

as follows: without loss of generality, let us assume that the environment
rewards are greater than and equal to zero. This directly implies that VπL

≥ 0. We utilize this to
maximize the lower bound of objective in equation 10, and follow similar steps between equation 10
to equation 14, to present the final practically applicable maximum likelihood DIPPER objective:

Ld = −E(τ1,τ2)∼D[log σ(

T∑
t=0

(α log πU (g
1
t |s1t)− α log πU (g

2
t |s2t)) + λ(V k

L (s1t , g
1
t)− V k

L (s2t , g
2
t))].

(15)

We note that the objective in equation 15 still captures the core essense of the proposed approach
and tries to deal with the non-stationarity issue in HRL and also learn a lower level regularized

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

upper level policy to deal with infeasible subgoal geneation. Despite these approximations, in our
experiments we empirically find that DIPPER is able to efficiently mitigate the recurring issue of
non-stationarity in HRL and generate feasible subgoals for the lower-level policy.

Analyzing DIPPER gradient: We further analyze the rationale behind the DIPPER objective by
computing and interpreting the gradients of Ld with respect to higher level policy πU . The gradient
can be written as:

∇Ld = −αE(τ1,τ2)∼D

 T∑
t=0

(σ(r̂(s2t , g
2
t)− r̂(s1t , g

1
t))︸ ︷︷ ︸

higher weight for wrong preference

∗[∇ log πU (g
1
t |s1t)︸ ︷︷ ︸

increase likelihood of τ1

−∇ log πU (g
2
t |s2t)︸ ︷︷ ︸

decrease likelihood of τ2

])


(16)

where r̂(st, gt) = α log πU (gt|st)−λ(VπL
(st, gt)−V ∗

πL
(st, gt)) is the implicit reward defined by the

higher-level policy and lower-level value function. Intuitively, the gradient increases the likelihood
of preferred trajectories and decreases the likelihood of dispreferred ones. The gradient difference
is weighted by how incorrectly the implicit reward model r̂(st, gt) orders the trajectories, according
to the strength of the KL constraint. We provide DIPPER algorithm in Appendix A.3 Algorithm 1.

5 EXPERIMENTS

In this section, we perform extensive empirical analysis, and ask the following questions: (1) Does
DIPPER enhance sample efficiency and training stability in complex robotic manipulation and nav-
igation tasks, compared to the baselines? (2) Is DIPPER able to mitigate the recurring issue of
non-stationarity in HRL? (3) Is DIPPER able to generate feasible subgoals for the lower primitive?
(4) What is the contribution of each of our design choices?

Setup. We evaluate DIPPER on four robotic navigation and manipulation tasks: (i) maze naviga-
tion, (ii) pick and place (Andrychowicz et al., 2017), (iii) push, and (iv) franka kitchen (Gupta
et al., 2019). These are sparse reward enviroments, where the lower primitive is sparsely rewarded
when it comes within δ distance of the subgoal. Unless explicitly stated, we ensure fair compar-
isons across all the baselines. Notably, since the pick and place, push and kitchen task environments
are complex sparse reward environments, we assume access to a single human demonstration, and
use an additional imitation learning objective at the lower level. We do not assume access to any
demonstration in the maze navigation task. This is done to speedup training, however, we keep
this assumption consistent among all baselines to ascertain fair comparisons. We provide additional
implementation details in Appendix A.5, and the implementation code in the supplementary.

5.1 EVALUATION AND RESULTS.

Here, we compare the success rate performances on four sparse maze navigation and robotic ma-
nipulation tasks in Figure 2. The solid line and shaded regions represent the mean and standard
deviation, averaged over 5 seeds.

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 2: Performance comparison This figure compares the success rate performances on four sparse maze
navigation and robotic manipulation tasks. The solid line and shaded regions represent the mean and standard
deviation, across 5 seeds. We compare DIPPER against multiple baselines. Although HAC and RAPS outper-
form DIPPER in simpler maze task, DIPPER significantly outperforms the baselines in harder tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.1.1 COMPARING WITH DPO BASELINES

Here we compare DIPPER against DPO based baselines, specifically: (i) DIPPER-No-V (DIPPER
without primitive-enabled regularization), and (ii) DPO-FLAT (Single-level DPO implementation).

DIPPER-No-V: In order to illustrate the importance of primitive regularization employing lower
primitive value function, we implement DIPPER-No-V baseline by removing primitive regulariza-
tion from DIPPER. As seen from Figure 2, DIPPER performs slightly better than DIPPER-No-V
in simpler maze navigation task and in kitchen task. However, DIPPER significantly outperforms
DIPPER-No-V baseline in pick and place and push tasks. This clearly demonstrates the advantage
of primitive regularization, which conditions the higher level policy to predict feasible subgoals.

DPO-FLAT: DPO-Flat is a single-level implementation of DPO (Rafailov et al., 2024b). We im-
plemented this baseline to illustrate that our hierarchical DPO based approach (where the higher
policy is trained using DPO based maximum likelihood objective, and the lower policy is trained us-
ing RL) outperforms single-level DPO based policy. Since DIPPER is hierarchical, it benefits from
factors like temporal abstraction and improved exploration, which are missing from single-level DPO
implementation. However, since we do not have access to a reference policy in robotics, we replace
the reference policy with a uniform policy. Notably, this particular choice of reference policy effec-
tively reformulates the KL-objective into an entropy maximization objective in DPO-Flat, which
facilitates better exploration. DIPPER clearly outperforms this baseline in all the tasks, showing
that our hierarchical structure is crucial for improved performance.

5.1.2 COMPARING WITH HIERARCHICAL BASELINES

Here we compare DIPPER against hierarchical baselines, specifically: (i) RAPS (Dalal et al., 2021),
(ii) HAC (Levy et al., 2018), and (iii) HIER (vanilla hierarchical SAC implementation).

RAPS: We compare DIPPER with RAPS baseline to analyze how DIPPER performs against ap-
proaches that use behavior priors or action primitives. Notably, the performance of RAPS depends
on the quality of such priors, and require considerable effort to hand-design, especially in hard en-
vironments like franka kitchen. We find that RAPS is able to significantly outperform DIPPER in
maze task, which we believe is because the designed action primitive in maze task is near perfect.
However, as the complexity of environments increase, RAPS is unable to show any progress.

HAC: We also implemented Hierarchical Actor Critic (Levy et al., 2018), which deals with non-
stationarity in HRL by simulating optimal lower primitive behavior. As seen in Figure 2, HAC is able
to outperform DIPPER in simpler maze navigation task. However, in harder pick and place, push
and kitchen tasks, DIPPER significantly outperforms this baseline.

HIER: HIER is a vanilla HRL baseline implemented using SAC (Haarnoja et al., 2018). However,
this baseline failed to perform well, especially in complex tasks.

5.1.3 COMPARING WITH NON-HIERARCHICAL BASELINES

Here we compare DIPPER against non-hierarchical baselines, specifically (i) DAC (Discriminator
Actor Critic (Kostrikov et al., 2018)), and (ii) FLAT (Single-level SAC (Haarnoja et al., 2018)).

DAC: We provide one demonstration to DAC baseline in each environment. However, as seen in
Figure 2, even with privileged information, DAC is unable to perform well.

FLAT: As seen in Figure 2, FLAT baseline is unable to perform well in any of the tasks, highlighting
the importance of our hierarchical structure for success in complex robotic tasks.

5.2 ABLATION ANALYSIS

Here, we perform various ablations to analyze the contribution of each of our design choices.

Dealing with non-stationarity in HRL: We evaluate whether DIPPER reduces non-stationarity in
HRL by comparing it to the vanilla HIER baseline, as shown in Figure 3. We measure the average
distance between subgoals predicted by the higher-level policy and those achieved by the lower-level
primitive at different stages of training. A low average distance indicates that DIPPER effectively
predicts subgoals achievable by the lower primitive, thus promoting optimal lower primitive be-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

havior. Our results show that DIPPER consistently produces low average distances, confirming its
ability to mitigate non-stationarity.

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 3: Non-stationarity metric comparison This figure compares DIPPERwith the HIER baseline accord-
ing to the average distance between subgoals proposed by the higher-level policy and the subgoals achieved by
the lower-level primitive throughout the training process. DIPPER consistently demonstrates lower average
distance values, which implies that DIPPER higher-level policy predicts feasible subgoals, inducing optimal
lower level primitive behavior, thereby leading to non-stationarity mitigation and enhanced task performance.

Dealing with infeasible subgoal generation in HRL: In Figure 4, we compare DIPPER with the
HIER baseline by evaluating the average distance between subgoals predicted by the higher-level
policy and those achieved by the lower-level policy after training is completed. As seen in Figure 4,
the distance values for DIPPER are significantly lower than those of the HIER baseline, indicating
that DIPPER generates feasible subgoals by exploiting primitive regularization.

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 4: Feasible subgoal generation metric comparison This figure compares DIPPER with the HIER
baseline using the average distance between subgoals predicted by the higher-level policy and those achieved by
the lower-level policy after training is completed. DIPPER exhibits significantly lower average distance values
compared to HIER baseline, showing that DIPPER generates feasible subgoals for the lower-level primitive.

Additional Ablations: We compare the success rate performance of DIPPER against
DIPPER-Random, which is DIPPER implemented with a random reference policy. This baseline
is used to demonstrate the significance of primitive regularization induced by our novel formulation
of reference policy. As can be seen in Appendix A.4 Figure 5, DIPPER significantly outperforms
this baseline on all tasks, which shows that primitive regularization is crucial for enhanced perfor-
mance. We also perform ablation studies and intuitions for selecting the primitive regularization
weight hyper-parameter λ and the KL regularization weight α in Appendix A.4 Figures 6 and 7.

6 CONCLUSION

In this work, we propose DIPPER, a preference learning based HRL algorithm that employs direct
policy optimization and primitive enabled regularization to mitigate the issues of non-stationarity
and infeasible subgoal generation in HRL. We employ a bi-level optimization formulation for HRL
and use it to propose a novel reference policy formulation which results in our primitive regular-
ized maximum likelihood objective. We empirically show that DIPPER demonstrates impressive
performance on complex robotic control tasks, and is able to significantly outperform the baselines.
Additionally, our hierarchical formulation outperforms single level DPO formulation. Based on our
strong empirical findings, we believe that DIPPER represents a significant advancement in devel-
oping effective control policies for addressing complex, sparse-reward robotic tasks. Due to space
limit, we discuss the limitations and future work in Appendix A.6.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. CoRR,
abs/1707.01495, 2017. URL http://arxiv.org/abs/1707.01495.

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13:341–379, 2003.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I.
the method of paired comparisons. Biometrika, 39:324, 1952. URL https://api.
semanticscholar.org/CorpusID:125209808.

Zehong Cao, Kaichiu Wong, and Chin-Teng Lin. Human preference scaling with demonstrations
for deep reinforcement learning. arXiv preprint arXiv:2007.12904, 2020.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International Conference on Machine Learning, pages 1430–1440.
PMLR, 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. Advances in Neural Information Processing Sys-
tems, 34:21847–21859, 2021.

Christian Daniel, Oliver Kroemer, Malte Viering, Jan Metz, and Jan Peters. Active reward learning
with a novel acquisition function. Autonomous Robots, 39:389–405, 2015.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decom-
position. CoRR, cs.LG/9905014, 1999. URL https://arxiv.org/abs/cs/9905014.

Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation. CoRR, abs/1610.00633, 2016. URL http://arxiv.org/abs/
1610.00633.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option:
Learning options with a deliberation cost. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end
for continuous action tasks. arXiv preprint arXiv:1712.00004, 2017.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pages
9–16, 2009.

11

http://arxiv.org/abs/1707.01495
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808
https://arxiv.org/abs/cs/9905014
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1801.01290

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. arXiv preprint arXiv:1809.02925, 2018.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training, 2021.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep vi-
suomotor policies. CoRR, abs/1504.00702, 2015. URL http://arxiv.org/abs/1504.
00702.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In International Conference on Learning Representations, 2018.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in neural information processing systems, 35:
17248–17262, 2022.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning? arXiv preprint arXiv:1909.10618,
2019.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behav-
ior primitives for diverse manipulation tasks. CoRR, abs/2110.03655, 2021. URL https:
//arxiv.org/abs/2110.03655.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In M. Jordan,
M. Kearns, and S. Solla, editors, Advances in Neural Information Processing Systems, volume 10.
MIT Press, 1998.

Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod Fahimi, Jason P Carey, and
Richard S Sutton. Online human training of a myoelectric prosthesis controller via actor-critic
reinforcement learning. In 2011 IEEE international conference on rehabilitation robotics, pages
1–7. IEEE, 2011.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to qˆ* : Your language model is
secretly a q-function. arXiv preprint arXiv:2404.12358, 2024a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Utsav Singh, Wesley A Suttle, Brian M Sadler, Vinay P Namboodiri, and Amrit Singh Bedi. Piper:
Primitive-informed preference-based hierarchical reinforcement learning via hindsight relabeling.
arXiv preprint arXiv:2404.13423, 2024.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

12

http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
https://arxiv.org/abs/2110.03655
https://arxiv.org/abs/2110.03655

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, pages 3540–3549. PMLR, 2017.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
trajectory preference queries. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012a. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/16c222aa19898e5058938167c8ab6c57-Paper.pdf.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
trajectory preference queries. Advances in neural information processing systems, 25, 2012b.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

13

https://proceedings.neurips.cc/paper_files/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Related Works 2

3 Problem Formulation 3

3.1 Hierarchical Reinforcement Learning . 3

3.1.1 Limitations of standard HRL approaches 4

3.2 Classical RLHF Methods . 4

3.3 Direct Preference Optimization . 5

4 Proposed Approach 5

4.1 DIPPER . 5

4.1.1 Bi-Level Optimization Formulation of HRL 5

4.1.2 DIPPER Reference Policies . 6

4.1.3 DIPPER Objective . 7

4.1.4 DIPPER: A Practical algorithm . 7

5 Experiments 8

5.1 Evaluation and Results. 8

5.1.1 Comparing with DPO baselines . 9

5.1.2 Comparing with hierarchical baselines . 9

5.1.3 Comparing with non-hierarchical baselines 9

5.2 Ablation Analysis . 9

6 Conclusion 10

A Appendix 15

A.1 Deriving the final optimum of KL-Constrained Reward Maximization Objective . . 15

A.2 Implementation details . 16

A.2.1 Additional hyper-parameters . 16

A.3 DIPPER Algorithm . 17

A.4 Additional Ablation Experiments . 17

A.5 Environment details . 18

A.5.1 Maze navigation task . 18

A.5.2 Pick and place and Push Environments 19

A.6 Limitations and future work . 19

A.7 Impact Statement . 19

A.8 Environment visualizations . 19

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DERIVING THE FINAL OPTIMUM OF KL-CONSTRAINED REWARD MAXIMIZATION
OBJECTIVE

In this appendix, we will derive Eqn 11 from Eqn 5. Thus, we optimize the following objective:

P := max
πU

EπU
[

T∑
t=0

(rϕ(st, gt)− αDKL[πU (·|st)∥πref (·|st)])], (17)

Re-writing the above equation after expanding KL divergence formula:

P =max
πU

EπU
[

T∑
t=0

(rϕ(st, gt)− α log
πU (gt|st)
πref (gt|st)

)] (18)

=max
πU

EπU
[

T∑
t=0

(rϕ(st, gt)− α log πU (gt|st) + α log πref (gt|st))]. (19)

Substituting πref from Eqn 9, and m = λ
α in Equation 19,

P =max
πU

EπU
[

T∑
t=0

(rϕ(st, gt)− α log πU (gt|st) + α log exp(k(VL(st, gt)− V ∗
L (st, gt)))

− α log
∑
gt

exp(k(VL(st, gt)− V ∗
L (st, gt))))] (20)

=max
πU

EπU
[

T∑
t=0

(rϕ(st, gt)− α log πU (gt|st) + λ(VL(st, gt)− V ∗
L (st, gt))

− α log
∑
gt

exp(k(VL(st, gt)− V ∗
L (st, gt))))] (21)

=min
πU

EπU
[

T∑
t=0

(log πU (gt|st)−
1

α
(rϕ(st, gt) + λ(VL(st, gt)− V ∗

L (st, gt)))

+ log
∑
gt

exp(k(VL(st, gt)− V ∗
L (st, gt))))] (22)

=min
πU

EπU
[

T∑
t=0

(log(
πU (gt|st)

exp(1
α (rϕ(st, gt) + λ(VL(st, gt)− V ∗

L (st, gt))))
)

+ log
∑
gt

exp(k(VL(st, gt)− V ∗
L (st, gt))))]. (23)

After rearranging the terms, we get

P = min
πU

EπU
[

T∑
t=0

(log(
πU (gt|st)

1
Z(s) exp(

1
α (rϕ(st, gt) + λ(VL(st, gt)− V ∗

L (st, gt))))
)

+ log
∑
gt

exp(k(VL(st, gt)− V ∗
L (st, gt)))− logZ(s))]

(24)

where, Z(s) =
∑

gt
exp(1

α (rϕ(st, gt) + λ(VL(st, gt)− V ∗
L (st, gt)))).

Note that the partition function Z(s) and the term log
∑

gt
exp(k(VL(st, gt) − V ∗

L (st, gt))), do not
depend on the policy πU

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

= min
πU

EπU
[

T∑
t=0

(DKL[πU (gt|st)∥π∗
U (gt|st)]− log

∑
gt

exp(k(VL(st, gt)− V ∗
L (st, gt)))− logZ(s))]

(25)

where, π∗
U (gt|st) = 1

Z(s) exp(
1
α (rϕ(st, gt) + λ(VL(st, gt) − V ∗

L (st, gt)))) which is a valid proba-
bility distribution. π∗

U (gt|st) is minimized when, DKL = 0. Hence,

πU (gt|st) = π∗
U (gt|st) =

1

Z(s)
exp(

1

α
(rϕ(st, gt) + λ(VL(st, gt)− V ∗

L (st, gt)))) (26)

A.2 IMPLEMENTATION DETAILS

We perform the experiments on two system each with Intel Core i7 processors, equipped with 48GB
RAM and Nvidia GeForce GTX 1080 GPUs. We also provide the timesteps taken for running the
experiments. For environments (i) − (iv), the maximum task horizon T is set to 225, 50, 50, 225
timesteps, respectively, and the lower primitive is allowed to execute for 15, 7, 7 and 15 timesteps,
respectively. In our experiments, we use off-policy Soft Actor Critic (SAC) (Haarnoja et al., 2018)
for optimizing RL objective, using the Adam (Kingma and Ba, 2014) optimizer. The actor and
critic networks are formulated as three-layer, fully connected neural networks with 512 neurons in
each layer. The experiments are run for 1.35e6, 9e5, 1.3E6, and 6.3e5 timesteps in environments
(i) − (iv), respectively. In the maze navigation task, a 7-degree-of-freedom (7-DoF) robotic arm
traverses a four-room maze, with its closed gripper (fixed at table height) maneuvering through the
maze to reach the goal position.

For the pick and place task, the 7-DoF robotic arm gripper must locate a square block, pick it up,
and deliver it to the goal position. In the push task, the 7-DoF robotic arm gripper is required to
push the square block toward the goal position. In the kitchen task, a 9-DoF Franka robot must
execute a pre-defined complex task to achieve the final goal, specifically, opening the microwave
door. We compare our approach to the Discriminator Actor-Critic (Kostrikov et al., 2018), which
is provided with a single expert demonstration. Although not explored here, combining preference-
based learning and learning from demonstrations presents an intriguing research direction (Cao et al.,
2020).

To ensure fair comparisons, we maintain consistency across all baselines by keeping parameters
such as neural network layer width, number of layers, choice of optimizer, SAC implementation
parameters, etc., the same wherever possible. In RAPS, the lower-level behaviors are as follows:
for maze navigation, we design a single primitive, reach, where the lower-level primitive moves in
a straight line towards the subgoal predicted by the higher level. For the pick and place and push
tasks, we design three primitives: gripper-reach, where the gripper moves to a specified position
(xi, yi, zi); gripper-open, which opens the gripper; and gripper-close, which closes the gripper. In
the kitchen task, we use the action primitives implemented in RAPS (Dalal et al., 2021).

A.2.1 ADDITIONAL HYPER-PARAMETERS

Here, we enlist the additional hyper-parameters used in DIPPER:
activation: tanh [activation for reward model]
layers: 3 [number of layers in the critic/actor networks]
hidden: 512 [number of neurons in each hidden layers]
Q_lr: 0.001 [critic learning rate]
pi_lr: 0.001 [actor learning rate]
buffer_size: int(1E7) [for experience replay]
clip_obs: 200 [clip observation]
n_cycles: 1 [per epoch]
n_batches: 10 [training batches per cycle]
batch_size: 1024 [batch size hyper-parameter]
reward_batch_size: 50 [reward batch size for DPO-FLAT]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

random_eps: 0.2 [percentage of time a random action is taken]
alpha: 0.05 [weightage parameter for SAC]
noise_eps: 0.05 [std of gaussian noise added to
not-completely-random actions]
norm_eps: 0.01 [epsilon used for observation normalization]
norm_clip: 5 [normalized observations are cropped to this values]
adam_beta1: 0.9 [beta 1 for Adam optimizer]
adam_beta2: 0.999 [beta 2 for Adam optimizer]

A.3 DIPPER ALGORITHM

Here, we provide the pseudo-code for DIPPER algorithm

Algorithm 1 DIPPER

1: Initialize preference dataset D = {}
2: Initialize lower level replay buffer RL = {}
3: for i = 1 . . . N do
4: // Collect higher level trajectories τ using πH and lower level trajectories ρ using πL,
5: // and store the trajectories in D and RL respectively
6: // After every g timesteps, relabel D using human preference feedback y
7: // Lower level value function update
8: for each gradient step in t=0 to k do
9: Optimize lower level value function VπL

to get V k
πL

10: // Higher level policy update using DIPPER
11: for each gradient step do
12: // Sample higher level behavior trajectories
13: (τ1, τ2, y) ∼ D
14: Optimize higher level policy πU using equation 15
15: // Lower primitive policy update using RL
16: for each gradient step do
17: Sample ρ from RL

18: Optimize lower policy πL using SAC

A.4 ADDITIONAL ABLATION EXPERIMENTS

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 5: Comparison with random reference policy This figure compares the success rate performances of
DIPPER against DIPPER-Random, which is DIPPER implemented with a random reference policy. As can
be seen, DIPPER significantly outperforms DIPPER-Random, which shows that our proposed reference policy
formulation demonstrates impressive performance on all tasks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 6: Regularization hyper-parameter ablation This figure compares the success rate performances for
various values of primitive regularization weight λ hyper-parameter. If α is too small, we loose the advantages
of primitive informed regularization, leading to poor performance. In contrast, if α is too large, it may lead to
degenerate solutions. Thus, picking proper λ value is crucial for appropriate subgoal prediction, and improving
overall performance.

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen

Figure 7: KL weight hyper-parameter ablation This figure compares the success rate performances for vari-
ous values of KL weight α hyper-parameter. This hyper-parameter value controls the weight of KL constraint
in higher-level policy objectives. If α is too large, the higher policy is very close to the reference policy, and
if α is too small, the higher policy is far from the reference policy. We pick the hyper-parameter values after
extensive ablation experiments.

Here, we provide the plots for the ablation experiments. Here, we perform the ablation analysis
for selecting the hyper-parameters. The primitive regularization weight hyper-parameter λ directly
controls the magnitude of primitive regularization. If λ is too small, we loose the advantages of
primitive informed regularization. In contrast, if λ is too large, it may lead to degenerate solutions.
We provide the ablation in Figure 6. Further, the hyper-parameter α controls the weight of KL
constraint in higher level policy objective. If α is too large, the higher policy is very close to the
reference policy, and if α is too small, the higher policy might stray too far from the reference policy,
leading to poor performance in both scenarios. α thus controls the amount of KL regularization in
the maximum likelihood DPO objective. We provide the ablation plots in Figure 7.

A.5 ENVIRONMENT DETAILS

This section contains additional details about the environment.

A.5.1 MAZE NAVIGATION TASK

In this environment, a 7-DOF robotic arm gripper navigates through randomly generated four-room
mazes. The gripper remains closed, and the positions of walls and gates are generated randomly.
The table is discretized into a rectangular W × H grid, with vertical and horizontal wall positions
WP and HP randomly selected from (1,W−2) and (1, H−2), respectively. In the constructed four-
room environment, the four gate positions are randomly chosen from (1,WP −1), (WP +1,W−2),
(1, HP − 1), and (HP + 1, H − 2). The height of the gripper is fixed at table height, and it must
navigate through the maze to reach the goal position, indicated by a red sphere.

The following implementation details apply to both the higher and lower-level policies unless ex-
plicitly stated otherwise. The environment features continuous state and action spaces. The state is
represented as the vector [p,M], where p is the current gripper position, and M is the sparse maze
array. The higher-level policy input is a concatenated vector [p,M, g], where g is the target goal

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

position. In contrast, the lower-level policy input is a concatenated vector [p,M, sg], where sg is
the sub-goal provided by the higher-level policy. The current position of the gripper is considered
the current achieved goal.

The sparse maze array M is a discrete 2D one-hot vector array, where a value of 1 indicates the
presence of a wall block, and 0 indicates its absence. In our experiments, the sizes of p and M
are set to 3 and 110, respectively. The higher-level policy predicts sub-goal sg , so its action space
dimension matches the goal space dimension of the lower primitive. The lower primitive action a,
directly executed in the environment, is a 4-dimensional vector with each dimension ai ∈ [0, 1]. The
first three dimensions provide offsets to be scaled and added to the gripper position for movement.
The last dimension controls the gripper: 0 implies fully closed, 0.5 implies half-closed, and 1 implies
fully open.

A.5.2 PICK AND PLACE AND PUSH ENVIRONMENTS

In the pick and place environment, a 7-DOF robotic arm gripper must pick up a square block and
place it at a goal position set slightly above table height. This complex task requires the gripper to
navigate to the block, close the gripper to grasp the block, and then move the block to the desired
goal position. In the push environment, the 7-DOF robotic arm gripper needs to push a square block
towards the goal position. The state is represented as the vector [p, o, q, e], where p is the current
gripper position, o is the position of the block on the table, q is the relative position of the block
to the gripper, and e consists of the linear and angular velocities of both the gripper and the block.
The higher-level policy input is thus a concatenated vector [p, o, q, e, g], where g is the target goal
position.

The lower-level policy input is a concatenated vector [p, o, q, e, sg], where sg is the sub-goal pro-
vided by the higher-level policy. The current position of the block is considered the current achieved
goal. In our experiments, the sizes of p, o, q, and e are set to 3, 3, 3, and 11, respectively. The higher-
level policy predicts sub-goal sg , so the action space and goal space dimensions are the same. The
lower primitive action a is a 4-dimensional vector with each dimension ai ∈ [0, 1]. The first three
dimensions provide offsets for the gripper position, and the last dimension controls the gripper (0 for
closed and 1 for open). During training, the positions of the block and goal are randomly generated,
with the block always starting on the table and the goal always above the table at a fixed height.

A.6 LIMITATIONS AND FUTURE WORK

Our DPO based hierarchical formulation raises an important question. Since DIPPER employs
DPO for training the higher level policy, does it generalize on out of distribution states and actions,
as compared with learning from reward model based RL formulation. A direct comparison with
hierarchical RLHF based formulation might provide interesting insights. Additionally, it will be
challenging to apply DIPPER in scenarios where the subgoal space is high dimensional. These are
interesting research avenues, and we leave further analysis for future work.

A.7 IMPACT STATEMENT

Our proposed approach and algorithm are not expected to lead to immediate technological advance-
ments. Instead, our primary contributions are conceptual, focusing on fundamental aspects of Hier-
archical Reinforcement Learning (HRL). By introducing a preference-based methodology, we offer
a novel framework that we believe has significant potential to enhance HRL research and its re-
lated fields. This conceptual foundation paves the way for future investigations and could stimulate
advancements in HRL and associated areas.

A.8 ENVIRONMENT VISUALIZATIONS

Here, we provide some visualizations of the agent successfully performing the task.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: Maze navigation task visualization: The visualization is a successful attempt at perform-
ing maze navigation task

Figure 9: Pick and place task visualization: This figure provides visualization of a successful
attempt at performing pick and place task

Figure 10: Push task visualization: The visualization is a successful attempt at performing push
task

Figure 11: Kitchen task visualization: The visualization is a successful attempt at performing
kitchen task

20

	Introduction
	Related Works
	Problem Formulation
	Hierarchical Reinforcement Learning
	Limitations of standard HRL approaches

	Classical RLHF Methods
	Direct Preference Optimization

	Proposed Approach
	DIPPER
	Bi-Level Optimization Formulation of HRL
	DIPPER Reference Policies
	DIPPER Objective
	DIPPER: A Practical algorithm

	Experiments
	Evaluation and Results.
	Comparing with DPO baselines
	Comparing with hierarchical baselines
	Comparing with non-hierarchical baselines

	Ablation Analysis

	Conclusion
	Appendix
	Deriving the final optimum of KL-Constrained Reward Maximization Objective
	Implementation details
	Additional hyper-parameters

	DIPPER Algorithm
	Additional Ablation Experiments
	Environment details
	Maze navigation task
	Pick and place and Push Environments

	Limitations and future work
	Impact Statement
	Environment visualizations

