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ABSTRACT

As Large Language Models (LLMs) increasingly support critical sectors such as
healthcare, finance, and public governance, ensuring data confidentiality and ro-
bust access control is a pressing societal challenge. Traditional security mecha-
nisms isolate sensitive resources from unauthorized users, yet existing LLM safety
approaches often fail to enforce strict segregation of confidential data. In this
work, we introduce SecureLLM, a novel compositional framework for building
provably secure large language models (LLMs) that integrates fine-tuning with
traditional access security measures to protect private information. By fine-tuning
LLMs on segregated, “siloed” training data and composing their outputs at in-
ference time based solely on a user’s verified credentials, SecureLLM not only
prevents unauthorized data leakage but also enables accurate responses for com-
plex queries spanning multiple data silos. Our method is demonstrated on a chal-
lenging natural-language-to-SQL translation task and is designed with real-world
applications in mind—supporting sectors where protecting sensitive information
is paramount.

1 INTRODUCTION

In today’s data-driven society, the deployment of large language models (LLMs) in domains like
healthcare, finance, and public administration promises transformative benefits but also introduces
significant risks. While LLMs excel at natural language understanding and generation, their vulner-
ability to prompt injection and data leakage can compromise sensitive information—a risk that is
unacceptable in applications that must adhere to strict privacy and regulatory standards.

LLMs can convinced to reveal sensitive information as is demonstrated by popular prompt hacking
techniques for malicious content generation like in Do Anything Now (DAN) (Shen et al., 2024).
The use of “Guardrails” models to detect malicious generation has been a sufficient method for on-
line models to sanitize outputs before presenting them to the user, but for every guardrail developed,
there is always another method developed shortly thereafter to break said guardrail (Mangaokar
et al., 2024; Banerjee et al., 2024; Dutta et al., 2024; Andriushchenko et al., 2024). For enter-
prises where security must be guaranteed by local laws and regulations, like finance, healthcare,
and national security, guardrails are not legally sufficient to prevent leaking sensitive information.
No prior work offers a method that provides a guarantee of data security for information silos that
must be stored separately and maintain credential-based access controls, which severely limits LLM
adoption in security-focused fields. We provide the first method to build provably secure LLMs by
reflecting the compositionality that allows LLMs to be as secure as credential-based security.

Global initiatives such as the United Nations Sustainable Development Goals (SDGs) and the Leave
No One Behind Principle emphasize the urgent need to protect individual privacy and ensure equi-
table access to technology. Motivated by these societal imperatives, our work rethinks LLM security
by directly embedding traditional access control mechanisms into the model architecture. We intro-
duce SecureLLM, a framework that leverages the compositional nature of security by fine-tuning
separate LLMs on isolated data silos and dynamically composing their outputs at inference time
according to user-specific permissions.
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Figure 1: Assuming a perfect compositional function f that runs at inference time, we propose a
method that guarantees information security. Each model is fine-tuned on a previously segregated
information silo. The user’s credentials are validated using traditional security methods, and infer-
ence is only run on models for which the user has verified access. The outputs of each fine-tuned
model are composed at inference time with the function f and that single composition is passed to
the user. Thus, SecureLLM reduces the problem to LLM security to that of existing information
security systems. Existing compositional fine-tuning methods fail in this challenging environment.
SecureLLM presents a new method that better approximates the function f .

This design not only guarantees that users receive responses only from data to which they are au-
thorized but also enables accurate cross-silo queries that no single silo can resolve independently.
In addressing the dual challenges of robust data security and high-performance generalization, Se-
cureLLM directly contributes to the broader mission of AI for Social Good—ensuring that advanced
AI technologies are both ethically deployed and beneficial to society. Moreover, our approach en-
courages collaboration across multiple disciplines, inviting contributions from computer scientists,
security experts, and domain stakeholders to collectively safeguard sensitive information in real-
world applications.

We consider the scenario where an organization has a set, N , containing separate and confidential
data silos that must be kept separate for legal purposes, but there are also users who have access to
some arbitrary subset of N . We make the following assertions of properties that must be present to
call a model secure:

1. Can accurately respond to prompts on data that the user already has verified access-
credentials

2. Can accurately respond to prompts that require the intersection of segregated data silos
3. Will provably never reveal information to an unauthorized user

Trivially, one could fine-tune many models on the power set of N ; but this has a major flaw. Using
this trivial method, the number of models required to satisfy our Secure Model Properties is 2n, or
2n − 1 if we reasonably do not consider the empty set. This quickly becomes impractical for values
of n > 4. Instead, we show how to achieve the same goals with a linear number of LLM fine-tunings
(fig. 1). While using only one fine tuned model per silo, we can configure and compose a model
specific to the user’s permissions at runtime.

While other methods have demonstrated compositionality for similar tasks, there are none that have
been designed for situations where information silos are entirely orthogonal and disjoint from one
another. To rigorous demonstrate the compositional properties of SecureLLM, we formulate a new
compositional task using natural-language-to-SQL translation. In this task, each SQL schema is
entirely disjoint and prompts do not contain the exact table or column name, thus requiring the
model to have perfect parameterized knowledge of the schema. SQL translation offers an extreme
test of compositionality, and only serves to demonstrate in an easily verifiable manner the efficacy
of SecureLLM compared to other compositional methods. For practical SQL translation of the same
task, it is simply easier to pass the siloed database schemas as part of the prompt to achieve the same
result.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This idea is reminiscent of recent work like LoraHub (Huang et al., 2023) which also composes fine-
tunings. Given a target task, LoraHub selects a set of fine-tunings, Low Rank Adapters (LoRAs) (Hu
et al., 2021), that are added together. However, LoraHub is designed for soft tasks, where a model
already tends to perform well, and where LoraHub’s aim is to increase performance by a few percent.
The domain we consider here is radically different, we seek compositionality for unrelated silos of
information. Questions that require access to silos A and B, by definition cannot be answered with
access to only A or only B. The underlying performance of models is nearly zero. LoraHub is not
well-suited to such tasks and performs very poorly. Our compositional method in SecureLLM solves
this issue and can generate accurate responses when the intersection of silos A and B is required.

Our contributions are:

1. formulating a difficult new compositional task that LLMs have great difficulty with –
natural-language-to-SQL where not only a model is trained on queries of individual
databases but also where the accurate responses require cross-database joins,

2. formulating the notion of access security in terms of this task,
3. demonstrating that existing fine-tuning methods fail in this compositional environment,
4. introduction of new compositional methods for this problem.

While we only concern ourselves with the task of understanding queries by translating them to SQL,
we claim our methods are generic and can be applied to numerous other domains like translating
commands to API calls and answering questions from large collections of documents.

2 RELATED WORK

Model Composition. Our framework relies on composing LLM fine-tunings at inference time
which follows a set of previous works that use model composition. A recent method combines
pretrained LLM prompts each tuned for separate tasks to achieve generalization on downstream
tasks (Sun et al., 2023) but requires training prior to inference. AdapterSoup composes fine-tunings
by linearly averaging fine-tuned weights depending on a criteria to determine which fine-tunings are
relevant to the new domain (Chronopoulou et al., 2023). PEM Addition is a method that doesn’t
require further training such as composing fine-tunings using arithmetic operations directly on the
weights (Zhang et al., 2023). LoraHub is a recent simple framework that also composes different
LoRA fine-tunings (Hu et al., 2021) at inference time where each fine-tuning is trained on a different
task (Huang et al., 2023); we include comparisons using LoraHub and PEM Addition.

Privacy Attacks. Many recent works discuss a range of different privacy attacks against large
language models and Deep Learning models in general. Membership inference attacks are a type
of privacy attack which try to determine if a piece of text was contained in the training data of a
model possibly without access to the weights (Hisamoto et al., 2020; Nasr et al., 2019; Hu et al.,
2022). An even larger security risk is posed by training data extraction attacks where large language
models leak text in their training data verbatim (Carlini et al., 2019) including personally identifiable
information (Inan et al., 2021). This attack is shown to be successful even when such data was only
mentioned in a single document and this behavior worsens with an increase in model size (Carlini
et al., 2021). Similarly, training data extract attacks were effective on models fine-tuned on a smaller
dataset (Zanella-Béguelin et al., 2020). With recent work tackling these privacy issues for Retrieval-
Augmented Generation using multi party communication (Zyskind et al., 2023).

Differential Privacy. A popular algorithmic technique to train machine learning models with cer-
tain privacy guarantees is differential privacy (Abadi et al., 2016) which has also been applied to
large recurrent language models (McMahan et al., 2017). Multiple recent works manage to use
differentially private learning on large language models with hundreds of millions of parameters to
achieve efficient differentially private fine-tuning with slight degradation in performance (Li et al.,
2021; Yu et al., 2021). Many other methods borrow inspiration from differential privacy like Confi-
dentially Redacted Training which provably prevents memorization of the training data (Zhao et al.,
2022). However, there are differences between Differential Privacy and our approach. In differential
privacy, there exists a non-zero amount of privacy loss parameterized by the privacy budget (ϵ and
δ) from the resulting model as the privatization step minimizes but does not completely ensure that
the updated model parameters do not leak private information.
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3 FRAMEWORK

SecureLLM takes several fine-tunings each trained on distinct information silos and composes them
at inference time. The goal of the composed model is to answer questions about both individual silos
and questions that span silos. For example, in our case, a natural-language to SQL LLM would need
to be able to generate joins across the databases of multiple silos to answer complex questions that
have never been seen at training time. This is a trivial task for humans, but one that challenges LLMs.
We go a step further: not only must such an LLM work, it must operate through a combination of
fine-tunings, i.e., not only has it never seen combinations of silos at training time, its fine tunings
have only ever seen a single silo each. This challenges, and defeats, current fine-tuning methods.
The upshot of this difficult task is that it solves several key security problems for LLMs.

Given N data silos {S1, S2, · · · , SN} and N fine-tuned LLMs {M1,M2, · · · ,MN} where Mi has
been fine-tuned on the data silo Si, and given a set of target indices T ⊆ {1, 2, · · · , N}, the goal is
to obtain a composed model MT := MT1

⊕· · ·⊕MT|T | at inference time with no additional training
such that MT is able to correctly answer any question about the information contained in the target
silos Si, ∀i ∈ T and should fail to answer any question about information not contained in the target
silos Sj , ∀j /∈ T as to not leak any information that the desired model MT is not intended to have.
Additionally, the target model MT should be able to answer new union questions qunion,ij ∈ Si∪j

where i ∈ T ∧ j ∈ T where the question relies on information contained in both Si and Sj . We note
that the union questions qunion,ij are not answerable by any individual data silos, thus none of the
individual models Mi are able to answer any union questions while a successfully composed model
should be able to answer such questions without the need of any training.

It is critical that the composed model MT has no knowledge of information silo that the user is
not authorized to access, i.e. data silos Si, i /∈ T . Without this condition, a trivial solution is
to train a single model MAll on all data silos {1, · · · , N} however this approach is susceptible to
leaking confidential information as the model would have knowledge of information contained in
silos that users are not authorized to view and thus is not a valid approach. This approach is also
problematic for scenarios that employ security through contradiction, in that some silos may directly
contradict information in another silo in order to protect sensitive information (SecureLLM could
potentially solve this by applying weights to silos of higher confidentiality). We refer to MAll as the
Exponential Model that has seen every combination and such a model is used as an insecure upper
bound to performance in our experiments.

An alternative to composing fine-tunings while also preserving privacy would be to create an expo-
nential number of models, one for the powerset of information silos. This would maximize perfor-
mance and minimize the amount of generalization needed, as long as one had a way to automatically
generate cross-silo questions, perhaps with another LLM. This is obviously impractical. In essence,
our method provides the advantages of the exponential approach but with linear storage and training
runtime.

3.1 COMPOSING FINE-TUNINGS

We discuss several existing methods, none of which perform well. A few other plausible methods
that also do not perform well are shown in the appendix. Finally we describe two new methods that
do perform well with one clear winner.

LoraHub The LoraHub method for composition introduced by Huang et al. (2023) is a two-step
process involving element-wise summation of LoRA fine-tunings (COMPOSE), and then learning
weight optimizations via gradient-free methods to apply to each fine-tuning (ADAPT). For this paper,
we do not implement the ADAPT stage because weights for every possible combination would need
to be learned, and we could not say that this process is completed at inference time.

We observe that LoraHub performs poorly on the secure composition task. The authors warn that
combining too many fine-tunings can lead to poor performance, however this cannot be the source
of poor performance as we compose only up to three LoRAs.

PEM Addition The summation method introduced by Zhang et al. (2023) is similar to LoraHub,
however, instead of summing the embeddings of the encoder and decoder prior to receiving the input
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Q: What’s the average age of all teachers that are
older than 72 or that taught art classes for 9th
graders in the school. Answer:

1 SELECT AVG(instructors.teacher_age)
2 FROM instructors INNER JOIN classes
3 ON instructors.teacher_id =

classes.teacher_id
4 WHERE instructors.teacher_age >= 72
5 OR classes.class_subject = ’art’ AND

classes.level = 9� �
(a) Sample from Silo 1 (S1)

Q: What’s the minimum height of all appliances in
the inventory that are currently unavailable in stores
located in NY, CA, or MA and with a rating higher
than or equal to 2 stars. Answer:

1 SELECT MIN(inventory.height)
2 FROM inventory INNER JOIN store ON
3 store.store_id = inventory.store_id
4 WHERE inventory.available = 0
5 AND (store.location = ’NY’
6 OR store.location = ’CA’
7 OR store.location = ’MA’)
8 AND store.star_rating >= 2� �

(b) Sample from Silo 2 (S2)

Q: Provide the names of all managers located in
TX and the names of all teachers that are younger
than 86 and that taught english, sociology, or art
classes that achieved a grade higher than 89 in the
database. Answer:

1 SELECT store.name
2 FROM classes
3 INNER JOIN instructors ON

instructors.teacher_id =
classes.teacher_id

4 INNER JOIN store ON store.name =
instructors.name

5 WHERE store.location = ’TX’
6 AND instructors.teacher_age <= 86
7 AND (classes.class_subject = ’english’

OR classes.class_subject =
’sociology’ OR
classes.class_subject = ’art’)

8 AND classes.grade >= 89� �
(c) Sample from Union Silo 1,2 (S1∪2)

Figure 2: Examples of input/output pairs of a question paired with the target SQL query which are
unconditional samples from a Context-Free Grammar.

Q: What is the average age of instructors who are
aged 72 or older or teach art at level 9? Answer:

1 SELECT AVG(instructors.teacher_age)
2 FROM instructors INNER JOIN classes
3 ON instructors.teacher_id =

classes.teacher_id
4 WHERE instructors.teacher_age >= 72
5 OR classes.class_subject = ’art’ AND

classes.level = 9� �
(a) Sample from Silo 1 (S1) that
was rephrased with ChatGPT

Q: What’s the minimum height of all appliances in
the inventory that are currently unavailable in stores
located in NY, CA, or MA and with a rating higher
than or equal to 2 stars. Answer:

1 SELECT MIN(inventory.sloth)
2 FROM inventory INNER JOIN store ON
3 store.bear = inventory.bear
4 WHERE inventory.pony = 0
5 AND (store.alpaca = ’NY’
6 OR store.alpaca = ’CA’
7 OR store.alpaca = ’MA’)
8 AND store.raccoon >= 2� �

(b) Sample from Silo 2 (S2)
with obfuscated column names

Figure 3: Examples of input/output pairs of a question paired with the target SQL query which (a)
are from the ChatGPT rephrased silos and (b) use column names obfuscated by an arbitrary but
consistent mapping.

x, one executes each fine-tuning independently at the attention-layer level, and then adds the result.
This version of summed composition shows improved performance over LoraHub.

Average of Adapter Weights Computing the simple average of each Lora fine-tuning response,
as suggested by Chronopoulou et al. (2023),

∑
i→n

Li

n , produced compositions that were 50% less
effective than PEM Addition in initial informal tests.

Variations of LogSumExp of Adapter Weights Du et al. (2020) proposes a disjunctive composition
process based on Energy Based Modeling, −logsumexp(−E1(x),−E2(x), · · · ). Every variation
tried performed significantly worse than PEM Addition, and upon closer inspection, this process
substantially distorts encoder and decoder embeddings.

Adapter Concatenation The Mangrulkar et al. (2022) library implements weight concatenation,
however we found that concatenating LoRA encoder/decoder fine-tunings performed significantly
worse than PEM Addition.

3.2 OUR METHODS

Maximum Difference The intuition behind this method is to select the embeddings from each fine-
tuning with the strongest response (either positive or negative) at each attention layer. In order to
accomplish this, each LoRA fine-tuning is evaluated separately on input x. Then a mask of zeros
with the same dimension as the output is created, hmax, to aggregate LoRA responses. For each
LoRA fine-tuning response Li, an element-wise comparison is made, and if the absolute values of
the fine-tuning response is greater than the aggregated response, then the signed response from that
fine-tuning replaces the element in the aggregated response.
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Logit Composition Given fine-tunings to compose M1, · · · ,Mn and input x, we define logit com-
position as performing the complete forward pass for each fine-tuning independently to obtain logit
probabilities. We select the maximum value of each logit. One could instead sum logits for each
fine-tuning. We found little difference between the two implementations, although the sum may
have issues as the number of fine-tunings increases.

Note that we are not claiming this method to be a superior compositional approach in every case.
The requirements of compositional security are different than those of some other compositional
tasks. By its very nature, compositional security implies that most of the time every model but one
is irrelevant and confused, and unconfused model is most likely to produce confident results. This
motivates our compositional methods and explains why other methods preform so poorly.

4 DATA GENERATION

Our goal is to automatically create a challenging dataset for compositions of silos. While there are
countless other NL2SQL datasets, none specifically focus on SQL queries for disjoint and unrelated
databases silos. Secure-NL2SQL contains three silos of disjoint schemas pertaining to different
subjects, as well as the superset of unions between those three silos for a total of seven permutations
(S1, S2, S3, S1∪2, S1∪3, S2∪3, S1∪2∪3). The dataset contains automatically generated questions and
corresponding SQL queries across each silos.

We automatically generate SQL databases, one per silo, with 2-3 tables per database, that share
columns which can be joined together both within and between databases. However, the databases
are otherwise disjoint and contain different topics. For each database we generate natural language
questions along their equivalent SQL. Then, we generate questions and SQL pairs that span pairs
and triples of databases. Two methods are used to generate these pairs: a CFG (see fig. 2) and
ChatGPT 4 (see fig. 3). The CFG generates both the SQL and the question in parallel. We do this
at large scale, with 100,000 pairs per silo or combination of silos. To ensure that our results scale to
more realistic queries we also generate 300 pairs per silo or combination of silos.

We limit the scope of generated SQL statements. All statements generated from our CFG, an excerpt
of which is shown in the appendix, are SELECT statements that only contain the SQL keywords
FROM, NATURAL JOIN, and WHERE. The majority of the complexity is in the WHERE clause which
requires specialized knowledge about the schema along with language comprehension to properly
generate based on the input question. The task for the LLM is to generate the WHERE clause of an
SQL statement which answers the input question.

We introduce a useful normalization, for which we provide ablations in the results section. This
normalization is closely related to 6NF (Date et al., 2003) by ensuring table and columns are not
”guessable” by a non-fine-tuned model based on context provided in the prompt. In general, this
transformation could help all SQL LLMs, and is bidirectional. As described in the results section,
our composition methods are far superior irrespective of this normalization, but we believe it is a
valuable observation that is likely to lead to many more LLM-specific normalizations as they become
serious consumers of SQL.

5 EXPERIMENTS

To demonstrate the capabilities of model composition at inference-time, we first begin by obtaining
individual fine-tunings that are knowledgeable in a single silo by fine-tuning a Llama-2-7b model for
each silo separately. The fine-tuning results in a Low-Rank Adaptation (LoRA) for each silo which
can independently be applied to the base Llama-2-7b model. Once the individual LoRA fine-tunings
are obtained we compose them using one of several compositional schemes with the requirement that
the composition happens at inference time with no additional training. We additionally train two
insecure baseline models that act as an upper-bound using LoRA, the baseline generalized model
is trained on all the individual silos together and must then generalize it’s knowledge to the union
silos. While the baseline exponential model also breaks privacy guarantees by training on all the
individual silos along with the union silos, the term exponential refers to the fact that training such
a model while preserving privacy would mean that O(2N ) models would need to be trained where
N is the number of silos in the database. Both baseline models are considered insecure as there is
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Table 1: Normalized tree edit distance for CFG-generated question and SQL pairs with accuracy
reported in parentheses (average and std. dev. only applies to normalized tree edit distance). The
exponential baseline sees all combinations of silos at training time, this is intractable and insecure,
but has maximal performance. The generalization baseline sees all silos but not combinations of silos
at training time, this is tractable but insecure. The other methods are used to build a SecureLLM. As
described above, we do not include detailed reports on methods which underperform both LoraHub
and PEM Addition. Note that our methods significantly outperform prior work. They retain all the
generalization performance there is (since the generalization model sees all silos at once, while the
fine-tunings each see silos separately, the generalization model should nominally perform better),
even outperforming the generalization baseline.

CFG Baseline Baseline Ours
Generated Exponential Generalized PEM (Maximum Ours

Model Model LoraHub Addition Difference) (Logits)
Silos1 0.0 (100.0%) 0.0 (98.3%) 1.9 0.9 0.4 0.1
Silos2 0.0 (96.7%) 0.0 (100.0%) 2.6 0.8 0.3 0.1
Silos3 0.0 (100.0%) 0.0 (100.0%) 1.2 0.7 0.2 0.1
Silos1∪2 0.0 (99.2%) 0.5 (0.0%) 1.7 0.7 0.7 0.2
Silos1∪3 0.0 (100.0%) 0.4 (1.7%) 2.0 0.7 0.6 0.3
Silos2∪3 0.0 (100.0%) 0.5 (1.7%) 2.4 0.7 0.7 0.2
Silos1∪2∪3 0.0 (98.3%) 1.0 (0.0%) 1.8 1.0 0.9 0.2
µ± σ 0.0± 0.0 0.35± 0.38 1.95± 0.47 0.78± 0.15 0.56± 0.26 0.19± 0.1

no method of removing knowledge about certain silos at inference time when the user does not have
the sufficient credentials unlike our proposed SecureLLM method which can remove and add fine-
tunings with each silo’s knowledge at inference time. We fine-tune all models with one epoch until
saturation (achieving near 100% accuracy on the CFG validation set) using a frozen Llama-2 7B
(Touvron et al., 2023) with a trainable LoRA fine-tuning (Hu et al., 2021) using LoRA parameters
r = 8, α = 32 and a dropout (Srivastava et al., 2014) of 0.1, an Adam optimizer (Kingma & Ba,
2014) with a learning rate of 0.0002, a batch size of 32, and a weight decay of 0.002.

While Exact Match (EM) accuracy is typically recorded for NL2SQL datasets, we found this metric
to not be granular enough to show differences in method performance. Instead, we calculate the tree-
edit distance Zhang et al. (1996) between the ground query and the generated query. By computing
the number of edit operations required to transition between the two, we can show how close a
given generated query is to the correct query, whereas using only EM is a binary representation of
correctness.

We report the results of the two insecure baseline models along with the secure composition
(M1⊕M2⊕M3 where Mi was trained on Siloi) using multiple compositional methods (as described
in Framework) including our best method (Framework: Logit Composition) with and without using
6NF-like database normalization, which is equivalent to the scenario where a user has credentials
to access T = {1, 2, 3}. We note that neither the baseline generalized model nor the secure com-
positions have seen the union Silos (S1∪2, S1∪3, S2∪3, and S1∪2∪3) and that only the exponential

Table 2: Results on the ChatGPT-paraphrased questions. See Table 1 for a detailed explanation.
Our method continues to outperform all others, and again outperforms the generalization baseline.
Scaling to realistic queries still favours our approach.

GPT Baseline Baseline Ours
Generated Exponential Generalized PEM (Maximum Ours

Model Model LoraHub Addition Difference) (Logits)
Silos1 0.0 (87.5%) 0.1 (79.2%) 2.0 1.1 0.5 0.2
Silos2 0.2 (61.7%) 0.2 (56.7%) 2.8 1.0 0.5 0.3
Silos3 0.1 (56.7%) 0.2 (51.7%) 1.4 1.1 0.5 0.2
Silos1∪2 0.2 (29.2%) 0.4 (0.0%) 1.5 0.9 0.6 0.4
Silos1∪3 0.1 (33.3%) 0.3 (3.3%) 2.2 0.6 0.5 0.3
Silos2∪3 0.1 (50.0%) 0.3 (2.5%) 1.9 0.6 0.5 0.2
Silos1∪2∪3 0.2 (20.8%) 0.4 (0.0%) 2.0 0.7 0.6 0.2
µ± σ 0.15± 0.07 0.28± 0.14 1.96± 0.47 0.84± 0.22 0.52± 0.05 0.27± 0.06
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Table 3: Following Table 1 while obfuscating the table names. Our methods continue to perform
well showing that they are not taking advantage of a trivial solution. For real-world applications, one
would likely use a much larger baseline model. This would improve the absolute execution scores,
which would method would benefit from since it retains the performance of the underlying model in
this challenging compositional task.

Obfuscated Baseline Baseline Ours
Generated Exponential Generalized PEM (Maximum Ours

Model Model LoraHub Addition Difference) (Logits)
Silos1 0.0 (99.2%) 0.0 (94.2%) 1.8 1.1 0.5 0.2
Silos2 0.0 (92.5%) 0.0 (100.0%) 3.1 1.4 0.5 0.2
Silos3 0.0 (100.0%) 0.0 (100.0%) 0.9 0.8 0.5 0.1
Silos1∪2 0.0 (98.3%) 0.4 (0.0%) 1.3 1.4 0.7 0.3
Silos1∪3 0.0 (77.5%) 0.6 (1.7%) 1.6 2.5 1.0 0.5
Silos2∪3 0.0 (100.0%) 0.4 (1.7%) 1.9 2.5 0.9 0.3
Silos1∪2∪3 0.0 (80.0%) 0.7 (0.8%) 1.6 2.2 1.1 0.5
µ± σ 0.01± 0.01 0.31± 0.3 1.73± 0.69 1.7± 0.7 0.73± 0.26 0.29± 0.15

baseline model has been trained on those silos. The performance of the composed fine-tunings on
the individual Silos would give an indication as to whether the resulting composition is able to retain
the knowledge of each individual fine-tuning from each separate Silo; This performance is expected
to be traded off for privacy while the better compositional methods mitigate the extent of this trade
off and maintain maximal privacy. The performance on the union Silos indicates whether the com-
posed fine-tunings are able to successfully generalize knowledge from the individual fine-tunings
which is an essential component in answering questions that no individual fine-tuning or silo can
answer.

6 RESULTS

The highest performance one can possibly achieve is if the LLM is trained not just on every silo but
the powerset of silos, i.e., the insecure baseline exponential model described above. Realistically,
our model is upper-bounded by a variant of the model that sees all of the silos at training time, but
sees no combination of silos. Both of these are insecure, in that they have access to all of the data.
Our goal is to find a method to combine individual silo fine-tunings to reproduce the performance of
the baseline generalized model.

Raw overall performance is not a relevant metric, although we report it in each case for the baseline
models. Raw performance is a function of the size of the model. And we use the modestly sized
Llama-2-7b. What is critical is the fraction of retained performance. This is what we focus our
results on, the difference in tree edit distance.

LoraHub and PEM addition were the only two competitive methods that were previously published.
All other methods described earlier performed so poorly we did not include them in the final results
table to make room for additional experiments.

In Table 1 we report performance for the CFG-generated data. Note that for every probe silo com-
bination our methods have by far the lowest tree edit distances. Even without the database nor-
malization described above, our methods outperform all others in every case. With the database
normalization our method retains all the performance that exists, i.e., it nearly always matches the
tree edit distance of the baseline generalized model.

One might wonder if these results are merely an artifact of the CFG-based approach. When replicat-
ing the same experiment with sentences rephrased by ChatGPT, see Table 2, we come to the same
conclusions. LoraHub and PEM Addition, along with all prior methods we attempted significantly
underperform our approach. Note that this is an extremely challenging test set as the ChatGPT
paraphrases are only used for testing, not for training.

To guard against a potential trivial solution to this problem, we also introduce a column-name ob-
fuscated version. A model that is good at guessing a likely name for a table based on the entities it
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refers to might otherwise get a leg up. We are interested in the ability of models to retain compo-
sitional reasoning, rather than circumventing the task. In any case, in real world conditions column
names are often rather complex. In Table 3 each column is given an arbitrary but stable and coherent
name, in this case an animal. Relative to Table 1 our method loses little performance, meaning that
it encourages compositional reasoning.

7 CONCLUSION

Ensuring the secure deployment of large language models is critical for their use in sensitive and
societally important applications. In this work, we introduced SecureLLM, a novel compositional
approach that integrates traditional access security with fine-tuning techniques to construct provably
secure LLMs. Our framework effectively mitigates data leakage and prompt injection risks while
retaining the model’s ability to generalize—demonstrated on a challenging natural-language-to-SQL
translation task.

By embedding security directly into the LLM’s architecture, SecureLLM offers a scalable solution
for sectors such as healthcare, finance, and public governance, where the protection of sensitive data
is non-negotiable. Beyond its technical contributions, our work aligns with global initiatives aimed
at safeguarding individual privacy and promoting ethical AI. It serves as a blueprint for interdisci-
plinary collaboration among AI researchers, security practitioners, and policy makers dedicated to
advancing AI for social good.

Looking forward, future work will extend these methods to additional application domains—such
as secure document question-answering and multi-modal data processing—and will deepen collab-
orations with governmental and nonprofit organizations. One possible followup could look at the
inverse task, given a question determine the silos necessary to answer it. This could be used to moni-
tor conversations to ensure individual privacy remains protected throughout a conversation. Another
possible direction would be to look at negative silos that exclude information. A negative silo would
explicitly avoid a topic, which would prevent accidental leaks. Models could rewrite text or data to
refer or exclude particular silos. The traditional world of access security is rich with problems for
LLMs to address, and our work opens up the way for doing so. In addition, by providing provable
security, we take a key step toward enabling the use of LLMs in secure environments. In doing so,
we aim to further bridge the gap between cutting-edge AI research and real-world societal impact,
ensuring that the benefits of AI are harnessed safely and equitably.

Limitations We disentangle and address a very specific slice of LLM safety, one that is often com-
mingled with a larger story about safety. SecureLLM only concerns itself with security in the tra-
ditional sense: quantized access permissions to data. It relies on traditional security techniques to
manage access permissions. There is a widely held belief that LLM security is a totally disjoint new
field, but as we show, with the SecureLLM approach we can reduce many of those security prob-
lems back to traditional access permission issues. Many security problems of LLM are manageable
through traditional means when one can assume that only vetted actors have access, just as they are
with current document storage systems. The same systems which ensure patient privacy, financial
privacy, and that manage secret information today can be used to manage collections of fine-tunings,
and the same supervision methods can trace access to the LLM.

From this perspective SecureLLM solves data leakage and prompt injection attacks, in the same
sense that traditional security solves data leakage: those without permissions cannot access this
information, and those with permissions have full access with training and supervision. Although, in
the future one might imagine extensions that provide more fine-grained permissions. Organizations
are already set up for this form of security, both for managing the user permissions and for the
associated documents, making the deployment of SecureLLM straightforward. In settings where
this structure is not available or not appropriate, SecureLLM is not directly applicable, but those
scenarios never had meaningful security to begin with.

Explicitly out of scope are other notions of safety and security. For example, the LLM may still
fabricate information, produce toxic or biased results, follow guidance that it should not, etc. The
only mitigation that we offer is that only a user that has permissions to that data will be impacted
directly; the user will still need appropriate training about the limitations and dangers of LLMs.
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Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 267–284, 2019.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
Weight averaging to improve generalization of pretrained language models. arXiv preprint
arXiv:2302.07027, 2023.

C. J. Date, Hugh Darwen, and Nikos A. Lorentzos. Temporal Data and the Relational Model A de-
tailed investigation into the application of interval and relation theory to the problem of temporal
database management. Morgan Kaufmann Publishers, 2003.

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation and inference with
energy based models. arXiv preprint arXiv:2004.06030, 2020.

Arka Dutta, Adel Khorramrouz, Sujan Dutta, and Ashiqur R KhudaBukhsh. Down the toxicity
rabbit hole: A framework to bias audit large language models with key emphasis on racism,
antisemitism, and misogyny. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence AI for Good, pp. 7242–50, 2024.

Sorami Hisamoto, Matt Post, and Kevin Duh. Membership inference attacks on sequence-to-
sequence models: Is my data in your machine translation system? Transactions of the Association
for Computational Linguistics, 8:49–63, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun Zhang. Mem-
bership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54
(11s):1–37, 2022.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Effi-
cient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Huseyin A Inan, Osman Ramadan, Lukas Wutschitz, Daniel Jones, Victor Rühle, James Withers, and
Robert Sim. Training data leakage analysis in language models. arXiv preprint arXiv:2101.05405,
2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Neal Mangaokar, Ashish Hooda, Jihye Choi, Shreyas Chandrashekaran, Kassem Fawaz, Somesh
Jha, and Atul Prakash. Prp: Propagating universal perturbations to attack large language model
guard-rails. arXiv preprint arXiv:2402.15911, 2024.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963, 2017.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In 2019
IEEE symposium on security and privacy (SP), pp. 739–753. IEEE, 2019.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. ” do anything now”:
Characterizing and evaluating in-the-wild jailbreak prompts on large language models. In Pro-
ceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security,
pp. 1671–1685, 2024.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Tianxiang Sun, Zhengfu He, Qin Zhu, Xipeng Qiu, and Xuanjing Huang. Multitask pre-training
of modular prompt for Chinese few-shot learning. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 11156–11172, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.625. URL
https://aclanthology.org/2023.acl-long.625.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew Paverd, Olga
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A REPRODUCIBILITY

We use NVIDIA Titan RTX 24GB VRAM GPUs for all our experiments. For all of our PEFT
parameters, less than one GPU-hours per PEFT was required for training. Between around one
GPU-hours was required for composition growing with respect to the number of compositions. For
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each run, approximately 20 GB of VRAM is needed as we use half precision for all training and
inference. Each PEFT can be trained and inferenced on one GPU. We estimate a total of 10 GPU-
hours is required to replicate results for training, and 20 GPU-hours is required to perform the same
experiments described in this manuscript.

All code and data required to reproduce our work is provided in the online supplement which will
be made public under an open source license.

B USE OF LLMS

An LLM and other writing tools were used to detect grammar mistakes and typos during the last
stages of writing.

Additionally, as described in the data generation process, ChatGPT was used to generated the chal-
lenging test set for paraphrased question and the results are reported in Table 2.
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