Under review as a conference paper at ICLR 2025

DIPPER: DIRECT PREFERENCE OPTIMIZATION FOR
PRIMITIVE-ENABLED HIERARCHICAL REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical reinforcement learning (HRL) is an elegant framework for learning
efficient control policies to perform complex robotic tasks, especially in sparse
reward settings. However, concurrently learning policies at multiple hierarchi-
cal levels often suffers from training instability due to non-stationary behavior of
lower-level primitives. In this work, we introduce DIPPER, an efficient hierar-
chical framework that leverages Direct Preference Optimization (DPO) to mitigate
non-stationarity at the higher level, while using reinforcement learning to train
the corresponding primitives at the lower level. We observe that directly applying
DPO to the higher level in HRL is ineffective and leads to infeasible subgoal gen-
eration issues. To address this, we develop a novel, principled framework based
on lower-level primitive regularization of upper-level policy learning. We provide
a theoretical justification for the proposed framework utilizing bi-level optimiza-
tion. The application of DPO also necessitates the development of a novel refer-
ence policy formulation for feasible subgoal generation. To validate our approach,
we conduct extensive experimental analyses on a variety of challenging, sparse-
reward robotic navigation and manipulation tasks. Our results demonstrate that
DIPPER shows impressive performance and demonstrates an improvement of up
to 40% over the baselines in complex sparse robotic control tasks.

1 INTRODUCTION

The success of deep reinforcement learning (RL) is impeded in sparse reward scenarios due to
limitations like ineffective exploration and long-term credit assignment (Gu et al., 2016; Levine
etal., 2015; Nair et al., 2018). To overcome these issues, Hierarchical reinforcement learning (Sutton
et al., 1999; Harb et al., 2018) is an elegant framework which promises the benefits of temporal
abstraction and improved exploration (Nachum et al., 2019) . In the goal-conditioned hierarchical RL
setting (Dayan and Hinton, 1992; Vezhnevets et al., 2017) that we consider in this paper, the higher-
level policy provides subgoals to a lower-level policy, which in turn tries to achieve those subgoals
by executing primitive actions. Off-policy hierarchical reinforcement learning (HRL) approaches
(Levy et al., 2018; Nachum et al., 2018) face significant limitations, including: Limitation L1:
non-stationarity due to evolving lower-level primitive policy, and Limitation L2: infeasible subgoal
generation by higher-level policy(Chane-Sane et al., 2021). When the higher and lower level policies
are trained concurrently in HRL, due to continuously changing and sub-optimal lower level policy,
the higher level reward function and transition model become non-stationary. This phenomenon is
called non-stationarity in HRL. Further, the higher level policy may generate subgoals that are too
hard for the lower primitive to achieve, a phenomenon referred to as infeasible subgoal generation.

A recent work by Singh et al. (Singh et al., 2024) attempts to mitigate Limitation L1 by leveraging
preference learning ideas from reinforcement learning from human feedback (RLHF) (Christiano
et al., 2017; Lee et al., 2021). Specifically, their key idea is to utilize preference-based human
feedback to learn a reward function for the higher level, thereby avoiding reliance on the lower-level
policy for higher-level reward computation. While shown to be effective, this approach introduces an
additional bottleneck: first, the higher-level reward function must be learned from preference feed-
back, and then reinforcement learning is employed to optimize this reward to learn the higher-level
optimal policy. Moreover, the optimal policy learned from the preference-feedback-based reward

Under review as a conference paper at ICLR 2025

Direct Preference Optimization

Lower Level
Replay Buffer

Push

Hig!er level

Preference Feedback

‘ Environment ‘ Pick and place Kitchen

Figure 1: DIPPER overview (left): The higher-level policy predicts subgoals g; for the lower-level policy,
which executes primitive actions a; on the environment. The lower-level policy’s replay buffer is populated
by environment interactions, and is optimized using RL. Further, using the elicited preference dataset, direct
preference optimization is used to learn the higher-level policy. Training environments (right): (:) maze
navigation, (i%) pick and place, (¢i¢) push, and (iv) franka kitchen environment.

may still suffer from infeasible subgoal generation, failing to address Limitation L2. Hence, we
pose the following question: Is there an efficient hierarchical approach for solving robotic control
tasks using human preference data that simultaneously addresses the issues of non-stationarity and
infeasible subgoal generation in hierarchical reinforcement learning (HRL)?

In this work, we affirmatively answer the above question by proposing DIPPER: DIrect Preference
Optimization to Accelerate Primitive-Enabled Hierarchical Reinforcement Learning. DIPPER em-
ploys Direct Preference Optimization (DPO) (Rafailov et al., 2024b) to learn the higher-level policy
and RL to learn the lower-level policy. The key insight is that by leveraging DPO to learn the higher-
level policy using preference data, DIPPER decouples higher-level policy from the non-stationary
lower-level primitives, thereby mitigating non-stationarity (addressing Limitation L.1) in HRL.

Further, to address Limitation L2, we regularize the higher-level policy to predict feasible subgoals
to the lower-level policy. We provide a theoretical justification for this regularization via a bi-level
optimization formulation of HRL. The regularization term ensures that we maximize higher-level
rewards while constraining the lower-level primitives to remain close to optimal. Using this bi-level
formulation, we also derive a novel reference policy for DPO that regularizes the higher-level policy
to generate feasible subgoals: which we call primitive regularization.

To summarize, the main contributions of this work are as follows.

1. Novel hierarchical approach (DIPPER): We introduce DIPPER, a new hierarchical framework
for solving complex robotic control tasks using direct preference optimization (Section 4).

2. Mitigation of non-stationarity in HRL: We show that DIPPER is able to mitigate the effect of
non-stationarity inherent in off-policy HRL in a variety of scenarios (Section 5).

3. Mitigation of infeasible subgoal generation in HRL: Utilizing our bi-level optimization for-
mulation, we derive a primitive-enabled reference policy that regularizes the higher-level policy to
generate feasible subgoals (Section 4.1.2).

4. Empirical success in complex tasks: We experimentally demonstrate that DIPPER demon-
strates an improvement of upto 40% over the baselines in most of the task environments, outper-
forming existing baselines that typically fail to make significant progress (Section 5).

2 RELATED WORKS

Hierarchical Reinforcement Learning. HRL provides an elegant framework that promises the ben-
efits of improved exploration and temporal abstraction (Nachum et al., 2019). Due to this, multiple
hierarchical approaches have been studied in literature (Sutton et al., 1999; Barto and Mahadevan,
2003; Parr and Russell, 1998; Dietterich, 1999). We consider a goal-conditioned setup in this work,

Under review as a conference paper at ICLR 2025

where a higher-level policy provides subgoals to a lower-level policy, and the lower-level policy
executes primitive actions directly on the environment. In this setup, multiple prior approaches have
been proposed (Dayan and Hinton, 1992; Vezhnevets et al., 2017). Although it promises these in-
tuitive benefits, HRL has been cursed with multiple issues like non-stationarity in off-policy HRL,
when multiple levels are trained simultaneously. Concretely, due to continuously changing lower-
level primitive behavior, the higher-level replay buffer experience is rendered obsolete. Some prior
works deal with this issue by either simulating an optimal lower-level primitive (Levy et al., 2018),
or relabeling replay buffer transitions using a maximum likelihood-based approach (Nachum et al.,
2018; Singh et al., 2024). In contrast, we deal with non-stationarity by using preference-based learn-
ing (Christiano et al., 2017; Lee et al., 2021). Concretely, we first derive a primitive-regularized
preference-based objective, and then directly optimize the higher-level policy by employing direct
preference optimization (Rafailov et al., 2024b). Some other approaches use hand-designed ac-
tion or behavior priors to boost downstream learning (Nasiriany et al., 2021; Dalal et al., 2021).
While such approaches effectively simplify the learning process, performance in these approaches
depends on the quality of the designed priors. If such priors are sub-optimal, the learning algorithm
fails to show good performance. Another line of work uses the option learning framework (Sutton
et al., 1999; Klissarov et al., 2017) to learn extended macro actions. However, such approaches
may lead to degenerate solutions in the absence of suitable regularization. In contrast, our approach
uses primitive-enabled regularization for conditioning the higher-level policy to produce feasible
subgoals, thus avoiding such degenerate solutions.

Preference-based Learning. In this line of work, various approaches have been proposed that
perform reinforcement leaning (RL) on human preference data (Knox and Stone, 2009; Pilarski
et al., 2011; Wilson et al., 2012b; Daniel et al., 2015). Prior approaches first collect preference data
from human annotators, then use this data for downstream learning. An important initial work in
this area is (Christiano et al., 2017), which first trains a reward model using the preference data,
then uses RL to learn an optimal policy for the resulting reward model. Other recent work uses
more sample-efficient off-policy policy gradient approaches (Haarnoja et al., 2018) for learning
the policy. Recently, direct preference optimization approach has been proposed (Rafailov et al.,
2024b;a) that circumvents the reward model learning step, by directly optimizing the policy using a
KL-regularized maximum likelihood objective. In this work, we propose a novel reference policy,
which directly optimizes the higher-level policy to generate feasible subgoals for lower-level policy.

3 PROBLEM FORMULATION

In this paper, we consider the Markov decision process (MDP) (S, A, p, r,y) framework, where S
is the state space, A is the action space, p : S X A — A(S) is the transition probability function
mapping state-action pairs to probability distributions over the state space, r : S X A — R is the
reward function, and v € (0, 1) is a discount factor. At timestep ¢, the agent is in state s;, takes action
a; ~ m(-|s¢) according to some policy 7 : S — A(A) mapping states to probability distributions
over the action space, receives reward r; = 7(s;, at), and the system transitions to a new state
St+1 ~ p(-|st, ar). In the standard RL setting, the goal is to optimize the following objective:

7" = argmax J(m) = E, [Z ’ytrtl . (1)
t=0

In what follows, we will consider the standard goal-conditioned setting (Andrychowicz et al., 2017),
where the agent policy is jointly conditioned on the current state as well as a desired goal. Con-
cretely, at timestep ¢, the policy 7 predicts actions a; ~ 7(-|s¢, g¢) conditioned on both state s, and
goal g;. Finally, the value function for a policy 7 provides the expected cumulative reward when the

start state is s; and goal is g; such that V. (s, g;) = Ex [Z?:o Yirelse, gil.

3.1 HIERARCHICAL REINFORCEMENT LEARNING

In our goal-conditioned hierarchical setup, in order to achieve the end goal, the higher-level policy
provides subgoals to the lower-level policy, while the lower-level policy takes primitive actions
oriented towards achieving the specified subgoals. Concretely, the higher-level policy 77 : S —
A(G) specifies a subgoal g; € G, where G C S is the set of possible goals. The higher-level policy

Under review as a conference paper at ICLR 2025

predicts subgoal g; ~ m(-|s;) after every k timesteps and g; = gp.[¢/x], otherwise. Thus, the
higher-level policy issues new subgoals every k timesteps and keeps subgoals fixed in the interim.

Furthermore, at each ¢, the lower-level policy L Sx G — A(A) selects primitive actions
a; ~ 7 (|s¢, gt) according to the current state and subgoal specified by 7%, and the state tran-
sitions to s;y1 ~ p(-|st,a:). Finally, the higher-level policy provides the lower level with reward
rE = rl(ss,9t,00) = —1{|s,—gs|la>c}» Where 1p is the indicator function on a given set B. In
the standard HRL setup where both hierarchical levels are simultaneously trained, the higher level
receives reward 71 = (s, g*, g;), where g* € G is the end goal and 7 : S x G x G — Riis the
higher-level reward function. The lower level populates its replay buffer with samples of the form

(st, gt,as, 7, s¢41) after each timestep, whereas the higher level populates its buffer with samples

of the form (s¢, g*, gt, ng -t rH si.1) after k timesteps. Next, we highlight key limitations of
standard HRL methods.

3.1.1 LIMITATIONS OF STANDARD HRL APPROACHES

Although HRL promises significant advantages over non-hierarchical RL, such as improvements in
sample efficiency due to temporal abstraction and improved exploration (Nachum et al., 2018; 2019),
it suffers from serious limitations. In this work, we focus on two outstanding issues:

L1: training instability due to lower-level non-stationarity in off-policy HRL;
L2: performance degradation due to infeasible subgoal generation by higher-level policy.

As discussed in (Nachum et al., 2018) and (Levy et al., 2018), off-policy HRL suffers from non-
stationarity due to non-stationary lower primitive behavior generated by the lower-level policy. Con-
cretely, the higher-level replay transitions collected using previous lower-level policy become obso-
lete as the lower-level policy changes. Additionally, the higher level may predict infeasible subgoals
to the lower-level policy (Chane-Sane et al., 2021), thus impeding learning and degrading overall
performance. Hence, although standard HRL provides significant advantages, it often demonstrates
poor performance in practice (Nachum et al., 2018; Levy et al., 2018; Chane-Sane et al., 2021).
An important motivation of this work is to develop a novel preference-based learning approach that
directly optimizes preference-based data to address the limitations mentioned above.

3.2 CLASSICAL RLHF METHODS

In reinforcement learning from human feedback (RLHF) (Wilson et al., 2012a; Christiano et al.,
2017; Lee et al., 2021; Ibarz et al., 2018), the agent first learns a reward model using human prefer-
ence feedback, then learns a policy using RL that is optimal for the resulting reward model, typically
via a policy gradient method such as PPO (Schulman et al., 2017).

In this setting, the agent behavior over a k-length trajectory is represented as a sequence, 7, of state
observations and actions: 7 = ((s¢,a¢), (St4+1, @t41)---(St4k—1, at+k—1)). The reward model to
be learned is represented as 7y : S x A — R, with parameters ¢. Accordingly, the preferences
between any two trajectories 7', 72 can be modeled using the Bradley-Terry model (Bradley and

Terry, 1952):

eXp Zt ?¢ (8%7 a%)
216{1,2} exp), Ty (S%, a%) 7

Py [r' = 17] = 2

1 1

where 71 = 72 implies that 7! is preferred over 72. We consider the preference dataset D with
entries of the form (71,72, y), where y = (1,0) when 7" is preferred over 72, y = (0,1) when
72 is preferred over 7!, and y = (0.5,0.5) when there is no preference. The standard approach in
the preference-based literature (see (Christiano et al., 2017; Lee et al., 2021)) is to learn the reward
function 7 using the following cross-entropy loss:

L(¢) = fz (y1 log Py [Tl - 7'2} + y2 log Py [7'2 - Tl}) , 3)
D

where (71,72, y) € D and y = [y1, y2)-

Under review as a conference paper at ICLR 2025

3.3 DIRECT PREFERENCE OPTIMIZATION

Unlike classical RLHF, direct preference optimization (DPO) circumvents the need for an RL al-
gorithm by using a closed-form solution for the optimal policy of the KL-regularized RL prob-
lem (Levine, 2018; Ziebart et al., 2008), which takes the form 7*(als) = ﬁme}c(ﬂs)e’"(s*“),

where 7, ¢ is the reference policy, 7* is the optimal policy, and Z(s) is a normalizing partition func-
tion ensuring that 7* provides a valid probability distribution over A for each s € S. This formula-
tion is rearranged to yield an alternative expression (s, a) = alog 7*(als) —alog mer(als) — Z(s)
for the reward function. This equation is then substituted in the standard cross-entropy loss equa-
tion 3, which yields the following objective (Rafailov et al., 2024b):

mo(y1]s) 7o (y2ls))}

Lppo = —E o [lo U(OAO —— 7 —alo
or (s02.92)~D | 108 & rrer@ils) " Tres (uals)

where 6 are the policy parameters and o (z) = (1 + ¢~%)~! denotes the sigmoid function.

“)

4 PROPOSED APPROACH

In this section, we introduce DIPPER: DIrect Preference Optimization to Accelerate Primitive-
Enabled Hierarchical Reinforcement Learning. To address the problem of learning control problems
for complex robotics tasks from human preference data, a natural approach is to apply a combination
of RLHF and HRL: on the outer highest tier, a reward model is learned from the human preference
data, on the middle tier RL is used to learn a corresponding higher-level policy for subgoal gener-
ation, and on the third, lowest tier RL is used to learn lower-level policies for achieving subgoals
specified by the higher-level policy. Together, the lower and middle tiers in this approach naturally
correspond to performing RLHF, while the middle and higher tiers correspond to performing HRL.
Though intuitively reasonable, the need to carry out three distinct learning procedures simultane-
ously in this approach is computationally burdensome and a more efficient method is required.

Our key idea. The key idea underlying DIPPER is twofold: we introduce a DPO-based approach to
directly learn higher-level policies from preferences, replacing the two-tier RLHF component in the
scheme described above with a simpler, more efficient single-tier approach; we replace the reference
policy inherent in DPO-based approaches, which is typically unavailable in complex robotics tasks,
with a primitive-enabled reference policy derived from a novel bi-level optimization formulation of
the HRL problem. The result is an efficient hierarchical approach that directly optimizes the higher-
level policy using preference data while simultaneously mitigating non-stationarity and infeasible
subgoal prediction issues of HRL (see Section 3.1.1) through primitive-enabled regularization.

4.1 DIPPER

We now introduce our hierarchical approach DIPPER, which uses a primitive-enabled direct pref-
erence optimization formulation to optimize the higher-level policy and RL to optimize the lower-
level policy. Recalling the HRL and RLHF settings of Sections 3.1 and 3.2, let V, (s¢, g:) denote
the lower-level value function and 74 denote a parameterized reward model corresponding to the
preference data. In addition, let « > 0 be a scalar hyperparameter controlling the magnitude of the
KL-regularization term between higher level policy 7y and reference policy ... For a trajectory
7 of length T', we consider the following KL-regularized optimization problem:
T
maxEn, |3 (ro(st,9¢) — aDicw o (s T (1s))) | 5)
i t=0

In the standard DPO setting considered in (Rafailov et al., 2024b;a), the reference policy 7,y is
assumed to be given. In challenging problems such as the robotics tasks motivating this work, how-
ever, such a reference policy is often unavailable. We must therefore seek an alternative reference
policy corresponding to the HRL problem at hand. In order to achieve this, we next provide a novel
bi-level formulation of the HRL problem that we subsequently leverage to propose a suitable 7. .

4.1.1 BI-LEVEL OPTIMIZATION FORMULATION OF HRL

We now present our bi-level optimization formulation of the HRL problem. For a given
higher-level policy 7y, let w7 denote the corresponding optimal lower-level policy. Let 7 =

Under review as a conference paper at ICLR 2025

((sty9t), (St41,9t+1)---(St+k—1,gt+k—1)) represent the higher-level trajectories, where s; is the
State at time ¢, and g; ~ 7y (.|st, g*) is the subgoal predicted by the higher-level policy at time
t. Notably, the higher-level policy 7y predicts the subgoal g; for the lower-level policy, which is
kept fixed for k timesteps while the lower level policy 7} executes. Hence, the next state s;11 de-
pends on the optimal lower-level policy 7. We represent our hierarchical learning problem as the
following bi-level optimization problem:

max J (my, 71 (my)) st. wi(my) = argmax V., (7y), (6)

where 7 (77, 75 (7)) represents the higher level maximization objective, and V. (7!7) is the lower
level value function, conditioned on the higher level policy subgoals. Note that, in the given con-
straint, the optimal lower-level policy 7} is defined as the policy which maximizes the lower-level
value function V., . We can solve this bi-level joint optimization for the higher-level policy. In order
to optimize for both 7y and 7, we can reformulate equation 6 as follows (Liu et al., 2022):

max J(ry,n) st. Vi, (my)—=VE (mv) >0, (7

™
TULTL L

where, V* (my) = max,, Vx, (7). Notably, since the left-hand side of the inequality constraint
is always non-positive due to the fact that V;, (7)) — V7, (7)) < 0, the constraint is satisfied only
when V., (my) = V;?, (mv). Finally, equation 7 can be formulated as the following Lagrangian:

max J(my,7r) + A(Vr, (1) — V7, (7). (8)

TULTL

We now use the formulation of HRL in equation 8 to propose a novel reference policy for our DPO-
based objective. This yields an efficient HRL algorithm dealing with non-stationarity and infeasible
subgoal generation that is able to solve complex robotics tasks (cf. Section 5).

4.1.2 DIPPER REFERENCE POLICIES

A key component of the DPO-based approach is to provide a suitable reference policy (cf. equa-
tion 4), which is difficult to obtain in the robtics tasks. In light of the regularized objective equation 8
derived in Section 4.1.1, we propose the following formulation of the reference policy:

Vﬂ'L) - V;L s
Tref(gelse) = explm (StZg(;)t) & gt)))»)

where Z(st) = Z exp((Vi (St,9t) — VJL(st,gt))), VrE (st,9t) = maxy, Vi, (st,gt), and
m = E Note that, since the term V;;, (s¢, g¢) — (8¢, g¢) in the numerator is always non- posmve
for a given ¢;, the term is maximized when V., (fst, gt) = Vi (st, gt). Equivalently, the term is
maximized when, for a particular g;, the lower-level value function is optimal. We show later on in
Section 4.1.3 that, when this particular choice of reference policy is substituted in the DPO objective,

we get exactly the formulation in equation 8.

In addition to its connections to the bi-level formulation, the specific form of the reference policy
leads to significant advantages with respect to the hierarchical component of our approach. To see
this, notice that the reference policy 7, s (g:|s¢) assigns high probability to the subgoal g;, where the
corresponding lower-level value function V, (s¢, g¢) is close to optimal, or alternatively, where the
corresponding lower-level policy 7y, (s¢, g¢) is close to optimal. This formulation effectively handles
the non-stationarity issue (L.1) and infeasible subgoal generation issue (L2) in HRL as follows:

Dealing with L1: For a particular subgoal g,, if the lower-level policy is close to optimal, it predicts
actions similar to the optimal lower-level policy. This reduces the non-stationary behavior of the
lower-level policy, which ameliorates the non-stationarity issue in HRL.

Dealing with L2: For a state s; and subgoal g:, Vi, (st, g:) provides an estimate of the feasibility
of subgoal g;, since a high value of V;, (s, g;) implies that the lower level expects to achieve high
reward for subgoal g;. Since 7, assigns high probability to subgoals with large V;, (¢, g¢), Tref
produces achievable subgoals, thus mitigating infeasible subgoal generation issue in HRL.

Under review as a conference paper at ICLR 2025

4.1.3 DIPPER OBIJECTIVE

Here, we derive our DIPPER objective. We first substitute the proposed reference policy of equa-
tion 9 into the DPO objective equation 5 to get the following formulation:

T
max Er, | Y (ro(se, 90) + AMVir, (50, 91) = Vi, (5,90)) +10u(s1)) | (10)

U
t=0

where m(s;) = (aH(s¢) — alog Z(s;)), and H(s;) = —logmy(g¢|s:) is the entropy term for
higher-level policy. When optimizing for the higher-level policy, we can choose to ignore the term
m(st), since it does not depend on the policy 7y (g:|s:). Note that the formulation in equation 10 is
exactly equal to the bi-level formulation of equation 8. Hence, when we plug in the proposed form
of reference policyequation 4.1.2 in KL-regularized DPO objective, this yields the formulation in
equation 8. Following prior works (Levine, 2018; Ziebart et al., 2008) and substituting the reference
policy in equation 5, we get the following optimal solution for the higher-level policy:

o) = g @b (ol 0) + AV (3090 =V (sg)). (D)

where Z(s;) = >_ exp(L(rg(se, gt) + AV, (s, 9¢) — Vi7, (51, 9¢)))) is the partition function

and A is the primitive regularization weight hyper-parameter. Appendix A.l contains a complete
derivation. Taking logarithm on both sides of equation 11 and using some basic algebra yields:

7¢(8t,9t) = alog Z(st) + alog my (ge|se) — MV, (¢, 9¢) — V:L(St,gt))~ (12)
We can reformulate the Bradley-Terry model (Bradley and Terry, 1952) to derive the following:

T T
L7 = “Bir, yn | log o (D ralst gl = D ralst ab)) |- (13)
t=0 t=0

We now substitute the preference reward formulation equation 12 into equation 13 to derive our final
maximum likelihood objective:

T

rd— _ E(ry)b {log J(Z(a log my (gt |st) — alogmy (g2|s2)) (14)
t=0

-)\((Vﬂ'L (S%,gtl) - V:L (sz}agtl)) - (Vﬂ'L (S?vgtz) - V;L(vag?))) .

This objective provides the maximum likelihood DIPPER objective for optimizing the higher-level
policy 7y, while also using uses primitive-enabled regularization that regularizes the higher level
policy to predict feasible subgoals for the lower-level policy.

4.1.4 DIPPER: A PRACTICAL ALGORITHM

We now employ the derived DIPPER formulation to propose an efficient and practically appli-
cable DPO-based algorithm. Notably, equation 14 requires calculation of optimal value function
V7 (s¢,9¢) for a subgoal g;. Unfortunately, computing optimal value functions is computation-
ally expensive and is typically not practically feasible. We accordingly consider an approximation
VE (s, g¢) to replace V¥ (s, g¢), where k represents the number of training iterations for updating
VE(s4,). Further, we make an approximation and ignore the term V., in equation 14. We explain
our rationale to ignore V., as follows: without loss of generality, let us assume that the environment
rewards are greater than and equal to zero. This directly implies that V;, > 0. We utilize this to
maximize the lower bound of objective in equation 10, and follow similar steps between equation 10

to equation 14, to present the final practically applicable maximum likelihood DIPPER objective:
T
L= B, rynllogo (Y (alogmu(gils) — alogmu(97|s)) + AVE (s, 9t) = VE (s, 97)]-
t=0
5)

We note that the objective in equation 15 still captures the core essense of the proposed approach
and tries to deal with the non-stationarity issue in HRL and also learn a lower level regularized

Under review as a conference paper at ICLR 2025

upper level policy to deal with infeasible subgoal geneation. Despite these approximations, in our
experiments we empirically find that DIPPER is able to efficiently mitigate the recurring issue of
non-stationarity in HRL and generate feasible subgoals for the lower-level policy.

Analyzing DIPPER gradient: We further analyze the rationale behind the DIPPER objective by
computing and interpreting the gradients of £¢ with respect to higher level policy ;. The gradient
can be written as:

T
VL = =B (r, my)on | Y (0(F(57. 97) = (51, 91)) *[V og mu (g)|st) — Vlog mu (7] 57)])

t=0 higher weight for wrong preference increase likelihood of 71 decrease likelihood of 72

(16)

where 7(s¢, gt) = alog my (g¢|5¢) =AM (Vzr, (56, 9¢) =V, (8¢, g¢)) is the implicit reward defined by the
higher-level policy and lower-level value function. Intuitively, the gradient increases the likelihood
of preferred trajectories and decreases the likelihood of dispreferred ones. The gradient difference
is weighted by how incorrectly the implicit reward model #(s¢, g¢) orders the trajectories, according

to the strength of the KL constraint. We provide DIPPER algorithm in Appendix A.3 Algorithm 1.

5 EXPERIMENTS

In this section, we perform extensive empirical analysis, and ask the following questions: (1) Does
DIPPER enhance sample efficiency and training stability in complex robotic manipulation and nav-
igation tasks, compared to the baselines? (2) Is DIPPER able to mitigate the recurring issue of
non-stationarity in HRL? (3) Is DIPPER able to generate feasible subgoals for the lower primitive?
(4) What is the contribution of each of our design choices?

Setup. We evaluate DIPPER on four robotic navigation and manipulation tasks: (i) maze naviga-
tion, (i7) pick and place (Andrychowicz et al., 2017), (4ii) push, and (iv) franka kitchen (Gupta
et al., 2019). These are sparse reward enviroments, where the lower primitive is sparsely rewarded
when it comes within ¢ distance of the subgoal. Unless explicitly stated, we ensure fair compar-
isons across all the baselines. Notably, since the pick and place, push and kitchen task environments
are complex sparse reward environments, we assume access to a single human demonstration, and
use an additional imitation learning objective at the lower level. We do not assume access to any
demonstration in the maze navigation task. This is done to speedup training, however, we keep
this assumption consistent among all baselines to ascertain fair comparisons. We provide additional
implementation details in Appendix A.5, and the implementation code in the supplementary.

5.1 EVALUATION AND RESULTS.

Here, we compare the success rate performances on four sparse maze navigation and robotic ma-
nipulation tasks in Figure 2. The solid line and shaded regions represent the mean and standard
deviation, averaged over 5 seeds.

Success Rate
Success Rate
Success Rate

o0 6o ook 10w a0k o0k 006 2000 300c 400k 500k s o0 ook 0 oo aook
Timesteps Timesteps Timesteps Timesteps

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen
— DIPPER == DIPPER-No-V ~DPO-FLAT ~~HAC = RAPS = HIER — DAC = FLAT

Figure 2: Performance comparison This figure compares the success rate performances on four sparse maze
navigation and robotic manipulation tasks. The solid line and shaded regions represent the mean and standard
deviation, across 5 seeds. We compare DIPPER against multiple baselines. Although HAC and RAPS outper-
form DIPPER in simpler maze task, DIPPER significantly outperforms the baselines in harder tasks.

Under review as a conference paper at ICLR 2025

5.1.1 COMPARING WITH DPO BASELINES

Here we compare DIPPER against DPO based baselines, specifically: (i) DIPPER-No-V (DIPPER
without primitive-enabled regularization), and (i) DPO-FLAT (Single-level DPO implementation).

DIPPER-No-V: In order to illustrate the importance of primitive regularization employing lower
primitive value function, we implement DIPPER-No-V baseline by removing primitive regulariza-
tion from DIPPER. As seen from Figure 2, DIPPER performs slightly better than DIPPER-No-V
in simpler maze navigation task and in kitchen task. However, DIPPER significantly outperforms
DIPPER-No-V baseline in pick and place and push tasks. This clearly demonstrates the advantage
of primitive regularization, which conditions the higher level policy to predict feasible subgoals.

DPO-FLAT: DPO-Flat is a single-level implementation of DPO (Rafailov et al., 2024b). We im-
plemented this baseline to illustrate that our hierarchical DPO based approach (where the higher
policy is trained using DPO based maximum likelihood objective, and the lower policy is trained us-
ing RL) outperforms single-level DPO based policy. Since DIPPER is hierarchical, it benefits from
factors like temporal abstraction and improved exploration, which are missing from single-level DPO
implementation. However, since we do not have access to a reference policy in robotics, we replace
the reference policy with a uniform policy. Notably, this particular choice of reference policy effec-
tively reformulates the KL-objective into an entropy maximization objective in DPO-Flat, which
facilitates better exploration. DIPPER clearly outperforms this baseline in all the tasks, showing
that our hierarchical structure is crucial for improved performance.

5.1.2 COMPARING WITH HIERARCHICAL BASELINES

Here we compare DIPPER against hierarchical baselines, specifically: (i) RAPS (Dalal et al., 2021),
(7i) HAC (Levy et al., 2018), and (¢4¢) HIER (vanilla hierarchical SAC implementation).

RAPS: We compare DIPPER with RAPS baseline to analyze how DIPPER performs against ap-
proaches that use behavior priors or action primitives. Notably, the performance of RAPS depends
on the quality of such priors, and require considerable effort to hand-design, especially in hard en-
vironments like franka kitchen. We find that RAPS is able to significantly outperform DIPPER in
maze task, which we believe is because the designed action primitive in maze task is near perfect.
However, as the complexity of environments increase, RAP S is unable to show any progress.

HAC: We also implemented Hierarchical Actor Critic (Levy et al., 2018), which deals with non-
stationarity in HRL by simulating optimal lower primitive behavior. As seen in Figure 2, HAC is able
to outperform DIPPER in simpler maze navigation task. However, in harder pick and place, push
and kitchen tasks, DIPPER significantly outperforms this baseline.

HIER: HIER is a vanilla HRL baseline implemented using SAC (Haarnoja et al., 2018). However,
this baseline failed to perform well, especially in complex tasks.

5.1.3 COMPARING WITH NON-HIERARCHICAL BASELINES

Here we compare DIPPER against non-hierarchical baselines, specifically (¢) DAC (Discriminator
Actor Critic (Kostrikov et al., 2018)), and (i) FLAT (Single-level SAC (Haarnoja et al., 2018)).

DAC: We provide one demonstration to DAC baseline in each environment. However, as seen in
Figure 2, even with privileged information, DAC is unable to perform well.

FLAT: As seen in Figure 2, FLAT baseline is unable to perform well in any of the tasks, highlighting
the importance of our hierarchical structure for success in complex robotic tasks.

5.2 ABLATION ANALYSIS

Here, we perform various ablations to analyze the contribution of each of our design choices.

Dealing with non-stationarity in HRL: We evaluate whether DIPPER reduces non-stationarity in
HRL by comparing it to the vanilla HIER baseline, as shown in Figure 3. We measure the average
distance between subgoals predicted by the higher-level policy and those achieved by the lower-level
primitive at different stages of training. A low average distance indicates that DIPPER effectively
predicts subgoals achievable by the lower primitive, thus promoting optimal lower primitive be-

Under review as a conference paper at ICLR 2025

havior. Our results show that DIPPER consistently produces low average distances, confirming its
ability to mitigate non-stationarity.

357

1 50/
] : 0
20/ 2 2] { g
2] 1
1 2
10] o
{ 10
ol | —_—) [
S > > & > & o & & & >
& W <« & W <« & e~ B

Training Iterations Training Iterations Training Iterations Training Iterations

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen
== DIPPER HIER

)
)

e (+10

a

Subgoal Distance (*102)
Subgoal Distance (102
Subgoal Di

Figure 3: Non-stationarity metric comparison This figure compares DIPPER with the HIER baseline accord-
ing to the average distance between subgoals proposed by the higher-level policy and the subgoals achieved by
the lower-level primitive throughout the training process. DIPPER consistently demonstrates lower average
distance values, which implies that DIPPER higher-level policy predicts feasible subgoals, inducing optimal
lower level primitive behavior, thereby leading to non-stationarity mitigation and enhanced task performance.

Dealing with infeasible subgoal generation in HRL: In Figure 4, we compare DIPPER with the
HIER baseline by evaluating the average distance between subgoals predicted by the higher-level
policy and those achieved by the lower-level policy after training is completed. As seen in Figure 4,
the distance values for DIPPER are significantly lower than those of the HIER baseline, indicating
that DIPPER generates feasible subgoals by exploiting primitive regularization.

Subgoal Distance (*102)
Subgoal Distance (*102)

e (

g
5 a0

Subgoal Distance (*107)

Subgoal Dist:

| - i Cm
(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen
== DIPPER HIER

Figure 4: Feasible subgoal generation metric comparison This figure compares DIPPER with the HIER
baseline using the average distance between subgoals predicted by the higher-level policy and those achieved by
the lower-level policy after training is completed. DIPPER exhibits significantly lower average distance values
compared to HIER baseline, showing that DIPPER generates feasible subgoals for the lower-level primitive.

Additional Ablations: We compare the success rate performance of DIPPER against
DIPPER-Random, which is DIPPER implemented with a random reference policy. This baseline
is used to demonstrate the significance of primitive regularization induced by our novel formulation
of reference policy. As can be seen in Appendix A.4 Figure 5, DIPPER significantly outperforms
this baseline on all tasks, which shows that primitive regularization is crucial for enhanced perfor-
mance. We also perform ablation studies and intuitions for selecting the primitive regularization
weight hyper-parameter A and the KL regularization weight a in Appendix A.4 Figures 6 and 7.

6 CONCLUSION

In this work, we propose DIPPER, a preference learning based HRL algorithm that employs direct
policy optimization and primitive enabled regularization to mitigate the issues of non-stationarity
and infeasible subgoal generation in HRL. We employ a bi-level optimization formulation for HRL
and use it to propose a novel reference policy formulation which results in our primitive regular-
ized maximum likelihood objective. We empirically show that DIPPER demonstrates impressive
performance on complex robotic control tasks, and is able to significantly outperform the baselines.
Additionally, our hierarchical formulation outperforms single level DPO formulation. Based on our
strong empirical findings, we believe that DIPPER represents a significant advancement in devel-
oping effective control policies for addressing complex, sparse-reward robotic tasks. Due to space
limit, we discuss the limitations and future work in Appendix A.6.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. CoRR,
abs/1707.01495, 2017. URL http://arxiv.org/abs/1707.01495.

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13:341-379, 2003.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I.
the method of paired comparisons. Biometrika, 39:324, 1952. URL https://api.
semanticscholar.org/CorpusID:125209808.

Zehong Cao, Kaichiu Wong, and Chin-Teng Lin. Human preference scaling with demonstrations
for deep reinforcement learning. arXiv preprint arXiv:2007.12904, 2020.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International Conference on Machine Learning, pages 1430-1440.
PMLR, 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. Advances in Neural Information Processing Sys-
tems, 34:21847-21859, 2021.

Christian Daniel, Oliver Kroemer, Malte Viering, Jan Metz, and Jan Peters. Active reward learning
with a novel acquisition function. Autonomous Robots, 39:389—405, 2015.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decom-
position. CoRR, cs.1.G/9905014, 1999. URL https://arxiv.org/abs/cs/9905014.

Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation. CoRR, abs/1610.00633, 2016. URL http://arxiv.org/abs/
1610.00633.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option:
Learning options with a deliberation cost. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end
for continuous action tasks. arXiv preprint arXiv:1712.00004, 2017.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pages
9-16, 2009.

11

http://arxiv.org/abs/1707.01495
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808
https://arxiv.org/abs/cs/9905014
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1801.01290

Under review as a conference paper at ICLR 2025

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. arXiv preprint arXiv:1809.02925, 2018.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training, 2021.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep vi-
suomotor policies. CoRR, abs/1504.00702, 2015. URL http://arxiv.org/abs/1504.
00702.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In International Conference on Learning Representations, 2018.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in neural information processing systems, 35:
17248-17262, 2022.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning? arXiv preprint arXiv:1909.10618,
2019.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 6292-6299. IEEE, 2018.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behav-
ior primitives for diverse manipulation tasks. CoRR, abs/2110.03655, 2021. URL https:
//arxiv.org/abs/2110.03655.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In M. Jordan,
M. Kearns, and S. Solla, editors, Advances in Neural Information Processing Systems, volume 10.
MIT Press, 1998.

Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod Fahimi, Jason P Carey, and
Richard S Sutton. Online human training of a myoelectric prosthesis controller via actor-critic
reinforcement learning. In 2011 IEEE international conference on rehabilitation robotics, pages
1-7.IEEE, 2011.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q** : Your language model is
secretly a gq-function. arXiv preprint arXiv:2404.12358, 2024a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Utsav Singh, Wesley A Suttle, Brian M Sadler, Vinay P Namboodiri, and Amrit Singh Bedi. Piper:
Primitive-informed preference-based hierarchical reinforcement learning via hindsight relabeling.
arXiv preprint arXiv:2404.13423, 2024.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-

work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181—
211, 1999.

12

http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
https://arxiv.org/abs/2110.03655
https://arxiv.org/abs/2110.03655

Under review as a conference paper at ICLR 2025

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, pages 3540-3549. PMLR, 2017.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
trajectory preference queries. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012a. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/16c222aa19898e5058938167c8ab6c57-Paper.pdf.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
trajectory preference queries. Advances in neural information processing systems, 25, 2012b.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433—1438. Chicago, IL, USA, 2008.

13

https://proceedings.neurips.cc/paper_files/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf

Under review as a conference paper at ICLR 2025

CONTENTS
1 Introduction
2 Related Works

3 Problem Formulation
3.1 Hierarchical Reinforcement Learning
3.1.1 Limitations of standard HRL approaches
3.2 Classical RLHF Methods

3.3 Direct Preference Optimization o

4 Proposed Approach
4.1 DIPPER
4.1.1 Bi-Level Optimization Formulationof HRL
4.1.2 DIPPER Reference Policies
4.13 DIPPERObjective oot
4.1.4 DIPPER: A Practical algorithm

5 Experiments
5.1 EvaluationandResults.
5.1.1 Comparing with DPO baselines
5.1.2 Comparing with hierarchical baselines
5.1.3 Comparing with non-hierarchical baselines

5.2 Ablation Analysis
6 Conclusion

A Appendix

A.1 Deriving the final optimum of KL-Constrained Reward Maximization Objective . .
A.2 TImplementationdetails

A.2.1 Additional hyper-parameters
A3 DIPPER Algorithm
A4 Additional Ablation Experiments Lo
A5 Environmentdetails

A.5.1 Mazenavigationtask oL

A.5.2 Pick and place and Push Environments
A.6 Limitations and futureworko oo o000
A7 TImpact Statement Lo e e e

A.8 Environment visualizations e

14

BN e N BN Y || wm A B~ W W

O O O O o0 K

10

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DERIVING THE FINAL OPTIMUM OF KL-CONSTRAINED REWARD MAXIMIZATION
OBJECTIVE

In this appendix, we will derive Eqn 11 from Eqn 5. Thus, we optimize the following objective:
T

P 1= max B, (3 (ro(s1, 90) — aDict -l e (o)) a7
t=0

Re-writing the above equation after expanding KL divergence formula:

v (9elst)

[M]=

P =maxE, re (s, 9¢) — alog ————— 18
pas U[tzo(o(5t,9t) gﬂ'ref(gt|5t) (18)
T
= H}r?,X]E7TU [Z(r¢(stv gt) - OélOg ’/TU(gt|St) + alog 7Tref(9t|£t))}~ (19)
t=0
Substituting . from Eqn 9, and m = 2 in Equation 19,
T
P :@T%XEWU [Z(qu(St,gt) —alog my(g¢|s:) + alogexp(k(VL(s¢, 9¢) — VI (5¢,9¢)))
t=0
- alogZexp (Vi (51, 9¢) = Vi (56:.9¢))))] (20)
T
=maxEr, > (re(se, g:) — alogmu (gelse) + A(Vi(se,91) — Vi (s1,9¢))
t=0
— alogZexp (Vi(se,g1) — Vi (s, 90))))] (1)
d 1
:Tfrl(ianm [Z(log Tu(gelse) — E(%(St,gt) + A(VL(st, 9t) = VL (st,.9¢)))
t=0
+1log Y exp(k(Vi (st 9) — Vi (51,91))))] (22)
gt
- v (gilst)
=minE, log CACLLG
2 e o T G) + Vi) ~ VG)
+ logZeXp (Vi(st; g¢) = Vi (s6.9¢))))]- 23)
After rearranging the terms, we get
- v (gils1)
P=minE, log EhLel)
o [;((z%s) exp(L(ro(se, g¢) + MV (st 90) — Vi (st.0)))) (24)

+log2exp (Vi(st,9t) — Vi (st,9¢))) — log Z(s))]

where, Z(s) = 32, exp(4 (¢ (51, 9t) + MV (s, 9¢) — Vi (56, 91))))-

Note that the partition function Z(s) and the term log > exp(k(VL(st, g¢) — Vi (51, 9¢))), do not
depend on the policy 7

15

Under review as a conference paper at ICLR 2025

T
= minEr, D (ko (gils) 7 (gelse)] = log exp(k(Vi(se, 90) = VE (s1,91))) — log Z(s))]

t=0 gt

(25)

where, 77 (g¢|s:) = % exp(L(re(se, g¢) + A(VL(se,9¢) — Vi (st,9:)))) which is a valid proba-
bility distribution. 7{;(g:|s;) is minimized when, Dk, = 0. Hence,

U (gelse) = mir(gelse) = % exp(é(%(st,gt) +AVL(st,91) = Vi (se,90))) (26)

A.2 IMPLEMENTATION DETAILS

We perform the experiments on two system each with Intel Core i7 processors, equipped with 48GB
RAM and Nvidia GeForce GTX 1080 GPUs. We also provide the timesteps taken for running the
experiments. For environments (¢) — (év), the maximum task horizon 7 is set to 225, 50, 50, 225
timesteps, respectively, and the lower primitive is allowed to execute for 15,7, 7 and 15 timesteps,
respectively. In our experiments, we use off-policy Soft Actor Critic (SAC) (Haarnoja et al., 2018)
for optimizing RL objective, using the Adam (Kingma and Ba, 2014) optimizer. The actor and
critic networks are formulated as three-layer, fully connected neural networks with 512 neurons in
each layer. The experiments are run for 1.35e6, 9¢5, 1.3E6, and 6.3e5 timesteps in environments
(i) — (iv), respectively. In the maze navigation task, a 7-degree-of-freedom (7-DoF) robotic arm
traverses a four-room maze, with its closed gripper (fixed at table height) maneuvering through the
maze to reach the goal position.

For the pick and place task, the 7-DoF robotic arm gripper must locate a square block, pick it up,
and deliver it to the goal position. In the push task, the 7-DoF robotic arm gripper is required to
push the square block toward the goal position. In the kitchen task, a 9-DoF Franka robot must
execute a pre-defined complex task to achieve the final goal, specifically, opening the microwave
door. We compare our approach to the Discriminator Actor-Critic (Kostrikov et al., 2018), which
is provided with a single expert demonstration. Although not explored here, combining preference-
based learning and learning from demonstrations presents an intriguing research direction (Cao et al.,
2020).

To ensure fair comparisons, we maintain consistency across all baselines by keeping parameters
such as neural network layer width, number of layers, choice of optimizer, SAC implementation
parameters, etc., the same wherever possible. In RAPS, the lower-level behaviors are as follows:
for maze navigation, we design a single primitive, reach, where the lower-level primitive moves in
a straight line towards the subgoal predicted by the higher level. For the pick and place and push
tasks, we design three primitives: gripper-reach, where the gripper moves to a specified position
(x4, Y4, 2:); gripper-open, which opens the gripper; and gripper-close, which closes the gripper. In
the kitchen task, we use the action primitives implemented in RAPS (Dalal et al., 2021).

A.2.1 ADDITIONAL HYPER-PARAMETERS

Here, we enlist the additional hyper-parameters used in DIPPER:

activation: tanh [activation for reward model]

layers: 3 [number of layers in the critic/actor networks]
hidden: 512 [number of neurons in each hidden layers]

Q 1r: 0.001 [critic learning rate]

pi_lr: 0.001 [actor learning rate]

buffer size: int (1E7) [for experience replay]

clip obs: 200 [clip observation]

n_cycles: 1 [per epoch]

n_batches: 10 [training batches per cycle]

batch_size: 1024 [batch size hyper-parameter]
reward_batch_size: 50 [reward batch size for DPO-FLAT]

16

Under review as a conference paper at ICLR 2025

random_eps: 0.2 [percentage of time a random action is taken]
alpha: 0.05 [weightage parameter for SAC]

noise_eps: 0.05 [std of gaussian noise added to
not-completely-random actions]

norm _eps: 0.01 [epsilon used for observation normalization]
norm_clip: 5 [normalized observations are cropped to this values]
adam betal: 0.9 [beta 1 for Adam optimizer]

adam_beta2: 0.999 [beta 2 for Adam optimizer]

A.3 DIPPER ALGORITHM

Here, we provide the pseudo-code for DIPPER algorithm

Algorithm 1 DIPPER

1: Initialize preference dataset D = {}
2: Initialize lower level replay buffer R* = {}
3: fori=1...Ndo

4: // Collect higher level trajectories 7 using 7 and lower level trajectories p using ”,
5: // and store the trajectories in D and R* respectively
6: /I After every g timesteps, relabel D using human preference feedback y
7: /I Lower level value function update
8: for each gradient step in t=0 to k do
9: Optimize lower level value function V;, to get Vﬂ’?L

10: // Higher level policy update using DIPPER

11: for each gradient step do

12: /I Sample higher level behavior trajectories

13: (r1,7%,y) ~ D

14: Optimize higher level policy 7V using equation 15

15: /I Lower primitive policy update using RL

16: for each gradient step do

17: Sample p from R~

18: Optimize lower policy 77 using SAC

A.4 ADDITIONAL ABLATION EXPERIMENTS

— DPPER

Success Rate

0 100k 200k 300k 400k 500K

600k 700k 800K 0 100k 200 300k 400k 500k 600K o 100k 200k

ok 600k 800k 100k 500 300¢ 400k
Timesteps Timesteps Timesteps Timesteps

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen
== DIPPER == DIPPER-Random

Figure 5: Comparison with random reference policy This figure compares the success rate performances of
DIPPER against DIPPER-Random, which is DIPPER implemented with a random reference policy. As can
be seen, DIPPER significantly outperforms DIPPER-Random, which shows that our proposed reference policy
formulation demonstrates impressive performance on all tasks.

17

Under review as a conference paper at ICLR 2025

010

0 00k 200k 300 X 20k 00k 40K
Timesteps imesteps Timesteps

00k 500k 0 100k 200 300k 400k 500k 600K 700k
Timesteps T

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen
— 1E5 ==1E4 —1E3 — 1E2

Figure 6: Regularization hyper-parameter ablation This figure compares the success rate performances for
various values of primitive regularization weight A\ hyper-parameter. If « is too small, we loose the advantages
of primitive informed regularization, leading to poor performance. In contrast, if « is too large, it may lead to
degenerate solutions. Thus, picking proper A value is crucial for appropriate subgoal prediction, and improving
overall performance.

0 200k 400k 60K 800K 1oM 1M LaM 0 100k 200k 300k 400k 500K 600K 0 100c 2000 300k 400k 500k 600K 700k 0 100k 200k 300k 400k 500K 600k
Timesteps Timesteps Timesteps Timesteps

(a) Maze navigation (b) Pick and place (c) Push (d) Kitchen
— 0.05 == 0.1 03 —05

Figure 7: KL weight hyper-parameter ablation This figure compares the success rate performances for vari-
ous values of KL weight o hyper-parameter. This hyper-parameter value controls the weight of KL constraint
in higher-level policy objectives. If « is too large, the higher policy is very close to the reference policy, and
if o is too small, the higher policy is far from the reference policy. We pick the hyper-parameter values after
extensive ablation experiments.

Here, we provide the plots for the ablation experiments. Here, we perform the ablation analysis
for selecting the hyper-parameters. The primitive regularization weight hyper-parameter \ directly
controls the magnitude of primitive regularization. If A is too small, we loose the advantages of
primitive informed regularization. In contrast, if A is too large, it may lead to degenerate solutions.
We provide the ablation in Figure 6. Further, the hyper-parameter « controls the weight of KL
constraint in higher level policy objective. If « is too large, the higher policy is very close to the
reference policy, and if « is too small, the higher policy might stray too far from the reference policy,
leading to poor performance in both scenarios. « thus controls the amount of KL regularization in
the maximum likelihood DPO objective. We provide the ablation plots in Figure 7.

A.5 ENVIRONMENT DETAILS

This section contains additional details about the environment.

A.5.1 MAZE NAVIGATION TASK

In this environment, a 7-DOF robotic arm gripper navigates through randomly generated four-room
mazes. The gripper remains closed, and the positions of walls and gates are generated randomly.
The table is discretized into a rectangular W x H grid, with vertical and horizontal wall positions
Wp and H p randomly selected from (1, W —2) and (1, H —2), respectively. In the constructed four-
room environment, the four gate positions are randomly chosen from (1, Wp—1), (Wp+1, W —2),
(1,Hp — 1), and (Hp + 1, H — 2). The height of the gripper is fixed at table height, and it must
navigate through the maze to reach the goal position, indicated by a red sphere.

The following implementation details apply to both the higher and lower-level policies unless ex-
plicitly stated otherwise. The environment features continuous state and action spaces. The state is
represented as the vector [p, M], where p is the current gripper position, and M is the sparse maze
array. The higher-level policy input is a concatenated vector [p, M, g], where g is the target goal

18

Under review as a conference paper at ICLR 2025

position. In contrast, the lower-level policy input is a concatenated vector [p, M, s,], where s is
the sub-goal provided by the higher-level policy. The current position of the gripper is considered
the current achieved goal.

The sparse maze array M is a discrete 2D one-hot vector array, where a value of 1 indicates the
presence of a wall block, and O indicates its absence. In our experiments, the sizes of p and M
are set to 3 and 110, respectively. The higher-level policy predicts sub-goal s, so its action space
dimension matches the goal space dimension of the lower primitive. The lower primitive action a,
directly executed in the environment, is a 4-dimensional vector with each dimension a; € [0, 1]. The
first three dimensions provide offsets to be scaled and added to the gripper position for movement.
The last dimension controls the gripper: 0 implies fully closed, 0.5 implies half-closed, and 1 implies
fully open.

A.5.2 PICK AND PLACE AND PUSH ENVIRONMENTS

In the pick and place environment, a 7-DOF robotic arm gripper must pick up a square block and
place it at a goal position set slightly above table height. This complex task requires the gripper to
navigate to the block, close the gripper to grasp the block, and then move the block to the desired
goal position. In the push environment, the 7-DOF robotic arm gripper needs to push a square block
towards the goal position. The state is represented as the vector [p, o, ¢, €], where p is the current
gripper position, o is the position of the block on the table, ¢ is the relative position of the block
to the gripper, and e consists of the linear and angular velocities of both the gripper and the block.
The higher-level policy input is thus a concatenated vector [p, o, g, e, g], where ¢ is the target goal
position.

The lower-level policy input is a concatenated vector [p, 0, ¢, e, sq4], Where s, is the sub-goal pro-
vided by the higher-level policy. The current position of the block is considered the current achieved
goal. In our experiments, the sizes of p, o, ¢, and e are set to 3, 3, 3, and 11, respectively. The higher-
level policy predicts sub-goal s, so the action space and goal space dimensions are the same. The
lower primitive action a is a 4-dimensional vector with each dimension a; € [0, 1]. The first three
dimensions provide offsets for the gripper position, and the last dimension controls the gripper (O for
closed and 1 for open). During training, the positions of the block and goal are randomly generated,
with the block always starting on the table and the goal always above the table at a fixed height.

A.6 LIMITATIONS AND FUTURE WORK

Our DPO based hierarchical formulation raises an important question. Since DIPPER employs
DPO for training the higher level policy, does it generalize on out of distribution states and actions,
as compared with learning from reward model based RL formulation. A direct comparison with
hierarchical RLHF based formulation might provide interesting insights. Additionally, it will be
challenging to apply DIPPER in scenarios where the subgoal space is high dimensional. These are
interesting research avenues, and we leave further analysis for future work.

A.7 IMPACT STATEMENT

Our proposed approach and algorithm are not expected to lead to immediate technological advance-
ments. Instead, our primary contributions are conceptual, focusing on fundamental aspects of Hier-
archical Reinforcement Learning (HRL). By introducing a preference-based methodology, we offer
a novel framework that we believe has significant potential to enhance HRL research and its re-
lated fields. This conceptual foundation paves the way for future investigations and could stimulate
advancements in HRL and associated areas.

A.8 ENVIRONMENT VISUALIZATIONS

Here, we provide some visualizations of the agent successfully performing the task.

19

X X X

~4 ~ 4
-

Under review as a conference paper at ICLR 2025
]

FAaf

Figure 8: Maze navigation task visualization: The visualization is a successful attempt at perform-
ing maze navigation task

A SR SA m ma

Figure 9: Pick and place task visualization: This figure provides visualization of a successful
attempt at performing pick and place task

FPACAEYAA

Figure 10: Push task visualization: The visualization is a successful attempt at performing push
task

[L

Figure 11: Kitchen task visualization: The visualization is a successful attempt at performing
kitchen task

20

	Introduction
	Related Works
	Problem Formulation
	Hierarchical Reinforcement Learning
	Limitations of standard HRL approaches

	Classical RLHF Methods
	Direct Preference Optimization

	Proposed Approach
	DIPPER
	Bi-Level Optimization Formulation of HRL
	DIPPER Reference Policies
	DIPPER Objective
	DIPPER: A Practical algorithm

	Experiments
	Evaluation and Results.
	Comparing with DPO baselines
	Comparing with hierarchical baselines
	Comparing with non-hierarchical baselines

	Ablation Analysis

	Conclusion
	Appendix
	Deriving the final optimum of KL-Constrained Reward Maximization Objective
	Implementation details
	Additional hyper-parameters

	DIPPER Algorithm
	Additional Ablation Experiments
	Environment details
	Maze navigation task
	Pick and place and Push Environments

	Limitations and future work
	Impact Statement
	Environment visualizations

