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Abstract

Simulating dynamic physical interactions is a critical challenge across multiple
scientific domains, with applications ranging from robotics to material science.
For mesh-based simulations, Graph Network Simulators (GNSs) pose an efficient
alternative to traditional physics-based simulators. Their inherent differentiability
and speed make them particularly well-suited for inverse design problems. Yet,
adapting to new tasks from limited available data is an important aspect for real-
world applications that current methods struggle with. We frame mesh-based
simulation as a meta-learning problem and use a recent Bayesian meta-learning
method to improve GNSs adaptability to new scenarios by leveraging context
data and handling uncertainties. Our approach, latent task-specific graph network
simulator, uses non-amortized task posterior approximations to sample latent
descriptions of unknown system properties. Additionally, we leverage movement
primitives for efficient full trajectory prediction, effectively addressing the issue
of accumulating errors encountered by previous auto-regressive methods. We
validate the effectiveness of our approach through various experiments, performing
on par with or better than established baseline methods. Movement primitives
further allow us to accommodate various types of context data, as demonstrated
through the utilization of point clouds during inference. By combining GNSs with
meta-learning, we bring them closer to real-world applicability, particularly in
scenarios with smaller datasets.

1 Introduction

Simulating physical systems is a fundamental challenge across a variety of scientific fields, with
applications ranging from structural mechanics (Yazid et al., 2009; Zienkiewicz & Taylor, 2005;
Stanova et al., 2015) over fluid dynamic (Chung, 1978; Zienkiewicz et al., 2013; Connor & Brebbia,
2013) to electromagnetism (Jin, 2015; Polycarpou, 2022; Reddy, 1994). Mesh-based simulations
are often chosen for these tasks due to the computational efficiency and accuracy of the underlying
finite element method (Brenner & Scott, 2008; Reddy, 2019). Yet, the diversity of modeled problems
usually necessitates the development of task-specific simulators to accurately capture the relevant
physical quantities (Reddy & Gartling, 2010). Despite these efforts, these specialized simulators can
be slow and cumbersome, especially for larger simulations (Paszynski, 2016; Hughes et al., 2005).

As a result, data-driven models have gained traction as an appealing alternative (Guo et al., 2016;
Da Wang et al., 2021; Li et al., 2022). Among these, general-purpose Graph Network Simulators
(GNSs) have become increasingly popular (Battaglia et al., 2018; Pfaff et al., 2021; Allen et al.,
2022b, 2023; Linkerhägner et al., 2023). Building on Graph Neural Networks (GNNs) (Scarselli et al.,
2009; Wu et al., 2020; Bronstein et al., 2021), GNSs encode the simulated system as an interaction
graph between nodes, predicting their dynamics. These models offer a significant speed advantage
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Figure 1: Illustration of the latent space of LTSGNS describing material properties of the mesh.
(Left) Given an initial mesh as a context, the task posterior depicted as a black and white contour plot
is spread out to include different possible mesh deformations. Thus, each sample of the posterior
approximation (colored Gaussian components) results in a different yet plausible simulation outcome.
(Right) When the material property can be inferred from additional context information, the posterior
collapses to a unimodal distribution that represents deformations that are compatible with this context.

over classical simulators (Pfaff et al., 2021) while being fully differentiable, making them highly
effective for applications like inverse design (Allen et al., 2022b; Xu et al., 2021).

GNSs are commonly trained through simple next-step supervision (Battaglia et al., 2018; Pfaff
et al., 2021; Allen et al., 2023). During inference, entire trajectories are unrolled by iteratively
predicting per-node dynamics from an initial system state. This process is susceptible to accumulating
errors over time, especially as the input distribution diverges from the training set (Brandstetter
et al., 2022; Han et al., 2022). While data augmentation strategies exist to offset this issue (Pfaff
et al., 2021; Brandstetter et al., 2022), they neither correct mistakes once they have been made
nor effectively address the challenges posed by partially known initial system states (Linkerhägner
et al., 2023). Moreover, these models usually require large amounts of data to train, which is an
issue in real-world scenarios where data is often sparse and the need for efficient adaptation to
new tasks is crucial (Linkerhägner et al., 2023). In this work, we reformulate learned mesh-based
simulation as a trajectory-level meta-learning problem that uses mesh states as a context set to
address these limitations. We employ a Bayesian meta-learning approach based on non-amortized
task posterior approximations (Volpp et al., 2021, 2023) for rapid adaptation to new task properties
and uncertainties. We further mitigate the issue of error accumulation through the use of Probabilistic
Dynamic Movement Primitivess (ProDMPs) (Schaal, 2006; Paraschos et al., 2013; Li et al., 2023)
to represent higher-order dynamics of mesh nodes on a trajectory level. Combined, these methods
allow us to model a distribution over unknown material properties and induced simulation trajectories
from a given context set. When this context set contains sufficient information, the method is able to
accurately determine specific system properties and adapt the simulation accordingly. We visualize an
example in Figure 1. A more detailed overview of our approach, called Latent Task-Specific Graph
Network Simulator (LTSGNS)2 is shown in Figure 2.

We validate the effectiveness of LTSGNS on challenging deformable object simulations, showing
superior prediction quality compared to MeshGraphNet (MGN), a state-of-the-art GNS. Furthermore,
we showcase that our method can incorporate real-world observations such as point-clouds. This
feature is particularly useful for applications dealing with sparse and incomplete data sets. The ability
to accommodate such data types makes the model more applicable in practical scenarios and opens
new avenues for research that require robust and generalizable graph network simulators.

2 Related Work

Graph Network Simulators. Recent research has increasingly focused on training deep neural
networks for physical simulations as such models can yield significant speedups over traditional
solvers while being fully differentiable (Pfaff et al., 2021; Allen et al., 2022a), making them a
natural choice for e.g., model-based Reinforcement Learning (Mora et al., 2021) and Inverse Design
problems (Baqué et al., 2018; Durasov et al., 2021; Allen et al., 2022a). Examples use Convoluational
Neural Networks (CNNs) for fluid and aerodynamic flow simulations (Tompson et al., 2017; Guo

2Code available at https://github.com/PhilippDahlinger/ltsgns_ai4science
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et al., 2016; Chu & Thuerey, 2017; Zhang et al., 2018; Bhatnagar et al., 2019; Ummenhofer et al.,
2020; Abdolmaleki et al., 2016) and train either on a supervised loss or with the help of Generative
Adversarial Networks (Goodfellow et al., 2014) in an adversarial fashion (Kim et al., 2019a; Xie
et al., 2018). A popular class of learned neural simulators are GNSs (Battaglia et al., 2016; Sanchez-
Gonzalez et al., 2020), a special type of GNN (Scarselli et al., 2009; Bronstein et al., 2021) that is
designed to handle graph-structured physical data by modeling relations between arbitrary entities.
Here, applications include particle-based simulations (Li et al., 2019; Sanchez-Gonzalez et al., 2020),
atomic force prediction (Hu et al., 2021) and fluid dynamic problems (Brandstetter et al., 2022).
Most notably, they have been applied to the mesh-based prediction of deformable objects (Pfaff et al.,
2021; Weng et al., 2021; Han et al., 2022; Fortunato et al., 2022; Linkerhägner et al., 2023). Here,
extensions include handling rigid objects (Allen et al., 2022b, 2023) and integrating learned adaptive
mesh refinement strategies (Plewa et al., 2005; Yang et al., 2023; Freymuth et al., 2023) into the
simulator (Wu et al., 2023). Closely related to our work, another extension utilizes additional sensory
information to ground simulators to improve long-term predictions (Linkerhägner et al., 2023).

Meta Learning. Meta-learning (Schmidhuber, 1992; Thrun & Pratt, 1998; Vilalta & Drissi, 2005;
Hospedales et al., 2022) extracts inductive biases from a training set of related tasks in order to
increase data efficiency on unseen tasks drawn from the same task distribution. In contrast to other
multi-task learning methods, such as transfer learning (Krizhevsky et al., 2012; Golovin et al., 2017;
Zhuang et al., 2020), which typically merely fine-tune or combine standard single-task models, meta-
learning makes the multi-task setting explicit in the model architecture (Bengio et al., 1991; Ravi &
Larochelle, 2017; Andrychowicz et al., 2016; Volpp et al., 2019; Santoro et al., 2016; Snell et al.,
2017). This allows the resulting meta-models to learn how to learn new tasks with only a few context
examples. A popular variant is the model-agnostic meta-learning (MAML) family (Finn et al., 2017;
Grant et al., 2018; Finn et al., 2018; Kim et al., 2018), which employs standard single-task models
and formulates a multi-task optimization procedure. The neural process (NP) model family (Garnelo
et al., 2018a,b; Kim et al., 2019b; Gordon et al., 2019; Louizos et al., 2019; Volpp et al., 2021) is a
complementary approach in the sense that it builds on a multi-task model architecture (Heskes, 2000;
Bakker & Heskes, 2003), but employs standard gradient based optimization algorithms (Kingma &
Ba, 2015b; Kingma & Welling, 2014; Rezende et al., 2014; Zaheer et al., 2017). Recently, Volpp et al.
(2023) demonstrated the importance of accurate task posterior inference for efficient meta-learning by
combining an NP-like architecture with more powerful inference and optimization schemes (Arenz
et al., 2018; Lin et al., 2020; Arenz et al., 2023).

Motion Primitives. Movement Primitives (MPs) (Schaal, 2006; Paraschos et al., 2013) allow for
compact and smooth trajectory representation via a set of basis functions. Recent methods combine
MPs with neural networks to increase their expressiveness (Seker et al., 2019; Bahl et al., 2020; Li
et al., 2023). Among these, ProDMPs (Li et al., 2023) introduce a novel set of basis functions that
sidestep an otherwise expensive numerical integration procedure in the training pipeline while being
fully differentiable. Additionally ProDMPs can be queried at arbitrary points in time, making them
particularly suitable for our approach.

3 Latent Task-Specific Graph Network Simulators

Graph Network Simulators A MPN (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021) consists
of a series of message passing steps which iteratively update latent node and edge features based
on the graph topology. Given a graph G = (V, E ,XV ,XE) with nodes V , edges E and associated
vector-valued node and edge features XV and XE , each step is given as

hk+1
e = fk

E (h
k
v ,hk

u,hk
e), hk+1

v = fk
V(h

k
v ,
⊕

e=(v,u)

hk+1
e ), with e = (u, v) ∈ E .

Here, h0
v and h0

e are embeddings of the system state per node and edge, and ⊕ is a permutation-
invariant aggregation such as a sum, max, or mean operator. Each f l

· is a learned function such as a
small Multilayer Perceptron (MLP). The network’s final output is a node-wise learned representation
h that encodes local information about the graph topology and the predicted dynamics of the respective
parts of the simulated system.

3



GNN Decoder
Node Features

Latent Variable
GMM

Encoder

ProDMP Weights

ProDMP

Node-Level Trajectories

...

Initial Mesh

Context Set

...

Likelihood

Relative
Positions

Input Latent SpaceFunction Module

Figure 2: Schematic of the LTSGNS architecture. We compute relative node positions stored in the
edges of initial mesh and obtain latent node features through a GNN. Combining the node features
with a latent task-specific variable, we compute a trajectory per node using ProDMPs. To get the
latent variable z for the current context, we approximate the task posterior with a GMM. This requires
the gradient of the likelihood with respect to z.

GNSs encode the system state as a graph, feed it through a Message Passing Network (MPN) and
interpret the outputs per node as dynamics that can be used to forward the simulation in time using
e.g., a forward-Euler integrator. The state encoding usually uses relative distances and velocities
rather than absolute ones, as the resulting translation-invariance allows for better generalization over
local areas (Sanchez-Gonzalez et al., 2020). When parts of the simulation are known, such as e.g.,
the positions of a robot’s end-effector for a planned trajectory, only the remaining nodes are predicted.
Existing GNSs usually minimize a next-step Mean Squared Error (MSE) per node during training
and produce longer trajectories by iteratively applying the resulting forward dynamics (Pfaff et al.,
2021). As this iterative dependence on previous predictions causes errors to accumulate over time,
carefully tuned implicit de-noising strategies are often added during training (Sanchez-Gonzalez
et al., 2020; Pfaff et al., 2021; Brandstetter et al., 2022). Here, we instead use ProDMPs to directly
predict a compact trajectory representation per system node in a single step, reducing the effect of
error accumulation similar to, e.g., temporal bundling (Brandstetter et al., 2022).

Meta-Learning and Graph Network Simulators. We view GNS as a meta-learning problem,
where each task consists of simulating a deformable object with unknown material properties over
time. Our goal is to learn a simulator which is adaptable to a specific scenario by observing context
data. Following the notation of Volpp et al. (2023), the meta-dataset D = D1:L consists of simulation
tasks Dl = {Gl, xl,1:T ,yl,1:T } with an initial mesh Gl and time steps xl,t of the node positions
yl,t ∈ RN×D. We use N as the number of nodes and D for the world dimension of the simulation
(usually D = 3 or D = 2). In contrast to standard meta-learning, we additionally use the initial graph
of the system as a task-level context. Given the initial positions of the deformable mesh and rigid
collider, the task is to predict the node positions yl,t at time steps xl,t. We note that the initial graph
Gl does not contain the full system state, as we consider the material properties of the deformable
object to be unknown.

Model architecture. Our model likelihood L = pθ(yl,t | xl,t, zl,Gl) is parametrized by a global
parameter θ ∈ Rdθ and defines the probability distribution over targets yl,t at corresponding timesteps
xl,t, conditioned on a latent task descriptor zl ∈ RZ and the initial graph Gl, cf. Fig. 2. Given the
graph Gl, the initial mesh of a deformable object and a tractable rigid collider, we connect both objects
based on proximity, compute relative distances between nodes and store this information in the edges.
We then use a MPN to encode latent features h ∈ RH per node. We combine this encoding with the
global latent variable zl ∈ RZ ∼ qϕl

(zl) by concatenating zl to every node feature h. Intuitively,
the latent variable zl encodes the material properties and high-level deformations of the respective

4



simulation, but does not focus on individual nodes. We use a simple MLP as the node-level decoder
to yield final predictions per node.

Instead of iteratively predicting dynamics for the current simulation step like existing GNS (Pfaff
et al., 2021; Allen et al., 2023), we use ProDMP (Li et al., 2023) to predict a representation of the full
trajectory. The node-wise ProDMP weights w ∈ RW define a trajectory over the full time horizon,
and the ProDMP framework allows an efficient backpropagation from the trajectories to the weights
w. As such, we can predict the node positions yl,t at the desired time steps xl,t and use a node-wise
Gaussian log-likelihood between the given and the predicted node positions to fit our latent space as
detailed below.

Model predictions. Under our model, the predictive distribution for a target task D∗, given a set of
context examples Dc

∗ ⊂ D∗, is given by

pθ(y∗,1:T | x∗,1:T ,Dc
∗) =

∫ T∏
t=1

pθ(y∗,t | x∗,t,G∗, z∗)pθ(z∗ | Dc
∗) dz∗, (1)

where the task posterior distribution is given in terms of the model and a prior distribution p(z∗) over
task descriptors by means of Bayes’ theorem as

pθ(z∗ | Dc
∗) =

T c∏
t=1

pθ(y
c
∗,t | xc

∗,t, z∗,G∗)p(z∗) /Z
c
∗(θ) ≡ p̃θ(z∗) /Z

c
∗(θ). (2)

Here, Zc
∗(θ) denotes the marginal likelihood of the context data, i.e.,

Zc
∗(θ) ≡ pθ(y

c
∗,1:T c | xc

∗,1:T c ,G∗) =

∫ T c∏
t=1

pθ(y
c
∗,t | xc

∗,t, z∗,G∗)p(z∗) dz∗. (3)

For reasonably complex models, the marginal likelihood and, thus, the posterior distribution is
intractable and requires approximation. As shown by Volpp et al. (2023), the predictive accuracy
is highly dependent on the accuracy of the task posterior approximation, causing us to mimic their
approach and employ an expressive full-covariance Gaussian Mixture Model (GMM) of the form

pθ(z∗ | D∗) ≈ qϕ∗(z∗) =

K∑
k=1

w∗,kN (z∗ | µ∗,k,Σ∗,k). (4)

We use K mixture components with corresponding weights w∗,k, means µ∗,k, and covariance
matrices Σ∗,k, which we collective denote by ϕ∗. To fit the variational distribution qϕ∗(z∗), we also
follow Volpp et al. (2023) and use the Trust Region Natural Gradient Variational Inference (TRNG-
VI) method, specifically SEMTRUX (Arenz et al., 2023). This requires samples of ∇z p̃θ(z∗), which
can be readily obtained using standard automatic differentiation tools (Paszke et al., 2019).

Meta-training. The aim of meta-learning is to automatically encode inductive biases towards the
task distribution extracted from the meta-dataset D in the task-global parameter θ. To this end, we
maximize w.r.t. θ the log marginal likelihood, which is given as the sum of the per-task log marginal
likelihoods

logZl(θ) ≡ log pθ(yl,1:T | xl,1:T ,Gl) = log

∫ T∏
t=1

pθ(yl,t | xl,t, zl,Gl)p(zl) dzl. (5)

As discussed above, the marginal likelihood is intractable, which is why we employ an evidence
lower bound (ELBO) of the form

ELBOl(θ) = Eqϕl
(zl)

(
T∑

t=1

log pθ(yl,t | xl,t, zl,Gl) + log
p(zl)

qϕl
(zl)

)
≤ logZℓ(θ)

as a surrogate objective for maximization of the log marginal likelihood. The efficiency of this
optimization scheme increases with the tightness of the lower bound, which is in turn controlled by
the task posterior approximation quality of the variational distribution qϕl

(Bishop, 2006; Volpp et al.,
2023). Therefore, we also employ the expressive GMM-TRNG-VI approximation procedure to fit qϕl

during meta-training. The resulting ELBO can then be efficiently approximated using a Monte-Carlo
estimation of the expectation, and be optimized using standard gradient-based optimization (Kingma
& Welling, 2013; Rezende et al., 2014; Volpp et al., 2023; Kingma & Ba, 2015b). After meta-training,
we fix the parameters θ and use them for predictions on unseen tasks.
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Figure 3: (Left) Rollout and (Right) Last Step MSE of the different methods on the Deformable
Plate task. Both metrics are plotted on a logarithmic scale. LTSGNS outperforms MGN and its MP
variant for both metrics from a single context point, further improving its performance when provided
with additional context information. During inference, point cloud information can be used as a
context set, making for easier context acquisition at the cost of slightly worse predictions. Overall,
the performance metrics for both Rollout and Last Step MSE are fairly similar. However, the Last
Step MSE exhibits increased variance across all methods, making it less consistent in comparison.

4 Experiments

Setup. We base our experimental setup on that of Linkerhägner et al. (2023), adapting it to meta-
learning and the prediction of full trajectories using movement primitives. To represent the system
as a graph, we employ one-hot encoding to differentiate between deformable objects and colliders,
and encode relative distances between neighboring nodes in their edges. We do not use explicit
world edges, but include the distances between nodes in mesh space. We utilize the context set Dc

∗,
comprising the initial mesh and C randomly sampled simulation states, to predict node-wise ProDMP
parameters w. These parameters encode the full mesh trajectory, and can be queried to obtain the
system state at arbitrary timesteps.

All models are optimized using Adam (Kingma & Ba, 2015a) with a learning rate of 5× 10−4. For
the MPNs, we use 5 separate message passing steps for all methods. For LTSGNS, we repeat each
step 2 times in an inner loop to increase the receptive field of the individual nodes, as there is no
iterative prediction that could otherwise pass implicit information. Each block uses a latent dimension
of 128, LeakyReLU activations and a 1-layer MLPs for its node and edge updates. We additionally
apply Layer Normalization (Ba et al., 2016) and Residual Connections (He et al., 2016) independently
for both node and edge updates. We repeat each experiment for 5 random seeds and report the mean
and standard deviation over these seeds. Each run’s results are averaged over all trajectory steps and
test set trajectories. We evaluate the models using the Rollout MSE, which is the average MSEs of all
simulation steps, and the Last Step MSE, which is the error of the final simulation step. Additional
details on our experimental setup are provided in Appendix A.

Tasks. We consider a simpler 2-dimensional Deformable Plate and a more challenging 3-
dimensional Tissue Manipulation task (Linkerhägner et al., 2023). Both tasks use Simulation
Open Framework Architecture (SOFA) (Faure et al., 2012) to generate the underlying ground truth
data, and use triangular surface meshes for the simulation. While the initial meshes are known,
both tasks use materials with a randomized and unknown Poisson’s ratio (Lim, 2015) that governs
whether the material contracts or expands under deformation. The Deformable Plate task simulates
different trapezoids that are deformed by a circular collider with constant velocity and varying size
and starting position. Each trajectory consists of a mesh with 81 nodes that is deformed over 50
timesteps, and we use 675/135/135 trajectories for training, evaluation and testing respectively. The
Tissue Manipulation task simulates a common scenario in surgical robotics where a piece of tissue
is deformed by a gripper. Here, the gripper starts attached to a random position of the object and
moves in a random direction with constant velocity. The simulated mesh has 361 nodes, and we
use 600/120/120 training, evaluation and testing trajectories with 100 steps each. All tasks are
normalized to be in [−1, 1].
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Figure 4: (Left) Rollout and (Right) Last Step MSE of the different methods on the Tissue Manipula-
tion task. Both metrics are plotted on a logarithmic scale. LTSGNS yields more accurate simulations
with increasing context size, clearly outperforming the MGN baselines for 5 or more context points.

Baselines and Ablations. We use MGN (Pfaff et al., 2021) as our main baseline. MGN iteratively
predicts the velocities of the current simulation step to generate the next mesh state. It is trained to
minimize the 1-step MSE over node velocities and crucially employs Gaussian input noise (Brandstet-
ter et al., 2022) to prevent error accumulation over time and thus generalize from 1-step predictions
to larger rollouts during inference. We follow previous work (Linkerhägner et al., 2023) and set the
standard deviation of the input noise to 0.01. We experiment with both MGN without information
about the material properties, and with a variant that includes this additional information, called
MGN(M). The latter renders the simulation deterministic with respect to the initial system state
and sets an upper performance limit for the standard MGN model. Additionally, we compare to an
MGN(MP) variant that incorporate ProDMPs to directly predict a trajectory for each node feature
instead of iteratively predicting the next state. Since this method directly predicts the full trajectory,
it does not use Gaussian input noise. Building on our model’s adaptability to different context sets,
we conduct an ablation experiment focused on practical applications. Specifically, we test the use of
point clouds as the context set during inference. This is particularly relevant as point clouds can be
readily generated from depth cameras in real-world settings, while mesh states cannot. Importantly,
this adjustment requires no modifications to the existing training process.

Results. Figure 3 shows results for the Deformable Plate task. We find that LTSGNS outper-
forms MGN even when provided with just a single context point. The model’s performance continues
to improve as the size of the context set increases. Specifically, for a context set with 10 points,
LTSGNS outperforms MGN(M) even though the latter has direct access to the ground truth material
information. Although the performance drops when using point cloud data as context instead of
system states, LTSGNS still outperforms MGN and benefits from the addition of more contextual
information. Similarly, Figure 4 evaluates the Tissue Manipulation task. Here, LTSGNS again
improves with an increasing context size, outperforming all MGN baselines for 5 or more context
points. Providing material properties still improves MGN, but the difference is less significant than for
the Deformable Plate task, presumably because the dynamics are overall harder to predict even with
this additional information. We provide additional results for larger context sets in Appendix B.1.

Figure 5 visualizes exemplary final simulation steps, supporting the findings above. LTSGNS
accurately simulates the object’s deformation from a single context point, and further improves when
provided with additional context information. Opposed to this, MGN, even when provided with
explicit material properties or when combined with ProDMPs, fails to produce consistent meshes.
Appendix B.2 shows visualizations for full rollouts.

5 Conclusion

We introduce LTSGNS, a novel Graph Network Simulator that employs meta-learning and movement
primitives for accurate probabilistic predictions in physical simulations. Our model uses meta-learning
and movement primitives to effectively addresses the issue of error accumulation and dynamically
adapt to context information during inference. LTSGNS is also able to accommodate sensory
inputs like point clouds during inference, broadening its applicability in real-world scenarios. We
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LTSGNS (Mesh) C=1 LTSGNS (Mesh) C=10 MGN MGN-Poisson MGN-ProDMP

Figure 5: Final simulation step of an exemplary test trajectory for the Tissue Manipulation task across
different methods. Blue denotes the ground position of the deformable object, while the wireframe
and yellow shading outline the predicted mesh. Only LTSGNS provides accurate predictions, which
further improve as the size of the context set increases.

experimentally validate the effectiveness of our approach compared to existing baselines, particularly
in tasks involving uncertain material properties. The model’s ability to produce distributions over
trajectories adds an extra layer of robustness, making it a valuable tool for both academic research
and practical applications where data is sparse.

Limitations and Future Work We currently consider each trajectory as a task, and require data
from either states or point clouds of this trajectory to fit our model during inference. However, as
generating such data is often impractical in real-world scenarios, we plan to instead group different
material properties into tasks. This shift will enable the model to encode abstract material behavior,
without being tied to a particular mesh topology or simulation. We further aim to extend our approach
to accommodate longer simulations to fully capitalize on the benefits of incorporating movement
primitives. Combining both, we plan to apply our model to real-world deformations. Here, an
additional focus will be on integrating online re-planning of trajectories, thereby enhancing prediction
accuracy when live sensory information is available.
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A Experimental Protocol

In order to promote reproducibility, we offer comprehensive information regarding our experimental
methodology. In Table1, we give our used hyperparameters for the experiments. To obtain a more
detailed description of the tasks and the dataset, please refer to Linkerhägner et al. (2023) Appendix
B.

In this paper, we use a training approach that adapts its batch size dynamically based on the context
set size. To achieve this, we define a batch cost as an upper bound, calculated as 0.8 plus 0.2 times the
batch size. The batch size is then meticulously chosen to align with the specified batch cost, allowing
us to optimize our training process effectively. Specifically, for the deformable plate task, we set
a target total batch cost of 60, whereas for the tissue manipulation task, we aim for a batch cost of
300. The training for the deformable plate task was conducted on an NVIDIA GeForce RTX 3080
GPU, while the tissue manipulation task utilized an NVIDIA A100 GPU for efficient processing and
optimization. The availability of more powerful hardware enabled us to opt for a larger batch cost in
the context of the tissue manipulation task.

For each trajectory, we generate 30 auxiliary training tasks, as inspired by the approach outlined in
Volpp et al. (2023), Appendix A3.2. In this process, we randomly select pairs of (xl,t,yl,t) for each
auxiliary training task. Additionally, we designate one of the first 30 time steps as the time steps
for constructing the graphs denoted as Gl. During the testing phase, the tasks consistently make use
of the initial mesh for the corresponding Gl, and we adapt the context size C differently for each
evaluation scenario.

Table 1: Table listing the hyperparameters and configurations of the experiments
Parameter Value
Batches per epoch 500
Epochs 1000
Node feature dimension 128
Latent variable dimension 8
Decoder dimension (deformable plate) 128
Decoder dimension (tissue manipulation) 256
Message passing blocks 5
Message passing repeats (MGN) 1
Message passing repeats (LTSGNS) 2
MPN Aggregation function Mean
Learning rate 5.0e− 4
Gaussian likelihood standard deviation 0.01
Number of z samples for ELBO estimation 32
Number of GMM components 3
Auxiliary train tasks per trajectory 30
Activation function Leaky ReLU
SEMTRUX component KL bound 0.01
Number of ProDMP basis functions 10

B Additional Results

B.1 Evaluations.

We additionally show how LTSGNS performs for larger context sizes in Figures 6 (Deformable Plate)
and 7 (Tissue Manipulation). While the inclusion of more context information generally enhances
performance, it sometimes diminishes performance for the Last Step MSE when point clouds are
used as the context. We hypothesize that this effect occurs because a larger context size shifts the
balance between the likelihood L and the prior p(zl), thereby magnifying any existing inaccuracies
in the model that may exist in more complex tasks.
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Figure 6: (Left) Rollout and (Right) Last Step MSE for larger context sizes (C = 20, C = 30)
compared to the methods presented in Figure 3 for the Tissue Manipulation task.
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Figure 7: (Left) Rollout and (Right) Last Step MSE for larger context sizes (C = 20, C = 30)
compared to the methods presented in Figure 4 for the Tissue Manipulation task.

B.2 Visualizations.

We provide additional visualizations for all methods over different timesteps. Figure 6 shows a test
trajectory for the Deformable Plate task, and Figure 9 visualizes the same for the Tissue Manipulation
task. Both figures show that LTSGNS performs similar to MGN for a single context point, but
significantly improves performance when provided with additional information. Especially for
C = 10 data points in the context set, the predictions are visually consistent with the ground truth.

16



LT
SG

NS
 (M

es
h)

 C
=1

LT
SG

NS
 (M

es
h)

 C
=1

0
M

GN
M

GN
-P

oi
ss

on
M

GN
-P

ro
DM

P

t=10 t=20 t=40 t=50

Figure 8: Simulation over time of an exemplary test trajectory of the Deformable Plate task across
different methods. Blue denotes the ground position of the deformable object, while the wireframe
and yellow shading outline the predicted mesh.
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Figure 9: Simulation over time of an exemplary test trajectory of the Tissue Manipulation task across
different methods. Blue denotes the ground position of the deformable object, while the wireframe
and yellow shading outline the predicted mesh.
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