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Abstract
The aim of this paper is to generate a more comprehensive
framework for evaluating synthetic speech. To this end, a line
of tests resulting in an exploratory factor analysis (EFA) have
been carried out. The proposed dimensions that encapsulate the
construct of “synthetic speech quality” are: “human-likeness”,
“audio quality”, “negative emotion”, “dominance”, “positive
emotion”, “calmness”, “seniority” and “gender”, with item-to-
total correlations pointing towards “gender” being an orthogo-
nal construct. A subsequent analysis on common acoustic fea-
tures, found in forensic and phonetic literature, reveals very
weak correlations with the proposed scales. Inter-rater and
inter-item agreement measures additionally reveal low consis-
tency within the scales. We also make the case that there is a
need for a more fine grained approach when investigating the
quality of synthetic speech systems, and propose a method that
attempts to capture individual quality dimensions in the time
domain.
Index Terms: speech synthesis evaluation, factor analysis,
speech quality

1. Introduction
The evaluation of quality for any given speech synthesis sys-
tem is commonly carried out on three dimensions. Its perceived
naturalness, its quality and its intelligibility. With the advance-
ments in text-to-speech (TTS) systems over the past decades,
the problem of intelligibility has become almost redundant, with
a main focus of research now lying on generating more natural
sounding voices [1]. These advancements however are gener-
ally reported on old scales based on the ITU P.85 [2] for mea-
suring signal degradation. These original scales and variations
of it have become the standard for many challenges which offer
a framework to compare state-of-the-art (SOTA) TTS systems
[3, 4]. This is despite early criticism regarding the completeness
and nature of these quality scales such as [5, 6, 7, 8]. Further
efforts to rework the set of quality evaluation instruments have
been carried out, but they are few and between [9, 10, 11] or
date back to a time of diphone synthesis systems, which dis-
played their own specific set of degradations and might as such
not been applicable to modern day systems [12, 13]. We take
these critiques to warrant a re-examination of commonly used
mean opinion scores (MOS) on modern day speech synthesis
systems. Secondly, it has also been noted, that the scope of
a critical speech unit (CSU) very much co-determines the out-
come of a quality evaluation [14]. This need for a more context-
aware and time-sensitive method of evaluation has also been
discussed in [15] and the importance of the specific wording
in a synthetic speech evaluation has been pointed out in [16].
We make the case for a change in evaluation procedure when

constructing new systems, to gain a more fine grained under-
standing of what the actual shortcomings of the systems under
evaluation are. This runs counter to the current practice which
seems to have adapted a methodology of trying to maximise
the MOS of a given system over previous iterations, without
analysing why the changes occur. To address these shortcom-
ings we propose a different evaluation technique which takes
into account the temporal aspect of speech data, by having par-
ticipants mark faulty segments for the previously determined
quality dimensions, similar to [17]. This type of rating scheme
would promise to offer further insight into the relationship be-
tween the perceptual quality dimensions of participants on the
one side and acoustic or other signal related properties on the
other.

2. Data

The employed corpus was comprised of 14 different TTS sys-
tems with variying accents, vocoders and training datasets. An
overview can be surveyed in Table 1. We tried to ensure that a
variety of modern day architectures are represented in the data
set. Since the voice of a TTS system strongly depends on the
underlying data, we also tried to cover a variety of commonly
used data sets for TTS construction, omitting the older bliz-
zard data sets for sparsity reasons. We also tried to incorpo-
rate multiple varieties of English. This was done to ensure that
the resulting work of our experiments will not be purely based
on US American voices, continuing a tradition of ’white wash-
ing’ datasets that has plagued Machine Learning research for
decades [18, 19]. The chosen content consisted of three Har-
vard sentences chosen from a set of 60 in total [20]. Each triple
was separated by 500ms of silence in between each sentence.
All systems generated 14 samples of these triple sets and the
resulting signals were downsampled to 22050Hz and amplitude
normalized to -18dB. We are unable to release a copy of the
data set due to licence restrictions but have included all relevant
details to enable comparison to similar data sets and tasks.

3. Methods

The analyses presented in this paper are twofold. First we con-
ducted a series of experiments to obtain terms of quality for
synthetic speech experiments in a bottom up fashion. These are
subsequently examined to determine overarching perceptual di-
mensions of quality using exploratory factor analysis. Secondly
we present a framework for capturing subjects impressions of
these terms of quality in the time domain.



Table 1: TTS system architectures.

Identifier Vocoder Dataset Accent Gender

2x
Google wavenet unknown unknown GB+AU M+M
Amazon Polly unknown unknown ZA+IN F+F

Microsoft Deepspeech unknown unknown NZ+IR F+M
Silero TTS unknown unknown US+US F+M

1x

vits end-to-end vctk GB M
fastspeech2 end-to-end LibriTTS US M

yourtts-multi end-to-end vctk US F
overflow HifiGAN LJ US F

speedy-speech HifiGAN LJ US F
espnet-xvector-transformer MultibandMelGAN LibriTTS US M

3.1. Scale derivation

For deriving the original scale items we roughly followed the
recommended procedure for inductive item generation outlined
in [21], [22] and [23]. The original terms of quality yield from
a pre-experiment in which 40 participants were asked to freely
supply terms which they feel best encapsulate the quality of a
given synthetic sample [24]. They were given a digital text in-
put in which to denote the terms and instructed to supply at least
three items per audio. The terms could be nouns, adjectives or
even whole phrases. The items were converted into unilateral
scales following the suggestions in [25], regarding the fact that
participants tend to have an easier time identifying the existence
or absence of a feature rather than giving an opinion. Polyse-
mous items were further appended with a qualifier to ensure that
participants would actually rate the same perceived trait, e.g.
funny/humorous to avoid funny being interpreted as strange.
These terms were then reduced with the employ of a 2h focus
group interview of relevant experts. The panel was constructed
of 1 speech technologist, 2 phoneticians and 2 clinical linguists.
The group first discussed multiple contenders for a valid defini-
tion of “synthetic speech quality” [25, 26, 27, 28], to generate a
shared base of discussion. The panel then surveyed an original
set of 68 scales, comprised of the experiments items as well ad-
ditional terms found in literature [25, 29], and examined them
for relevancy and expected clarity to naı̈ve participants reducing
them down to 64. In a final pre-test these items were presented
to 12 participants (5 experts, 7 naı̈ve, L1=Mixed), with random-
ized synthetic audio samples from the corpus described in sec.
2. The participants were instructed to rate their impressions of
the audio on the provided scales. They were then asked to de-
note the clarity of the scales’ labels on a 4 point Likert scale
from “very clear” to “very vague”. The initial rating task was
administered to help participants gather experience on the diffi-
culties encountered while applying the scales to an audio task,
instead of purely querying the semantic clarity. The resulting
scores were averaged across participants by treating the ordinal
levels as interval data. Computing the per scale certainty score
with a previously determined dropout threshold of 25% of the
maximum, no items were omitted, with the lowest scores falling
to “dark” and “bright” at 71% each.

3.2. Factor Analysis

In order to group the scales into overarching dimensions of
quality, 63 participants (32 M, 31F, L1=English) were recruited
over the online platform prolific to rate 4 samples each, total-
ing 252 samples, or 18 per system. Given that the corpus only
consisted of 15 distinct samples of each architecture, three ran-

dom audios per system obtained duplicate ratings. The slight
skew in stratification balance regarding the spoken content was
deemed insignificant and all ratings were used for further eval-
uation, yielding a rating to item ratio of 4:1. The scales were
presented as continuous intervals using sliders, as there were
no labels available to mark individual anchors within the scale,
which would be necessary for a Likert scale and we assume the
underlying dimensions to be continuous. Additionally, previous
research on voice quality perception has found that participants
tend to agree more on continuous scales [30]. The factor anal-
ysis was computed with oblique rotation, as we do not expect
the factors to be orthogonal. To ensure the scales were actually
correlated, a Bartletts test of sphericity was carried out which
showed a high correlation with p < 0.01. Prior scree plot ex-
amination determined 8 factors to be the threshold from which
the explained variance does not significantly increase. This hy-
pothesis was confirmed using parallel analysis. During the ex-
periment one randomly selected scale was duplicated for each
sample to serve as a control according to the suggestions in [31].
Each participant’s inconsistency score was computed by way of:

c =

n∑
i=1

(
|xi − xdup|

σ2
i

)
(1)

where xi and xdup describe the values for the original and du-
plicated scale, σ2

i the variance for that scale across participants
and n the total number of audios rated by that participant. As
all participants rated the same amount of samples n is constant
across subjects. All participants whose inconsistency amounted
to more than one fourth of the maximum possible divergence
for the duplicated scales were excluded from the final analysis,
removing four participants. The scale order was shuffled be-
tween items and participants to avoid context effects. Each par-
ticipant was also presented with a training phase containing the
same two anchor samples, which were not part of the analysis,
to establish a consistent frame of reference for their responses
similar to the suggestions in [30].

3.2.1. Consistency

To assess the consistency of the proposed scales across systems,
we report the Intra Class Correlation (ICC) coefficient for the
whole original set. This should give a measure of how invari-
ant the dimensions are to the spoken content, as there were 15
distinct samples for each system in the original data set. To
compute inter-rater consistency for the scales, a separate within
subject design was employed. The systems were reduced to
4, due to the time constraints on a single participant. To re-
tain as much variability as possible the content was randomly



selected between systems but kept same between participants.
20 (10m/10f, L1=Eng) naı̈ve listeners were presented with the
samples in a latin square design. Again, duplicated scales were
introduced as control, removing 3 participants from the final
analysis. The agreement results were evaluated by computing
ICC(3,C) for the whole set, as well Krippendorff’s alpha [32]
for the individual scale items. The overall ICC denotes the over-
all agreement of the 20 participants across all scales, while the
α coefficients are computed per scale across systems, depicting
inter-rater agreement on interval scales, to obtain an estimate of
which quality items would give consistent ratings in real exper-
iment conditions.

3.2.2. Acoustic analysis

To gain some preliminary insight into how the perceptual di-
mensions interact with known acoustic measures, a correlation
analysis on the derived quality scales was conducted. Five dif-
ferent acoustic measures were chosen, which are known to have
strong explanatory power for small segments in the fields of
speaker forensics and voice quality research [33, 34, 35] . The
chosen measures consisted of periodicity markers: jitter, shim-
mer and spectral flux, spectral slope measurements in different
frequency bands, cepstral peak prominence (CPP), as well as
the fundamental frequency. Since the perceptual quality rat-
ings always pertain to a whole file, the acoustic correlates were
averaged over the whole duration, with spectral slope only be-
ing computed on voiced segments and spectral flux on voiced
and unvoiced parts separately. Most features were computed
using the openSMILE [36] python API. CPP was derived using
the definitions in [37]. For the acoustic analysis, the Spearman
rank coefficient was chosen as measure of correlation, because
the relationships between scale measures and acoustics is not
necessarily assumed to be linear.

3.3. Time domain evaluation

Traditional MOS ratings are usually computed over a whole
segment. Since context is required for assessing specific qual-
ities of a sample in question, these segments can not be made
arbitrarily small. In this experiment we investigate whether par-
ticipants are able to consistently mark parts of a given sample
on a quality dimension. To this end, the subjects were pre-
sented with the same samples from 6 different systems and a
digital representation of an oscillogram of the signal. The inter-
face allowed them to mark regions by clicking and dragging the
mouse. They were first tasked to provide an overall rating on the
given dimension, with the scale items being integrated into one
question. Then they were asked to mark the parts of the signal
which they felt to be especially detrimental to the investigated
dimension (e.g. very non-human or very emotionally negative).
As in the previous experiments they were first presented with
the same two anchors in a training phase to calibrate their inter-
nal expectations and thus reducing variability. To avoid forced
choice artifacts they were also given the option to state that the
system was equal in quality throughout the spoken parts on the
dimension in question. We analysed the two major factors of
“human-likeness” and “negative emotion” separately, with 10
participants each. The “audio quality” dimension was deemed
to be unfit for this kind of examination, due to the fact that all its
components describe variations of background artifacts which
should be present throughout the signal.

4. Results

The factor analysis revealed 8 relevant underlying factors to the
scales of quality in question. The cumulative explained variance
amounts to 0.51 and Kaiser-Mayer-Olkin [38] MSA = 0.87,
with the lowest per-item values falling on the highly de-
correlated measures of gender. The internal consistency of the
scales was computed using Cronbach’s Alpha [39] α = 0.90
suggesting high correlation between the scales overall. Inves-
tigating item-to-total correlations to see which scales might ac-
tually be describing a separate construct yields very low scores
for the male scale of r = 0.06. Additionally we find low bear-
ings for the scales of loud: r = −0.004 and native: r = −0.02.
Table 2 lists all items and their significant loadings (> 0.4) on
the strongest correlating factor, with no single item having high
complexity to significantly influence multiple factors. The fac-
tors are ordered by their explained variance of the overall data,
with the most contributing factors appearing at the top.

4.1. Factors

The first factor describes the samples’ “human-likeness” with
the highest loadings being on artificiality and naturalness. Note
that this factor conflates prosodic information such as “speech
melody” with voice quality information like “metallic/tinny”.
This could point to the possibility that untrained participants are
not able to differentiate between these constructs. The second
factor labeled “audio quality” encompasses all items describing
different variants of background artifacts. The third factor was
named “negative emotion” as it seems to pertain to a combina-
tion of perceived voice qualities and subsequent elicited nega-
tive emotions in the listener. The fourth factor seems to describe
terms which place the perceived speaker in an authoritative po-
sition, with the most influential loadings being confidence and
authority. In factor five we find most of the scales associated
with positive impressions and it is subsequently named “posi-
tive emotion”. The sixth factor only contains the items of calm-
ness and agitatedness. While this dimension has appeared in
similar studies [13], two correlated items do not make for a
salient and overdetermined factor and this dimension should as
such be re-examined in confirmatory factor analysis. The sev-
enth factor, labeled “seniority”, seems to contain scales relat-
ing to the perceived speaker’s age and voice quality. The least
contributing factor is the orthogonal construct of gender which
will be omitted in future investigations. Looking at the between
factor interactions we find that the first two factors of “human-
likeness” and “audio quality” show medium correlation with
ρ = 0.42. We could not attest a strong correlation between the
seemingly diametrically opposed factors of “positive emotion”
and “negative emotion”.

4.2. Consistency

The overall inter-rater consistency is fair with ICCs of 0.42,
0.40, 0.65 and 0.35 by sample, averaging to 0.45 across all
audios and scales. Investigating the single scales, however,
it quickly becomes apparent that this high overall consistency
is mostly due to the items of not male-male and not female-
female. These scales each obtained a Krippendorffs α = 0.98
and α = 0.99 respectively across samples. All other items
under investigation were much more variant between partici-
pants’ opinions, the closest being non artificial-artificial with
α = 0.35 and non human-human with α = 0.28.



Table 2: Synthetic quality scales and their strongest corre-
sponding factor with the respective factor loading. Note that
negative factor loadings denote inverse correlation and items
with loadings < 0.4 have been omitted.

scale label loading
human human-likeness -0.69
good speech melody human-likeness -0.43
fluttering/pulsating human-likeness 0.43
strange human-likeness 0.43
irritating human-likeness 0.46
metallic/tinny human-likeness 0.48
interrupted/chopped human-likeness 0.61
glitchy human-likeness 0.66
artificial human-likeness 0.78
unnatural/distorted human-likeness 0.82
grainy audio quality 0.41
hissing audio quality 0.60
chirping/clicking audio quality 0.64
rumbling audio quality 0.67
crackling/static audio quality 0.79
humming/buzzing audio quality 0.87
frightening negative emotion 0.40
quiet negative emotion 0.43
dark negative emotion 0.58
slow negative emotion 0.61
sad negative emotion 0.66
low negative emotion 0.68
posh dominance 0.43
loud dominance 0.47
native dominance 0.50
educated dominance 0.58
stern dominance 0.58
fluent dominance 0.59
authoritative dominance 0.61
confident dominance 0.78
boring positive emotion -0.50
emotive positive emotion 0.47
captivating positive emotion 0.49
pleasant positive emotion 0.52
warm positive emotion 0.58
calm calmness -0.66
agitated calmness 0.51
high seniority 0.47
fast seniority 0.50
thin seniority 0.58
young seniority 0.62
male gender -0.90
female gender 0.94

4.3. Acoustic correlates

The results of the acoustic correlation analysis can be surveyed
in tab. 3. All of the investigated acoustic measures strongly
correlate with the perceived gender, with the strongest predic-
tor being the fundamental frequency for all quality correlates.
Outside of the gender factors the highest correlation could be
attested between F0 and the high-low continuum as well as
the not foreign-foreign scale. Also note that CPP seems to
be largely independent of all perceptual quality dimensions un-
der investigation, with the highest correlation also being gender
at ρ(CPP, female)=0.23 and ρ(CPP, male)=−0.22. Within the
acoustic measures we noted a strong correlation of jitter and
shimmer to the fundamental frequency, which is to be expected

since the former are partially derived from the latter.

Table 3: Spearman correlation between synthetic quality scales
and common acoustic features. Only ρ > |0.3| was included in
this table.

acoustic feature quality scale ρ
F0 not female-female 0.74
jitter not female-female -0.50
shimmer not female-female -0.72
spectral slope 0-500Hz not female-female 0.64
spectral slope 500-1500Hz not female-female -0.44
Spectral Flux voiced not female-female -0.65
Spetral Flux unvoiced not female-female -0.46
F0 not foreign-foreign 0.33
spectral slope 0-500Hz not foreign-foreign 0.32
Spectral Flux voiced not foreign-foreign -0.33
F0 not high-high 0.38
jitter not high-high -0.31
F0 not low-low -0.37
spectral slope 0-500Hz not low-low -0.31
F0 not male-male -0.74
jitter not male-male 0.47
shimmer not male-male 0.71
spectral slope 0-500Hz not male-male -0.64
spectral slope 500-1500Hz not male-male 0.50
Spectral Flux voiced not male-male 0.66
Spetral Flux unvoiced not male-male 0.48

4.4. Time domain analysis

Fig. 1 shows the participants’ markings of all 6 samples on
the human-likeness domain. As is evident, the whole marked
amount of unnaturalness varies between systems. We also note
that the participants vary in their individual granularity, with
some participants marking whole chunks of the signal and oth-
ers marking specific intervals. This leads us to believe that our
instructions might not have been clear enough in asking partic-
ipants to be highly specific in their selections. We report the
inter-annotator agreement of participants within each domain
with Fleiss kappa [40] where annotator agreement calculation
is modified to consider pairs where one participant did not an-
notate any segments in the sample:

Aa =
1(
K
2

) K−1∑
ℓ=1

K∑
m=ℓ+1

∑n
j=1 mass(j) · ōv(j, ℓ,m)∑n
j=1 w(j, ℓ,m) ·mass(j)

, (2)

where K is the number of participants, mass(j) denotes the to-
tal length of marked segments in sample j by any participant,
ōv(j, ℓ,m) is the mean of relative overlap between marked seg-
ments of participants ℓ and m over disjunct segments on sam-
ple j and w(j, ℓ,m) is 1 if both participants ℓ and m marked at
least one segment in sample j, else 0. Tab. 4 shows the agree-
ment depicted by system and condition. The human-likeness
condition yields an overall moderate Fleiss kappa of 0.60. The
value for the negative emotion domain is slightly lower with
0.55, suggesting that the signal properties of negative emo-
tionality are not as clear. Analysing the agreement values by
sample, we find that they also vary strongly between systems.
Participants were also tasked to provide traditional ACR rat-
ings on a five point scale for the domains in question, to serve
as a comparative baseline for an inter-domain agreement mea-
sure. We computed a linear mixed effects regression with the



Figure 1: Visualization of participants’ markings of unnatural segments on 6 audio samples by different systems under the human-
likeness condition. Each color denotes one participant, with overlapping segments showing multiple participants’ agreement.

audio samples as within factor and could not confirm an ef-
fect of the question being asked on participants ratings with
p > 0.5, β = −0.08. To ensure that participants did not
mark the same segments in both conditions we also compute
a General Additive Mixed model (GAMM) on the summed par-
ticipant markings over time. We model the density of partici-
pants markings at a given time step, dependent on question do-
main with the audio samples as within effect. The model finds
a strong effect of the question domain on participants marked
region density p < 0.001, β = −0.67. Fig. 2 shows the
smoothed predictions of the computed model in both condi-
tions. As is evident, the significant difference between the two
sets of interval markings is in magnitude as was found by the
intercept in our model, but barely in placement. This leads us
to believe that despite the significant model participants did in-
deed mark similar regions within the audios independent of the
dimension under investigation.

Table 4: Kappa value, percentage of overlapping to total
marked area and percentage of marked area to total signal
length for time markings in the human-likeness and negative
emotion domains.

human-likeness negative emotion
system: % overlap % of total % overlap % of total
system1 33.07 43.0 / 0.0
system2 31.1 42.44 88.24 88.98
system3 48.12 15.96 0.0 10.08
system4 70.04 51.34 54.81 46.56
system5 38.35 32.28 52.53 79.72
system6 55.14 40.08 86.56 73.8

κ 0.60 0.55
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Figure 2: Difference in density of participants markings of
unnatural or emotionally negative regions, as predicted by a
GAMM. Each curve represents the predicted amount of summed
participant markings over the given time steps, with 95% con-
fidence intervals. The time axis has been normalized across
samples to allow for direct comparison.

5. Discussion
The lack of inter-rater agreement on the same audio samples
casts a shadow on the reliability of the common MOS proce-
dures in speech synthesis evaluation. This runs counter to the
previous findings on the reliability of MOS for signal degrada-
tion in [41], the consistency of listeners ratings in the blizzard
challenge [8] or the retest reliability for naturalness MOS re-
ported in [42], suggesting that the sample size for the reliability
test might have been too small. In [43] it was shown, that bigger



sample sizes lead to more stable MOS values. A different expla-
nation might be, that the level of abstraction of the terms queried
is inversely correlated to the reliability of the results which
would be in line with the findings in [42], who also reported
utterance level correlations which were much lower than sys-
tem level correlation to previous evaluations of the same data.
This is also supported by the lack of effect we found on query-
ing different domains between participants in the time marking
experiment. While the validity of linear regression models on
ordinal Likert type data is still an ongoing debate, other possible
explanations could be the practice of merging subscales of a fac-
tor into one question as proxy items, or the fact that the domains
were not presented at the same time to allow participants to rate
them in the context of the whole construct. This second ex-
planation could also be a reason for participants’ time markings
correlating across domains and could be remedied by having the
subjects mark both domains simultaneously, which was decided
against to reduce cognitive load. Regarding the poor correlation
of acoustic measures to the perceived quality scales it should be
noted that these findings do not suggest the acoustic measures
are bad representations of their respective constructs. Rather,
this points to the fact that these voice quality terms, which are
ubiquitous in use for forensic and phonetic research, are not
as well defined for a layperson and as such make for unstable
quality measures in listening experiments. This interpretation
has been corroborated in similar endeavours on finding acoustic
correlates to the perceptual dimensions of voice [44], with [34]
suggesting that there might not be one to one but compound re-
lationships. Concerning the time domain evaluation procedure
it should be noted that the subjects used in this pretest were re-
cruited by word of mouth and 40% claimed to have semi-regular
contact with synthetic voices. This might pose a confound re-
garding the findings of [45] that listeners do adapt to synthetic
voices with exposure, albeit on intelligibility. On the other hand
common challenge evaluation procedures recruit their partici-
pating scientists for listening evaluations and as such our sub-
ject base might be rather representative of standard evaluation
conditions. Independent of the inter-rater agreement we also
note that the time variant markings let us find patterns across
participants data. Inspecting system3 in Fig. 1 for example, we
clearly observe that the participants consistently marked the end
of utterances, even though they did not agree on the same areas.

6. Conclusions
The construct of “synthetic speech quality” as a whole appears
to be fairly stable on the dimensions of “naturalness” and “au-
dio quality” as is evident when comparing the results to previ-
ous studies [29, 46] of similar nature. Our analysis did, how-
ever, uncover more dimensions in the “positive emotion”, “neg-
ative emotion” and “dominance” categories. This is in line
with the findings of [47] who found that affective scales have
an effect on the overall perceived quality of experience in the
context of personal digital assistants. The additional factors
found in our study could be attributed to the larger set of ini-
tially administered scales, as well as the strict transformation
to unilateral descriptive terms rather than qualitative questions.
Regarding the examination of acoustic correlates it seems evi-
dent, even from our preliminary testings, that traditional acous-
tic measures do not serve as good representations for capturing
participants’ perceptual quality ratings on the investigated di-
mensions, as we could not confirm any monotonic relationship
between the chosen measures and quality responses. First anal-
yses of the newly proposed method to elicit participants’ ratings

on a more fine grained scale yield promising results regarding
the subjects consistency in marking the same regions. We do
however also find strong overlap between the marked intervals
of participants when being prompted to denote different aspects
of quality, which warrants further investigation with a modi-
fied approach in which multiple factors are being queried at the
same time. Following analysis of the marked regions with high-
est density across participants might also better serve to find
acoustic correlates of the perceptual quality dimensions as well
as yield insight into the individual shortcomings of the systems
under investigation.
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