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ABSTRACT

We study episodic reinforcement learning (RL) in non-stationary linear kernel
Markov decision processes (MDPs). In this setting, both the reward function and
the transition kernel are linear with respect to the given feature maps and are al-
lowed to vary over time, as long as their respective parameter variations do not
exceed certain variation budgets. We propose the periodically restarted optimistic
policy optimization algorithm (PROPO), which is an optimistic policy optimiza-
tion algorithm with linear function approximation. PROPO features two mecha-
nisms: sliding-window-based policy evaluation and periodic-restart-based policy
improvement, which are tailored for policy optimization in a non-stationary envi-
ronment. In addition, only utilizing the technique of sliding window, we propose
a value-iteration algorithm. We establish dynamic upper bounds for the proposed
methods and a matching minimax lower bound which shows the (near-) optimal-
ity of the proposed methods. To our best knowledge, PROPO is the first provably
efficient policy optimization algorithm that handles non-stationarity.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 2018), coupled with powerful function approxima-
tors such as deep neural network, has demonstrated great potential in solving complicated sequential
decision-making tasks such as games (Silver et al., 2016; 2017; Vinyals et al., 2019) and robotic con-
trol (Kober et al., 2013; Gu et al., 2017; Akkaya et al., 2019; Andrychowicz et al., 2020). Most of
these empirical successes are driven by deep policy optimization methods such as trust region policy
optimization (TRPO) (Schulman et al., 2015) and proximal policy optimization (PPO) (Schulman
et al., 2017), whose performance has been extensively studied recently (Agarwal et al., 2019; Liu
et al., 2019; Shani et al., 2020; Mei et al., 2020; Cen et al., 2020).

While classical RL assumes that an agent interacts with a time-invariant (stationary) environment,
when deploying RL to real-world applications, both the reward function and Markov transition ker-
nel can be time-varying. For example, in autonomous driving (Sallab et al., 2017), the vehicle needs
to handle varying conditions of weather and traffic. When the environment changes with time, the
agent must quickly adapt its policy to maximize the expected total rewards in the new environment.
Meanwhile, another example of such a non-stationary scenario is when the environment is subject to
adversarial manipulations, which is the case of adversarial attacks (Pinto et al., 2017; Huang et al.,
2017; Pattanaik et al., 2017). In this situation, it is desired that the RL agent is robust against the
malicious adversary.

Although there is a huge body of literature on developing provably efficient RL methods, most
the existing works focus on the classical stationary setting, with a few exceptions include Jaksch
et al. (2010); Gajane et al. (2018); Cheung et al. (2019a;c; 2020); Fei et al. (2020); Mao et al.
(2020); Ortner et al. (2020); Domingues et al. (2020); Zhou et al. (2020b); Touati & Vincent (2020).
However, these works all focus on value-based methods which only output greedy policies, and
mostly focus on the tabular case where the state space is finite. Thus, the following problem remains
open:

How can we design a provably efficient policy optimization algorithm for non-stationary
environment in the context of function approximation?
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There are four intertwined challenges associated with this problem: (i) bandit feedbacks from non-
stationary reward and transition kernel, (ii) exploration-exploitation tradeoff that is inherent to online
RL, (iii) incorporating function approximation in the algorithm, and (iv) characterizing the conver-
gence and optimality of policy optimization. Existing works merely address a subset of these four
challenges and it remains open how to tackle all of them simultaneously. For example, a line of
research develops optimism-based value iteration algorithms that successfully handle (ii) and (iii),
e.g., (Jiang et al., 2017; Jin et al., 2019b; Wang et al., 2019b; Zanette et al., 2020; Wang et al., 2020;
Ayoub et al., 2020; Zhou et al., 2020a). Besides, Cai et al. (2019); Agarwal et al. (2020); Efroni
et al. (2020) address challenges (ii)–(iv) but fail to consider (i), and Zhou et al. (2020b); Touati &
Vincent (2020) tackle (i)–(iii) but leave (iv) open. More importantly, these four challenges are cou-
pled together, which requires sophisticated algorithm design. In particular, due to challenges (i) and
(iii), we need to track the non-stationary reward function and transition kernel by function estimation
based on the bandit feedbacks. The estimated model is also time-varying and thus the corresponding
policy optimization problem (challenge (iv)) has a non-stationary objective function. Moreover, to
obtain sample efficiency, we need to strike a balance between exploration and exploitation in the
policy update steps (challenge (i)).

In this work, we propose a periodically restarted optimistic policy optimization algorithm (PROPO)
which successfully tackle the four challenges above. Specifically, we focus on the model of episodic
linear kernel MDP (Ayoub et al., 2020; Zhou et al., 2020a) where both the reward and transition
functions are parameterized by linear functions. Besides, we focus on the non-stationary setting and
adopt the dynamic regret as the performance metric. Moreover, PROPO performs a policy evaluation
step and a policy improvement step in each iteration. To handle challenges (i)–(iii), we propose
a novel optimistic policy evaluation method that incorporates the technique of sliding window to
handle non-stationarity. Specifically, based on the non-stationary bandit feedbacks, we propose
to estimate the time-varying model via a sliding-window-based least-squares regression problem,
where we only keep a subset of recent samples in regression. Based on the model estimator, we
construct an optimistic value function by implementing model-based policy evaluation and adding
an exploration bonus. Then, using such an optimistic value function as the update direction, in
the policy improvement step, we propose to obtain a new policy by solving a Kullback-Leibler
(KL) divergence regularized problem, which can be viewed as a mirror descent step. Moreover,
as the underlying optimal policy is time-varying (challenge (iv)), we additionally restart the policy
periodically by setting it to uniform policy every τ episodes. The two novel mechanisms, sliding
window and periodic restart, respectively enable us to track the non-stationary MDP based on bandit
feedbacks and handle the time-varying policy optimization problem.

Finally, to further exhibit effect of these two mechanisms, we propose an optimism-based value
iteration algorithm, dubbed as SW-LSVI-UCB, which only utilize the sliding window and does not
restart the policy as challenge (iv) disappears.

Our Contributions Our contribution is four-fold. First, we propose PROPO, a policy opti-
mization algorithm designed for non-stationary linear kernel MDPs. This algorithm features two
novel mechanisms, namely sliding window and periodic restart, and also incorporates linear func-
tion approximation and a bonus function to incentivize exploration. Second, we prove that PROPO
achieves a sublinear dynamic regret, where d is the feature dimension, ∆ is the total variation bud-
get, H is the episode horizon, and T is the total number of steps. Third, to separately demon-
strate the effect of sliding window, we propose a value-iteration algorithm, SW-LSVI-UCB, which
adopts sliding-window-based regression to handle non-stationarity. Such an algorithm is shown
to achieve a Õ(d5/6∆1/3HT 2/3) dynamic regret. Finally, we establish a Ω(d5/6∆1/3H2/3T 2/3)
lower bound on the dynamic regret, which shows the (near-)optimality of the proposed algorithms.
To our best knowledge, PROPO is the first provably efficient policy optimization algorithm under
the non-stationary environment.

Related Work Our work adds to the vast body of existing literature on non-stationary MDPs. A
line of work studies non-stationary RL in the tabular setting. See Jaksch et al. (2010); Gajane et al.
(2018); Cheung et al. (2019a;c; 2020); Fei et al. (2020); Mao et al. (2020); Ortner et al. (2020) and
the references therein for details. Recently, Domingues et al. (2020) consider the non-stationary RL
in continuous environments and proposes a kernel-based algorithm. More related works are Zhou
et al. (2020b); Touati & Vincent (2020), which study non-stationary linear MDPs, but their setting
is not directly comparable with ours since linear MDPs cannot imply linear kernel MDPs. More-
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over, Zhou et al. (2020b); Touati & Vincent (2020) do not incorporate policy optimization methods,
which are more difficult because we need to handle the variation of the optimal policies of adjacent
episodes and value-based methods only need to handle the non-stationarity drift of reward functions
and transition kernels. Fei et al. (2020) also makes an attempt to investigate policy optimization
algorithm for non-stationary environments. However, this work requires full-information feedback
and only focuses on the tabular MDPs with time-varying reward functions and time-invariant tran-
sition kernels.

As a special case of MDP problems with unit horizon, bandit problems have been the subject of
intense recent interest. See Besbes et al. (2014; 2019); Russac et al. (2019); Cheung et al. (2019a);
Chen et al. (2019) and the references therein for details.

Another line closely related to our work is policy optimization. As proved in Yang et al. (2019);
Agarwal et al. (2019); Liu et al. (2019); Wang et al. (2019a), policy optimization enjoys computa-
tional efficiency. Recently Cai et al. (2019); Efroni et al. (2020); Agarwal et al. (2020) proposed
optimistic policy optimization methods which simultaneously attain computational efficiency and
sample efficiency. Our work is also related to the value-based methods, especially LSVI (Bradtke
& Barto, 1996; Jiang et al., 2017; Jin et al., 2019b; Wang et al., 2019b; Zanette et al., 2020; Wang
et al., 2020; Ayoub et al., 2020; Zhou et al., 2020a).

Broadly speaking, our work is also related to a line of research on adversarial MDPs (Even-Dar
et al., 2009; Neu et al., 2010; 2012; Zimin & Neu, 2013; Rosenberg & Mansour, 2019; Jin et al.,
2019a).

Notaion See §A for details.

2 PRELIMINARIES

2.1 NON-STATIONARY MDPS

An episodic non-stationary MDP is defined by a tuple (S,A, H, P, r), where S is a state space,A is
an action space, H is the length of each episode, P = {P kh }(k,h)∈[K]×[H], r = {rkh}(k,h)∈[K]×[H],
where P kh : S×A×S → [0, 1] is the probability transition kernel at the h-th step of the k-th episode,
and rkh : S × A → [0, 1] is the reward function at the h-th step of the k-th episode. We consider
an agent which iteratively interacts with a non-stationary MDP in a sequence of K episodes. At the
beginning of the k-th episode, the initial state sk1 is adversarially given to the agent, and the agent
determines a policy πk = {πkh}Hh=1. Then, at each step h ∈ [H], the agent observes the state skh,
takes an action following the policy akh ∼ πkh(· | skh) and receives a reward rkh(skh, a

k
h). Meanwhile,

the MDP evolves into next state skh+1 ∼ P kh (· |xkh, akh). The k-th episode ends at state skH+1, when
this happens, no control action is taken and reward is equal to zero. We define the state and state-
action value functions of policy π = {πh}Hh=1 recursively via the following Bellman equation:

Qπ,kh (s, a) = rkh(s, a) + (PkhV
π,k
h+1)(s, a), V π,kh (s) = 〈Qπ,kh (s, ·), πh(· | s)〉A, V π,kH+1 = 0, (2.1)

where Pkh is the operator form of the transition kernel P kh (· | ·, ·), which is defined as

(Pkhf)(s, a) = E[f(s′) | s′ ∼ P kh (s′ | s, a)] (2.2)

for any function f : S → R. Here 〈·, ·〉A denotes the inner product over A.

In the literature of optimization and reinforcement learning, the performance of the agent is mea-
sured by its dynamic regret, which measures the difference between the agent’s policy and the bench-
mark policy π∗ = {π∗,k}Kk=1. Specifically, the dynamic regret is defined as

D-Regret(T, π∗) =

K∑
k=1

(
V π
∗,k,k

1 (sk1)− V π
k,k

1 (sk1)
)
, (2.3)

where T = HK is the number of steps taken by agent and π∗,k is the benchmark policy of episode
k. It is worth mentioning that when the benchmark policy is the optimal policy of each individual
episode, that is, π∗,k = argmaxπ V

π,k
1 (sk1), the dynamic regret reaches the maximum, and this spe-

cial case is widely considered in previous works (Cheung et al., 2020; Mao et al., 2020; Domingues
et al., 2020). Throughout the paper, when π∗ is clear from the context, we may omit π∗ from
D-Regret(T, π∗).
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2.2 MODEL ASSUMPTIONS

We focus on the linear setting of Markov decision process, where the reward functions and transition
kernels are assumed to be linear. We formally make the following assumption.
Assumption 2.1 (Non-stationary Linear Kernel MDP). MDP (S,A, H, P, r) is a linear kernel MDP
with known feature maps φ : S ×A → Rd and ψ : S ×A×S → Rd, if for any (k, h) ∈ [K]× [H],
there exist unknown vectors θkh ∈ Rd and ξh ∈ Rd, such that

rkh(s, a) = φ(s, a)>θkh, P kh (s′ | s, a) = ψ(s, a, s′)>ξkh

for any (s, a, s′) ∈ S ×A× S. Without loss of generality, we assume that

‖φ(s, a)‖2 ≤ 1, ‖θkh‖2 ≤
√
d, ‖ξkh‖2 ≤

√
d

for any (k, h) ∈ [K]× [H]. Moreover, we assume that∫
S
‖ψ(s, a, s′)‖2 ds′ ≤

√
d

for any (s, a) ∈ S ×A.

Our assumption consists of two parts. One is about reward functions, which follows the setting
of linear bandits (Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013; Besbes et al., 2014; 2015;
Cheung et al., 2019a;b). The other part is about transition kernels. As shown in Cai et al. (2019);
Ayoub et al. (2020); Zhou et al. (2020a), linear kernel MDPs as defined above cover several other
MDPs studied in previous works, as special cases. For example, tabular MDPs with canonical basis
(Cai et al., 2019; Ayoub et al., 2020; Zhou et al., 2020a), feature embedding of transition models
(Yang & Wang, 2019a) and linear combination of base models (Modi et al., 2020) are special cases.
However, it is worth mentioning that Jin et al. (2019b); Yang & Wang (2019b) studied another “linear
MDPs”, which assumes the transition kernels can be represented as Ph(s′ | s, a) = ψ′(s, a)>µh(s′)
for any h ∈ [H] and (s, a, s′) ∈ S × A × S. Here ψ′(·, ·) is a known feature map and µ(·) is
an unknown measure. It is worth noting that linear MDPs studied in our paper and linear MDPs
(Jin et al., 2019b; Yang & Wang, 2019b) are two different classes of MDPs since their feature maps
ψ(·, ·, ·) and ψ′(·, ·) are different and neither class of MDPs includes the other.

To facilitate the following analysis, we denote by P k,πh the Markov kernel of policy at the h-step of
the k-th episode, that is, for s ∈ S, P k,πh (· | s) =

∑
a∈A P

k
h (· | s, a) · πh(a | s). Also, we define

‖πh − π′h‖∞,1 = max
s∈S
‖πh(· | s)− π′h(· | s)‖1,

‖P k,πh − P k,π
′

h ‖∞,1 = max
s∈S
‖P k,πh (· | s)− P k,π

′

h (· | s)‖1.

Next, we introduce several measures of change in MDPs. First, we denote by PT the total variation
in the benchmark policies of adjacent episodes:

PT =

K∑
k=1

H∑
h=1

‖π∗,kh − π∗,k−1
h ‖∞,1, (2.4)

where we choose π∗,0h = π∗,1h for any h ∈ [H].

Next, we assume the drifting environment (Besbes et al., 2014; 2015; Cheung et al., 2019a; Russac
et al., 2019), that is, θkh and ξkh can change over different indexes (k, h), with the constraint that the
sum of the Euclidean distances between consecutive θkh and ξkh are bounded by variation budgetsBT
and BP , that is,

H∑
h=1

K∑
k=1

‖θk−1
h − θkh‖2 ≤ BT ,

H∑
h=1

K∑
k=1

‖ξk−1
h − ξkh‖2 ≤ BP , ∆ = BT +BP , (2.5)

where H is the length of each episode, K is the total number of episodes, and T = HK is the
total number of steps taken by the agent. Here ∆ is the total variation budget, which quantifies the
non-stationarity of a linear kernel MDP.
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3 MINIMAX LOWER BOUND

In this section, we provide the information-theoretical lower bound result. The following theorem
shows a minimax lower bound of dynamic regret for any algorithm to learn non-stationary linear
kernel MDPs.

Theorem 3.1 (Minimax lower bound). Fix ∆ > 0, H > 0, d ≥ 2, and T = Ω(d5/2∆H1/2). Then,
there exists a non-stationary linear kernel MDP with a d-dimensional feature map and maximum
total variation budget ∆, such that,

min
A

max
π∗

D-Regret(T, π∗) ≥ Ω(d5/6∆1/3H2/3T 2/3),

where A denotes the learning algorithm.

Proof sketch. As mentioned above, we only need to establish the lower bound of the dynamic regret
when the benchmark policy is the optimal policy of each individual episode. The proof of lower
bound relies on the construction of a hard-to-learn non-stationary linear kernel MDP instance. To
handle the non-stationarity, we need to divide the total T steps into L segments, where each segment
contains T0 = bTL c steps and has K0 = bKL c episodes. Within each segment, the construction of
MDP is similar to the hard-to-learn instance constructed in stationary RL problems (Jaksch et al.,
2010; Lattimore & Hutter, 2012; Osband & Van Roy, 2016). Then, we can derive a lower bound of
Ω(dH

√
T0) for the stationary RL problem. Meanwhile, the transition kernel of this hard-to-learn

MDP changes abruptly between two consecutive segments, which forces the agent to learn a new
stationary MDP in each segment. Finally, by optimization L subject to the total budget constraint,
we obtain the lower bound of Ω(d5/6∆1/3H2/3T 2/3). See Appendix C for details.

4 ALGORITHM AND THEORY

4.1 PROPO

Now we present Periodically Restarted Optimistic Policy Optimization (PROPO) in Algorithm 1,
which includes a policy improvement step and a policy evaluation step.

Policy Improvement Step. At k-th episode, Model-Based OPPO updates πk = {πkh}Hh=1 accord-
ing to πk−1 = {πk−1

h }Hh=1. Motivated by the policy improvement step in NPG (Kakade, 2002),
TRPO (Schulman et al., 2015), and PPO (Schulman et al., 2017), we consider the following policy
improvement step

πk = argmax
π

Lk−1(π), (4.1)

where Lk−1(π) is defined as

Lk−1(π) = Eπk−1

[ H∑
h=1

〈Qk−1
h (sh, ·), πh(· | sh)− πk−1

h (· | sh)〉
]

(4.2)

− α−1 · Eπk−1

[ H∑
h=1

KL
(
πh(· | sh)

∥∥πk−1
h (· | sh)

)]
,

where α > 0 is a stepsize and Qk−1
h which is obtained in Line 10 of Algorithm 2 is the estimator of

Qπ
k−1,k−1
h . Here the expectation Eπk−1 is taken over the random state-action pairs {(sh, ah)}Hh=1,

where the initial state s1 = sk1 , the distribution of action ah follows π(· | sh), and the distribution of
the next state sh+1 follows the transition dynamics P kh (· | sh, ah). Such a policy improvement step
can also be regarded as one iteration of infinite-dimensional mirror descent (Nemirovsky & Yudin,
1983; Liu et al., 2019; Wang et al., 2019a).

By the optimality condition, policy update in (4.1) admits a closed-form solution

πkh(· | s) ∝ πk−1
h (· | s) · exp{α ·Qk−1

h (s, ·)} (4.3)
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for any s ∈ S and (k, h) ∈ [K]× [H].

Policy Evaluation Step. At the end of the k-th episode, Model-Based OPPO evaluates the policy
πk based on the (k − 1) historical trajectories. Then, we show the details of estimating the reward
functions and transition kernels, respectively.

(i) Estimating Reward. To estimate the reward functions, we use the sliding window regularized
least squares estimator (SW-RLSE) (Garivier & Moulines, 2011; Cheung et al., 2019a;b), which is
a key tool in estimating the unknown parameters online. At h-th step of k-th episode, we aim to
estimate the unknown parameter θkh based on the historical observation {(sτh, aτh), rτh(sτh, a

τ
h)}k−1

τ=1.
The design of SW-RLSE is based on the “forgetting principle” (Garivier & Moulines, 2011), that is,
under non-stationarity, the historical observations far in the past are obsolete, and they do not contain
relevant information for the evaluation of the current policy. Therefore, we could estimate θkh using
only {(sτh, aτh), rτh(sτh, a

τ
h)}k−1

τ=1∨(k−w), the observations during the sliding window 1 ∨ (k − w) to
k − 1,

θ̂kh = argmin
θ

( k−1∑
τ=1∨(k−w)

(
rτh(sτh, a

τ
h)− φ(skh, a

k
h)>θ

)2
+ λ · ‖θ‖22

)
, (4.4)

where λ is the regularization parameter and w is the length of a sliding window. By solving (4.4),
we obtain the estimator of θkh:

θ̂kh = (Λkh)−1
k−1∑

τ=1∨(k−w)

φ(sτh, a
τ
h)rτh(sτh, a

τ
h), (4.5)

where Λkh =

k−1∑
τ=1∨(k−w)

φ(sτh, a
τ
h)φ(sτh, a

τ
h)> + λId.

(ii) Estimating Transition. Similar to the estimation of reward functions, for any (k, h) ∈ [K] ×
[H], we define the sliding window empirical mean-squared Bellman error (SW-MSBE) as

Mk
h (ξ) =

k−1∑
τ=1∨(k−w)

(
V τh+1(sτh+1)− ητh(sτh, a

τ
h)>ξ

)2
,

where we denote ητh(·, ·) as

ητh(·, ·) =

∫
S
ψ(·, ·, s′) · V τh+1(s′)ds′. (4.6)

By Assumption 2.1, we have

‖ηkh(·, ·)‖2 ≤ H
√
d

for any (k, h) ∈ [K]× [H]. Then we estimate ξkh by solving the following problem:

ξ̂kh = argmin
w∈Rd

(Mk
h (w) + λ′ · ‖w‖22), (4.7)

where λ′ is the regularization parameter. By solving (4.7), we obtain

ξ̂kh = (Akh)−1

( k−1∑
τ=1∨(k−w)

ητh(sτh, a
τ
h) · V τh+1(sτh+1)

)
(4.8)

where Akh =

k−1∑
τ=1∨(k−w)

ητh(sτh, a
τ
h)ητh(sτh, a

τ
h)> + λ′Id.

The policy evaluation step is iteratively updating the estimated Q-function Qk = {Qkh}Hh=1 by

Qkh(·, ·) = min{φ(·, ·)>θ̂kh + ηkh(·, ·)>ξ̂kh +Bkh(·, ·) + Γkh(·, ·), H − h+ 1}+, (4.9)

V kh (s) = 〈Qkh(s, ·), πkh(·|s)〉A
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in the order of h = H,H − 1, · · · , 1. Here bonus functions Bkh(·, ·) : S × A → R+ and Γkh(·, ·) :
S × A → R+ are used to quantify the uncertainty in estimating reward rkh and quantity PkhV kh+1
respectively, defined as

Bkh(·, ·) = β
(
φ(·, ·)>(Λkh)−1φ(·, ·)

)1/2
, Γkh(·, ·) = β′

(
ηkh(·, ·)>(Akh)−1ηkh(·, ·)

)1/2
, (4.10)

where β > 0 and β′ > 0 are parameters depend on d, H andK, which are specified in Theorem 4.2.

To handle the non-stationary drift incurred by the different optimal policies in different episodes,
Algorithm 1 also includes a periodic restart mechanism, which resets the policy estimates every τ
episodes. We call the τ episodes between every two resets a segment. In each segment, each episode
is approximately the same as the first episode, which means that we can regard it as a stationary MDP.
Then we can use the method of solving the stationary MDP to analyze each segment with a small
error, and finally combine each segment and choose the value of τ to get the desired result. Such
a restart mechanism is widely used in RL (Auer et al., 2009; Ortner et al., 2020), bandits (Besbes
et al., 2014; Zhao et al., 2020), and non-stationary optimization (Besbes et al., 2015; Jadbabaie et al.,
2015).

The pseudocode of the PROPO algorithm is given in Algorithm 1.

Algorithm 1 Periodically Restarted Optimistic Policy Optimization (PROPO)
Require: Reset cycle length τ , sliding window length w, stepsize α, regularization factors λ and

λ′, and bonus multipliers β and β′.
1: Initialize {π0

h(· | ·)}Hh=1 as uniform distribution policies, {Q0
h(·, ·)}Hh=1 as zero functions.

2: for k = 1, 2, . . . ,K do
3: Receive the initial state sk1 .
4: if k mod τ = 1 then
5: Set {Qk−1

h }h∈[H] as zero functions and {πk−1
h }h∈[H] as uniform distribution on A.

6: end if
7: for h = 1, 2, . . . ,H do
8: πkh(· | ·) ∝ πk−1

h (· | ·) · exp{α ·Qk−1
h (·, ·)}.

9: Take action akh ∼ πkh(· | skh).
10: Observe the reward rkh(skh, a

k
h) and receive the next state skh+1.

11: end for
12: Compute Qkh by SWOPE(k, {πkh}, λ, λ′, β, β′) (Algorithm 2).
13: end for

Algorithm 2 Sliding Window Optimistic Policy Evaluation (SWOPE)
Require: Episode index k, policies {πh}, regularization factors λ and λ′, and bonus multipliers β

and β′.
1: Initialize V kH+1 as a zero function.
2: for h = H,H − 1, . . . , 0 do
3: ηkh(·, ·) =

∫
S ψ(·, ·, s′) · V kh+1(s′)ds′.

4: Λkh =
∑k−1
τ=1∨(k−w) φ(sτh, a

τ
h)φ(sτh, a

τ
h)> + λId .

5: θ̂kh = (Λkh)−1
∑k−1
τ=1∨(k−w) φ(sτh, a

τ
h)rτh(sτh, a

τ
h).

6: Akh =
∑k−1
τ=1∨(k−w) η

τ
h(sτh, a

τ
h)ητh(sτh, a

τ
h)> + λ′Id..

7: ξ̂kh = (Akh)−1
(∑k−1

τ=1∨(k−w) η
τ
h(sτh, a

τ
h) · V τh+1(sτh+1)

)
.

8: Bkh(·, ·) = β
(
φ(·, ·)>(Λkh)−1φ(·, ·)

)1/2
.

9: Γkh(·, ·) = β′
(
ηkh(·, ·)>(Akh)−1ηkh(·, ·)

)1/2
.

10: Qkh(·, ·) = min{φ(·, ·)>θ̂kh + ηkh(·, ·)>ξ̂kh +Bkh(·, ·) + Γkh(·, ·), H − h+ 1}+.
11: V kh (s) = 〈Qkh(s, ·), πkh(·|s)〉A.
12: end for
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4.2 SW-LSVI-UCB

In this subsection, we present the details of Sliding Window Least-Square Value Iteration with UCB
(SW-LSVI-UCB) in Algorithm 3 (cf. Appendix B).

Similar to Least-Square Value Iteration with UCB (LSVI-UCB) in Jin et al. (2019b), SW-LSVI-UCB
is also an optimistic modification of Least-Square Value Iteration (LSVI) (Bradtke & Barto, 1996),
where the optimism is realized by Upper-Confidence Bounds (UCB). Specifically, the optimism is
achieved due to the bonus functions Bkh and Γkh, which quantify the uncertainty of reward functions
and transition kernels, respectively. It is worth noting that in order to handle the non-stationarity,
SW-LSVI-UCB also uses the sliding window method (Garivier & Moulines, 2011; Cheung et al.,
2019a;b).

In detail, at k-th episode, SW-LSVI-UCB consists of two steps. In the first step, by solving the
sliding window least-square problems (4.4) and (4.7), SW-LSVI-UCB updates the parameters Λkh in
(4.5), θ̂kh in (4.5), Akh in (4.8), and ξ̂kh in (4.8), which are used to form the Q-function Qkh . In the
second step, SW-LSVI-UVB obtains the greedy policy with respect to the Q-function Qkh gained in
the first step. See Algorithm 3 in Appendix B for more details.

4.3 REGRET ANALYSIS

In this subsection, we analyze the dynamic regret incurred by Algorithms 1 and 3 and compare the
theoretical regret upper bounds derived for these two algorithms.

To derive sharp dynamic regret bounds, we impose the following technical assumption.
Assumption 4.1. There exists an orthonormal basis Ψ = (Ψ1, · · · , Ψd) such that for any (s, a) ∈
S × A, there exists a vector z ∈ Rd satisfying that φ(s, a) = Ψz. We also assume the existence of
another orthonormal basis Ψ′ = (Ψ ′1, · · · , Ψ ′d) such that for any (s, a, k, h) ∈ S × A × [K] × [H]
such that ηkh(s, a) = Ψ′z′ for some z′ ∈ Rd.

It is not difficult to show that this assumption holds in the tabular setting. Similar assumption is also
adopted by previous work in non-stationary optimization (Cheung et al., 2019a). We will provide
more comments on this technical assumption after showing main results.

First, we establish an upper bound on the dynamic regret of PROPO. Recall that the dynamic regret
is defined in (2.3) and d is the dimension of the feature maps φ and ψ. Also, |A| is the cardinality of
A. We also define ρ = dK/τe to be the number of restarts that take place in Algorithm 1.
Theorem 4.2 (Upper bound for Algorithm 1). Suppose Assumptions 2.1 and 4.1 hold. Let τ =

Π[1,K](b(
T
√

log |A|
H(PT+

√
d∆)

)2/3c), α =
√
ρ log |A|/(H2K) in (4.2), w = Θ(d1/3∆−2/3T 2/3) in (4.4),

λ = λ′ = 1 in (4.4) and (4.9), β =
√
d in (4.10), and β′ = C ′

√
dH2 · log(dT/ζ) in (4.10), where

C ′ > 1 is an absolute constant and ζ ∈ (0, 1]. We have

D-Regret(T ) . d5/6∆1/3HT 2/3 · log(dT/ζ)

+


√
H3T log |A|, if 0 ≤ PT +

√
d∆ ≤

√
log |A|
K ,

(H2T
√

log |A|)2/3(PT +
√
d∆)1/3, if

√
log |A|
K ≤ PT +

√
d∆ . K

√
log |A|,

H2(PT +
√
d∆), if PT +

√
d∆ & K

√
log |A|,

with probability at least 1− ζ.

Proof. See Appendix D for a proof sketch and Appendix G for a detailed proof.

Then we discuss the regret bound throughout three regimes of PT +
√
d∆:

• Small PT +
√
d∆: when 0 ≤ PT +

√
d∆ ≤

√
log |A|
K , restart period τ = K, which

means that we do not need to periodically restart in this case. Assuming that log |A| =

O(d5/3∆2/3H−1T 1/3), Algorithm 1 attains a Õ(d5/6∆1/3HT 2/3) dynamic regret. Com-
bined with the lower bound established in Theorem 3.1, our result matches the lower bound
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in d, ∆ and T up to logarithmic factors. Hence, we can conclude that Algorithm 1 is a near-
optimal algorithm;

• Moderate PT +
√
d∆: when

√
log |A|
K ≤ PT +

√
d∆ . K

√
log |A|, restart period τ =

(
T
√

log |A|
H(PT+

√
d∆)

)2/3 ∈ [2,K]. Algorithm 2 incurs a Õ(T 2/3) dynamic regret if ∆ = O(1)

and PT = O(1);

• Large PT +
√
d∆: when PT +

√
d∆ & K

√
log |A|, restart period τ = K. Since the model

is highly non-stationary, we only obtain a linear regret in T .

In the following theorem, we establish the upper bound of dynamic regret incurred by SW-LSVI-
UCB (Algorithm 3).
Theorem 4.3 (Upper bound for Algorithm 3). Suppose Assumption 2.1 and 4.1 hold. Let
w = Θ(d1/3∆−2/3T 2/3) in (4.4), λ = λ′ = 1 in (4.4) and (4.9), β =

√
d in (4.10), and

β′ = C ′
√
dH2 · log(dT/ζ) in (4.10), where C ′ > 1 is an absolute constant and ζ ∈ (0, 1]. We have

D-Regret(T ) . d5/6∆1/3HT 2/3 · log(dT/ζ)

with probability at least 1− ζ.

Proof. See Appendix H for a detailed proof.

Regarding Assumption 4.1. Due to some technical issue (Touati & Vincent, 2020; Zhao & Zhang,
2021), without this assumption and the knowledge of locally variation budget (Touati & Vincent,
2020), previous work can only obtain the bound Õ(T 3/4) (Cheung et al., 2020; Zhao & Zhang,
2021; Zhao et al., 2020; Russac et al., 2019; Zhou et al., 2020b; Touati & Vincent, 2020). Thanks
to Assumption 4.1, we derive sharper regret bounds at the order Õ(T 2/3). We also remark that we
can establish slightly worse regret bounds for Algorithms 1 and 3 without Assumption 4.1. See
Appendix I for details.

Optimality of the Bounds. Notably, the term Õ(d5/6∆1/3HT 2/3) appears in both the results in
Theorems 4.2 and 4.3. Ignoring logarithmic factors, there is only a gap of H1/3 between this upper
bound and the lower bound Ω(d5/6∆1/3H2/3T 2/3) established in Theorem 3.1. We conjecture
that this gap can be bridged by using the “Bernstein” type bonus functions Azar et al. (2017); Jin
et al. (2018). Since our focus is on designing a provably efficient policy optimization algorithm for
non-stationary linear kernel MDPs, we don’t use this technique for the clarity of our analysis.

Comparison. Compared with PROPO, SW-LSVI-UCB achieves a slightly better regret without
the help of the periodic restart mechanism. Especially in the highly non-stationary case, that is
PT +

√
d∆ & K

√
log |A|, SW-LSVI-UCB achieves a Õ(T 2/3) regret, where PROPO only attains

a linear regret in T . However, PROPO achieves the same Õ(T 2/3) regret as SW-LSVI-UCB when
PT +

√
d∆ . K

√
log |A|, which suggests that PROPO is provably efficient for solving slightly or

even moderately non-stationary MDPs. Therefore, it is important to investigate whether it is possible
to bridge this gap between policy and value based methods, or alternatively to show that this gap is
actually a true drawback of policy optimization methods in the non-stationary case.

5 CONCLUSION

In this work, we have proposed a probably efficient policy optimization algorithm, dubbed as
PROPO, for non-stationary linear kernel MDPs. Such an algorithm incorporates a bonus func-
tion to incentivize exploration, and more importantly, adopts sliding-window-based regression in
policy evaluation and periodic restart in policy update to handle the challenge of non-stationarity.
Moreover, as a byproduct, we establish an optimistic value iteration algorithm, SW-LSVI-UCB, by
combining UCB and sliding-window. We prove that PROPO and SW-LSVI-UCB both achieve sam-
ple efficiency by having sublinear dynamic regret. We also establish a dynamic regret lower bound
which shows that PROPO and SW-LSVI-UCB are near-optimal. To our best knowledge, we propose
the first provably efficient policy optimization method that successfully handles non-stationarity.
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