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Abstract
Density estimation, a central problem in machine
learning, can be performed using Normalizing
Flows (NFs). NFs comprise a sequence of invert-
ible transformations, that turn a complex target
distribution into a simple one, by exploiting the
change of variables theorem. Neural Autoregres-
sive Flows (NAFs) and Block Neural Autoregres-
sive Flows (B-NAFs) are arguably the most perfo-
mant members of the NF family. However, they
suffer scalability issues and training instability
due to the constraints imposed on the network
structure. In this paper, we propose a novel solu-
tion to these challenges by exploiting transformers
to define a new class of neural flows called Trans-
former Neural Autoregressive Flows (T-NAFs).
T-NAFs treat each dimension of a random vari-
able as a separate input token, using attention
masking to enforce an autoregressive constraint.
We take an amortization-inspired approach where
the transformer outputs the parameters of an in-
vertible transformation. The experimental results
demonstrate that T-NAFs consistently match or
outperform NAFs and B-NAFs across multiple
datasets from the UCI benchmark. Remarkably, T-
NAFs achieve these results using an order of mag-
nitude fewer parameters than previous approaches,
without composing multiple flows.

1. Introduction
Normalizing Flows (NFs) have emerged as a powerful
paradigm in probabilistic modeling and machine learning,
offering a versatile framework for mapping between proba-
bility density functions through invertible transformations.
NFs are suitable for applications which require models of
complex probability distributions that support computation-
ally efficient sampling and density evaluation. Consequently,
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NPs are useful in density modelling problems and also for
variational inference in which they are used to specify ap-
proximate posterior distributions.

Most of the research related to NFs focuses on designing
expressive transformations that conform to practical con-
straints. NFs specify an bijective mapping from a simple
base distribution to a target distribution so that the trans-
formation of densities formula can be used to specify the
density over the target variables. The transformation of den-
sities formula requires the computation of the determinant
of the Jacobian of this mapping and therefore NF models
are structured in such a way that these objects are simple to
compute. For example, one notable class of NFs, known as
Autoregressive Flows (AFs), decompose a joint distribution
into a product of univariate conditionals. These transforma-
tions possess a lower triangular Jacobian, making it compu-
tationally tractable to compute their determinants, which is
an essential requirement for the application of the change of
variables theorem. Kingma et al. 2016 introduced the con-
cept of inverse autoregressive flows (IAFs), refining AFs by
employing a composition of trivially invertible affine trans-
formations to model each conditional, paving the way for
more efficient computation while retaining expressiveness.

Recent advances in the NF landscape include the introduc-
tion of Neural Autoregressive Flows (NAFs, Huang et al.
2018) and Block Neural Autoregressive Flows (B-NAFs,
De Cao et al. 2020). NAFs and B-NAFs replace the IAF’s
transformation with a learned bijection implemented via
a strictly monotonic neural network. This fundamental
paradigm shift makes NAFs and BNAFs more flexible than
IAFs, as they are universal approximators of real and con-
tinuous distributions. However, despite these advancements,
both NAFs and B-NAFs encounter challenges in scalability
and efficiency, primarily due to the intricate structures and
constraints imposed on their networks. The scalability issue
becomes particularly pronounced when dealing with high-
dimensional data, where the number of parameters in the
network increases significantly. Additionally, the training
instability often observed in these models can be attributed
to the strict monotonicity and masking constraints, which
can limit the expressive power and learning dynamics of the
networks. These challenges necessitate a more flexible and
scalable approach to enhance the practical applicability of
NFs in complex, real-world scenarios.
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In response to these limitations, we introduce Transformer
Neural Autoregressive Flows (T-NAFs), a novel approach
that leverages the power of transformer architectures within
the realm of NFs. T-NAFs treat each dimension of a ran-
dom variable as a separate input token and utilize attention
masking to enforce an autoregressive constraint. This de-
sign choice allows T-NAFs to handle high-dimensional data
more efficiently, as the transformer architecture inherently
scales better with dimensionality and does not require the
same level of parameterization as traditional feedforward
networks. Moreover, T-NAFs offer enhanced flexibility and
stability in training by freeing the majority of the param-
eters from the constraints typically imposed in NAFs and
B-NAFs. By incorporating transformers, T-NAFs not only
address the scalability and efficiency issues but also open up
new avenues for innovation in the field of NFs, particularly
in complex density estimation tasks.

The main contributions of this paper can be summarized as
follows:

1. We introduce Transformer Neural Autoregressive
Flows (T-NAFs), a novel model that effectively com-
bines transformers with neural autoregressive flows
for density estimation, utilizing attention masking to
enforce autoregression efficiently.

2. We demonstrate remarkable flexibility in handling vari-
ous invertible transformations and showcase significant
improvements in parameter efficiency and scalability
compared to previous models like NAFs and B-NAFs.

3. Through extensive ablation studies and empirical eval-
uations across multiple benchmarks, we provide key
insights into the adaptability, complexity, and effec-
tiveness of the model. The code is released with an
open-source license 1.

2. Previous work
In this section we delve into the extensive body of research
surrounding NFs, a domain that has witnessed substantial
developments in the last years. For a comprehensive and
detailed understanding of the progress in this field, we refer
the reader to recent review papers of Kobyzev et al. 2019
and Papamakarios et al. 2021.

One broad line of research views NFs as a finite number
of tractable simple transformations and hence focuses on
developing more expressive transformations that have a
tractable inverse and Jacobian determinant. Rezende &
Mohamed 2015 were the first to introduce two parametric
families of such transformations, i.e. the planar and the
radial flows. Another well-known representatives of this

1https://github.com/mpatacchiola/TNAF

research direction are Autoregressive Flows (Section 3.2),
which are particularly relevant to our work. Dinh et al. 2016
and Kingma et al. 2016 proposed to build Autoregressive
Flows with simple affine transformations. To improve the
limited expressivity of the affine autoregressive transfor-
mations, several non-affine transformations were proposed:
Huang et al. 2018 and De Cao et al. 2020 use a monotonic
multi-layered perceptron, while Jaini et al. 2019 and We-
henkel & Louppe 2019 use an integral of some positive
function represented as neural network. Although these
transformations can be made arbitrary flexible, their major
drawback is that they do not have an analytic inverse. To
overcome this issue, different spline-based transformations
were proposed (Müller et al., 2018; Durkan et al., 2019;
Dolatabadi et al., 2020).

Another important design choice for Autoregressive Flows
is how to implement the conditioning on observed variables.
Even though the only constraint imposed on the condition-
ing function is the autoregressive one, in practice it is still
important to choose a parameter-efficient function that could
accommodate inputs of variable size. For instance, Oliva
et al. 2018 and Kingma et al. 2016 use recurrent neural
network (RNN) as a conditioning function. Even though
parameter-efficient, RNNs require sequential computation,
which can be prohibitively expensive for longer sequences.
As an alternative to RNNs, the idea of masking can be used:
usually a standard feedforward network is trained, but some
of the connections are zeroed out to preserve the autoregres-
sive structure of the conditioning function. Germain et al.
2015 proposed a masking procedure for fully-connected
neural networks. Masking was picked up in many autore-
gressive flows models (Kingma et al., 2016; De Cao et al.,
2020; Huang et al., 2018; Papamakarios et al., 2017).

Transformers have been used for distribution model-
ing (Fakoor et al., 2020). The method exploits
a transformer encoder that takes the input sequence
x1, x2, . . . , xi and predicts the i-th conditional distribution
p(xi|x1, x2, . . . , xi−1). The output is a categorical distribu-
tion (discrete variables), or a mixture of Gaussians (contin-
uous variables). The main issue with this approach is that
it is not possible to get an exact estimate of the likelihood
of a sample, as the transformations are not bijective. More-
over, if the input sequence is long the output of the model
will be disproportionally large, since each input is mapped
to multiple outputs (e.g. categories or parameters of the
mixture).

Most recent work has explored the possibility of building
an invertible normalizing flow network that unfolds the
Wasserstein gradient flow via a neural ODE model (Xu
et al., 2024).
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3. Background
3.1. Normalizing Flows

A Normalizing Flow (NF) is an invertible (bijective) funci-
ton f : X → Y between two continuous random variables.
Since f is invertible, we can use the change of variables for-
mula to translate between two densities pX(x) and pY (y)

pY (y) = pX(x)
∣∣det Jf(x)

∣∣−1
where Jf(x) =

∂ f(x)
∂ x .

The determinant of the Jacobian Jf(x) accounts for local
expansions/contractions of X at x. Estimating this deter-
minant is one of the major bottlenecks to overcome, since
typically this has complexity O(N3) for a Jacobian ma-
trix of size N × N . One way to deal with this issue is to
enforce a lower-triangular structure on the Jacobian. The
determinant of a lower-triangular matrix can be estimated by
multiplying the elements on the main diagonal, which has
cost O(N). The lower-triangular structure of the Jacobian
can be enforced through an autoregressive factorization, as
detailed in the next subsection.

3.2. Autoregressive Flows

For a multivariate random variable x ∈ RK sampled from
pX(x) we can estimate the joint distribution with an autore-
gressive factorization by exploiting the chain rule

pX(x) = pX1(x1)pX2(x2|x1) . . . pXK
(xK |xK−1, . . . , x1).

Exploiting this structure it is possible to estimate an arbi-
trary yi by defining an autoregressive conditioner c and an
invertible transformation t, such that

yi = f(x1, . . . , xi) = t(c(x1, . . . , xi−1), xi). (1)

Previous work has investigated different ways of parametriz-
ing c and t. A line of work focused on defining simple affine
transformations such as t(µ, σ, xi) = µ+ σxi in RealNVP
(Dinh et al., 2016) or t(µ, σ, xi) = σxi + (1− σ)µ in IAF
(Kingma et al., 2016). While those transformations are triv-
ial to invert, they suffer from limited flexibility, which makes
them inadequate to model complex distributions. In order to
overcome this issue another line of work has proposed to use
neural networks to represent the invertible transformation
and/or the conditioner. In Section 3.3, we describe these
models in more detail.

3.3. Neural Autoregressive Flows

Neural Autoregressive Flows (NAFs). In NAFs (Huang
et al., 2018), the transformation in (1) is reframed as follows

t(c(x1, . . . , xi−1), xi) =

NN
(
xi; ψi = c(x1, . . . , xi−1; θi)

)
,

where NN is a feed-forward neural network and ψi are
pseudo-parameters generated by a conditioner network
(parametrized by θ). Those pseudo-parameters represent
the weights and biases of the neural network. The condi-
tioner network is implemented using a masked feed-forward
model as in MADE (Germain et al., 2015), while the in-
vertible transformation is implemented as a deep sigmoidal
flow (DSF) or a deep dense sigmoidal flow (DDSF). Both
DSF and DDSF exploit sigmoidal inflection points in a fully-
connected model to induce multi-modality. A major limita-
tion of NAFs is the use of MADE in the conditioner. With
MADE the number of parameters in the network grows with
the dimensionality of the random variable, which makes
the computational cost prohibitively expensive. Moreover,
MADE exploits a zero-masking strategy to impose the au-
toregressive constraint and to parallelize the computation in
the forward pass, which results in a large portion of unused
weights that affects the parameter count without having any
concrete utility.

Block Neural Autoregressive Flows (B-NAFs). In order
to overcome some of the limitations of NAFs, De Cao et al.
2020 proposed B-NAFs. The main idea of B-NAF is to
directly parametrize the transformation t without the condi-
tioner c by using a single neural network

t(c(x1, . . . , xi−1), xi) = NN
(
x1, . . . , xi−1; θi

)
.

The neural network is a feed-forward model, carefully de-
signed to be both autoregressive and strictly monotone (bi-
jective). The autoregressive constraint is imposed by using
masking as in MADE (Germain et al., 2015) and the mono-
tonic constraint is imposed by using strictly positive weights
and invertible activation functions. While B-NAFs are more
effective than NAFs on a variety of datasets (De Cao et al.,
2020), they still have two major limitations. The first limi-
tation is that, similarly to NAFs, B-NAFs rely on masked
feed-forward networks (MADE) that scale poorly with the
dimensionality of the random variable, which results in
unused parameters due to zero-masking. The second limita-
tion is that enforcing monotonicity in a large model leads to
training instability.

In the next section, we describe how to overcome the limi-
tations of NAFs and B-NAFs by exploiting transformers as
conditioning mechanisms, presenting a new type of neural
autoregressive flow.

4. Transformer Neural Autoregressive Flows
In order to overcome the limitations of NAF and B-NAF
we propose a new type of flow called Transformer Neural
Autoregressive Flow (T-NAF). The main idea of T-NAF is
to allocate most of the computational capacity to the condi-
tioner, using a transformer neural network (Vaswani et al.,
2017). This design choice has a series of advantages: (i)
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we can define an autoregressive constrain by simply us-
ing an autoregressive mask in the attention layer, which,
contrary to MADE, does not result in unused weights; (ii)
the parameters of the transformer are shared across all the
dimensions of the random variable, which significantly re-
duces the number of total parameters in the model; (iii) the
conditioner does not need to be monotonic, which makes
training significantly more stable; and (iv) we can exploit all
the techniques that have been developed in the last few years
to boost the performance of vision and language transform-
ers (e.g. FlashAttention Dao et al. 2022, PagedAttention
Kwon et al. 2023).

In T-NAFs we define the invertible transformation and con-
ditioner as follows

t(c(x1, . . . , xi−1), xi) =

t
(
xi; ψi = TN(x1, . . . , xi−1, i; θ)

)
, (2)

where TN is a Transformer Network parametrized by θ, that
takes as input the random variable and the index i (implicitly
included via positional encoding), and generates the param-
eters ψi of the transformation t. We do not impose any
particular constraint on the transformation t, which can be
any type of invertible transformation. In Section 4.2, we de-
scribe in more details some of the transformations we have
used in our experiments. Empirically we have observed that
a compact monotonic neural network (taking the variable xi

as input and producing yi ∈ [0, 1] as output) offers the best
trade-off between performance and parameter count. This is
equivalent to a parametric cumulative distribution function
(CDF). Crucially, because of the single input-output struc-
ture, this network does not require MADE masking and it is
stable to train due to its limited size.

Importantly, in Equation (2) there is a single set of parame-
ters θ in the conditioner that are shared across all the dimen-
sions of the random variable. In contrast, in both NAFs and
B-NAFs there is a separate set of parameters θi for each
dimension xi. This means that T-NAFs require significantly
fewer parameters (see Section 5 for more details).

4.1. Overview of the architecture

The overall design of the proposed transformer is similar to
the Vision Transformer (ViT, Dosovitskiy et al. 2020) with
two key differences: (i) we replace the convolutional projec-
tions with simple linear projections, as we are not dealing
with image patches; (ii) we replace the classification head
(taking as input only the first embedding in the sequence)
with a projection head that generates the pseudo-parameters
(for all the embeddings in the sequence). Figure 1 showcases
a high-level overview of the T-NAF architecture.

In the initial stage of the pipeline, each dimension of the ran-
dom variable is linearly projected to get input embeddings.

Then these are added to learnable positional embeddings and
passed to a series of L transformer encoder layers. The first
element of the autoregressive factorization is the marginal
distribution p(x1), which does not require any conditioning.
To impose this constraint we use a learnable input embed-
ding as the first element of the sequence. This guarantees
that the first set of pseudo-parameters ψ1 is generated with-
out having access to any element of the sequence. This is
similar in spirit to the Beginning of Sequence (BoS) token or
class token used in a variety of transformer models (Devlin
et al., 2018; Dosovitskiy et al., 2020).

A detailed representation of the encoder layer is provided on
the right-hand side of Figure 1. The encoder layer performs
the following operations: normalization via layer-norm, at-
tention estimation via Multi-Head Attention (MHA), nor-
malization via layer-norm, forward pass in a Multi-Layer
Perceptron (MLP). Skip connections are used from the input
to the output of the MHA, and from the output of the MHA
to the output of the encoder. An autoregressive mask is
used in the MHA to enforce the autoregressive constraint.
The output of the encoder is a series of hidden embedding
vectors hi, which are passed to a projection head to generate
the pseudo-parameters ψi. The pseudo-parameters are used
to define the invertible transformation yi = t(xi; ψi). The
projection head can be a set of linear layers that takes as in-
put the embeddings hi and generates the pseudo-parameters
ψi, or it can simply be an identity function (see Section 4.2
for additional details).

4.2. Transformation

The proposed architecture allows using a large and diver-
sified set of transformations, and below we detail some of
them.

Affine transformation. One of the simplest transformations
is the affine one. An affine transformation is parameterized
by a scale µi and shift σi parameters, grouped into a set of
pseudo-parameters ψi = {µi, σi}, and is defined as follows

taffine(xi; ψi) = µi + σi xi (3)

with µi = LINµ(hi;θµ), σi = LINσ(hi;θσ). where LINµ

and LINσ are linear layers parametrized by θµ and θσ used
to generate the scale µi and shift σi. The linear layers of
the projection head are shared across all the output tokens.
Note that it is possible to concatenate multiple affine trans-
formations via function composition. In this case a separate
set of linear layers can be assigned to each transformation.

CDF transformation. A more sophisticated transformation
is given by a parametric cumulative distribution function
(CDF) that maps xi to a uniform distribution. Following
previous work, we can define a parametric CDF as a neural
network with positive weights (Archer & Wang, 1993; Sill,
1997; Daniels & Velikova, 2010; De Cao et al., 2020). In
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Figure 1. Graphical representation of a T-NAF model. Left: the architecture includes a transformer neural network conditioner TN and an
invertible transformation t. In TN(x1, . . . , xD, i;θ) each dimension of the random variable is linearly projected to get an embedding
which is added to a learnable position vector. A sequence of L transformer layers is used to produce hidden embeddings h1, . . . ,hD that
are passed through a projection head to generate pseudo-parameters ψ1, . . . ,ψD . The pseudo-parameters are used as part of an invertible
transformation t(xi;ψi). Right: detailed schematic of a transformer encoder layer. Inputs are passed through a normalization layer, a
Multy-Head Attention (MHA) layer with autoregressive mask, another normalization layer, and an MLP.

this case the pseudo-parameters are the weights and biases
of the neural network ψi = {w(1)

i ,b
(1)
i ,w

(2)
i , b

(2)
i }, which

are used in the following transformation

tCDF(xi; ψi) =

sig
(

tanh
(
expw

(1)
i xi + b

(1)
i

)T
expw

(2)
i + b

(2)
i

)
,

(4)

where sig(·) and tanh(·) are the sigmoid and hyperbolic
tangent functions. Similarly to Equation (3), the weights
and biases are generated via dedicated linear layers wj

i =

LINwj (hi;θwj ) and bj
i = LINbj (hi;θbj ) as a part of the

projection head. The exponential function used in Equa-
tion (4) ensures that the weights are strictly-positive enforc-
ing the monotonic constraint (softplus can also be used).
This and the use of invertible activation functions makes the
transformation bijective. It is possible to invert tCDF since
it has a single input, a single output, and is bijective. The
inverse of tCDF is an inverse-CDF, which can be used for
inversion sampling following two steps: (i) first sample a
value yi from the uniform distribution, (ii) find the corre-
sponding xi via a root-finding method, such as the bisection
method (Wehenkel & Louppe, 2019).

Shared-CDF transformation. In the CDF transformation
defined in the previous paragraph, the pseudo-parameters
are generated by using the projection head and the trans-
former embeddings. An alternative approach is to define the
CDF neural network in advance, using a fixed set of weights

that are shared across all the outputs. In this case, yi is ob-
tained via a conditional CDF, that takes as input xi and the
transformer embeddings hi. Assuming that the conditional
CDF is modeled using a neural network with a single hidden
layer, we can formalize this particular case defining a set of
pseudo-parameters ψi and a set of shared-parameters ϕ:

ψi = {hi} and ϕ =
{
w(1),w(2),b(1), b(2),Ŵ(1), ŵ(2)

}
.

The pseudo-parameters coincide with the embed-
dings produced by the transformer conditioner
hi = TN (x1, . . . , xi−1, i;θ). The shared parame-
ters include w(1),w(2),b(1), b(2), which are related to
the input xi, and Ŵ(1), ŵ(2), which are related to the
conditional input hi. The shared-CDF transformation is
defined as follows

tS-CDF(xi; ψi,ϕ) =

sig

(
tanh

(
expw(1) xi + Ŵ(1) hi + b(1)

)T
expw(2)

+ ŵ(2)hi + b(2)

)
, (5)

where we have discarded any reference to the projec-
tion head for clarity (this corresponds to the case where
identity function is used as the projection head). Note
the crucial distinction between positive-constraint weights
expw(1), expw(2) used for the input and the unconstrained
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weights Ŵ(1), ŵ(2) used in the conditioning mechanism.
The main advantage of the shared-CDF approach is that the
transformer needs to generate just the vector of embeddings
hi for each token, while in the CDF transformation it needs
to generate the weights and biases of the entire CDF net-
work. Therefore, it is more convenient to use a shared-CDF
transformation when the size of the CDF neural network is
large.

Spline transformation. Following Durkan et al. 2019, we
also incorporated a spline transformation based on mono-
tonic rational-quadratic splines. Besides being comparable
to the CDF transformation in terms of performance and ca-
pacity (Durkan et al., 2019), the spline transformation has
the advantage of being easily invertible. Each block of this
transformation consists of a element-wise rational-quadratic
spline

tspline(xi; ψi) = g(xi;ψi = TN (x1, . . . , xi−1, i;θ)),

where g(·; ψ) is a monotonic rational-quadratic spline func-
tion parameterized by a set of pseudo-parameters ψ gener-
ated by the transformer conditioner (see Durkan et al., 2019
for the details on the parameterization of the spline). To en-
sure cross-variable interactions, the element-wise function
is commonly followed by an invertible linear transformation
across variables

tlinear(x; ϕ) = PLUx,

with the set of shared parameters ϕ = {P,L,U}, where
P is a fixed permutation matrix, L is lower triangular with
ones on the diagonal, and U is upper triangular. We generate
a set of ψj

i from the initial variables x1, . . . , xi−1 at each
spline block transformation j. However, this means that the
suggested tlinear(x; ϕ) breaks the autoregressive constraint
and the determinant of the Jacobian cannot be computed in
an efficient way. To fix this issue, we simplify the linear
transformation to

tlinear(x; ϕ) = Lx,

withϕ = {L} for all spline transformation blocks except for
the first one. As a result, each block of spline transformation
is a composition of tspline and tlinear, where tspline is applied
element-wise and tlinear acts on the whole set of variables.

5. Experiments
5.1. Density Estimation

In this section we evaluate the performance of our method on
density estimation with real-world data, using classic bench-
marks from the UCI repository. Following standard practice,
we evaluate our model on four datasets from UCI (POWER,
GAS, HEPMASS, MINIBOONE) and on BSDS300 (Mar-
tin et al., 2001), a dataset obtained by extracting random

patches from the homonym datasets of natural image. We
compare against a variety of methods: RealNVP (Dinh et al.,
2016), Glow (Kingma & Dhariwal, 2018), MADE (Germain
et al., 2015), MAF (Papamakarios et al., 2017), TAN (Oliva
et al., 2018), FFORJD (Grathwohl et al., 2018), SOS (Jaini
et al., 2019), RQ-NSF (Durkan et al., 2019). We also in-
clude neural autoregressive models such as NAF (Huang
et al., 2018) and B-NAF (De Cao et al., 2020). The results
for other methods are taken from the corresponding papers.
Note that some methods (FFJORD, B-NAF and TAN) per-
form a hyper-parameter search over each dataset while we
used the same hyper-parameters in all experiments. We
used the following configuration for T-NAF: 1 flow, 3 or 5
layers in the transformer encoder, embeddings of size 32, 8
attention heads, 1 hidden layer with 64 units in the encoder
MLPs, the projection head generates the parameters of a
CDF network with 1 hidden layer with 128 units.

Results. The results are reported in Table 1. Overall, T-NAF
is able to outperform all the other methods on HEPMASS
using the larger model with 5 layers. On BSDS300 and GAS
T-NAF obtains the second highest score after TAN and RQ-
NSF, but without performing any ad-hoc hyper-parameter
search and without using multiple flows. The only dataset
where other methods outperform T-NAF is MINIBOONE.

T-NAF is more efficient than other models for two reasons:
a reduced number of flows and reduced number of model
parameters. In terms of number of flows, most of the other
methods concatenate multiple transformations and permute
the order of the variable in between. While this attenuates
possible issues due to the variable ordering, it comes at the
price of an increased overhead and parameter count. T-NAF
achieves top performance using only one flow, therefore
substantially reducing the complexity of the model.

Parameter efficiency. We compared T-NAF and B-NAF in
terms of number of parameters vs. test log-likelihood on the
UCI and BSDS300 datasets. By assessing the total param-
eter count required by each model, we aim to demonstrate
how T-NAFs optimizes parameter usage. This evaluation
offers insights into the practical implications of employing
transformer-based architectures in probabilistic modeling,
especially in scenarios where computational resources and
model simplicity are important. For B-NAF, we report the
parameters and performance of the best model as specified
in De Cao et al. 2020, that is: MLP with 2 hidden layers,
number of hidden units defined as D × 40, and 5 flows. For
our T-NAF model we report the number of parameters and
performance for the variant based on a CDF transformation
and a transformer with 3 and 5 layers. For a fair comparison
we also include the T-NAF pseudo-parameters ψ1, . . . ,ψD

generated during the inference step. The results are sum-
marized in Figure 2. The figure shows that T-NAF offers a
better trade-off in terms of parameter count vs. performance.
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Table 1. Log-Likelihood (higher is better) for 4 datasets from UCI and for BSDS300. Average and standard deviation over 3 seeds. We
report number of dimensions (D) and dataset size (N , Millions). T-NAF obtains some of the best results by using just one flow and no ad
hoc architectures. ∗Methods using ad hoc architectures on each dataset. Best result in bold, second-best underlined.

POWER GAS HEPMASS MINIBOONE BSDS300
D = 6 D = 8 D = 21 D = 43 D = 63

Model Flows N = 2.0 N = 1.0 N = 0.5 N = 0.04 N = 1.3

RealNVP 5 -0.02±0.01 4.78±1.80 -19.62±0.02 -13.55±0.49 152.97±0.28
RealNVP 10 0.17±0.01 8.33±0.14 -18.71±0.02 -13.84±0.52 153.28±1.78
Glow n/a 0.17±0.01 8.15±0.40 -18.92±0.08 -11.35±0.07 155.07±0.03
MADE MoG n/a 0.40±0.01 8.47±0.02 -15.15±0.02 -12.27±0.47 153.71±0.28
MAF Affine 5 0.14±0.01 9.07±0.02 -17.70±0.02 -11.75±0.44 155.69±0.28
MAF Affine 10 0.24±0.01 10.08±0.02 -17.73±0.02 -12.24±0.45 154.93±0.28
MAF MoG 5 0.30±0.01 9.59±0.02 -17.39±0.02 -11.68±0.44 156.36±0.28
FFJORD∗ n/a 0.46±0.01 8.59±0.12 -14.92±0.08 -10.43±0.04 157.40±0.19
SOS 7 0.60±0.01 11.99±0.41 -15.15±0.10 -8.90±0.11 157.48±0.41
NAF-DDSF 5 0.62±0.01 11.91±0.13 -15.09±0.40 -8.86±0.15 157.73±0.04
NAF-DDSF 10 0.60±0.02 11.96±0.33 -15.32±0.23 -9.01±0.01 157.43±0.30
B-NAF∗ 5 0.61±0.01 12.06±0.02 -14.71±0.38 -8.95±0.07 157.36±0.03
TAN∗ 5 0.60±0.01 12.06±0.02 -13.78±0.02 -11.01±0.48 159.80±0.07
RQ-NSF (AR) 10 0.66±0.01 13.09±0.02 -14.01±0.03 -9.22±0.48 157.31±0.28
T-NAF/3 (ours) 1 0.63±0.01 12.01±0.02 -14.88±0.37 -11.59±0.67 157.83±0.10
T-NAF/5 (ours) 1 0.54±0.01 12.27±0.01 -13.20±0.26 -10.67±0.06 159.41±0.04

In particular, the gap between the two methods gets larger
as the dimensionality of the input increases.

5.2. Ablations

In this section, we provide a detailed ablation study to in-
vestigate the impact of different components of T-NAF on
performance. A critical aspect of T-NAF is the use of dif-
ferent invertible transformations and their effects on the
model’s density estimation capabilities. Our experiments
primarily focus on contrasting the performance of three
distinct types of transformations: CDF, shared-CDF, and
Spline transformations. Each of these transformations offers
unique characteristics: CDF transformations are expressive
and allow mapping inputs to the uniform distribution, po-
tentially capturing complex patterns in the data more ef-
fectively; Spline transformations can offer high levels of
flexibility and are expected to model intricate data distribu-
tions with greater precision. Additionally, the experiments
compare the Shared-CDF approach, where a fixed set of
weights is shared across outputs, with the standard CDF
approach, where the transformer generates the parameters
of the neural-CDF separately for each output. This compari-
son is crucial to evaluate the benefits of parameter sharing
versus individual parameterization in the context of density
estimation tasks. Furthermore, we explore the impact of
varying the number of layers in the transformer encoder
on the overall performance of the model. This exploration
helps in understanding the trade-off between model com-
plexity (in terms of depth) and performance gains. A deeper
model might capture more complex relationships in the data

but at the cost of increased computational requirements and
potential overfitting.

Results. A summary of the results is presented in Table 2.
The standard CDF model with five layers consistently out-
performs the remaining models across most datasets. The
Spline Flow with five layers is competitive on three datasets
(POWER, HEPMASS, and BSDS300), while suffering the
most on MINIBOONE. Overall, the increase in transformer
layers from 3 to 5 shows a noticeable improvement across
the board. This outcome indicates that additional layers
might help capture more complex dependencies. Only in
one case the use of additional layers seems to reduce the
performance (POWER dataset). Using a shared CDF over
the standard one does not seem to give particular benefits,
there is only a marginal advantage on MINIBOONE and
BSDS300 when compared with the CDF with three layers.

6. Conclusions
In this paper we have introduced T-NAFs, a new class of
neural flows that exploits transformers as an autoregressive
conditioner mechanism that generates the parameters of
invertible transformations. We have showcased the perfor-
mance of the model on a variety of real-world density esti-
mation problems from the classic UCI benchmarks. Overall,
the results have demonstrated that T-NAFs offer a powerful
combination of efficiency, scalability, and flexibility, outper-
forming existing models like B-NAFs and NAFs in various
scenarios. The innovative use of transformer architectures
within T-NAFs not only addresses the scalability and train-
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Figure 2. Trade-off between number of parameters and performance. Vertical axis represents the number of parameters in log-scale (lower
is better), and horizontal axis represent the log-likelihood on the test set (higher is better). The optimal trade-off is represented by points
in the bottom-right corner. Overall T-NAF offers a better trade-off w.r.t. B-NAF; the gap in number of parameters between T-NAF and
B-NAF gets larger as the number of input dimensions D increases.

Table 2. Ablation experiments on head type. CDF: the parameters of a CDF are generated by the transformer for each output separately;
Shared-CDF: conditional CDF with parameters shared across outputs and conditional input provided by the transformer embeddings;
Spline Flow: the parameters of a spline flow are generated by the transformer for each output separately. Log-Likelihood (higher is better)
for 4 datasets from UCI and for BSDS300. Average and standard deviation over 3 seeds. We report number of dimensions (D) and dataset
size (N , Millions).

POWER GAS HEPMASS MINIBOONE BSDS300
D = 6 D = 8 D = 21 D = 43 D = 63

Head Type Layers N = 2.0 N = 1.0 N = 0.5 N = 0.04 N = 1.3

CDF 3 0.63±0.01 12.01±0.02 -14.88±0.37 -11.59±0.67 157.83±0.10
Shared-CDF 3 0.52±0.02 11.12±0.09 -14.97±0.17 -11.34±0.03 158.10±0.07
Spline Flow 3 0.64±0.01 11.99±0.03 -14.05±0.14 -11.08±0.04 159.05±0.07
CDF 5 0.54±0.01 12.27±0.01 -13.20±0.26 -10.67±0.06 159.41±0.04
Spline Flow 5 0.65±0.01 12.20±0.03 -13.15±0.19 -11.09±0.01 159.47±0.02

ing stability issues inherent in traditional autoregressive
models, but also paves the way for more sophisticated and
nuanced modeling of complex data distributions. Future
work can explore further optimizations and applications
of T-NAFs, potentially expanding their utility in broader
machine learning and data science contexts.
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