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Abstract

Subset selection is a fundamental problem in ma-
chine learning, data mining, game theory, and
economics, where the objective is to select a sub-
set of elements from a collection that maximizes a
given submodular function. This renders submod-
ular maximization an important and widely stud-
ied problem. However, in massively distributed
settings with sensitive data, centralized iterative
optimization is often infeasible and disfavored
due to privacy concerns and computational con-
straints. To address these challenges, we pro-
pose a novel federated algorithm for maximiz-
ing a monotone submodular function where the
data and computations are distributed across mul-
tiple clients. Our approach enables optimization
without requiring a central server to directly ac-
cess the local functions. To handle scalability, we
employ client subsampling for aggregation and
low-bit communication updates, reducing com-
munication complexity – which is critical in large
scale and high-dimensional settings. Our fed-
erated algorithm guarantees a 1

2 -approximation,
and effectively captures the trade-off between the
number of participating clients and bit complex-
ity. We then propose a second algorithm for im-
proved efficiency, which requires only logarithmi-
cally many communication rounds between the
clients and the central server, while preserving
the 1

2 -approximation guarantee. The approxima-
tion guarantees of our algorithms can be improved
to 1 − 1

e through amplification techniques. Our
methods are validated numerically, demonstrat-
ing their effectiveness in real-world settings and
corroborating our guarantees.
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1. Introduction
The problem of selecting a subset of elements from a dis-
crete universe is central in machine learning and data-mining
and it essentially seeks to select a subset from a collection
of elements, such that a prespecified objective is optimized.
This is a highly comprehensive framework that arises in
numerous application. Some of the most relevant applica-
tions to this work are those related to recommender systems
(Mehrotra & Vishnoi, 2023), resource and facility allocation
(Abbasi et al., 2024; Elhamifar, 2019), coverage functions
(Karimi et al., 2017). For example, in recommender sys-
tems the goal is to pick a subset of items from a collection
(e.g., restaurants or movies) such that the selected items best
summarize the collection or best match the users’ interests.

In many of the above examples the objective function can
be expressed as a set function with nice structural prop-
erties. One of the properties that naturally appears is the
diminishing return property. That is, as the set of selected
elements increases; the marginal contribution of the new
ones decreases. Specifically, for a collection of elements
E, a set function F : 2E → R has the diminishing return
property if for any S ⊆ T ⊆ E and e ∈ E \ T we have

F (S ∪ {e})− F (S) ≥ F (T ∪ {e})− F (T ). (1)

These functions comprise the class of submodular functions
and many of the subset selection tasks can be formulated as
optimizing a submodular function. In our work, the goal is
to pick a subset of elements S under some feasibility con-
straints from a collection E such that F (S) is maximized,
where F (S) is a monotone and non-negative submodular
function. Submodularity has an amazing algorithmic conse-
quence that leads to an efficient and easily implementable
iterative greedy algorithm (Nemhauser et al., 1978). This
algorithm initializes S as the empty set and at each iteration
greedily selects an element with maximum marginal contri-
bution from the remaining elements, for a fixed number of
iterations.

While appealing, this greedy algorithm has several draw-
backs. Firstly, it is sequential and centralized, and is not
emendable to real-world applications that involve distributed
data across multiple devices or organizations. We elaborate
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on this through an example of movie recommendations, in
which service providers often deal with millions, if not bil-
lions of users, hence collecting their data (e.g., interest and
ratings) in a one central server is computationally infeasible
and requires substantial memory allocation. Moreover, in-
dividual users may be reluctant to share their raw data and
interests with an untrusted/curious central server. This is
one example which prevents centralized optimizations tech-
niques and procedures from being performed by one central
server, due to privacy concerns, communication constraints;
and the sheer volume of data.

In an era where data is generated at unprecedented rates
across distributed sources, such as smartphones, IoT devices,
and organizational networks, it is challenging to perform
meaningful optimization approaches without compromising
privacy or efficiency. Federated settings offer an attractive
alternative by enabling decentralized computations while
keeping sensitive data local to its source. This paradigm
aligns with privacy-preserving principles, reduces commu-
nication overheads, and supports scalable optimization in
distributed environments, rendering it particularly applica-
ble to large-scale submodular optimization tasks.

Problem definition and setting. With this in mind, we
consider the problem of maximizing a submodular function
in the federated setting. Let E be a ground set of size m
and c1, . . . , cn be n clients, each of whom has a (private)
interest over E = {e1, . . . , em}. Each client’s interest is
expressed as a submodular function fi : 2

E → R≥0, where
i indicates the client’s index. A central server wants to solve
the following constrained distributed optimization problem

max
S∈I

F (S), with F (S) =

n∑
i=1

pifi(S) (2)

where I is the set of feasible solutions (e.g., independent
sets of a matroidM with ground set E), and p1, . . . , pn are
pre-specified weights such that 0 < pi < 1 and

∑n
i=1 pi =

1. For instance, they can be set to 1/n. To simplify our
presentation, we assume pi = 1

n for all i. All our results and
techniques generalize for an arbitrary simplex p1, . . . , pn.
In the optimization problem (2) the data can be massively
distributed over the number of clients n, meaning that n
itself can be very large. We emphasize that the ground set E
is common to all clients, though fi may differ. It is possible
that different clients may have different subsets of E as their
domain. What we present covers this scenario also.

Generally speaking, in federated learning (FL) settings
(McMahan et al., 2017; Konečnỳ et al., 2016; Rafiey, 2024),
a central server asks for client’s local updates through rounds
of communications with the active clients. Upon receiving
the clients’ updates, the central server decides on a global
update. This process is repeated several times until we con-
verge to a satisfactory solution. We emphasize, in our setting

clients do not trust the central server and for privacy reasons,
we assume the server has access only to the aggregated
updates of clients; and not individual updates.

Federated settings come with their own challenges and con-
siderations. Next, we discuss the most relatable to our work.

Client participation and heterogeneity. In our feder-
ated setting, unlike traditional distributed settings (Mirza-
soleiman et al., 2016; Barbosa et al., 2015; Bateni et al.,
2018), the central server does not have control over the
clients’ devices, nor on how the data is distributed. For
instance, when a mobile phone is turned off or WiFi access
is unavailable, it becomes unavailable to the server. The
clients’ objectives can differ vastly, which may depend on
their respective local datasets; an issue known as hetero-
geneity (Qin et al., 2023). Scalability and performance of
federated settings also depend significantly on the number
of participating clients and the algorithm’s communication
efficiency. Real-world federated systems often involve bil-
lions of devices. While including more clients improves the
diversity and optimization quality, it introduces practical
challenges (Chen et al., 2022). Communication is a bottle-
neck under bandwidth constraints, and relying on all clients
causes stragglers to slow down training (Lee et al., 2018; Li
et al., 2020).

Bit complexity. Beyond client participation and hetero-
geneity, the bit complexity of the iterative and distributed
updates is another factor which can prevent scalability (Basu
et al., 2019; Haddadpour et al., 2021). Even when working
with a limited number of clients, transmitting uncompressed
updates can overwhelm bandwidth resources, and strain
energy-constrained devices such as smartphones or IoT sen-
sors. Conversely, carefully designed mechanisms which
reduce bit complexity, can significantly alleviate communi-
cation costs without sacrificing performance.

1.1. Our contributions

We address the challenges of scaling to many clients, re-
ducing bit complexity of the updates, and ensuring good
approximation quality, enabling efficient and scalable sub-
modular maximization in federated settings.

• We propose a federated algorithm for optimizing Equa-
tion (2), by requiring only r rounds of communication be-
tween the central server and clients. (Here r depends on
constraints.) Our algorithm obtains 1

2 -approximation guar-
antees and effectively captures the trade-off between the
number of participating clients and bit complexity. It is
versatile and applicable to scenarios involving both a large
number of clients and a limited number of clients.

• We also design a federated algorithm which requires a
reduced number of communication rounds. Specifically, we
present a method requiring only O(log |E|) communication
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Method Approximation # clients per round # bit per client # communication rounds

Algorithm 1 1/2−O(ε) Õ(m2r2/(d2ε2)) Õ(d) r

Algorithm 2 1/2−O(ε) Õ(m2r4/(d2ε2)) Õ(d) O(logm log(r/ε)ε−2)

Algorithm 3 (Theorem B.2) 1− 1/e−O(ε) Õ(m2r2/(d2ε2)) Õ(d) O(r/ε2)

Algorithm 3 (Theorem B.1) 1− 1/e−O(ε) Õ(m2r4/(d2ε2)) Õ(d) O(logm log(r/ε3)ε−3)

Proposition C.1 (local DP) 1/2−O(ε) K = Õ(m2r2/(d2ε2)) Õ(ε d
√
K) r

Wang et al. (2023) 1/2−O(ε) n Õ(m) r

Rafiey (2024) (Algorithm 3,
assuming n≫ m)

1/2−O(ε) O(m2r/ε2) Õ(m) r

Table 1: Summary of our results under a matroid constraint. All results listed in this table achieve multiplicative approxima-
tion guarantees with no additive error. Consequently, we exclude results such as Algorithms 1 and 2 from (Rafiey, 2024),
which incur additive error and involve parameters not discussed in this paper. Our local DP result, Proposition C.1, has
(ε′ mr, δ′ mr)-DP guarantee with ε′ = O

(
r

εK log 1
δ′

√
log mr

δ

)
. Its approximation guarantee can be improved to 1− 1/e

using the amplification technique.

rounds; which achieves a 1
2 -approximation to Equation (2).

Our analysis rigorously explores the interplay between the
number of participating clients and the bit complexity, pro-
viding deeper insights into this trade-off.

• We further improve the approximation guarantee to
(1−1/e) using an amplification technique (Chekuri & Quan-
rud, 2019; Balkanski et al., 2019; Badanidiyuru & Vondrák,
2014), requiring only a constant number of additional com-
munication rounds. We also extend our framework to in-
corporate local differential privacy, at the cost of higher bit
complexity. Full details are provided in the appendix.

See Table 1 for a summary of our results.

1.2. Related work

The main approach to submodular maximization is the
greedy approach, which in the centralized setting yields
a tight approximation guarantee under various scenarios and
constraints e.g., see (Călinescu et al., 2011; Chen & Kuhnle,
2023; Nemhauser et al., 1978; Nikolakaki et al., 2021; Von-
drak, 2008). However the sequential nature of the greedy
approach deems it prohibitive to scale to massive datasets.
This issue is partially addressed by means of Map-Reduce
style algorithms (Kumar et al., 2015), and several elegant
distributed algorithms (Bateni et al., 2018; Mirzasoleiman
et al., 2016; Barbosa et al., 2015), as well as in the adaptive
and parallel frameworks (Balkanski et al., 2019; Balkanski
& Singer, 2018; Chekuri & Quanrud, 2019).

Rafiey (2024) considered solving Equation (2) under ma-
troid constraints and designed algorithms, Algorithms 1
and 2 in (Rafiey, 2024), based on the Continuous Greedy
Algorithm (Călinescu et al., 2011) that achieves 1−1/e mul-
tiplicative approximation guarantee plus an additive error.
The additive error depends inversely on the number of com-
munication rounds. Rafiey’s algorithmic framework, under

mild heterogeneity assumptions, is very flexible and applica-
ble to many practical settings. Algorithm 1 in (Rafiey, 2024)
can handle partial client participation and requires only Õ(r)
bit complexity per round per active client, where r ≤ m
is the rank of the matroid, and often r ≪ m. They further
improve this algorithm by proposing Algorithm 2 in (Rafiey,
2024), which incorporates a client’s local step to reduce
the number of communication rounds at the cost of a larger
additive error and Õ(m) bit complexity per round per active
client. We point out that their algorithm requires clients
to locally estimate gradients of the multilinear extension,
which in turns requires clients to do roughly O(log(T K))
local function evaluations, were K is the number of clients
participating in a communication round and T ≥ r is the
number of communication rounds. Assuming n≫ m, they
also proposed a more computationally efficient algorithm,
Algorithm 3 in (Rafiey, 2024), that avoids multilinear ex-
tension, leveraging sparsification techniques from (Rafiey &
Yoshida, 2022). This algorithm achieves a 1

2 -approximation
(with no additive error) under matroid constraints and re-
quires r communication rounds, O(m2r/ε2) active clients
per round, and Õ(m) bit complexity per round per active
client, along with estimation of each client’s importance
factor.

Wang et al. (2023) considered the problem of maximizing
a non-negative and monotone submodular function in fed-
erated settings, where they focus on DP. The idea is that
clients add DP-noise to their updates before sharing them
with the server, and they achieve a 1 − 1/e multiplicative
approximation guarantee under a cardinality constraint; plus
an additive error that is an artifact of their DP mechanism.
Their algorithm requires all clients to participate in each
communication round, with bit complexity per client per
round of Õ(|E|).
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2. Preliminaries
Let E be the ground set with |E| = m. A submodular
function f : 2E → R is monotone if f(S) ≤ f(T ) for
every S ⊆ T ⊆ E. Throughout the paper, we assume
f(∅) = 0. The marginal contribution of e to set S is denoted
by f(e | S) := f(S ∪ {e})− f(S).

Matroids. A pairM = (E, I) of a set E and I ⊆ 2E is
called a matroid if 1) ∅ ∈ I, 2) A ∈ I for any A ⊆ B ∈ I,
3) for any A,B ∈ I with |A| < |B|; there exists e ∈ B \A
such that A ∪ {e} ∈ I. Sets in I are called independent
sets. We sometimes abuse notation to denote sets in I by
S ∈ M. The rank function rankM : 2E → Z+ ofM is
rankM(S) = max{|I| : I ⊆ S, I ∈ I}. An independent
set S ∈ I is called a basis if rankM(S) = rankM(E).
Denote the rank ofM by rank(M); or r when it is clear
from the context, and OPT = maxS∈I F (S).

3. Low bit complexity with unbiased clients
In this section, we present our federated algorithm, Algo-
rithm 1, in the low bit complexity regime. The central server
initializes S as the empty set S = ∅ and after each commu-
nication round adds an element to the current set S. The
element selection is greedy, and is based on the information
received from the clients. Since the objective is to find a
subset S ∈ I to maximize F (S) for monotone F , it is sen-
sible to include as many elements as possible, as long as we
do not violate the constraint S ∈ I. Hence, the number of
communication rounds is set to be r = rank(M).

At each communication round the server selects K active
clients uniformly at random; this selection is independent of
the clients’ local functions and any other local information
of theirs. Let A(t) denote the set of sampled clients selected
in iteration t. The central server broadcasts the current
set S to all the clients with indices in A(t), each of which
does a local computation in parallel. These clients then
sample d distinct elements Di = {ei1, . . . , eid} from E \S
uniformly at random, for each i ∈ A(t). We emphasize that
this sampling does not require any function evaluation, nor
does it require any matroid oracle queries. The marginal
contribution of each eij ∈ Di is computed with respect
to the local function fi, and each client i sends fi(S ∪
{eij}) − fi(S) for all j ∈ [d], which requires only Õ(d)
bits to encode.

Ultimately, the goal of each communication round is for
the central server to learn an estimate of marginal contribu-
tions of the remaining elements. The clients’ updates are
scaled by a factor of |E\S|

dK , to obtain unbiased estimates
of the marginal contributions of all elements in E \ S. Let
F̂
(
e | S

)
= |E\S|

dK

∑
i∈A(t),e∈Di

fi
(
e | S

)
denote the

(securely) aggregated updates of clients for e ∈ E \ S.

Algorithm 1 FedSM with d-bits and K clients
1: Input: MatroidM = (E, I) of rank r, δ, ε ∈ (0, 1).
2: d← an integer in [1,m− r], and λ = maxe,i fi({e})

3: K ←
(
m
d

)2
r2 λ2 ln

(
2 rm

δ

)
8 ε2

, S ← ∅.
4: for t = 0 to r − 1 do
5: Server selects a subset of K active clients A(t) uniformly

at random, and sends S to them.
6: for each client i ∈ A(t) in parallel do
7: Sample d distinct elements Di = {ei1, . . . , eid} from

E \ S uniformly at random.
8: for each e ∈ Di send back to the (secure) aggregator do
9: /* Scale by |E\S|

dK
to remain unbiased */

10:
( |E\S|

dK
(fi(S ∪ {e})− fi(S)), e

)
11: end for
12: end for
13: /* (Securely) aggregate the reports to form estimates: */
14: For each element e ∈ E \ S define

F̂
(
e | S

)
= |E\S|

dK

∑
i∈A(t), e∈Di

fi
(
e | S

)
. (3)

15: Server updates: S ← S∪
{
argmax e:S∪{e}∈I F̂

(
e | S

)}
.

16: end for
17: Output: S

Then, the central server performs a greedy selection step
S ← S ∪

{
argmax e:S∪{e}∈I F̂

(
e | S

)}
.

The utility of S returned by our algorithm depends on how
accurately the central server estimates the marginal contri-
butions from client feedback. Due to randomness in client
selection at the server and element sampling at the clients,
the server’s estimates of marginal contributions may not
be accurate. To mitigate this issue, the central server can
sample a larger number of clients at each round. Addition-
ally, each client may need to sample a substantial number
of elements Di. Next, we outline the trade-offs associated
with different parameter choices.

Different choices of K and d. Depending on the cen-
tral server’s computational limitations and the dataset e.g.,
number of clients n and |E|, different choices of K and
d may be more suitable. For instance, the scenario where
K = n and d = O(m), realizes the centralized greedy al-
gorithm (Nemhauser et al., 1978). In this scenario, at each
communication round the server learns the exact marginal
contribution of each element F (e | S) = 1

n

∑n
i=1 fi(e | S).

In scenarios where the number of clients is much larger than
the size of the ground set i.e., n ≫ m, setting d = 1 and
K = Õ(m2 r2 λ2/ε2) suffices to achieve a 1

2 multiplicative
approximation guarantee. However, when it is not possible
to have such a large K, we need to compromise by increas-
ing d. This proportional trade-off between K and d is also
verified in our experiments.
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Definition and role of λ. We define λ as λ =
maxe,i fi({e}). This is not restrictive, as upper bounds
on the evaluations of fis often exist in practice, and λ is
typically a constant in most cases. This value imposes an
upper bound on the extent to which distinct local functions
can differ. By the submodulaity of the fi’s we have

∣∣F (e |
S) − fi(e | S)

∣∣ ≤ 2λ, ∀e, S. (This is similar to Assump-
tion 3.1 in (Rafiey, 2024)) Moreover, by submodularity and
monotonicity we have fi(e | S) ≤ λ for all e and S. This is
important for us to derive a concentration bound over the up-
dates received from the clients at each communication round.
The value of F̂

(
e | S

)
= |E\S|

dK

∑
i∈A(t),e∈Di

fi
(
e | S

)
is bounded within a range that depends on λ. This, in turn,
allows us to apply Hoeffding’s inequality to show that for
sufficiently large K, the estimates of marginal contributions
are, with high probability, within a small additive error of
the true value F

(
e | S

)
.

Theorem 3.1 (Correctness and Approximation Guaran-
tee). Let M = (E, I) be a matroid of rank r, and
λ = maxe,i fi({e}). For every ε, δ > 0 there exist integers
K and d ∈ [1,m − r] such that, w.p. at least 1 − δ, Algo-
rithm 1 returns S ∈ I which satisfies F (S) ≥ ( 12 − ε)OPT.

Moreover, Algorithm 1 has r communication rounds be-
tween the server and clients, and it has Õ(d) bit complexity
per client per round.

We point out that the best approximation guarantee for max-
imizing a monotone submodular function under a matroid
constraint is 1 − 1/e (in the centralized setting). In Ap-
pendix B, we discuss an amplification technique that im-
proves our approximation guarantee to 1− 1/e. Moreover,
under a cardinality constraint, the approximation guarantee
of Algorithm 1 is also 1− 1/e.

4. O(logm) communication rounds
Recall that Algorithm 1 consists of r communication rounds,
where only one element is added to S per round. To reduce
the number of communication rounds, we consider adding a
block of elements that provide a large marginal contribution
to the current set S. In this section, we propose an algorithm
that requires Õ(logm) communication rounds between the
central server and the clients. Our algorithm, Algorithm 2,
extends the approach proposed by Balkanski et al. (2019)
for maximizing a monotone submodular function under a
matroid constraint in the adaptive setting, which we have
specifically adapted for our federated setting.

We note that Algorithm 2 in (Rafiey, 2024) improves the
number of communication rounds, but the extent of this
improvement is not specified and comes at the cost of an
additive error in the approximation. Furthermore their algo-
rithm relies on evaluating multilinear extension and has bit
complexity Õ(|E|). In contrast, our algorithm introduces no

Algorithm 2 FedSM with reduced communication rounds
1: Input: M = (E, I) of rank r, δ, ε ∈ (0, 1), bit complexity

d ≥ 1.
2: S ← ∅, τ = λ = maxe,i fi({e})
3: for O

(
1
ε
log( r

ε
)
)

iterations do
4: X ← E
5: while X ̸= ∅ do
6: r′ ← rank

(
M(S,X)

)
7: K ← |X|2

(
r′
)4

λ2

2 d2 ε2
ln
(

2 |X| r′ ln(m) ln
(
r
ε

)
δ ε2

)
8: Server selects a subset of K active clients A uniformly

at random
9: Server generates a random feasible sequence {al}r

′
l=1.

10: for each active client i ∈ A in parallel do
11: Client i: sample d distinct pairs Di ⊆ X ×

{1, . . . , r′} of size d, chosen uniformly among all(|X|·r′
d

)
ways (i.e. without replacement).

12: For each pair (e, j) ∈ Di send back to the server:(
fi(e | S ∪ {a1, . . . , aj}), (e, j)

)
13: end for
14: /* Aggregate the reports to form estimates: */
15: For each pair (e, j) ∈ X × {1, . . . , r′} define

F̂
(
e | S∪{al}jl=1

)
= |X|r′

dK

∑
i∈A, (e,j)∈Di

fi
(
e | S∪{al}jl=1

)
.

16: Let Xj be
{
e ∈ X | S ∪ {al}jl=1 ∪ {e} ∈ I, F̂

(
e |

S ∪ {al}jl=1

)
≥ τ

}
17: j∗ ← min{ j : |Xj | ≤ (1− ε) |X|}.
18: S ← S ∪ {a1, . . . , aj∗}, X ← Xj∗ .
19: end while
20: Server updates: τ ← (1− ε) τ .
21: end for
22: Output: S

additive error and offers a clear trade-off between solution
quality, communication rounds, and bit complexity.

Full description of the algorithm is given in Algorithm 2.
At the start let X = E. At a high level, during each com-
munication round, the central server has two objectives: (i)
to remove at least an ε-fraction of the elements from X
that can potentially be added to the current set S, and (ii)
to add as many good elements as possible to S. Ideally,
the elements that are removed should have small marginal
contributions, while the elements that are added should have
large marginal contributions. In order to achieve these two
goals, simply estimating the marginal contribution of the
remaining elements with respect to the current set S is not
sufficient.

More specifically, let X be the current set of available ele-
ments to be added to S. Let {al}r

′

l=1 (r′ to be specified later)
be a random feasible sequence such that S ∪ {aj}jl=1, for
every j ≤ r′, is a feasible set from the matroid. The goal is
to remove at least an ε-fraction of elements from X , and to
identify an index j∗ to update S to S ∪ {a1, . . . , aj∗}.
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Each active client samples d distinct pairs (e, j) and per-
forms the following local function evaluation: fi(e |
S ∪ {a1, . . . , aj}). These function evaluation results are
aggregated and scaled by a factor of |X|r′

dK to ensure unbi-
asedness. The index j∗ is chosen as the smallest j for which
|Xj | ≤ (1− ε)|X|, where

Xj = (4){
e ∈ X | S ∪ {al}jl=1 ∪ {e} ∈ I, F̂

(
e | S ∪ {al}jl=1

)
≥ τ

}
where the term F̂

(
e | S ∪ {al}jl=1) in Equation (4) is an

unbiased estimation of F
(
e | S ∪ {al}jl=1). The set X is

then updated to Xj∗ . As a result, X decreases by at least an
ε-fraction in each round. This process is repeated until X
becomes empty.

Theorem 4.1. Let M = (E, I) be a matroid of rank r,
and λ = maxe,i fi({e}). For every ε, δ > 0 there exist
integers K and d for each round of Algorithm 2 such that,
w.p. at least 1−δ, Algorithm 2 returns S ∈ I which satisfies
E[F (S)] ≥ ( 12 −O(ε))OPT.

Moreover, Algorithm 2 has O(log(m) log(r/ε)ε−2) com-
munication rounds between the server and clients, and it
has Õ(d) bit complexity per client per round.

5. Experimental results
In this section, we experimentally evaluate our algorithms
on real-world datasets by optimizing two fundamental sub-
modular problems: facility location and maximum coverage.
Due to space constraints, the results for the maximum cov-
erage problem are presented in the appendix.

Facility Location. We study a movie recommendation task
(Stan et al., 2017), where each client i has a private utility
function fi over sets of movies. The goal is to select a set of
r movies that best satisfy all clients. We use the MovieLens
dataset with n = 6041 clients and m = 4000 movies (1
million ratings). As users prefer to keep their ratings private,
we assume ratings are not shared. Let ri,j be the rating of
client i for movie j, set to 0 if missing. Each client uses
a facility location objective: fi(S) = maxj∈S r(i, j) for
S ⊆ E. Ratings are integers in [0, 5], so λ = 5. The server
aims to estimate maxS⊆E,|S|≤r

1
n

∑
fi(S).

In Figure 1, we evaluate Algorithm 1 under two settings:
varying K with fixed d, and varying d with fixed K. Here,
K denotes the percentage of sampled clients per round, and
d the percentage of elements each client samples. We com-
pare against the centralized greedy algorithm (Nemhauser
et al., 1978), averaging results over 3 random seeds. Per-
formance improves with larger d when K = 1.0%, and
with larger K when d = 10%, aligning with our theoretical
findings.

Figure 1: Bit complexity and client participation trade-off
on MovieLens. Left: varying d at fixed K = ⌊n/100⌋.
Right: varying K at fixed d = ⌊m/10⌋.

Notably, in the MovieLens dataset, the number of clients n
is comparable to the number of movies m. In such cases,
choosing a sufficiently large d is crucial to compensate for
the limited number of clients. As seen in Appendix, when
d = 1, even with full participation (K = 100%), there is a
significant performance gap between the centralized greedy
algorithm and our approach, underscoring the need for a
larger d.

Maximum Coverage. Let C = {c1, . . . , cn} be a set of
clients and E = {G1, . . . , Gm} be a family of sets where
each Gi ⊆ C is a group of clients. Given a positive integer r,
in the Max Coverage problem the objective is to select
at most r groups of clients from E such that the maximum
number of clients are covered i.e., the union of the selected
groups has maximal size. One can formulate this problem
as follows. For every i ∈ [n] and A ⊆ [m] define

fi(A) =

{
1 if there exists a ∈ A such that ci ∈ Ga,

0 otherwise.

which fi’s are monotone and submodular. Further-
more, define F (A) =

∑
i∈[n] fi(A), which is also

monotone and submodular, and λ = 1. All in
all, the formulation of the Max Coverage problem is
maxA⊆[n],|A|≤k

∑
i∈[N ] fi(A).

We use a public dataset for Max Coverage. The DBLP
dataset ( https://dblp.org/xml/release/) is a
bipartite network comprised of n = 704738 researchers
and m = 2675 venues. Each researcher’s membership set
contains all venues where the researcher published at least
one paper between 2018 and 2021. The objective of Max
Coverage is to select a set of venues covering the most
researchers. Following the same setup as for the MovieLens
dataset, we compare the performance of Algorithm 1 under
different choices of K and d against the centralized greedy
algorithm (Nemhauser et al., 1978). The reported results,
Figure 2, are averaged over 3 runs with different random
seeds.

Analogous conclusions were drawn i.e., increasing K or
d improved the overall performance. A key difference be-
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Figure 2: Bit complexity and client participation trade-off
on DBLP. Left: varying d at fixed K = ⌊n/100⌋. Right:
varying K at fixed d = ⌊m/100⌋.

tween the DBLP and MovieLens datasets is that the number
of clients in DBLP (n = 704, 738 researchers) is signifi-
cantly larger than the ground set size (m = 2, 675). As a
result, the performance gap between the centralized greedy
algorithm and our approach is much smaller than in the
MovieLens case. This is evident in Figure 6 (Appendix),
where even for d = 1 and varying K, our algorithm closely
approaches the performance of the centralized greedy algo-
rithm.

Algorithm 2 and the Number of Communication Rounds.
We evaluate the performance of Algorithm 2 against the cen-
tralized greedy algorithm on the MovieLens dataset, which
Algorithm 2 is applicable when O(logm) ≤ r. In these ex-
periments, we set r = 200 i.e., the goal is to select a subset
of 200 movies that maximizes the objective. In Figure 3,
we plot the number of communication rounds against the
function value.

This experiment requires larger K and d than Algorithm 1,
due to a larger sampling space—consistent with the the-
oretical bound in Lemma A.4. Initially, S grows nearly
exponentially, yielding faster convergence than centralized
greedy. As shown in Figure 3, growth slows to linear beyond
a saturation point, reflecting diminishing return property and
the effect of threshold τ . The interaction between K and d
also strongly influences convergence speed and the growth
of S.

Figure 3: Left: Algorithm 2 vs. Centralized Greedy (up to
40 rounds). Right: growth of S with respect to K and d.

6. Conclusion and discussion
In this work, we studied the problem of maximizing a mono-
tone submodular function under a matroid constraint in a
federated setting. We proposes an efficient and easy-to-
implement algorithm with low bit complexity and partial
client participation. Our theoretical analysis captures the
trade-off between client sampling and bit complexity, mak-
ing our approach flexible and applicable to various practical
scenarios. Furthermore, we improved the communication
round complexity by introducing an algorithm that requires
only a logarithmic number of communication rounds.

Differential Privacy. In the Appendix we discussed how
a differentially private mechanism can be integrated into
our approach. By leveraging the algorithms from (Cheu
et al., 2019) (specifically, Algorithms 5 and 6), we can en-
sure privacy in each communication round of our algorithms
at the cost of an additional O(

√
K) factor in the bit com-

plexity. Specifically, there exists a (ε′, δ′) differentially pri-
vate algorithm, DPAlg, with ε′ = O

(
r

εK log 1
δ′

√
log mr

δ

)
and e−Ω(K1/4) < δ′ < 1

K , which requires every par-
ticipating client to encode each real-valued number us-
ing O(ε

√
K) bits, and for any e ∈ E \ S it guarantees

Pr
[∣∣∣Output of DPAlg− F̂

(
e | S

)∣∣∣ > ε/r
]
≤ δ/(mr).

Amplification. We point out that the best approximation
guarantee for maximizing a monotone submodular func-
tion under a matroid constraint is 1 − 1/e. In Appendix,
we discuss an amplification technique that improves our
1/2-approximation guarantee to 1 − 1/e. Specifically, us-
ing Algorithm 2 as a subroutine in our amplification al-
gorithm, we obtain 1 − 1/e − O(ε)-approximation using
O(log(m) log( r

ε η )
1
ε η ) communication rounds.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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P. Federated Optimization: Distributed Machine
Learning for On-Device Intelligence. arXiv preprint
arXiv:1610.02527, 2016.

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A.
Fast greedy algorithms in mapreduce and streaming. ACM
Trans. Parallel Comput., 2(3):14:1–14:22, 2015.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and
Ramchandran, K. Speeding Up Distributed Machine
Learning Using Codes. IEEE Transactions on Informa-
tion Theory, 64(3):1514–1529, 2018.

8



Federated Submodular Maximization: Improved Communication Rounds and Bit Complexity

Li, S., Avestimehr, S., et al. Coded computing: Mitigating
fundamental bottlenecks in large-scale distributed com-
puting and machine learning. Foundations and Trends®
in Communications and Information Theory, 17(1):1–
148, 2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In AISTAT,
2017.

Mehrotra, A. and Vishnoi, N. K. Maximizing Submodular
Functions for Recommendation in the Presence of Biases.
In WWW, 2023.

Mirzasoleiman, B., Karbasi, A., Sarkar, R., and Krause, A.
Distributed Submodular Maximization. J. Mach. Learn.
Res., 17:238:1–238:44, 2016.

Mitrovic, M., Bun, M., Krause, A., and Karbasi, A. Differ-
entially private submodular maximization: Data summa-
rization in disguise. In ICML, 2017.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions - I. Math. Program., 14(1):265–294, 1978.

Nikolakaki, S. M., Ene, A., and Terzi, E. An efficient
framework for balancing submodularity and cost. In
KDD, 2021.

Qin, Z., Deng, S., Zhao, M., and Yan, X. Fedapen: Person-
alized cross-silo federated learning with adaptability to
statistical heterogeneity. In KDD, 2023.

Rafiey, A. Decomposable submodular maximization in
federated setting. In ICML, 2024.

Rafiey, A. and Yoshida, Y. Fast and private submodular
and k-submodular functions maximization with matroid
constraints. In ICML, 2020.

Rafiey, A. and Yoshida, Y. Sparsification of decomposable
submodular functions. In AAAI, 2022.

Sadeghi, O. and Fazel, M. Differentially private monotone
submodular maximization under matroid and knapsack
constraints. In AISTAT, 2021.

Stan, S., Zadimoghaddam, M., Krause, A., and Karbasi, A.
Probabilistic Submodular Maximization in Sub-Linear
Time. In ICML, 2017.

Vondrak, J. Optimal approximation for the submodular
welfare problem in the value oracle model. In STOC,
2008.

Wang, Y., Zhou, T., Chen, C., and Wang, Y. Federated
submodular maximization with differential privacy. IEEE
Internet of Things Journal, 2023.

9



Federated Submodular Maximization: Improved Communication Rounds and Bit Complexity

A. Missing proofs
We use the following concentration bound in our proofs.

Lemma A.1 (Hoeffding’s inequality (Hoeffding, 1994)).
Let X = (x1, . . . , xn) be a finite population of n points and
X1, . . . , XK be a random sample drawn without replace-
ment from X . Let

a = min
1≤i≤n

xi and b = max
1≤i≤n

xi (5)

Then, for all ε > 0,

Pr
[ ∣∣∣ 1

K

K∑
i=1

Xi − µ
∣∣∣ ≥ ε

]
≤ exp

(
− 2Kε2

(b−a)2

)
(6)

where µ = 1
n

∑n
i=1 xi is the mean of X .

A.1. Missing proofs from Section 3

Proof of Theorem 3.1. At each iteration, the server adds
an element that does not violate the matroid constraint,
ensuring that the feasibility of the updated set S is pre-
served. We will focus on the approximation guarantee. Let
S0 ⊆ S1 ⊆ · · · ⊆ Sr−1 be the sets chosen by Algorithm 1
at each iteration t. Now, we show three key facts regarding
the algorithm.

1. Unbiasedness of each estimate. Fix a particular element
e ∈ E \ St, for which we want to show unbiasedness:
E
[
F̂ (e | St)

]
= F

(
e | St

)
.

The server picks exactly K out of n clients uniformly.
Hence, Pr

[
i ∈ A(t)

]
= K

n . This follows from the fact
that among the

(
n
K

)
equally likely K-subsets, the fraction

containing a fixed i is K
n . Conditioned on i ∈ A(t), client i

picks a d-element subset Di ⊂ E \ St uniformly at random
from all

(|E\St|
d

)
possible d-element subsets. Therefore,

Pr [e ∈ Di] =
d

|E\St| , since among all possible ways to
form a d-element subset, those containing e comprise a
fraction d

|E\St| . Thus, for each i ∈ {1, . . . , n},

Pr
[
i ∈ A(t) and e ∈ Di

]
= Pr[i ∈ A(t)] · Pr

[
e ∈ Di | i ∈ A(t)

]
= K

n ·
d

|E\St| .

If e ∈ Di, then client i contribution to the sum defining
F̂ (e | St), amounts to |E\St|

dK · fi
(
e | St

)
. Otherwise, if

e ̸∈ Di there is no corresponding contribution from client i.
Therefore, the expected contribution from client i is

|E\St|
dK · fi

(
e | St

)
· Pr

[
e ∈ Di and i ∈ A(t)

]
.

Summing over all clients, by linearity of expectation

E
[
F̂ (e | St)

]
=

n∑
i=1

|E\St|
dK · Kn ·

d
|E\St| · fi(e | St)

= 1
n

n∑
i=1

fi(e | St),

which is precisely F
(
e | St

)
. We therefore conclude that

F̂ (e | St) is an unbiased estimator of F (e | St).

2. Concentration via Hoeffding. Note that
maxe,i fi({e}) = λ, hence by submodularity and
monotonicity we have fi(e | St) ≤ λ for all e, St, thus
fi(e | St) ∈ [0, λ]. After scaling fi(e | St) by |E\St|

dK , since
|E\St|
dK ≤ m

dK its magnitude is at most mλ
dK . Summing over

K clients then gives us F̂
(
e | St

)
≤ m

d λ in the worst
case, therefore 0 ≤ fi(e | St) ≤ m

d λ for each i. For our
purposes, we can view fi(e | St) as a random variable with
range [0, m

d λ].

Given this range, we can now apply Hoeffding’s inequality.
Let

K ≥
(
m/d

)2
r2 λ2 ln

(
2 rm/δ

)
8 ε2 ,

and by Lemma A.1, for a fixed e and St we have

Pr
[∣∣∣F̂ (e | St)− F (e | St)

∣∣∣ ≥ 2ε/r
]

≤ exp
(
− 2K2 (2ε/r)2

(mλ/d)2

)
≤ δ

m r .

Using a union bound over all e and iterations t ∈ {0, . . . , r−
1}, w.p. at least 1− δ; all the estimates F̂ (e | St) are within
2ε
r of F (e | St) simultaneously, that is for all e and St:

Pr
[∣∣F̂ (e | St)− F (e | St)

∣∣ ≤ 2ε/r
]
≥ 1− δ.

We henceforth assume this good event occurs.

3. Matroid exchange & submodularity. Let O =
{o1, . . . , or} be an optimal solution, i.e. a basis ofM with
F (O) = OPT. Let S = {e1, . . . , er} be the set returned by
Algorithm 1. By matroid properties, for each t we know
St−1 ∪ {ot} ∈ I, thus

F (O)− F (S) ≤
∑
o∈O

F
(
o | S

)
≤

r∑
t=1

F
(
ot | St−1

)
.

But Algorithm 1 picks et as an approximate maximizer of
F (e | St−1), meaning

F
(
ot | St−1

)
≤ F

(
et | St−1

)
+ 2ε

r ,
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because F̂ (ot | St−1) and F̂ (et | St−1) differ (with high
probability) by at most 2ε

r . Summing over t = 1, . . . , r
yields

F (O)−F (S) ≤
r∑

t=1

(
F
(
et | St−1

)
+
2ε

r

)
= F (S)+2ε,

which implies F (S) ≥ 1
2 OPT − ε. This holds under

the event that all the estimates F̂ (e | St) are within 2ε
r of

F (e | St) simultaneously, which happens w.p. 1− δ.

Choosing ε small enough 1 gives the multiplicative bound
F (S) ≥ ( 12 −O(ε))OPT.

A.2. Missing proofs from Section 4

We start with analyzing the number of communication
rounds in Algorithm 2.

Lemma A.2. Algorithm 2 has O(log(m) log(r/ε)ε−2)
communication rounds between the server and clients.

Proof of Lemma A.2. The outer for loop has
O(log(r/ε)ε−1) iterations. The while loop runs
for at most O(log(m)ε−1) iterations, , as, according to
the definition of j∗, at least an ε-fraction of the remaining
elements in X is eliminated in each iteration. We can find
j∗ by computing Xj for each j in one communication
round.

Next we will establish the approximation quality of Al-
gorithm 2. Some notations are in order. For a random
feasible sequence {al}r

′

l=1, r′ is equal to rank(M(S,X)).
Here M(S,X) := {T ⊆ X : S ∪ T ∈ M} represents
the matroid over elements X , where a subset is feasible in
M(S,X) if its union with the current S remains feasible
according toM.

We first show the aggregated updates at the central server ar
in fact unbiased estimation. The term F̂

(
e | S ∪ {al}jl=1)

in (4) is an estimation of F
(
e | S ∪ {al}jl=1) and is com-

puted from the aggregation of the clients’ feedback. As in
Algorithm 1, the estimate must be unbiased with a small
additive error. In Lemma A.3, we show that the resulting
estimate of Algorithm 2 is indeed unbiased, and that for a
sufficiently large K we are close to the actual value with
high confidence.

Lemma A.3 (Unbiasedness and Concentration). Let S ⊆
E be fixed, and let r′ = rank

(
M(S,X)

)
. Assume each

fi({e}) ≤ λ for all e, i. Suppose the server picks K active

1Note that by submodularity and monotonicity we have λ ≤
OPT ≤ λr, thus the choice of ε = ε′λr implies ε ≤ ε′ OPT for
any ε′.

clients indexed by A ⊆ [n] uniformly at random, where
each subset of size K is equally likely. Conditioned on
this event, each active client i ∈ A draws a subset Di ⊆
X × {1, . . . , r′} of size d without replacement (each d-
subset is equally likely). Then, for each pair (e, j) where
S ∪ {a1, . . . , aj , e} ∈ I, define

F̂
(
e | S ∪ {al}jl=1

)
= |X| r′

dK

∑
i∈A, (e,j)∈Di

fi
(
e | S ∪ {al}jl=1

)
.

We then have the unbiasedness and concentration, defined
below.

1. Unbiasedness. For every (e, j), we have E
[
F̂
(
e |

S ∪ {al}jl=1

)]
= F

(
e | S ∪ {al}jl=1

)
where the expectation is over all the random choices,
i.e. which K clients and subsequently d-subsets are
chosen.

2. Concentration. If K ≥
(
|X| r′

)2
λ2

2 d2 ε2 ln
(

2 |X| r′
δ

)
, then

for all pairs (e, j)

Pr
[∣∣∣F̂ (

e | S ∪ {al}jl=1

)
− F

(
e | S ∪ {al}jl=1

)∣∣∣ ≤ ε

r′

]
≥ 1− δ.

Proof of Lemma A.3. We first show unbiasedness. Fix a
particular pair (e, j). The server picks exactly K out
of n clients uniformly at random i.e., Pr[i ∈ A] = K

n ,
which follows from the fact discussed in the proof of The-
orem 3.1. Conditioned on i ∈ A, client i picks a d-
element subset Di ⊆ X × {1, . . . , r′} uniformly at ran-
dom, from all

(|X|·r′
d

)
possible subsets of size d. Hence,

Pr [(e, j) ∈ Di] =
d

|X|·r′ , since among all ways to form a
d-element subset, exactly those that contain (e, j) form a
fraction of d

|X|·r′ . Thus, for each i ∈ {1, . . . , n}

Pr
[
i ∈ A and (e, j) ∈ Di

]
= Pr[i ∈ A] · Pr

[
(e, j) ∈ Di | i ∈ A

]
=

K

n
· d

|X| r′
.

If (e, j) ∈ Di, then the contribution of the i-th client to
F̂
(
e | S ∪ {a1, . . . , aj}

)
is precisely

|X| r′

dK
fi
(
e | S ∪ {a1, . . . , aj}

)
.

Otherwise, it contributes 0. Hence the expected contribution
from client i is

|X| r′

dK
× Pr

[
(e, j) ∈ Di and i ∈ A

]
× fi

(
e | S∪{a1, . . . , aj}

)
.
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Considering all n clients, by linearity of expectation we
deduce that

E
[
F̂ (e | S ∪ {al}jl=1)

]
=

n∑
i=1

|X| r′

dK
· K
n
· d

|X| r′
· fi(e | S{al}jl=1)

=
1

n

n∑
i=1

fi(e | S ∪ {al}jl=1) = F
(
e | S ∪ {al}jl=1

)
.

Therefore, F̂ is an unbiased estimator of F .

Proof of concentration. Since maxe,i fi({e}) ≤ λ, by
monotonicity and submodularity, we have fi(e | S) ≤ λ.
Each active client i that has (e, j) ∈ Di contributes at most
|X| r′
dK λ to F̂

(
e | S ∪ {al}jl=1

)
. We can view each of the K

active client’s contribution as a bounded random variable in
[0, |X| r′

d λ]. By then invoking Hoeffding’s inequality, for

z = 2( ε
r′ )

2 K
/( |X| r′

d λ
)2

we get

Pr
[∣∣F̂ (e | S ∪ {al}jl=1)− E[F̂ (e | S ∪ {al}jl=1)]

∣∣ ≥ ε
r′

]
≤ 2e−z.

To ensure that this holds with probability is at most δ
|X| r′ ,

we require 2 ε2 K d2

|X|2 r′4 λ2 ≥ ln
(

2 |X| r′
δ

)
, i.e. K ≥

|X|2 r′4 λ2

2 d2 ε2 ln
(

2 |X| r′
δ

)
.

Finally, we apply a union bound over all (e, j) ∈ X ×
{1, . . . , r′}, which amount for a total of |X| r′ pairs. This
yields an overall failure probability of at most δ, thus we
have

Pr
[∣∣F̂ (e | S ∪ {al}jl=1)− F (e | S ∪ {al}jl=1)

∣∣ ≤ ε

r′

]
≥ 1− δ

for all (e, j) simultaneously.

The following lemma, shows that at each iteration the thresh-
old τ in Algorithm 2 is not very restrictive, and it is unlikely
that elements with high marginal contribution will be re-
moved.
Lemma A.4. For every ε, δ > 0, at each iteration let

K = O

(
m2 · r4 · λ2

ε2
log

(
m log(m) · r log(r/ε)

δε2

))
.

Then Pr
[
τ ≥ (1− ε)maxe:S∪{e}∈M F (e | S)− ε/r

]
≥

1− δ.

Proof of Lemma A.4. The lemma is proven by induction.
First note that

max
e∈E

F (e) = max
e∈E

n∑
i=1

1

n
fi(e) ≤

∑
i

1

n
λ = λ. (7)

Thus (7) holds at the first iteration by the initial instantia-
tions τ = λ = maxe,i fi({e}), S = ∅ and X = E. We
show that the lemma holds throughout the execution of the
algorithm when either S or τ are updated.

First, suppose at some iteration of the algorithm we have
τ ≥ (1 − ε)maxe:S∪{e}∈M F (e | S) − ε/r, and that S
is updated to S ∪ {a1, . . . , aj∗}. Then, for all e for which
S ∪ {e} ∈ M we have

(1− ε)F (e | S ∪ {a1, . . . , aj∗})− ε/r

≤ (1− ε)F (e | S)− ε/r ≤ τ

where the first inequality is by submodularity, and the
second is by the inductive hypothesis. Since {e : S ∪
{a1, . . . , aj∗ , e} ∈ M} ⊆ {e : S ∪ {e} ∈ M} by the
downward closed property ofM, we have

max
e:S∪{a1,...,aj∗ ,e}∈M

F (e | S ∪ {al}j
∗

l=1)

≤ max
e:S∪{e}∈M

F (e | S ∪ {al}j
∗

l=1).

Thus, when S is updated to S ∪ {al}j
∗

l=1, we have

τ ≥ (1− ε) max
e:S∪{a1,...,aj∗ ,e}∈M

F (e | S)− ε/r.

Next, consider an iteration where τ is updated to τ ′ =
(1 − ε)τ . At that iteration, we have X = ∅ and current
solution S. Therefore, by the algorithm, each e ∈ E were
discarded from X at a previous iteration with corresponding
(iteration) solution S′ for which S′ ∪ {a1, . . . , aj∗} ⊆ S.
Since e was discarded, it is either the case that S′ ∪
{a1, . . . , aj∗}∪{e} ̸∈ M or F̂

(
e | S′∪{a1, . . . , aj∗}

)
< τ .

If S′ ∪ {a1, . . . , aj∗} ∪ {e} ̸∈ M, by the downward closed
property ofM and the fact that S′ ∪ {a1, . . . , aj∗} ⊆ S,
we deduce that S ∪ {e} ̸∈ M. Otherwise, τ > F̂

(
e |

S′ ∪ {a1, . . . , aj∗}
)
, which yields

τ ′ = (1− ε)τ > (1− ε)F̂
(
e | S′ ∪ {a1, . . . , aj∗}

)
≥ (1− ε)[F (e | S′ ∪ {a1, . . . , aj∗})− ε/r]

(8)

≥ (1− ε)F (e | S′ ∪ {a1, . . . , aj∗})− ε/r

≥ (1− ε)F (e | S)− ε/r.

where the last inequality follows by submodularity and
the fact that S′ ∪ {al}j

∗

l=1 ⊆ S. Note that (8) holds with
some probability. Specifically, by Lemma A.3 and apply-
ing the union bound over O(log(m) log(r/ε)ε−2) iterations
(Lemma A.2), for

K =
|X|2 · r4 · λ2

2ε2
log(

2|X| · rank(M(S,X)) log(m) log(r/ε)

δε2
)

= O

(
m2 · r4 · λ2

ε2
log

(
m log(m) · r log(r/ε)

δε2

))
12
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with probability at least 1− δ (8) holds for all cases. Thus,
with probability at least 1− δ, for all e such that S ∪ {e} ∈
M, we have τ ′ ≥ (1− ε)F (e | S)− ε/r. This finishes the
proof.

Generating a random feasible sequence a1, a2, . . . , ar′ does
not require function evaluations and communication with
the clients. We employ the same procedure as (Balka-
nski et al., 2019). Given a matroid M we say that
(a1, . . . , arank(M)) is a random feasible sequence if for
all i ∈ {1, 2, . . . ,rank(M)}, ai is an element chosen
uniformly at random from the set of feasible elements
{a : {a1, . . . , ai−1, a} ∈ M}. One simple way to gen-
erate a random feasible sequence is by sampling feasible
elements sequentially. The following lemma shows that
even though ai’s are sampled uniformly at random, in ex-
pectation, the resulting marginal contribution is close to
optimal.

Lemma A.5. Assume a1, . . . , ar′ , for r′ =
rank(M(S,X)), is a random feasible sequence.
Then, for all j ≤ j∗

Eaj

[
F (aj | S ∪ {al}j−1

l=1 )
]

≥ (1− ε)2 max
e:S∪{al}j−1

l=1 ∪{e}∈M
F (e | S)− ε/r.

Proof of Lemma A.5. First note that by unbiasedness in
Lemma A.3 we have E

[
F̂
(
aj | S ∪ {al}j−1

l=1

)]
= F

(
aj |

S ∪ {al}j−1
l=1

)
where the expectation is over all the random

choices, i.e. which K clients and subsequently d-subsets
are chosen. Hence,

Eaj
[F (aj | S ∪ {al}j−1

l=1 )] = Eaj

[
E
[
F̂
(
aj | S ∪ {al}j−1

l=1

)]]
= E Eaj

[
F̂
(
aj | S ∪ {al}j−1

l=1

)]
Note that aj is sampled uniformly at random from XM

j−1 =

{e ∈ X : S ∪ {al}j−1
l=1 ∪ {e} ∈ M}. Then

Pr
aj

[
F̂
(
aj | S ∪ {al}j−1

l=1

)
≥ τ

]
· τ

=
|XM

j−1|
|Xj−1|

· τ

≥
|XM

j−1|
|X|

· τ

≥ (1− ε)2 max
e:∈XM

j−1

F (e | Sj−1)− ε/r

where the equality follows from the definition of Xj−1. The
first inequality holds since XM

j−1 ⊆ X , and the second by

Lemma A.4 and the fact that j ≤ j∗. Finally, by Markov’s
inequality

Eaj

[
F̂
(
aj | S ∪ {al}j−1

l=1

)]
≥ Pr

aj

[
F̂
(
aj | S ∪ {al}j−1

l=1

)
≥ τ

]
· τ

≥ (1− ε)2 max
e:∈XM

j−1

F (e | Sj−1)− ε/r (9)

Therefore, by (9)

Eaj

[
F (aj | S ∪ {al}j−1

l=1 )
]

= E Eaj

[
F̂
(
aj | S ∪ {al}j−1

l=1

)]
≥ E

[
(1− ε)2 max

e:∈XM
j−1

F (e | Sj−1)− ε/r

]
= (1− ε)2 max

e:∈XM
j−1

F (e | Sj−1)− ε/r

which completes the proof.

Lastly, we show that if aj in a solution S =
{a1, . . . arank(M)} provides an expected marginal contri-
bution to its preceding set Sj−1 := {a1, . . . , aj−1} which
is close to optimal, then the expected approximation ratio
of F (S) approaches 1

2 .

Lemma A.6. Assume that S = {a1, . . . , ar} is such that
Eaj

[F (aj | Sj−1)] ≥ (1 − ε)maxe:Sj−1∪{e}∈M F (e |
Sj−1) where Sj−1 = {al}j−1

l=1 . Then, for a matroid con-
straintM, we have

E[F (S)] ≥ (1/2−O(ε))OPT.

Proof of Lemma A.6. Let O = {o1, . . . , or} be an optimal
solution, for which {o1, . . . , oi−1, ai} ∈ I for all i, which
as we saw is always possible because of matroid exchange
property. Then

E[F (S)]

=

r∑
j=1

E[F (aj | Sj−1)] ≥ (1− ε)

r∑
j=1

E[F (oj | Sj−1)]

≥ (1− ε)F (O | S) ≥ (1/2−O(ε))OPT.

To summarize, by Lemmas A.2 and A.6, Algorithm 2 re-
quires only O(log(m) log(r/ε)ε−2) communication rounds
between the server and clients to provide an approximation
that is arbitrarily close to 1/2, in expectation.

Theorem A.7. Let M = (E, I) be a matroid of rank r,
and λ = maxe,i fi({e}). For every ε, δ > 0 there exist
integers K and d for each round of Algorithm 2 such that,
w.p. at least 1−δ, Algorithm 2 returns S ∈ I which satisfies

13
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E[F (S)] ≥ ( 12 − O(ε))OPT. Moreover, Algorithm 2 has
O(log(m) log(r/ε)ε−2) communication rounds between
the server and clients, and it has Õ(d) bit complexity per
client per round.

B. Amplification
The best known multiplicative approximation factor for
monotone submodular function maximization under a ma-
troid constraint is 1 − 1

e , which was first achieved by the
continuous greedy algorithm in (Călinescu et al., 2011).
Both our Algorithms 1 and 2, achieve a 1

2 approximation
factor guarantee, which is short of 1− 1

e . In order to discuss
this technique, we first need to define a continuous extension
of submodular functions.

Multilinear extension. The multilinear extension fmle :
[0, 1]m → R of a set function f : {0, 1}m → R is

fmle(x) =
∑
S⊆E

f(S)
∏
e∈S

x(e)
∏
e ̸∈S

(1− x(e))

= ER∼x[f(R)]

where R ⊆ E is a random set that contains or excludes
each e ∈ E, with probability (w.p.) x(e) and 1 − x(e),
respectively. By R ∼ x we denote that R is randomly
sampled according to x.

As was mentioned earlier, we apply a novel amplification
technique introduced in (Badanidiyuru & Vondrák, 2014)
and later on extended in (Balkanski et al., 2019; Chekuri
& Quanrud, 2019), to boost our approximation guarantee.
The amplification technique builds upon the same funda-
mental idea as in the standard continuous greedy algorithm
(Călinescu et al., 2011), which constructs a continuous solu-
tion that approximately maximizes the multilinear extension
Fmle of a monotone submodular function F . That is, at
each iteration, the solution x ∈ [0, 1]m is updated in the
direction of a feasible set S ∈ I. The key distinction be-
tween the continuous greedy algorithm and the amplification
procedure (shown in Algorithm 3) lies in the selection of
S, which determines the direction in which x should be
updated.

The amplification technique (Algorithm 3) starts by initial-
izing x = 0, and performs 1/η updates; for η ∈ (0, 1) a
fixed step-size which is given as input. At each iteration,
Algorithm 2 is employed on a surrogate function g which
quantifies the marginal contribution to x, when taking a step

of size η in the direction of T . Specifically, g is defined as

g(T ) = Fmle(x+ η1T )− Fmle(x)

= ER∼(x+η1T )[F (R)]− ER∼x[F (R)]

=
1

n

n∑
i=1

[
ER∼(x+η 1T )[fi(R)]− ER∼x[fi(R)]

]
=

1

n

n∑
i=1

gi(T ).

Algorithm 2 is carried out as a subroutine, with inputs the
monotone submodular function g and matroidM = (E, I),
and returns a (random) set S ∈ I satisfying E[g(S)] ≥
( 12 − ε)g(T ) for all T ∈ I (Lemma A.6). Then, the results
of (Badanidiyuru & Vondrák, 2014; Balkanski et al., 2019;
Chekuri & Quanrud, 2019) imply that Algorithm 3 returns
a vector x which satisfies

F(x) = ER∼x[F (R)] = 1
n

n∑
i=1

ER∼x[fi(R)]

≥ (1− 1
e −O(ε))OPT

where OPT = maxS∈I F (S). Note that x is a convex
combination of 1/η one-hot encoding of sets of rank at
most r from I, thus we have x ∈ [0, 1]m and ∥x∥1 ≤ r.
(Note that x is inside what is known as the matroid polytope
ofM.)

Finally, given x ∈ [0, 1]m with ∥x∥1 ≤ r, a discrete so-
lution S ∈ I can be obtained using appropriate rounding
techniques. Methods such as pipage rounding (Călinescu
et al., 2011) and swap rounding (Chekuri et al., 2010) oper-
ate independently of the objective function, so they do not
require direct access to it. As a result, the central server can
apply any of these rounding schemes without knowledge
of the underlying client functions. The loss in the approxi-
mation guarantee can be arbitrarily small when using these
rounding techniques.

Theorem B.1. Algorithm 3, with Algorithm 2 as a sub-
routine, consists of O(log(m) log( r

ε η )
1
ε η ) communication

rounds between the central server and clients and w.p. at
least 1 − δ obtains a 1 − 1/e − O(ε) approximation for
Problem 2, with step-size η = O(ε2 log−1( 1δ )).

We point out that Algorithm 3 can also use Algorithm 1 as
a subroutine, leading to the following result.

Theorem B.2. Algorithm 3, with Algorithm 1 as a subrou-
tine, consists of O(r/η) communication rounds between the
central server and clients and w.p. at least 1− δ obtains a
1−1/e−O(ε) approximation for Problem 2, with step-size
η = O(ε2 log−1( 1δ )).

14
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Algorithm 3 Improved approximations through amplifica-
tion

1: Input: MatroidM = (E, I), step-size η, accuracy
parameters δ, ε ∈ (0, 1).

2: x = 0
3: for 1/η iterations do
4: Define g(T ) = ER∼(x+η1T )[F (R)]− ER∼x[F (R)]
5: Run Algorithm 1 or 2 with (g,M, δ, ε), and return

S.
6: x← x+ η 1S

7: end for
8: Output: x /* Apply an appropriate rounding on x to

obtain S.*/

C. Differential privacy via shuffling
The primary focus of this work is not on ensuring privacy
guarantees, but developing a framework that provides strong
approximation guarantees while being adaptable to various
privacy settings. In this section, we discuss the privacy
aspect of our approach and highlight that ensuring privacy
comes at the cost of increased bit complexity. In our setting,
the central server issues sum queries to selected clients, i.e.
each client responds with bounded real-valued numbers,
and the server aims to compute the sum of their responses.
The clients do not trust the central server, and are therefore
unwilling to send their responses in the clear. This has been
addressed by several models of privacy and security in the
literature, e.g. multiparty computation (MPC); differential
privacy and secret sharing.

One approach to addressing privacy concerns is to lever-
age powerful tools of modern cryptography, such as MPC
and secure function evaluation, to emulate centralized al-
gorithms in a setting without a trusted server (Dwork et al.,
2006). Another common method for achieving a secure
aggregation mechanism is through additive masking (Bell
et al., 2020; Bonawitz et al., 2016), which is based on secret
sharing and requires participating clients to communicate
with each other. These techniques currently introduce sig-
nificant bandwidth constraints and delays, making them
impractical for large-scale deployments.

Another solution to the privacy concern is for each participat-
ing client to apply a differentially private algorithm locally
to their data and share only the output of the algorithm with
the central server that aggregates clients’ responses. How-
ever, the utility guarantee of such approaches is far from op-
timal. Beimel et al. (2008) and Chan et al. (2012) show that
estimating the sum of bits, one held by each client, requires
error Ω(

√
K/ε), where K is the number of participating

clients. We note that the utility guarantee of the approach
from (Wang et al., 2023) at each iteration per element is
O(
√
r n logm/γ), where γ is their Poisson sampling rate.

A suitable approach for our setting which is scalable and has
strong privacy guarantees, is the work of Cheu et al. (2019).
They proposed a differentially private model for real-valued
sum queries that eliminates the need for a trusted central
server. Their shuffled differentially private model leverages
an anonymous shuffler to permute client messages before
processing, and it requires a relatively high bit complexity
to encode client massages. The technical details of their
method are not in the scope of this paper. Instead, we focus
on their final results and implications to our framework.

By leveraging the algorithms from (Cheu et al., 2019)
(specifically, Algorithms 5 and 6), we can ensure privacy in
each communication round of our algorithms at the cost of
an additional O(

√
K) factor in the bit complexity. Further-

more, by using composition of differential privacy (Bun &
Steinke, 2016; Dwork & Lei, 2009; Dwork et al., 2010), we
can guarantee differential privacy across all communication
rounds of Algorithms 1 and 2. The following result follows
directly from Theorem 22 of (Cheu et al., 2019).

Proposition C.1. Let ε, δ > 0. Suppose that in Algorithm 1,
at each communication round, K clients (K sufficiently
large) are sampled, and each client sends d bounded real-
valued numbers to the central server. There exists a (ε′, δ′)
differentially private algorithm, DPAlg ((Cheu et al.,
2019) Algorithm 6), with ε′ = O

(
r

εK log 1
δ′

√
log mr

δ

)
and

e−Ω(K1/4) < δ′ < 1
K , which requires every participating

client to encode each real-valued number using O(ε
√
K)

bits, and for any e ∈ E \ S it guarantees

Pr
[∣∣∣Output of DPAlg− F̂

(
e | S

)∣∣∣ > ε/r
]
≤ δ/(mr).

Furthermore, using composition of differential privacy,
DPAlg in every communication round of Algorithm 1, re-
sults in an (ε′ mr, δ′ mr)-DP algorithm with O(ε d

√
K)

bit complexity per round per client, and the approximation
guarantee of Algorithm 1 is maintained.

Note that the DP guarantee comes at the cost of signifi-
cantly increased bit complexity. Finally, we note that the
same differentially private subroutine can also be applied in
Algorithm 2.

We further note that the differentially private algorithms
developed for the centralized setting (Gupta et al., 2010;
Mitrovic et al., 2017; Rafiey & Yoshida, 2020; Chaturvedi
et al., 2021; Sadeghi & Fazel, 2021) are not applicable in
the federated setting.
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D. Further experimental results on Algorithm
1

We provide further numerical results on Algorithm 1 on the
same datasets and different choices for K and d.

16
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Figure 4: Results on the Max Coverage problem. Performance comparison between Algorithm 1 and the Centralized
Greedy algorithm across different values of K and d on the DBLP dataset.

Figure 5: Results on the Facility Location problem. Performance comparison between Algorithm 1 and the
Centralized Greedy algorithm across different values of K and d on the MovieLens dataset.

Figure 6: Effect of client sampling ratio K on the performance of Algorithm 1 and the Centralized Greedy baseline for d = 1
on DBLP and MovieLens datasets. Due to the much larger client-to-ground-set ratio in DBLP (n ≫ m), our algorithm
achieves performance closer to the centralized greedy approach on DBLP compared to MovieLens.

17
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E. Parameters of Algorithm 2
The parameters present in the algorithm are τ , ε, r, d, and
K. Since the sampling space of this algorithm is larger,
it is crucial to use the optimal values for these parameters
and analyze the impact of each parameter on the number of
rounds and function value.

Analysis of r We first point out that Algorithm 2 is appli-
cable to the cases where r is relatively large. Moreover,
unlike Algorithm 1, r is directly involved in the core se-
lection process of the algorithm. The quality of inclusion
of elements depends on the quality of the feasible random
sequence a1, . . . , ar′ , which is influenced by r.

• A higher r improves the quality of the a1, . . . , ar′ ,
leading to better overall results.

• We chose r = 200, which is approximately 5% of the
movies present in the MovieLens dataset. Figure 7
shows the performance of the Algorithm 2 with differ-
ent parameters and as we see it reaches subset of size
200 before the communication round 200.

Figure 7: Full execution of Algorithm 2 vs. Centralized
Greedy.

Analysis of K and d We analyzed the impact of K and d
on both the number of rounds and function value by fixing
one parameter and varying the other Figures 7 to 9.

• We observed that increasing either K or d resulted in
a decrease in communication rounds and an improve-
ment in function value.

• The results demonstrated a faster convergence over
the centralized greedy algorithm when appropriately
tuning K and d.

Analysis of τ and ε To determine the appropriate range for
these parameters, we first analyzed initial τ (initial thresh-
old) and ε (threshold decay rate) in isolation from the other
parameters. We tested various combinations of ε and τ in
the centralized version of the algorithm, where all combi-
nations of (e, j) are considered from all clients without any
sampling—thus not involving d and K.

• We examined the impact of ε on the function value by
fixing the initial threshold τ and drawing multiple plots
for different fixed τ values Figure 11.

• We observed that for a fixed τ , increasing ε led to
a decrease in function value and a reduction in the
number of communication rounds required to add 200
elements to set S.

• This is consistent with theoretical expectations since
increasing ε allows more j values satisfying |Xj | ≤
(1− ε)|X| to be selected, resulting in more elements
being added in each round. However, this also reduces
the quality of element inclusion.

• An exception occurs when τ is lower and ε is higher,
where the number of rounds becomes highly random.
In such cases, |Xj | for all j may be high because τ is
lower, leading to no Xj satisfying |Xj | ≤ (1− ε)|X|,
resulting in unexpectedly more communication rounds.

Next, we analyzed the impact of τ on function value by
fixing ε and increasing τ , generating plots for various fixed
ε values Figure 10:

• We found that for a fixed ε, increasing τ led to an in-
crease in function value and an increase in the number
of communication rounds required to add 200 elements
to S.

• This aligns with theoretical expectations since increas-
ing τ reduces |Xj | (as per line 16 of the pseudocode).
This, in turn, reduces the count of e ∈ X that satisfy
the condition, pushing j toward 0.

• As fewer elements are added per round, the quality of
inclusion improves, leading to higher function values.

Choosing τ and ε for Algorithm 2 Since Algorithm 2 is not
centralized and involves more samplings, the best function
value and number of rounds are achieved in the centralized
variant with higher τ and ε. However, due to the sampling
process in the federated setting, we must reduce τ and ε to
accommodate for the loss of (e, j) tuples.

• In our experiments, we found that setting ε = 0.4
and τ = 0.006 yielded better function values and
an optimal number of communication rounds across
different values of K and d.
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Figure 8: Growth of S with respect to d in Algorithm 2

Figure 9: Growth of S with respect to K in Algorithm 2

Figure 10: Fixed initial τ
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Figure 11: Fixed ϵ
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