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Abstract

Inverse reinforcement learning (IRL) aims to learn a reward function and a corre-
sponding policy that best fit the demonstrated trajectories of an expert. However,
current IRL works cannot learn incrementally from an ongoing trajectory because
they have to wait to collect at least one complete trajectory to learn. To bridge
the gap, this paper considers the problem of learning a reward function and a
corresponding policy while observing the initial state-action pair of an ongoing
trajectory and keeping updating the learned reward and policy when new state-
action pairs of the ongoing trajectory are observed. We formulate this problem as
an online bi-level optimization problem where the upper level dynamically adjusts
the learned reward according to the newly observed state-action pairs with the
help of a meta-regularization term, and the lower level learns the corresponding
policy. We propose a novel algorithm to solve this problem and guarantee that
the algorithm achieves sub-linear local regret O(

√
T + log T +

√
T log T ). If the

reward function is linear, we prove that the proposed algorithm achieves sub-linear
regret O(log T ). Experiments are used to validate the proposed algorithm.

1 Introduction

Inverse reinforcement learning (IRL) aims to learn a reward function and a corresponding policy
that are consistent with the demonstrated trajectories of an expert. In recent years, several IRL
methods are proposed to help learn the reward and policy, including maximum margin methods [1, 2],
maximum entropy methods [3, 4], maximum likelihood methods [5, 6], and Bayesian methods [7, 8].

The aforementioned IRL works learn from pre-collected demonstration sets and do not improve
the learned model during deployment. Online IRL [9, 10, 11] instead can learn from sequentially
arrived demonstrated trajectories and continuously improve the learned reward and policy from the
newly observed complete trajectories. However, recent applications of IRL motivate the need to
learn incrementally from an ongoing trajectory before it terminates. For example, inferring a moving
shooter’s intention from its ongoing movement in order to evacuate the hiding victims [12] before the
shooter finds them. In this case, we need to quickly update the inference about the shooter’s intention
once a new movement of the shooter is observed, so that we can use the latest inference to plan a
rescue strategy as soon as possible. We cannot wait until the shooter trajectory ends, in case the
shooter has found the victims. Another example is learning a target customer’s investment preference
from its daily updated investment trajectory in a stock market [13] in order to recommend appropriate
stocks [14, 15] before other competitors get this customer. However, current IRL works cannot learn
from an ongoing trajectory because they have to wait to collect at least one complete trajectory to
learn from. To bridge the gap, this paper proposes in-trajectory IRL, a new type of IRL that learns a
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reward function and a corresponding policy at the initial state-action pair of an ongoing trajectory, and
keeps updating the learned reward and policy once a new state-action pair of the ongoing trajectory is
observed. We summarize our contributions as follows:

Contribution statement. This paper proposes the first in-trajectory IRL framework, termed meta-
regularized in-trajectory inverse reinforcement learning" (MERIT-IRL), to learn a reward function
and a corresponding policy from an ongoing trajectory. Our contributions are twofold.

First, we formulate this in-trajectory learning problem as an online bi-level optimization problem
where the upper level continuously updates the learned reward according to the newly observed
state-action pairs and the lower level computes the corresponding policy. We develop a novel online
learning algorithm (MERIT-IRL) to solve this problem. The major novelty of the proposed algorithm
is that we propose a novel reward update mechanism specially designed for the in-trajectory learning
setting. This special reward update not only aims to explain the expert trajectory observed so far, but
also aims to consider for the future. Moreover, since the data is lacking as there is only one ongoing
trajectory, we introduce a meta-regularization term to embed prior knowledge and avoid overfitting.

Second, we theoretically guarantee that MERIT-IRL achieves sub-linear local regret O(
√
T +log T +√

T log T ). If the reward function is linear, we prove that MERIT-IRL achieves sub-linear regret
O(log T ). The major novelty of the theoretical analysis is to address the difficulty that the input data
is not identically independent distributed (i.i.d.) but temporally correlated, i.e., the data (st, at) at
each time t is affected by the data (st−1, at−1) at last time.

2 Related works

Due to the space limit, we only discuss the related works on learning from incomplete trajectories
here, and we include the discussion on more related works in Appendix A.

Papers [16, 17] use partial trajectories to update the learned reward function by comparing the expert
trajectories after the expert states and the trajectories starting from those expert states rolled out by the
learned policy. However, given the current expert state, they use expert trajectory suffix (i.e., future
trajectory) to compare while we can only access expert trajectory prefix (i.e., previous trajectory)
from an ongoing trajectory. Papers [18, 19, 20] use imitation learning to learn from incomplete
demonstrations. In specific, paper [18] uses a discounted sum along the future trajectory as the
weight for weighted behavior cloning and works effectively even if only portions of trajectories are
observed. Papers [19, 20] extend GAIL [21] to solve for the case where the action sequences are not
complete. However, these works all require a pre-collected set of demonstrations so that they are not
in-trajectory learning since the trajectory in their cases is not ongoing.

3 Problem Formulation

In this section, we formulate the problem of in-trajectory IRL. In in-trajectory IRL, there is an
expert whose decision-making is based on a Markov decision process (MDP). An MDP is a tuple
(S,A, γ, rE , P0, P ) which consists of a state set S, an action set A, a discount factor γ ∈ [0, 1),
a reward function rE : S × A → R, and the initial state distribution P0(·). The state transition
probability (density) function is denoted by P (·|·, ·) such that P (s′|s, a) denotes the probability
(density) of state transition to s′ from s by taking action a. The expert is using its policy πE to
demonstrate an ongoing trajectory ζE = SE

0 , AE
0 , S

E
1 , AE

1 , · · · and at each time t, only the state-
action pair (SE

t , AE
t ) is observed. We want to learn a reward function and a corresponding policy

from the ongoing trajectory and update the learned reward function and policy at each time t.

Many IRL algorithms [5, 6, 11, 22, 23] employ a bi-level learning structure. In this structure, the
upper level learns a reward function while the lower level aims to find an associated policy by solving
an RL problem under the current learned reward function. Inspired by their bi-level learning structure,
we formulate the in-trajectory IRL problem as an online non-convex bi-level optimization problem.
In specific, we aim to learn a reward function rθ (parameterized by θ) in the upper level and a policy
corresponding to rθ in the lower level. The loss function at time t is defined as:

Lt(θ; (S
E
t , AE

t )) ≜ −γt log πθ(A
E
t |SE

t ) +
λγt

2
||θ − θ̄||2, πθ = argmax

π
Jθ(π) +H(π). (1)
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Note that Lt(θ; (S
E
t , AE

t )) is defined using πθ and θ is the parameter of the reward function rθ, here
the policy πθ is also parameterized by θ because it is computed by solving an RL problem (in the
lower level) under the reward function rθ, and thus is indirectly parameterized by θ. Maximum
likelihood IRL (ML-IRL) [5] has a similar bi-level formulation with (1), however, ML-IRL only
solves an offline optimization problem and its analysis does not hold for non i.i.d. input data and
continuous state-action space. We discuss our distinctions from ML-IRL in Appendix A.1.

The upper-level loss function Lt has two terms. The first term −γt log πθ(A
E
t |SE

t ) is the discounted
negative log-likelihood of the state-action pair (SE

t , AE
t ) at time t and the second term λγt

2 ||θ − θ̄||2
is the discounted meta-regularization term [24] where λ is a hyper-parameter. The likelihood function
is commonly used in IRL [5, 6] to learn a reward function. Basically, the upper-level loss function at
time t encourages to find a reward function rθ that makes the observed state-action pair (SE

t , AE
t )

most likely and meanwhile, the reward parameter θ should not be too far from the prior experience,
i.e., the meta-prior θ̄. Note that θ̄ is a pre-trained meta-prior that embeds the information of “relevant
experience". We will introduce the training of θ̄ in Subsection 4.3 and Appendix C.

The lower-level problem is used to compute πθ using the current reward function rθ. It proposes
to find a policy πθ that maximizes the entropy-regularized cumulative reward Jθ(π) +H(π). The
cumulative reward of a policy π under the reward function rθ is Jθ(π) ≜ Eπ

S,A[
∑∞

t=0 γ
trθ(St, At)]

where the initial state is drawn from P0. The causal entropy of a policy π is defined as H(π) ≜
Eπ

S,A[−
∑∞

t=0 γ
t log π(At|St)].

Since the expert demonstrates {(SE
t , AE

t )}t≥0 sequentially, we have a sequence of loss functions
{Lt(θ; (S

E
t , AE

t ))}t≥0. We use this sequence of loss functions (1) to formulate an online learning
problem. A typical online learning problem is to minimize the regret:

∑T−1
t=0 Lt(θt; (S

E
t , AE

t )) −
minθ

∑T−1
t=0 Lt(θ; (S

E
t , AE

t )). However, it is too challenging to minimize the regret in our case
because the loss function Lt could be non-convex. Therefore, we aim to minimize the local regret
which is widely adopted in online non-convex optimization [25, 26] and online IRL [11]. The local
regret quantifies the general stationarity of a sequence of loss functions under the learned parameters.
In specific, given a sequence of loss functions {ft(x)}t≥0, the local regret [11, 25, 26] at time t

is defined as || 1
t+1

∑t
i=0 ∇fi(xt)||2 which quantifies the gradient norms of the average of all the

previous loss functions under the current learned parameter xt. The total local regret is defined as
the sum of the local regret at each time t, i.e.,

∑T−1
t=0 || 1

t+1

∑t
i=0 ∇fi(xt)||2. In our case, we replace

{ft}t≥0 with the loss function {Lt}t≥0 defined in (1) and thus formulate the local regret (2)-(3)
which has a bi-level formulation. We aim to minimize the following local regret:

E{(SE
t ,AE

t )∼PπE
t (·,·)}t≥0

[T−1∑
t=0

|| 1

t+ 1

t∑
i=0

∇Li(θt; (S
E
i , AE

i ))||2
]
, (2)

s.t. πθt = argmax
π

Jθt(π) +H(π), (3)

where (SE
t , AE

t ) ∼ PπE
t (·, ·) means that (SE

t , AE
t ) is drawn from the state-action distribution

PπE
t (·, ·), and Pπ

t (·, ·) is the state-action distribution induced by π at time t in the MDP.

Difficulties of solving problem (2)-(3). We want to design a fast algorithm to solve problem (2)-(3)
since we need to finish the update of θ and π before the next state-action pair is observed and the
time between two consecutive state-action pairs can be short. However, designing and analyzing such
a fast algorithm is difficult due to the following challenges:

(i) First and foremost, current state-of-the-arts [25, 26] on online non-convex optimization use follow-
the-leader-based algorithms which solve minθ

∑t
i=0 Li(θ; (S

E
i , AE

i )) to near stationarity at each
time t. This is time-consuming because they require multiple gradient descent updates of θ. One way
to alleviate this problem is to use online gradient descent (OGD) which only updates θ by one gradient
descent step at each time t. However, since OGD does not solve the problem to near stationarity
at any time t, it is extremely difficult to quantify the overall stationarity after T iterations. While
OGD has been well studied in online convex optimization, it is rarely studied in online non-convex
optimization. The recent work [11] uses OGD to quantify the local regret, however, its analysis
can only hold when the input data is i.i.d. In contrast, the input data in our problem is not i.i.d. In
specific, the input data at time t (i.e., (SE

t , AE
t )) is actually affected by the input data at last step (i.e.,
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(SE
t−1, A

E
t−1)). This correlation between any two consecutive input data makes it difficult to analyze

the growth rate of the local regret.

(ii) Second, it is time-consuming if we fully solve the lower-level problem (3) to get πθ because this
requires multiple policy updates to solve an RL problem. Therefore, we use a “single-loop" method
which only requires one-step policy update for a given rθ. However, since the policy is only updated
once, the updated policy can be far from πθ and thus making the analysis difficult. Single-loop
methods are widely adopted to solve hierarchical problems, including bi-level optimization [27, 28],
game theory [29, 30], min-max problems [31, 32], etc. Recently, single-loop methods are applied to
IRL [5], however, the paper [5] only solves an offline optimization problem and its analysis does not
hold for non i.i.d. input data and continuous state-action space. We include a section in Appendix
A.1 to discuss our distinctions from [5].

4 Algorithm and Theoretical Analysis

This section has three parts. The first part presents a novel online learning algorithm that solves
the problem (2)-(3) and tackles the aforementioned two difficulties. The second part proves that
Algorithm 1 achieves sub-linear local regret. If the reward function is linear, we prove that Algorithm
1 achieves sub-linear regret. The third part introduces a meta-learning method to get the meta-prior θ̄.

4.1 The proposed algorithm

In practice, the expert will demonstrate a specific trajectory sE0 , a
E
0 , s

E
1 , a

E
1 , · · · . For distinction, we

use the capital letters (e.g., S) to represent random variables and the lower-case letters (e.g., s) to
represent specific values. To design a fast algorithm, we propose an online-gradient-descent-based
single-loop algorithm. In specific, at each time t, the algorithm updates both policy π and reward
parameter θ only once. The policy update is to solve the lower-level problem (3) and the reward
update is to solve the upper-level problem (2). In the following, we elaborate the procedure of policy
update and reward update.

Algorithm 1 Meta-regularized In-trajectory Inverse Reinforcement Learning (MERIT-IRL)
Input: Initialized policy π0, the streaming input data {(sEt , aEt )}t≥0

Output: Learned reward parameter θT and policy πT

1: Compute θ̄ using the meta-regularization in Section 4.3 and Appendix C, and set θ0 = θ̄
2: for t = 0, 1, · · · , T − 1 do
3: Compute the soft Q-function Qsoft

θt,πt
(defined in Appendix B.1) under the current reward

function rθt and policy πt

4: Update πt+1(a|s) ∝ exp(Qsoft
θt,πt

(s, a)) for any (s, a) ∈ S ×A
5: Roll out policy πt+1 twice: one starting from sE0 to get sE0 , a

′
0, s

′
1, a

′
1, · · · , and the other

starting from (sEt , a
E
t ) to get s′′t+1, a

′′
t+1, · · ·

6: Compute gt =
∑∞

i=0 γ
i∇θrθt(s

′
i, a

′
i) −

∑∞
i=0 γ

i∇θrθt(s
′′
i , a

′′
i ) +

λ(1−γt+1)
1−γ (θt − θ̄) where

s′0 = sE0 and (s′′i , a
′′
i ) = (sEi , a

E
i ) for 0 ≤ i ≤ t

7: Update θt+1 = θt − αtgt
8: end for

Policy update (lines 3-4 of Algorithm 1). At each time t, we only partially solve the lower-level
problem (3) via one-step soft policy iteration [5, 33]. In specific, the soft policy iteration contains
two steps: policy evaluation and policy improvement. Policy evaluation aims to compute the soft
Q-function Qsoft

θt,πt
(see the expression in Appendix B.1) under the current learned reward function

rθt and learned policy πt. Policy improvement aims to update policy according to πt+1(s, a) ∝
exp(Qsoft

θt,πt
(s, a)) for any (s, a) ∈ S × A. In practical implementations, πt+1 can be obtained by

one-step policy update in soft Q-learning [33] or one-step actor update in soft actor-critic [34].

Reward update (lines 5-7 of Algorithm 1). At each time t, the algorithm observes (sEt , a
E
t ) and

aims to leverage all the previously observed data to update the reward parameter. In specific, as
Lt(θ; (s

E
t , a

E
t )) = −γt log πθ(a

E
t |sEt )+

λγt

2 ||θ− θ̄||2 is the meta-regularized negative log-likelihood
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of (sEt , a
E
t ), the algorithm can formulate

∑t
i=0 Li(θ; (s

E
i , a

E
i )) at time t using all the previously

collected data (i.e., {(sEi , aEi )}i=0,··· ,t). To update the reward parameter, the algorithm partially
minimizes

∑t
i=0 Li(θ; (s

E
i , a

E
i )) via one-step gradient descent.

Lemma 1. The gradient of
∑t

i=0 Li(θ; (s
E
i , a

E
i )) can be calculated as follows:

∇
t∑

i=0

Li(θ; (s
E
i , a

E
i )) = Eπθ

S,A

[ ∞∑
i=0

γi∇θrθ(Si, Ai)

∣∣∣∣S0 = sE0

]
+

λ(1− γt+1)

1− γ
(θ − θ̄)

−
t∑

i=0

γi∇θrθ(s
E
i , a

E
i )− Eπθ

S,A

[ ∞∑
i=t+1

γi∇θrθ(Si, Ai)

∣∣∣∣St = sEt , At = aEt

]
. (4)

Note that the gradient (4) holds for continuous state-action space. Since the gradient (4) has expecta-
tion terms under the policy πθ, we can only approximate it. In specific, we roll out the policy πt+1

twice: one starting from sE0 to get a trajectory {(s′i, a′i)}i≥0 where s′0 = sE0 , and the other one starting
from (sEt , a

E
t ) to get a trajectory {(s′′i , a′′i )}i≥0 where (s′′i , a

′′
i ) = (sEi , a

E
i ) for 0 ≤ i ≤ t. Then we

use the empirical estimate gt =
∑∞

i=0 γ
i∇θrθt(s

′
i, a

′
i)−

∑∞
i=0 γ

i∇θrθt(s
′′
i , a

′′
i )+

λ(1−γt+1)
1−γ (θt− θ̄)

to approximate ∇
∑t

i=0 Li(θt; (s
E
i , a

E
i )). With the gradient approximation gt, we utilize stochastic

online gradient descent θt+1 = θt − αtgt to update the reward parameter.

Discussion on our special design of the reward update. The right subfigure in Figure 1 visualizes
our reward update (modulo the meta-regularization term). The green trajectory (i.e., {(sEt , aEt )}t≥0) is
the expert trajectory, and the red trajectories (i.e., {(s′t, a′t)}t≥0 and {(s′′i , a′′i )}i>t) are the trajectories
generated by the learned policy. Given the expert trajectory prefix (i.e., the incomplete trajectory
{(sEi , aEi )}ti=0 observed so far), our method completes the expert trajectory by rolling out the learned
policy starting from (sEt , a

E
t ) and filling the trajectory suffix {(s′′i , a′′i )}i>t. The combined complete

trajectory includes the expert trajectory prefix {(sEi , aEi )}ti=0 and the learner-filled trajectory suffix
{(s′′i , a′′i )}i≥t. We update the reward function by comparing this combined trajectory to a complete
trajectory {(s′t, a′i)}t≥0 generated by the learned policy starting from the expert’s initial state sE0 .

A more straightforward way for the reward update is to directly compare the trajectory prefixes
(visualized in the middle of Figure 1) at each time t. However, this naive method can be problematic.
We explain the issue of this naive method and the advantage of our method in the following context.

Figure 1: Standard IRL (left), the naive method for in-
trajectory learning (middle), and our method (right).

Figure 1 visualizes the reward up-
date for standard IRL (left), the naive
method (i.e., directly run standard
IRL algorithms on the expert trajec-
tory prefix) (middle), and our method
(right). The standard IRL (left) up-
dates the reward function by com-
paring the complete expert trajec-
tory and the complete trajectory gen-
erated by the learned policy. This
case is ideal, however, it is infeasible
when the trajectory is ongoing and
we can only observe an incomplete
expert trajectory {(sEi , aEi )}ti=0 at
each time t. The naive method (mid-

dle) updates the reward function by simply comparing the expert trajectory prefix {(sEi , aEi )}ti=0
and the incomplete trajectory {(s′i, a′i)}ti=0 with the same length generated by the learned policy
starting from the expert’s initial state sE0 . This kind of reward update is myopic as it does not consider
for the future. Since it runs standard IRL on the trajectory prefix observed so far, it will always
regard the current state-action pair as the terminal state-action pair and thus has no ability to consider
the state-action pairs in the future. In contrast, our special design gives the algorithm the ability
to consider for the future. Instead of only comparing incomplete trajectory prefixes, our method
compares complete trajectories just as the standard IRL. In specific, we compare the combined
complete trajectory {{(sEi , aEi )}ti=0, {(s′′i , a′′i )}i>t} and the complete trajectory {(s′i, a′i)}i≥0 solely
generated by the learned policy. The comparison between the learner prefix {s′i, a′i}ti=0 and expert
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prefix {sEi , aEi }ti=0 encourages the learned reward function to explain the expert’s demonstrated be-
haviors so far, and the comparison between the suffixes ({s′i, a′i}i>t and {s′′i , a′′i }i>t) encourages that
we are learning a reward function that is useful for predicting the future. Note that as t increases, the
expert trajectory prefix weights more and more in the combined complete trajectory, and eventually
we will recover the standard IRL reward update when t goes to infinity. In Theorems 1 and 2, we
theoretically guarantee that the proposed reward update can achieve sub-linear (local) regret. This
shows the perfect consistency between the intuition and theory.

4.2 Theoretical analysis

To quantify the local regret of Algorithm 1, we have two challenges: (i) Since we only update π by
one step at each time t, we have πt+1 instead of the optimal solution πθt of the lower-level problem
(3). The policy πt+1 can be far away from πθt and thus the empirical gradient estimate gt can be a
bad approximation of the gradient (4). (ii) Since we only update θ once at each time t instead of
finding a near-stationary point θ′ such that ||

∑t
i=0 Li(θ

′; (sEi , a
E
i ))|| ≤ ϵ as in [25, 26], the gradient

norm ||
∑t

i=0 ∇Li(θt; (s
E
i , a

E
i ))|| is not stabilized under the threshold ϵ at every time t. Therefore

the local regret (i.e.,
∑T−1

t=0 || 1
t+1

∑t
i=0 ∇Li(θt; (s

E
i , a

E
i ))||2) is hard to quantify and may not be

sub-linear in T . What’s worse, the input data is not i.i.d. but correlated, i.e., the input data (sEt , a
E
t )

at time t is affected by the input data (sEt−1, a
E
t−1) at last step. This correlation makes it even more

difficult to quantify the local regret.

To solve the first challenge, we adopt the idea of two-timescale stochastic approximation [27] where
the lower level updates in a faster timescale and the upper level updates in a slower timescale. The
policy update is faster because it converges linearly under a fixed reward function [35] while the
reward update is slower given that we choose αt ∝ (t+ 1)−1/2. Intuitively, since the policy update
is faster than the reward update, the reward parameter is “relatively fixed" compared to the policy. It
is expected that πt+1 shall stay close to πθt and at last converges to πθt when t increases.

To solve the second challenge, we divide our analysis into two steps: (i) We quantify the difference of
the gradient norms between the current correlated state-action distribution PπE

t (·, ·) and a stationary
state-action distribution for any loss function Li, i ≥ 0. Note that PπE

t+1(·, ·) is affected by PπE
t (·, ·).

(ii) We quantify the local regret under the stationary distribution. The benefit of doing so is that the
input data is i.i.d. under the stationary distribution, and thus we can cast the online gradient descent
method as a stochastic gradient descent method and quantify its local regret. Finally, we can quantify
the local regret under the current correlated distribution PπE

t (·, ·) by combining (i) and (ii).

We start our analysis with the definitions of stationary state distribution and stationary state-action
distribution. For a given policy π, the corresponding stationary state distribution is µπ(s) ≜ (1 −
γ)

∑∞
t=0 γ

tPπ
t (s) and the stationary state-action distribution is µπ(s, a) ≜ (1− γ)

∑∞
t=0 γ

tPπ
t (s, a).

Assumption 1. The parameterized reward function rθ satisfies |rθ1(s, a)−rθ2(s, a)| ≤ C̄r||θ1−θ2||
and ||∇θrθ1(s, a) −∇θrθ2(s, a)|| ≤ C̃r||θ1 − θ2|| for any (θ1, θ2) and any (s, a) ∈ S × A where
C̄r and C̃r are positive constants.
Assumption 2 (Ergodicity). There exist constants CM > 0 and ρ ∈ (0, 1) such that for any
policy π and any t ≥ 0, the following holds for the Markov chain induced by the policy π and
the state transition function P : supS0∼P0

dTV(Pπ
t (·), µπ(·)) ≤ CMρt where dTV(P1(·),P2(·)) ≜

1
2

∫
s∈S |P1(s)− P2(s)|ds is the total variation distance between the two state distributions P1 and

P2, S0 is the initial state, and Pπ
t (·) is the state distribution induced by the policy π at time t.

Assumptions 1-2 are common in RL [36, 37, 38, 39]. Assumption 2 holds for any time-homogeneous
Markov chain with finite state space or any uniformly ergodic Markov chain with general state space.
Proposition 1. Suppose Assumptions 1-2 hold and αt ∈ (0, 1−γ

λ ), we have the following relation for
any i ≥ 0 and any θt, t ≥ 0:∣∣E(SE

i ,AE
i )∼PπE

i (·,·)
[
||∇Li(θt; (S

E
i , AE

i ))||2
]
− E(SE

i ,AE
i )∼µπE (·,·)

[
||∇Li(θt; (S

E
i , AE

i ))||2
]∣∣,

≤ 8CM C̄2
r

(2− γ

1− γ

)2
ρiγ2i,

where (SE
i , AE

i ) ∼ PπE
i (·, ·) means that (SE

i , AE
i ) is drawn from the correlated distribution PπE

i (·, ·)
and (SE

i , AE
i ) ∼ µπE (·, ·) means that (SE

i , AE
i ) is drawn from the stationary distribution µπE (·, ·).
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Proposition 1 quantifies the gap of gradient norms between the current correlated distribution PπE
i

and the stationary distribution µπE . We next quantify the local regret under the stationary distribution
µπE with the following lemma:

Lemma 2. Suppose Assumptions 1-2 hold and choose αt =
(1−γ)(t+1)−1/2

λ , it holds that:

E{(SE
t ,AE

t )∼µπE (·,·)}t≥0

[T−1∑
t=0

|| 1

t+ 1

t∑
i=0

∇Li(θt; (S
E
i , AE

i ))||2
]

≤ D1(log T + 1) +D2

√
T +D3

√
T (log T + 1),

where D1, D2, and D3 are positive constants whose expressions can be found in Appendix B.4.

Lemma 2 quantifies the local regret under the stationary distribution µπE . With Proposition 1 and
Lemma 2, we can quantify the local regret under the current correlated distribution.

Theorem 1. Suppose Assumptions 1-2 hold and choose αt =
(1−γ)(t+1)−1/2

λ , we have that:

E{(SE
t ,AE

t )∼PπE
t (·,·)}t≥0

[T−1∑
t=0

|| 1

t+ 1

t∑
i=0

∇Li(θt; (S
E
i , AE

i ))||2
]

≤
(
D1 +

8CM C̄2
r (2− γ)2

(1− ργ2)(1− γ)2

)
(log T + 1) +D2

√
T +D3

√
T (log T + 1).

Theorem 1 is based on Proposition 1 and Lemma 2. It shows that Algorithm 1 achieves sub-linear
local regret. Moreover, if the reward function is linear, Algorithm 1 achieves sub-linear regret:
Theorem 2. Suppose the expert reward function rE and the parameterized reward rθ are linear, and
Assumptions 1-2 hold. Choose αt =

1−γ
λ(t+1)(1−γt+1) we have that:

E{(SE
t ,AE

t )∼PπE
t (·,·)}t≥0

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))

]

−min
θ

E{(SE
t ,AE

t )∼PπE
t (·,·)}t≥0

[T−1∑
t=0

Lt(θ; (S
E
t , AE

t ))

]
≤ D4 +D5(log T + 1),

where D4 and D5 are positive constants whose expressions are in Appendix B.6.

4.3 Meta-Regularization

Since there is only one training trajectory and this trajectory is not complete during the learning
process, we need to add a regularization term to avoid overfitting. Inspired by humans’ using relevant
experience to help do inference, we introduce the meta-regularization λ

2 ||θ − θ̄||2 where λ is the
hyper-parameter and the meta-prior θ̄ is learned from “relevant experience". In specific, we introduce
a set of relevant tasks {Tj}j∼PT where each task Tj is an IRL problem and PT is the implicit
task distribution. The tasks {Tj}j∼PT are relevant in the sense that they share the components
(S,A, γ, P0, P ) of the MDP with our in-trajectory learning problem. However, the expert’s reward
functions of different tasks are different and are drawn from an unknown reward function distribution.
For example, in the stock market case mentioned in the introduction, the experts of different tasks
invest in the same stock market but may have different preferences. As standard in meta-learning
[40, 41, 42], we assume that the expert’s reward function rE of our in-trajectory learning problem is
also drawn from the same unknown reward function distribution. Note that the reward functions of
the relevant tasks {Tj}j∼PT are different from rE even if they are drawn from the same unknown
reward function distribution.

For each task Tj , there is a batch of trajectories and we divide this batch into two sets, i.e., Dtr
j

and Deval
j . The training set Dtr

j only has one trajectory, just as our in-trajectory learning problem,
and the evaluation set Deval

j has abundant trajectories. Define the loss function on a certain data
set D ≜ {ζv}mv=1 as L(θ,D) ≜ −

∑m
v=1

∑∞
t=0 γ

t log πθ(a
v
t |svt ). The goal of each task Tj is to

learn a task-specific adaptation ϕj using the training set Dtr
j , such that ϕj can minimize the test
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loss L(ϕj ,Deval
j ) on the evaluation set Deval

j . The goal of meta-regularization is to find a meta-prior
θ̄, from which such task-specific adaptations ϕj can be adapted to all tasks {Tj}j∼PT . In specific,
meta-regularization [24] proposes a bi-level optimization problem (5). The lower-level problem uses
only one trajectory Dtr

j to find the task-specific adaptation ϕj such that the meta-regularized loss
function L(ϕ,Dtr

j ) +
λ

2(1−γ) ||ϕ− θ̄||2 is minimized. The upper-level problem is to find a meta-prior
θ̄ such that the corresponding task-specific adaptations {ϕj}j∼PT can minimize the expected loss
function L(ϕj ,Deval

j ) over the evaluation sets of all tasks {Ti}j∼PT .

min
θ̄

Ej∼PT

[
L(ϕj ,Deval

j )
]
, s.t. ϕj = argmin

ϕ
L(ϕ,Dtr

j ) +
λ

2(1− γ)
||ϕ− θ̄||2. (5)

The lower-level loss function in (5) is the offline version of our in-trajectory loss function (1) (i.e.,
L(ϕ,Dtr

j ) +
λ

2(1−γ) ||ϕ − θ̄||2 =
∑∞

t=0 Lt(ϕ; (s
tr
t , a

tr
t ))) where (str

t , a
tr
t ) ∈ Dtr

j . Our in-trajectory
learning problem can also be regarded as to find a task-specific adaptation. Note that the in-trajectory
learning problem is online while the lower-level problem in (5) is offline because the in-trajectory
problem is ongoing where we keep observing new state-action pairs. In contrast, the lower-level
problem in (5) is based on “experience" that has already happened. Due to the space limit, we include
the algorithm and theoretical guarantees of solving the problem (5) in Appendix C.

5 Experiments

We present three experiments to show the effectiveness of MERIT-IRL. We use four baselines for
comparisons. (i) IT-IRL: this method is MERIT-IRL without meta-regularization. (ii) Naive MERIT-
IRL: this method has the meta-regularization term but uses the naive way (in the middle of Figure 1)
to update reward. (iii) Naive IT-IRL: this method uses the naive way to update the learned reward
and does not have the meta-regularization term. (iv) Hindsight: this method is meta-regularized
ML-IRL [5] which can access the complete expert trajectory and uses the standard IRL (visualized in
the left of Figure 1) with meta-regularization to update the learned reward. The experiment details
are in Appendix D.

5.1 MuJoCo experiment

In this subsection, we consider the target velocity problem for three MuJoCo robots: HalfCheetah,
Walker, and Hopper. The target velocity problem is widely used in meta-RL [43] and meta-IRL
[44]. In specific, the robots aim to maintain a target velocity in each task and the target velocity
of different tasks is different. To test the performance of MERIT-IRL, we use 10 test tasks whose
target velocity is randomly between 1.5 and 2.0. In the test tasks, there is only one expert trajectory
and the state-action pairs of this trajectory are sequentially revealed (to MERIT-IRL, IT-IRL, Naive
MERIT-IRL, and Naive IT-IRL) in an online fashion. The baseline Hindsight uses the complete
expert trajectory to learn a reward function. The ground truth reward is designed as −|v − vtarget| (as
in [43]) where v is the current robot velocity and vtarget is the target velocity. To learn the meta-prior
θ̄, we use 50 relevant tasks whose target velocity is randomly between 0 and 3.

Figures 2a-2c show the in-trajectory learning performance where the x-axis is the time step t of
the expert trajectory and the y-axis is the cumulative reward of the learned policy πt when only
the first t steps of the expert trajectory are observed. The x-limit is 1, 000 because the trajectory
length in MuJoCo is 1, 000. Note that the baseline “Hindsight" is not in-trajectory learning since
it learns from a complete expert trajectory. For comparison, we use two horizontal lines (close to
each other) to show the performance of Hindsight and the expert in the figures. Figure 2a shows that
MERIT-IRL achieves similar performance with the expert when only 40% of the complete expert
trajectory (t = 400) is observed while IT-IRL can only achieve performance close to the expert after
observing more than 90% of the complete expert trajectory (t = 900). This shows the effectiveness
of the meta-regularization. Naive MERIT-IRL and Naive IT-IRL fail to imitate the expert even if
the complete expert trajectory is observed (t = 1, 000). This shows the effectiveness of our special
design of the reward update. The discussions on Figures 2b and 2c are in Appendix D.2.

Table 1 shows the results after observing the complete expert trajectory. MERIT-IRL performs much
better than IT-IRL, Naive MERIT-IRL, and Naive IT-IRL. MERIT-IRL achieves similar performance
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Table 1: Experiment results. The mean and standard deviation are calculated from 10 test tasks.
MERIT-IRL IT-IRL Naive MERIT-IRL Naive IT-IRL Hindsight Expert

HalfCheetah −214.63± 53.96 −386.78± 152.65 −548.22± 40.51 −765.27± 104.41 −208.74± 37.23 −181.51± 28.35
Walker −654.77± 102.59 −891.79± 156.90 −962.42± 111.60 −1349.25± 158.88 −648.17± 157.92 −634.17± 120.57
Hopper −476.72± 32.09 −669.88± 53.63 −691.03± 93.35 −1112.06± 74.33 −455.70± 74.93 −421.74± 84.30

Stock market 386.70± 62.95 256.81± 68.61 192.49± 75.34 72.33± 16.73 390.30± 77.37 403.15± 61.94

(a) HalfCheetah (b) Walker (c) Hopper (d) Stock Market

Figure 2: In-trajectory learning performance.

with Hindsight and expert. Note that it is not expected that MERIT-IRL outperforms Hindsight since
Hindsight uses the complete expert trajectory to learn.

5.2 Stock market experiment

RL to train a stock trading agent has been widely studied in AI for finance [45, 46, 47]. In this
experiment, we use IRL to learn the reward function (i.e., investing preference) of the target investor
in a stock market scenario. In specific, we use the real-world data of 30 constituent stocks in Dow
Jones Industrial Average from 2021-01-01 to 2022-01-01. We use a benchmark called “FinRL" [47]
to configure the real-world stock data into an MDP environment. The target investor (i.e., expert) has
an initial asset of $1, 000 and trades stocks on every stock market opening day. The stock market
opens 252 days between 2021-01-01 and 2022-01-01, and thus the trajectory length is 252. The
reward function of the target investor is defined as p1 − p2 where p1 is the investor’s profit which is
the money earned from trading stocks subtracting the transaction cost, and p2 models the investor’s
preference of whether willing to take risks. In specific, p2 is positive if the investor buys stocks whose
turbulence indices are larger than a certain turbulence threshold, and zero otherwise. The value of p2
depends on the type and amount of the trading stocks. The turbulence thresholds of different investors
are different. The turbulence index measures the price fluctuation of a stock. If the turbulence index
is high, the corresponding stock has a high fluctuating price and thus is risky to buy [47]. Therefore,
an investor unwilling to take risks has a relatively low turbulence threshold. We include experiment
details in Appendix D.3. To test performance, we use 10 test tasks whose turbulence thresholds are
randomly between 45 and 50. To learn θ̄, we use 50 relevant tasks whose turbulence thresholds are
randomly between 30 and 60.

Figure 2d shows that MERIT-IRL achieves similar cumulative reward with the expert at t = 140
which is less than 60% of the whole trajectory, while the three in-trajectory baselines fail to imitate
the expert before the ongoing trajectory terminates. The last row in Table 1 shows that MERIT-IRL
achieves similar performance with Hindsight and the expert. More discussions on the results are in
Appendix D.3.

5.3 Learning from a shooter’s ongoing trajectory

This part presents the experiment of learning from an ongoing shooter trajectory. Following [12],
we model the shooter’s movement as a navigation problem. We build a simulator in Gazebo (Figure
3a) where the shooter moves from the door (lower left corner) to the red target (upper right corner).
The learner observes the ongoing trajectory of the shooter and keeps updating the learned reward and
policy. In our case, the complete shooter trajectory has the length of 140. Figures 3b-3g show our
in-trajectory learning performance where the heat maps visualize the learned reward. We normalize
the learned reward to [0, 1]. We can observe that as the ongoing trajectory is expanding, the learned
reward function becomes more and more precise to locate the goal area. When t = 40, we cannot tell
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the goal area from the heat map (Figure 3b). However, as the time t grows, we can almost locate the
goal area when t = 60 (Figure 3c) and precisely locate the goal area when t = 80 (Figure 3d).

(a) Gazebo environment

0.0

0.2

0.4

0.6

0.8

1.0

(b) t = 40 (c) t = 60 (d) t = 80

(e) t = 100 (f) t = 120 (g) t = 140 (h) Success rate

Figure 3: Learning performance on the active shooting scenario.

Figure 3h shows the policy learning performance. Since there is no ground truth reward in this
problem, we use “success rate" to quantify the performance of the learned policy. The success rate is
the rate that the learned policy successfully reaches the goal. From 3h, we can see that MERIT-IRL
outperforms the other baselines and can achieve 100% success rate when t = 80 (i.e., only observing
57% of the complete trajectory). Note that we do not include Hindsight and Expert in Figure 3 since
they both achieve 100% success rate.

6 Conclusion

This paper proposes MERIT-IRL, the first in-trajectory inverse reinforcement learning theoretical
framework that learns a reward function while observing an initial portion of a trajectory and keeps
updating the learned reward function when extended portions (i.e., new state-action pairs) of the
trajectory are observed. Experiments show that MERIT-IRL can imitate the expert from the ongoing
expert trajectory before it terminates.
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This appendix consists of four parts: related works, proof, meta-regularization algorithm and conver-
gence guarantee, and Experiment details.

A Related works

Applying IRL to predict from ongoing trajectories. Papers [48, 49, 50] use standard IRL to
predict goals of incomplete (or ongoing) trajectories. In specific, they first learn the reward function
corresponding to each potential goal candidate from complete trajectories in the training phase and
then use Bayesian methods to pick the most likely goal candidate of incomplete trajectories in the
testing phase. However, these works are not in-trajectory learning since they do not learn a reward
function from an incomplete ongoing trajectory.

Online non-convex optimization. This paper casts the in-trajectory learning problem as an online
non-convex bi-level optimization problem where at each online iteration, a new state-action pair is
input. Current literature on online non-convex optimization has two major categories. The first one
is to use the regret originally defined in online convex optimization [51, 52]. However, it assumes
to find a global optimal solution of a non-convex optimization problem at each online iteration.
Therefore, the second category studies “local regret" [25, 26] and uses follow-the-leader-based
methods to minimize the local regret. However, the follow-the-leader-based methods need to solve a
non-convex optimization problem to obtain a near-stationary point at each online iteration, which
can be computationally expensive and time-consuming. If the streaming data arrives at a fast speed,
the computation at each online iteration may not be finished before the next data arrives. The
computational burden of each online iteration can be mitigated by online gradient descent (OGD)
methods where we only partially solve the non-convex optimization problem by one-step gradient
descent at each online iteration. While OGD is widely studied in online convex optimization, it
is rarely studied in online non-convex optimization. [11] uses OGD to quantify the local regret,
however, its analysis only holds when the input data is identically independent distributed (i.i.d.). In
contrast, the input data in our problem is not i.i.d. In specific, the input data at time t (i.e., (SE

t , AE
t ))

is affected by the input data at last step (i.e., (SE
t−1, A

E
t−1)). This temporal correlation between any

two consecutive input data makes it difficult to analyze the growth rate of the local regret.

Regularization and meta-learning in IRL. Moreover, the data of in-trajectory learning is extremely
lacking since there is only one demonstrated trajectory and this trajectory is not complete during
the learning process. The lack of data can easily lead to overfitting and a common way to alleviate
this problem is to use regularizers [21, 53]. Inspired by humans’ using relevant experience to
help the inference, we introduce a novel regularization method called meta-regularization [24, 54].
Compared to the regularizers commonly used in IRL [21, 53], the meta-regularizer provides human-
experience-like prior information which helps recover the reward function from few data. Similar to
the meta-initialization method [54, 43] commonly used in IRL [55], meta-regularization provides
an initialization that the algorithm starts at. However, more importantly, meta-regularization also
provides a regularization term to avoid overfitting.

A.1 Distinction from Maximum-likelihood inverse reinforcement learning (ML-IRL) [5]

We discuss our distinctions from ML-IRL from the following three aspects: problem setting, algorithm
design, and theoretical analysis.

Distinction in problem setting. We study in-trajectory IRL and formulate an online optimization
problem, while ML-IRL studies standard IRL and formulates an offline optimization problem.

Distinctions in algorithm design. ML-IRL and our algorithm both update policy and reward in
a single loop. However, we propose a novel reward update mechanism specially designed for the
in-trajectory learning case. This special design requires to use the current learned policy to complete
the expert trajectory, which gives the algorithm the ability to consider for the future. This special
design of reward update is novel compared to ML-IRL.

Distinctions in theoretical analysis. The analysis in our paper is substantially different from that in
ML-IRL due to three facts: (1) The input data in our paper is not i.i.d., while the input data in ML-IRL
is i.i.d. (2) We solve an online optimization problem, while ML-IRL solves an offline optimization
problem. (3) Our analysis holds for continuous state-action space, while the analysis of ML-IRL is
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limited to finite state-action space. We now discuss the distinctions in theoretical analysis caused by
the three facts in detail.

In our case, the input data is not i.i.d. but temporally correlated, i.e., the input data (st, at) is affected
by the input data (st−1, at−1) at last time step. In contrast, the input data in ML-IRL is i.i.d. sampled
from a pre-collected data set. To solve this non i.i.d. issue of the input data, we propose a novel
theoretical technique that has three steps (detailed in Subsection 4.2). Step 1: We propose the
stationary distribution µπE and quantify the gradient norm difference between the real distribution
PπE
t and this stationary distribution µπE in Proposition 1. Step 2: We quantify the local regret over

the stationary distribution in Lemma 2. The benefit of doing this is that the input data can be regarded
as i.i.d. sampled from this stationary distribution. Step 3: We combine step 1 and step 2, and quantify
the (local) regret over the real distribution, where the data is not i.i.d., in Theorem 1 and Theorem
2. We can see that step 1 and step 3 are to solve the non i.i.d. issue of the input data, so that the
corresponding theorem statements (Proposition 1, Theorem 1, and Theorem 2) are novel compared to
ML-IRL because ML-IRL does not have this non i.i.d. issue. The only theorem statement relevant to
ML-IRL is Lemma 2 in step 2 where we both analyze the algorithm over a stationary distribution,
and the data is i.i.d. sampled from the stationary distribution.

However, Lemma 2 in step 2 still has significant distinctions from ML-IRL because Lemma 2
quantifies the local regret in the context of online optimization, while ML-IRL quantifies convergence
in the context of offline optimization. First, the objective function is dynamically changing in the
online setting because the learner observes a new state-action pair at each online iteration, while the
objective function is fixed in ML-IRL. Second, the local regret contains the term Lt(θt; (s

E
t , a

E
t )),

however, θt is computed before the learner knows (sEt , a
E
t ). This makes it more difficult to quantify

the local regret because the learner does not know Lt when it computes θt. These two difficulties do
not appear in the offline optimization in ML-IRL. To solve these two issues, we need to additionally
construct a new time-invariant function L̄ in Appendix B.4 and quantify the convergence of the new
function L̄. Then, in order to quantify the local regret of {Lt}t≥0, we need to quantify the difference
between the real loss function {Lt}t≥0 and the constructed loss function L̄.

Moreover, our theoretical analysis holds for continuous state-action space while the theoretical
analysis in ML-IRL is limited to finite state-action space. The extension to continuous state-action
space brings new difficulties and requires significant novel analysis. In general, the difficulties stem
from two aspects: (1) The constants in ML-IRL, e.g., the smoothness constant of the loss function L
and the coefficient of convergence rate, include the term |S| × |A|. When the state-action space is
continuous, those constants are not finite because |S| × |A| is now infinite. To address this issue, we
propose new methods to bound those constants. For example, in order to show that the loss function
L is smooth, rather than using ||∇L(θ1)−∇L(θ2)|| to find the smoothness constant as in ML-IRL,
we aim to show that ||∇2L(θ)|| is upper bounded by a constant CL in Lemma A.2 and this constant
CL does not rely on |S| × |A|. Given that ||∇2L(θ)|| ≤ CL, the loss function L is CL-smooth. (2)
Since the action space A is finite in ML-IRL, their proved properties of the Q-function Qsoft (e.g.,
Lipschitz continuity, contraction property, monotonic improvement, and smoothness) can be easily
extended to the value function V soft by summing over different actions a ∈ A. When the action
space becomes continuous, summing over infinitely many different actions does not preserve those
properties. Thus we have to propose new methods to prove those propoerties of the value function
V soft. In specific, we prove the Lipschitz continuity, contraction property, monotonic improvement,
and smoothness of the value function V soft in Claims 3-5 in Appendix B.4.

B Proof

This section provides the proof of all the proposition, lemmas, and theorems in the paper. To start
with, we first introduce the expression of soft Q-function and soft Bellman policy.

B.1 Notions

The soft Q-function and soft value function are:

Qsoft
θ,π(s, a) ≜ rθ(s, a) + γ

∫
s′∈S

P (s′|s, a)V soft
θ,π (s

′)ds′,
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V soft
θ,π (s) ≜ Eπ

S,A

[ ∞∑
t=0

γt
(
rθ(St, At)− log π(At|St)

)∣∣∣∣S0 = sE0

]
.

The soft Bellman policy is as follows:

πθ(a|s) =
exp(Qsoft

θ (s, a))

exp(V soft
θ (s))

,

Qsoft
θ (s, a) = rθ(s, a) + γ

∫
s′∈S

P (s′|s, a)V soft
θ (s′)ds′,

V soft
θ (s) = log

(∫
a∈A

exp(Qsoft
θ (s, a))da

)
.

It has been proved [33] that the soft Bellman policy πθ is the optimal solution of the lower-level
problem (4). We define Jθ(s) ≜ Eπθ

S,A[
∑∞

t=0 γ
trθ(St, At)|S0 = s] as the expected cumulative

reward of policy πθ starting from state s and Jθ(s, a) ≜ Eπθ

S,A[
∑∞

t=0 γ
trθ(St, At)|S0 = s,A0 = a].

Lemma 3. We have the gradient ∇θ log πθ(a|s) = Eπθ

S,A[
∑∞

t=0 γ
t∇θrθ(St, At)|S0 = s,A0 =

a]− Eπθ

S,A[
∑∞

t=0 γ
t∇θrθ(St, At)|S0 = s].

Proof. Define Zθ(s, a) ≜ exp(Qsoft
θ (s, a)) and Zθ(s) ≜ exp(V soft

θ (s)), therefore Zθ is smooth in θ
given that it is a composition of logarithmic, exponential, and linear functions of rθ and rθ is smooth
in θ (Assumption 1).

∇θ logZθ(s) =

∫
a∈A ∇θZθ(s, a)da

Zθ(s)
,

=

∫
a∈A

Zθ(s, a)

Zθ(s)
∇θ logZθ(s, a)da,

=

∫
a∈A

πθ(a|s)
[
∇θrθ(s, a) + γ

∫
s′∈S

P (s′|s, a)∇θ logZθ(s
′)ds′

]
da,

=

∫
a∈A

πθ(a|s)
[
∇θrθ(s, a) + γ

∫
s′∈S

P (s′|s, a)
∫
a′∈A

(
∇θrθ(s

′, a′)

+ γ

∫
s′′∈S

P (s′′|s′, a′)∇θ logZθ(s
′′)ds′′

)
da′ds′

]
da.

Keep the expansion, we can get ∇θ logZθ(s) = Eπθ

S,A[
∑∞

t=0 γ
t∇θrθ(St, At)|S0 = s] and similarly

we can get ∇θ logZθ(s, a) = Eπθ

S,A[
∑∞

t=0 γ
t∇θrθ(St, At)|S0 = s,A0 = a]. Thus we have the

gradient ∇θ log πθ(a|s) = ∇θ logZθ(s, a)−∇θ logZθ(s).

B.2 Proof of Lemma 1

Recall that
∑t

i=0 Li(θ; (s
E
i , a

E
i )) = −

∑t
i=0 γ

i log πθ(a
E
i |sEi ). When the dynamics P is determin-

istic, we have that

∇
t∑

i=0

Li(θ; (s
E
i , a

E
i )) = −

t∑
i=0

γi∇θ log πθ(a
E
i |sEi ),

= −
t∑

i=0

γi

[
∇θQ

soft
θ (sEi , a

E
i )−∇θV

soft
θ (sEi )

]
,

= −
t∑

i=0

γi

[
∇θrθ(s

E
i , a

E
i ) + γ∇θV

soft
θ (sEi+1)−∇θV

soft
θ (sEi )

]
,

= −
t∑

i=0

γi∇θrθ(s
E
i , a

E
i )−

t+1∑
i=1

γi∇θV
soft
θ (sEi ) +

t∑
i=0

γi∇θV
soft
θ (sEi ),
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= −
t∑

i=0

γi∇θrθ(s
E
i , a

E
i )− γt+1∇θV

soft
θ (sEt+1) +∇θV

soft
θ (sE0 ),

(a)
= −

t∑
i=0

γi∇θrθ(s
E
i , a

E
i )− Eπθ

S,A

[ ∞∑
i=t+1

γi∇θrθ(Si, Ai)|Si = sEt+1

]

+ Eπθ

S,A

[ ∞∑
i=0

γi∇θrθ(Si, Ai)|S0 = sE0

]
,

= −
t∑

i=0

γi∇θrθ(s
E
i , a

E
i )− Eπθ

S,A

[ ∞∑
i=t+1

γi∇θrθ(Si, Ai)|St = sEt , At = aEt

]

+ Eπθ

S,A

[ ∞∑
i=0

γi∇θrθ(Si, Ai)|S0 = sE0

]
,

where equality (a) follows from the proof of Lemma 3.

When the dynamics P is stochastic, we can prove that the above gradient is an unbiased estimate of

∇E{(SE
i ,AE

i )∼PπE
i (·,·)(·,·)}i≥0

[∑t
i=0 Li(θ; (S

E
i , AE

i ))

]
:

∇E{(SE
i ,AE

i )∼PπE
i (·,·)(·,·)}i≥0

[ t∑
i=0

Li(θ; (S
E
i , AE

i ))

]
,

= ∇E{(SE
i ,AE

i )∼PπE
i (·,·)(·,·)}i≥0

[
−

t∑
i=0

γi∇θ log πθ(A
E
i |SE

i )

]
,

= E{(SE
i ,AE

i )∼PπE
i (·,·)(·,·)}i≥0

[
−

t∑
i=0

γi[∇θrθ(S
E
i , AE

i ) + γESi+1∼P (·|SE
i ,AE

i )[∇θV
soft
θ (Si+1)]

−∇θV
soft
θ (SE

i )]

]
,

= E{(SE
i ,AE

i )∼PπE
i (·,·)(·,·)}i≥0

[
−

t∑
i=0

γi[∇θrθ(S
E
i , AE

i ) + γ∇θV
soft
θ (SE

i+1)−∇θV
soft
θ (SE

i )]

]
,

= E{(SE
i ,AE

i )∼PπE
i (·,·)(·,·)}i≥0

[
−

t∑
i=0

γi∇θrθ(S
E
i , AE

i )− γt+1∇θV
soft
θ (SE

t+1)

+ Eπθ

S,A

[ ∞∑
i=0

γi∇θrθ(Si, Ai)|S0 = SE
0

]]
,

(b)
= E{(SE

i ,AE
i )∼PπE

i (·,·)(·,·)}i≥0

[
−

t∑
i=0

γi∇θrθ(S
E
i , AE

i )

− Eπθ

S,A[

∞∑
i=t+1

γi∇θrθ(Si, Ai)|St = SE
t , At = AE

t ] + Eπθ

S,A[

∞∑
i=0

γi∇θrθ(Si, Ai)|S0 = SE
0 ]

]
,

where equality (b) follows from the fact that

E{(SE
i ,AE

i )∼PπE
i (·,·)(·,·)}i≥0

[
Eπθ

S,A[

∞∑
i=t+1

γi∇θrθ(Si, Ai)|St = SE
t , At = AE

t ]

]
,

= E{(SE
i ,AE

i )∼PπE
i (·,·)(·,·)}i≥0

[
Eπθ

S,A[

∞∑
i=t+1

γi∇θrθ(Si, Ai)|St+1 = SE
t+1]

]
,

because PπE
t+1(·) = PπE

t (SE
t , AE

t )P (·|SE
t , AE

t ) and SE
t+1 ∼ P (·|SE

t , AE
t ).

Since we quantify the local regret in expectation in Theorem 1, this unbiased estimate can be used
when the dynamics is stochastic.
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B.3 Proof of Proposition 1

From Assumption 2, we know that dTV(PπE
t (·), µπE (·)) = 1

2

∫
s∈S |PπE

t (s) − µπE (s)|ds ≤ CMρt

where the initial state is s0. For any state-action pair (s, a) ∈ S × A, we know that PπE
t (s, a) =

PπE
t (s)πE(a|s) and µπE (s, a) = µπE (s)πE(a|s). Therefore, we have that:

dTV(PπE (·, ·), µπE (·, ·)),

=
1

2

∫
s∈S

∫
a∈A

|PπE
t (s)πE(a|s)− µπE (s)πE(a|s)|dsda,

=
1

2

∫
s∈S

∫
a∈A

|PπE
t (s)− µπE (s)|πE(a|s)dsda,

=
1

2

∫
s∈S

|PπE
t (s)− µπE (s)|ds,

≤ CMρt.

Claim 1. The trajectory of θt is bounded, i.e., ||θt − θ̄|| ≤ 2C̄r

λ for any t ≥ 0.

Proof.

||θt+1 − θ̄|| = ||θt − αtgt − θ̄||,

=

∣∣∣∣∣∣∣∣θt − θ̄ − αt

[ ∞∑
i=0

γi∇θrθt(s
′
i, a

′
i)−

∞∑
i=0

γi∇θrθt(s
′′
i , a

′′
i ) +

λ(1− γt+1)

1− γ
(θt − θ̄)

]∣∣∣∣∣∣∣∣,
=

∣∣∣∣∣∣∣∣(1− αtλ(1− γt+1)

1− γ
)(θt − θ̄)− αt

[ ∞∑
i=0

γi∇θrθt(s
′
i, a

′
i)−

∞∑
i=0

γi∇θrθt(s
′′
i , a

′′
i )

]∣∣∣∣∣∣∣∣,
(a)

≤ (1− αtλ(1− γt+1)

1− γ
)||θt − θ̄||+ αt

∣∣∣∣∣∣∣∣ ∞∑
i=0

γi∇θrθt(s
′
i, a

′
i)−

∞∑
i=0

γi∇θrθt(s
′′
i , a

′′
i )

∣∣∣∣∣∣∣∣,
(b)

≤ (1− αtλ(1− γt+1)

1− γ
)||θt − θ̄||+ 2αtC̄r

1− γ
,

≤ (1− αtλ

1− γ
)||θt − θ̄||+ 2αtC̄r

1− γ
,

where (a) follows triangle inequality and (b) uses the upper bound of ∇θrθ in Assumption 1.
Therefore, we have the following relation:

||θt+1 − θ̄|| − 2C̄r

λ
≤ (1− αtλ

1− γ
)

(
||θt − θ̄|| − 2C̄r

λ

)
,

⇒ ||θt − θ̄|| ≤ (1− αtλ

1− γ
)t
(
||θ0 − θ̄|| − 2C̄r

λ

)
+

2C̄r

λ
,

(c)
=

2C̄r

λ

[
1− (1− αtλ

1− γ
)t
]

(d)

≤ 2C̄r

λ
,

where (c) follows the fact that θ0 = θ̄ and (d) follows the fact that αt ≤ 1−γ
λ .

Recall that the loss function Li(θ; (s
E
i , a

E
i )) = −γi log πθ(a

E
i |sEi ) + λγi

2 ||θ − θ̄||2 and thus
∇Li(θ; (s

E
i , a

E
i )) = −γi[∇θQ

soft
θ (sEi , a

E
i ) − ∇θV

soft
θ (sEi )] + λγi(θ − θ̄). From Lemma 3,

we know that ∇θV
soft
θ (sEi ) = Eπθ

S,A[
∑∞

t=0 γ
t∇θrθ(St, At)|S0 = sEi ] and ∇θQ

soft
θ (sEi , a

E
i ) =

Eπθ

S,A[
∑∞

t=0 γ
t∇θrθ(St, At)|S0 = sEi , A0 = aEi ]. Then, ||∇θV

soft
θ (sEi )|| ≤ C̄r

1−γ and

||∇θQ
soft
θ (sEi , a

E
i )|| ≤ C̄r

1−γ .

Now we can see that

||∇Li(θt; ; (s
E
i , a

E
i ))|| = γi||∇θQ

soft
θt (sEi , a

E
i )−∇θV

soft
θt (sEi ) + λ(θt − θ̄)||,
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≤ γi||∇θQ
soft
θt (sEi , a

E
i )−∇θV

soft
θt (sEi ) + λ(θt − θ̄)|| ≤ γi

(
2C̄r

1− γ
+ 2C̄r

)
,

⇒ ||∇Li(θt; (s
E
i , a

E
i ))||2 ≤ 4C̄2

rγ
2i

(
2− γ

1− γ

)2

.

Therefore, we have that∣∣∣∣E(SE
i ,AE

i )∼PπE
i (·,·)

[
||∇Li(θt; (S

E
i , AE

i ))||2
]
− E(SE

i ,AE
i )∼µπE (·,·)

[
||∇Li(θt; (S

E
i , AE

i ))||2
]∣∣∣∣,

=

∣∣∣∣∫
s∈S

∫
a∈A

PπE
i (s, a)||∇Li(θt; (s, a))||2dads

−
∫
s∈S

∫
a∈A

µπE (s, a)||∇Li(θt; (s, a))||2dads
∣∣∣∣,

≤
∫
s∈S

∫
a∈A

|PπE
i (s, a)− µπE (s, a)| · ||∇Li(θt; (s, a))||2dads,

≤ 2CMρi · 4C̄2
rγ

2i

(
2− γ

1− γ

)2

= 8CM C̄2
r

(
2− γ

1− γ

)2

ρiγ2i.

Lemma 4. Suppose Assumptions 1-2 hold, the we have the following for any (s, a) ∈ S ×A and any
θ1, θ2, t: ||∇Lt(θ1, (s, a))−∇Lt(θ2, (s, a))|| ≤ CL||θ1−θ2|| and |Qsoft

θ1,πθ1
(s, a)−Qsoft

θ2,πθ2
(s, a)| ≤

CQ||θ1 − θ2||, where CL = 2C̃r

1−γ +
4C̄3

r

(1−γ)4 + λ and CQ = C̄r

1−γ .

Proof. Note that Qsoft
θ,πθ

= Qsoft
θ and ∇θQ

soft
θ (s, a) = Eπθ

S,A[
∑∞

t=0 γ
t∇θrθ(St, At)|S0 = s,A0 = a]

(proof of Lemma 3). Therefore, we have that

||∇θQ
soft
θ (s, a)|| ≤ C̄r

1− γ
≜ CQ

We know from Lemma 1 that ∇Lt(θ; (s
E
t , a

E
t )) = −γt[∇θQ

soft
θ (sEt , a

E
t )−∇θV

soft
θ (sEt )]+λγt(θ−θ̄).

To find the smoothness constant of Lt, we need to compute the Hessian of Lt. First, we have that

∇2
θθQ

soft
θ (s, a) = ∇θE

πθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s,A0 = a],

= ∇2
θθrθ(s, a) + γ

∫
s′∈S

P (s′|s, a)∇θE
πθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s′]ds′,

= ∇2
θθrθ(s, a)

+ γ

∫
s′∈S

P (s′|s, a)∇θ

∫
a′∈A

πθ(a
′|s′)Eπθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s′, A0 = a′]da′ds′,

= ∇2
θθrθ(s, a) + γ

∫
s′∈S

P (s′|s, a)
∫
a′∈A

[
∇θπθ(a

′|s′) · Eπθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s′,

A0 = a′] + πθ(a
′|s′) · ∇θE

πθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s′, A0 = a′]

]
da′ds′.

Keep the expansion, we can get

∇2
θθQ

soft
θ (s, a) = Eπθ

S,A[

∞∑
t=0

γt∇2
θθrθ(St, At)|S0 = s0, A0 = a0]

+ Eπθ

S,A

[ ∞∑
i=0

γi∇θπθ(Ai|Si) · Eπθ

S′,A′ [

∞∑
t=0

γt∇θrθ(S
′
t, A

′
t)|S′

0 = Si, A
′
0 = Ai]

∣∣∣∣S0 = s0, A0 = a0

]
.
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Now we take a look at the second term in the above equality:

∇θπθ(a|s) · Eπθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s,A0 = a],

= πθ(a|s)∇θ log πθ(a|s) · Eπθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s,A0 = a],

= πθ(a|s)
[
∇θQ

soft
θ (s, a)−∇θV

soft
θ (s)

]
· Eπθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s,A0 = a],

⇒
∣∣∣∣∣∣∣∣∇θπθ(a|s) · Eπθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s,A0 = a]

∣∣∣∣∣∣∣∣,
≤ (

C̄r

1− γ
+

C̄r

1− γ
) · C̄r

1− γ
=

2C̄3
r

(1− γ)3
.

Therefore, we have that

||∇2
θθQ

soft
θ (s, a)|| ≤

∣∣∣∣∣∣∣∣Eπθ

S,A[

∞∑
t=0

γt∇2
θθrθ(St, At)|S0 = s0, A0 = a0]

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣Eπθ

S′,A′

[ ∞∑
i=0

γi∇θπθ(A
′
i|S′

i) · E
πθ

S,A[

∞∑
t=0

γt∇θrθ(St, At)|S0 = S′
i, A0 = A′

i]

]∣∣∣∣∣∣∣∣,
≤ C̃r

1− γ
+

∞∑
t=0

γt 2C̄3
r

(1− γ)3
=

C̃r

1− γ
+

2C̄3
r

(1− γ)4
.

Similarly, we can get ||∇2
θθV

soft
θ (s)|| ≤ C̃r

1−γ +
2C̄3

r

(1−γ)4 . Therefore, we have that

||∇2Lt(θ; (s
E
t , a

E
t ))|| ≤ γt

(
||∇2

θθQ
soft
θ (sEt , a

E
t )||+ ||∇2

θθV
soft
θ (sEt )||+ λ

)
,

≤ γt

(
2C̃r

1− γ
+

4C̄3
r

(1− γ)4
+ λ

)
≤ 2C̃r

1− γ
+

4C̄3
r

(1− γ)4
+ λ ≜ CL. (6)

B.4 Proof of Lemma 2

This proof is based on the proof in ML-IRL [5]. The differences are: (i) their proof only holds for
finite state-action space while we extend to continuous state-action space; (ii) their analysis is for
offline settings while we extend to online settings to quantify the local regret. We first introduce the
following claims which serve as building blocks in this subsection.

Claim 2. For any given policy π and state-action pair (s, a), it holds that |Qsoft
θ1,π

(s, a) −
Qsoft

θ2,π
(s, a)| ≤ CQ||θ1 − θ2|| and |V soft

θ1,π
(s)− V soft

θ2,π
(s)| ≤ CQ||θ1 − θ2||.

Proof.

Qsoft
θ1,π(s, a)−Qsoft

θ2,π(s, a),

= Eπ
S,A

[ ∞∑
t=0

γt
[
rθ1(St, At)− log π(At|St)

]∣∣∣∣S0 = s,A0 = a

]

− Eπ
S,A

[ ∞∑
t=0

γt
[
rθ2(St, At)− log π(At|St)

]∣∣∣∣S0 = s,A0 = a

]
,

= Eπ
S,A

[ ∞∑
t=0

γt[rθ1(St, At)− rθ2(St, At)]

∣∣∣∣S0 = s,A0 = a

]
,
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⇒ |Qθ1,π(s, a)−Qθ2,π(s, a)| ≤
∞∑
t=0

γtC̄r||θ1 − θ2|| =
C̄r

1− γ
||θ1 − θ2|| = CQ||θ1 − θ2||.

Similarly, we can get that

|V soft
θ1,π(s)− V soft

θ2,π(s)| ≤ Eπ
S,A

[ ∞∑
t=0

γt[rθ1(St, At)− rθ2(St, At)]

∣∣∣∣S0 = s

]
,

≤
∞∑
t=0

γtC̄r||θ1 − θ2|| =
C̄r

1− γ
||θ1 − θ2|| = CQ||θ1 − θ2||.

Claim 3. The soft Bellman operator T soft
θ :

(T soft
θ Q)(s, a) ≜ rθ(s, a) + γ

∫
s′∈S

P (s′|s, a) log
[∫

a′∈A
exp(Q(s′, a′))da′

]
ds′,

(T soft
θ V )(s) ≜ log

[∫
a∈A

exp

(
rθ(s, a) + γ

∫
s′∈S

P (s′|s, a)V (s′)ds′
)
da

]
,

is a contraction map with constant γ.

Proof. It has been proved that T soft
θ Q is a contraction map with constant γ (Appendix A.2 in

[33]). Here we show that T soft
θ V is a contraction map with constant γ. Define a norm of V as

||V1 − V2|| = sups∈S |V1(s)− V2(s)| and suppose ||V1 − V2|| = ϵ. Then we have that

T soft
θ V1(s) = log

[∫
a∈A

exp

(
rθ(s, a) + γ

∫
s′∈S

P (s′|s, a)V1(s
′)ds′

)
da

]
,

≤ log

[∫
a∈A

exp

(
rθ(s, a) + γ

∫
s′∈S

P (s′|s, a)[V2(s
′) + ϵ]ds′

)
da

]
,

= log

[∫
a∈A

exp

(
rθ(s, a) + γ

∫
s′∈S

P (s′|s, a)V2(s
′)ds′ + γϵ

)
da

]
,

= log

[∫
a∈A

exp(γϵ) exp

(
rθ(s, a) + γ

∫
s′∈S

P (s′|s, a)V2(s
′)ds′

)
da

]
,

= T soft
θ V2(s) + γϵ.

Similarly, we can get T soft
θ V1(s) ≥ T soft

θ V2(s) − γϵ. Therefore, ||T soft
θ V1 − T soft

θ V2|| ≤ γϵ =
γ||V1 − V2||.

Claim 4. It holds that Qsoft
θt,πt+1

(s, a) ≥ T soft
θt

(Qsoft
θt,πt

)(s, a) and V soft
θt,πt+1

(s) ≥ T soft
θt

(V soft
θt,πt

)(s) for
any (s, a).

Proof.

Qsoft
θt,πt+1

(s, a)
(i)
= rθt(s, a) + γ

∫
s′∈S

P (s′|s, a)Ea′∼πt+1 [Q
soft
θt,πt+1

(s′, a′)− log πt+1(a
′|s′)]ds′,

(ii)

≥ rθt(s, a) + γ

∫
s′∈S

P (s′|s, a)EA′∼πt+1(·|s′)[Q
soft
θt,πt

(s′, A′)− log πt+1(A
′|s′)]ds′,

= rθt(s, a) + γ

∫
s′∈S

P (s′|s, a) log
[∫

a′∈A
exp(Qsoft

θt,πt
(s′, a′))da′

]
ds′,

= T soft
θ (Qsoft

θt,πt
)(s, a),

where (i) follow equations (2)-(3) in [34] and (ii) follows policy improvement theorem (Theorem 4
in [33]). Similarly, we can get that

V soft
θt,πt+1

(s) = EA∼πt+1(·|s)[Q
soft
θt,πt+1

(s,A)− log πt+1(A|s)],
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≥ EA∼πt+1(·|s)[Q
soft
θt,πt

(s,A)− log πt+1(A|s)],

= log

[∫
a∈A

exp(Qsoft
θt,πt

(s, a))da

]
,

= log

[∫
a∈A

exp

(
rθt(s, a) + γ

∫
s′∈S

P (s′|s, a)V soft
θt,πt

(s′)ds′
)
da

]
,

= T soft
θt (V soft

θt,πt
)(s).

Claim 5. The following holds for any (s, a) ∈ S ×A and θ1, θ2, t:

|V soft
θ1

(s, a)− V soft
θ2

(s, a)| ≤ CQ||θ1 − θ2||.

Proof. Note that ∇θV
soft
θ (s) = Eπθ

S,A[
∑∞

t=0 γ
t∇θrθ(St, At)|S0 = s] (proof of Lemma 3), therefore

||∇θV
soft
θ (s)|| ≤ C̄r

1− γ
= CQ.

We first show the convergence of πt in Algorithm 1. For any (s, a) ∈ S ×A, we know that

| log πt+1(a|s)− log πθt(a|s)| ≤ |Qsoft
θt,πt

(s, a)−Qsoft
θt (s, a)|+ |V soft

θt,πt
(s)− V soft

θt (s)|.

Now we take a look at the term |Qsoft
θt,πt

(s, a)−Qsoft
θt

(s, a)|:

|Qsoft
θt,πt

(s, a)−Qsoft
θt (s, a)|,

≤ |Qsoft
θt,πt

(s, a)−Qsoft
θt−1,πt

(s, a)|+ |Qsoft
θt−1,πt

(s, a)−Qsoft
θt−1

(s, a)|+ |Qsoft
θt−1

(s, a)−Qsoft
θt (s, a)|,

(a)

≤ CQ||θt − θt−1||+ |Qsoft
θt−1,πt

(s, a)−Qsoft
θt−1

(s, a)|+ CQ||θt − θt−1||,

= 2CQ||θt − θt−1||+ |Qsoft
θt−1,πt

(s, a)−Qsoft
θt−1

(s, a)|,
(b)
= 2CQ||θt − θt−1||+Qsoft

θt−1
(s, a)−Qsoft

θt−1,πt
(s, a),

(c)

≤ 2CQ||θt − θt−1||+Qsoft
θt−1

(s, a)− T soft
θt−1

(Qsoft
θt−1,πt−1

)(s, a),

(d)
= 2CQ||θt − θt−1||+ T soft

θt−1
(Qsoft

θt−1
)(s, a)− T soft

θt−1
(Qsoft

θt−1,πt−1
)(s, a),

(e)

≤ 2CQ||θt − θt−1||+ γ|Qsoft
θt−1

(s, a)−Qsoft
θt−1,πt−1

(s, a)|, (7)

where (a) follows Lemma 2 and Claim 2, (b) follows the fact that πθ is the optimal solution, (c)
follows Claim 4, (d) follows the fact that Qsoft

θt−1
is a fixed point of T soft

θt−1
(Theorem 2 in [33]), and (e)

follows Claim 3.

Similarly we can bound the term |V soft
θt,πt

(s)− V soft
θt

(s)|:

|V soft
θt,πt

(s)− V soft
θt (s)|,

≤ |V soft
θt,πt

(s)− V soft
θt−1,πt

(s)|+ |V soft
θt−1,πt

(s)− V soft
θt−1

(s)|+ |V soft
θt−1

(s)− V soft
θt−1,πt−1

(s)|,
(f)

≤ CQ||θt − θt−1||+ |V soft
θt−1,πt

(s)− V soft
θt−1

(s)|+ CQ||θt − θt−1||,
(g)

≤ 2CQ||θt − θt−1||+ V soft
θt−1

(s)− T soft
θt−1

(V soft
θt−1,πt

)(s),

≤ 2CQ||θt − θt−1||+ γ|V soft
θt−1

(s)− V soft
θt−1,πt

(s)|,

where (f) follows Claim 2 and claim 5 and (e) follows Claim 4.

Now we take a look at the term ||θt − θt−1||:
||θt − θt−1|| = αt−1||gt−1||,
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≤ αt−1

[∣∣∣∣∣∣∣∣ ∞∑
t=0

γt∇θrθt−1
(s′t, a

′
t)

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣ ∞∑
t=0

γt∇θrθt−1
(s′′t , a

′′
t )

∣∣∣∣∣∣∣∣+ λ(1− γt−1)

1− γ

∣∣∣∣∣∣∣∣θt−1 − θ̄

∣∣∣∣∣∣∣∣],
(h)

≤ αt−1

(
C̄r

1− γ
+

C̄r

1− γ
+

λ(1− γt−1)

1− γ
· 2C̄r

λ

)
,

≤ 4αt−1C̄r

1− γ
, (8)

where (h) follows claim 1. Recall that

| log πt+1(a|s)− log πθt(a|s)| ≤ |Qsoft
θt,πt

(s, a)−Qsoft
θt (s, a)|+ |V soft

θt,πt
(s)− V soft

θt (s)|.

Summing from i = 0 to t, we get
t∑

i=1

[
|Qsoft

θi,πi
(s, a)−Qsoft

θi (s, a)|+ |V soft
θi,πi

(s)− V soft
θi (s)|

]
,

≤
t∑

i=1

[
4CQ||θi − θi−1||+ γ

(
|Qsoft

θi−1
(s, a)−Qsoft

θi−1,πi−1
(s, a)|+ |V soft

θi−1,πi−1
(s)− V soft

θi−1
(s)|

)]
,

⇒ (1− γ)

t−1∑
i=0

[
|Qsoft

θi,πi
(s, a)−Qsoft

θi (s, a)|+ |V soft
θi,πi

(s)− V soft
θi (s)|

]
,

(i)

≤ 16CQC̄r

1− γ

t∑
i=1

αi−1 +

(
|Qsoft

θ0 (s, a)−Qsoft
θ0,π0

(s, a)|+ |V soft
θ0,π0

(s)− V soft
θ0 (s)|

− |Qsoft
θt (s, a)−Qsoft

θt,πt
(s, a)| − |V soft

θt,πt
(s)− V soft

θt (s)|
)
,

⇒ 1

t

t−1∑
i=0

[
|Qsoft

θi,πi
(s, a)−Qsoft

θi (s, a)|+ |V soft
θi,πi

(s)− V soft
θi (s)|

]

≤ 16CQC̄r

t(1− γ)2

t∑
i=1

αi−1 +
1

t(1− γ)

(
|Qsoft

θ0 (s, a)−Qsoft
θ0,π0

(s, a)|+ |V soft
θ0,π0

(s)− V soft
θ0 (s)|

− |Qsoft
θt (s, a)−Qsoft

θt,πt
(s, a)| − |V soft

θt,πt
(s)− V soft

θt (s)|
)
,

=
D̄1√
t
+

D̄2

t
,

where (i) follows (8), D̄1 =
16CQC̄r

(1−γ)2 , and D̄2 = 1
1−γ

(
|Qsoft

θ0
(s, a) − Qsoft

θ0,π0
(s, a)| + |V soft

θ0,π0
(s) −

V soft
θ0

(s)| − |Qsoft
θt

(s, a)−Qsoft
θt,πt

(s, a)| − |V soft
θt,πt

(s)− V soft
θt

(s)|
)

. Therefore, we can see that

1

t

t−1∑
i=0

| log πi+1(a|s)− log πθi(a|s)| ≤
D̄1√
t
+

D̄2

t
. (9)

Define the loss function L̄(θ) ≜ E(S,A)∼µπE (·,·)
[
− log πθ(A|S) + λ

2 ||θ− θ̄||2
]
, then we can see that

E(SE
i ,AE

i )∼µπE (·,·)[Li(θ; (S
E
i , AE

i ))] = γiL̄(θ). Moreover, we have that

||∇Li(θt; (S
E
i , AE

i ))||
(j)

≤ γiλ||θt − θ̄||

+ γi||Eπθt

S,A[

∞∑
k=0

γk∇θrθt(Sk, Ak)|S0 = SE
i ]− E

πθt

S,A[

∞∑
k=0

γk∇θrθt(Sk, Ak)|S0 = SE
i , A0 = AE

i ]||,

(k)

≤ 2γiC̄r +
2γiC̄r

1− γ
, (10)
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where (j) follows Lemma 3 and (k) follows Claim 1.

Therefore, we have that

E(SE
i ,AE

i )∼µπE (·,·)[||
∇Li(θt; (S

E
i , AE

i ))

γi
−∇L̄(θt)||2]

(l′)

≤
[
2C̄r +

2C̄r

1− γ

]2
,

⇒ E(SE
i ,AE

i )∼µπE (·,·)[||
1

t

t−1∑
i=0

Li(θt; (S
E
i , AE

i ))− γiL̄(θt)||2],

=

(
1− γt

1− γ

)2

E(SE
i ,AE

i )∼µπE (·,·)[||
1

t

t−1∑
i=0

Li(θt; (S
E
i , AE

i ))

γi
− L̄(θt)||2],

≤ 1

t
· 4C̄

2
r (2− γ)2

(1− γ)4
, (11)

where (l′) follows the fact that a bounded variable X ∈ [−a, a] has bounded variance at most a2.
Now we take a look at the term gt − 1−γt+1

1−γ ∇L̄(θt):

E(S,A)∼µπE (·,·)

[
gt −

1− γt+1

1− γ
∇L̄(θt)

]
,

= E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[
gt −

t∑
i=0

∇Li(θt; (S
E
i , AE

i ))

]

+ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[ t∑
i=0

∇Li(θt; (S
E
i , AE

i ))−
1− γt+1

1− γ
∇L̄(θt)

]
,

= E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[
gt −

t∑
i=0

∇Li(θt; (S
E
i , AE

i ))

]
,

= E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[ ∞∑
i=0

γi∇θrθt(s
′
i, a

′
i)− E

πθt

S,A[

∞∑
i=0

γi∇θrθt(Si, Ai)|S0 = SE
0 ]

]

+ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[ ∞∑
i=t+1

γi∇θrθt(s
′′
i , a

′′
i )

− E
πθt

S,A[

∞∑
i=t+1

γi∇θrθt(Si, Ai)|St = SE
t , At = AE

t ]

]
,

= E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[
E

πt+1

S,A [

∞∑
i=0

γi∇θrθt(Si, Ai)|S0 = SE
0 ]

− E
πθt

S,A[

∞∑
i=0

γi∇θrθt(Si, Ai)|S0 = SE
0 ] + E

πt+1

S,A [

∞∑
i=t+1

γi∇θrθt(Si, Ai)|St = SE
t , At = AE

t ]

− E
πθt

S,A[

∞∑
i=t+1

γi∇θrθt(Si, Ai)|St = SE
t , At = AE

t ]

]
.

From equation (64) in [5], we know that∣∣∣∣∣∣∣∣Eπt+1

S,A [

∞∑
i=0

γi∇θrθt(Si, Ai)|S0 = s0]− E
πθt

S,A[

∞∑
i=0

γi∇θrθt(Si, Ai)|S0 = s0]

∣∣∣∣∣∣∣∣,
≤ 2C̄r

1− γ

∫
s∈S

∫
a∈A

|Qsoft
θt (s, a)−Qsoft

θt,πt
(s, a)|dads,

≤ 2C̄rCd

1− γ
sup

(s,a)∈S×A
{|Qsoft

θt (s, a)−Qsoft
θt,πt

(s, a)|},
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where Cd is the product of the area of S and the area of A.

Therefore, we can get that

E(S,A)∼µπE

[∣∣∣∣∣∣∣∣gt − 1− γt+1

1− γ
∇L̄(θt)

∣∣∣∣∣∣∣∣] ≤ 4C̄rCd

1− γ
sup

(s,a)∈S×A
{|Qsoft

θt (s, a)−Qsoft
θt,πt

(s, a)|}. (12)

From (7) and (8), we know that

|Qsoft
θi,πi

(s, a)−Qsoft
θi (s, a)| ≤ γ|Qsoft

θi−1,πi−1
(s, a)−Qsoft

θi−1
(s, a)|+ 8αi−1CQC̄r

1− γ
,

⇒ αi|Qsoft
θi,πi

(s, a)−Qsoft
θi (s, a)| ≤ αi−1γ|Qsoft

θi−1,πi−1
(s, a)−Qsoft

θi−1
(s, a)|+

8α2
i−1CQC̄r

1− γ
,

⇒
t∑

i=1

αi|Qsoft
θi,πi

(s, a)−Qsoft
θi (s, a)| ≤

t−1∑
i=0

αiγ|Qsoft
θi,πi

(s, a)−Qsoft
θi (s, a)|+

t−1∑
i=0

8α2
iCQC̄r

1− γ
,

⇒ (1− γ)

t−1∑
i=0

αi|Qsoft
θi,πi

(s, a)−Qsoft
θi (s, a)|,

≤ α0|Qsoft
θ0,π0

(s, a)−Qsoft
θ0 (s, a)| − αt|Qsoft

θt,πt
(s, a)−Qsoft

θt (s, a)|+
t−1∑
i=0

8α2
iCQC̄r

1− γ
, (13)

and similarly we can see that
t∑

i=1

|Qsoft
θi,πi

(s, a)−Qsoft
θi (s, a)| ≤

t−1∑
i=0

γ|Qsoft
θi,πi

(s, a)−Qsoft
θi (s, a)|+ 8αiCQC̄r

1− γ
,

⇒ (1− γ)

t−1∑
i=1

|Qsoft
θi,πi

(s, a)−Qsoft
θi (s, a)|,

≤ |Qsoft
θ0,π0

(s, a)−Qsoft
θ0 (s, a)| − |Qsoft

θt,πt
(s, a)−Qsoft

θt (s, a)|+
t−1∑
i=0

8αiCQC̄r

1− γ
, (14)

Telescoping from i = 0 to t− 1, we get
t−1∑
i=0

αiE(S,A)∼µπE

[∣∣∣∣∣∣∣∣gi − 1− γi+1

1− γ
∇L̄(θi)

∣∣∣∣∣∣∣∣],
(l)

≤ 4C̄rCd

1− γ

t−1∑
i=0

αi|Qsoft
θi,πi

(S,A)−Qsoft
θi (S,A)|,

(m)

≤ 4C̄rCd

(1− γ)2

[
α0|Qsoft

θ0,π0
(S,A)−Qsoft

θ0 (S,A)| − αt|Qsoft
θt,πt

(S,A)−Qsoft
θt (S,A)|+

t−1∑
i=0

8α2
iCQC̄r

1− γ

]
,

(15)

where (l) follows (12) and (m) follows (13). Similarly, we can see that

t−1∑
i=0

E(S,A)∼µπE

[∣∣∣∣∣∣∣∣gi − 1− γi+1

1− γ
∇L̄(θi)

∣∣∣∣∣∣∣∣],
≤ 4C̄rCd

1− γ

t−1∑
i=0

|Qsoft
θi,πi

(S,A)−Qsoft
θi (S,A)|,

≤ 4C̄rCd

(1− γ)2

[
|Qsoft

θ0,π0
(S,A)−Qsoft

θ0 (S,A)| − |Qsoft
θt,πt

(S,A)−Qsoft
θt (S,A)|+

t−1∑
i=0

8αiCQC̄r

1− γ

]
,

(16)
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Now, we start to quantify the local regret:

L̄(θi+1) ≥ L̄(θi) + [∇L̄(θi)]
⊤(θi+1 − θi)−

CL

2
||θi+1 − θi||2,

(n)

≥ L̄(θi) + αt[∇L̄(θi)]
⊤gi −

8α2
i C̄

2
rCL

(1− γ)2
,

= L̄(θi) + αi
1− γi+1

1− γ
||∇L̄(θi)||2 + αi[∇L̄(θi)]

⊤(gi −
1− γi+1

1− γ
∇L̄(θi))−

8α2
i C̄

2
rCL

(1− γ)2
,

≥ L̄(θi) + αi
1− γi+1

1− γ
||∇L̄(θi)||2 − αi||∇L̄(θi)|| · ||gi −

1− γi+1

1− γ
∇L̄(θi)|| −

8α2
i C̄

2
rCL

(1− γ)2
,

(o)

≥ L̄(θi) + αi
1− γi+1

1− γ
||∇L̄(θi)||2 − αi

2C̄r(2− γ)

1− γ
· ||gi −

1− γi+1

1− γ
∇L̄(θi)|| −

8α2
i C̄

2
rCL

(1− γ)2
,

⇒ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[t−1∑
i=0

αi
1− γi+1

1− γ
||∇L̄(θi)||2

]
,

≤ L̄(θt)− L̄(θ0) +
2C̄r(2− γ)

1− γ

t−1∑
i=0

αiE{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[
||gi −

1− γi+1

1− γ
∇L̄(θi)||

]

+

t−1∑
i=0

8α2
i C̄

2
rCL

(1− γ)2
,

(p)

≤ L̄(θt)− L̄(θ0) +
8C̄2

rCd(2− γ)

(1− γ)3
E{(SE

i ,AE
i )∼µπE (·,·)}i≥0

[
α0|Qsoft

θ0,π0
(SE

0 , AE
0 )−Qsoft

θ0 (SE
0 , AE

0 )|

− αt|Qsoft
θt,πt

(SE
t , AE

t )−Qsoft
θt (SE

t , AE
t )|

]
+

(
32CQC̄

2
rCd

(1− γ)3
+

8C̄2
rCL

(1− γ)2

) t−1∑
i=0

α2
i ,

where (n) follows (8), (o) follows (10), (p) follows (15). Therefore, we have that

E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[T−1∑
t=0

αT−1||∇L̄(θt)||2
]
, (17)

≤ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[T−1∑
t=0

αt
1− γt

1− γ
||∇L̄(θt)||2

]
,

≤ L̄(θT )− L̄(θ0) +
8C̄2

rCd(2− γ)

(1− γ)3
E{(SE

i ,AE
i )∼µπE (·,·)}i≥0

[
α0|Qsoft

θ0,π0
(SE

0 , AE
0 )−Qsoft

θ0 (SE
0 , AE

0 )|

− αT |Qsoft
θT ,πT

(SE
T , AE

T )−Qsoft
θT (SE

T , AE
T )|

]
+

(
32CQC̄

2
rCd

(1− γ)3
+

8C̄2
rCL

(1− γ)2

) T−1∑
i=0

α2
i ,

⇒ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[T−1∑
t=0

||∇L̄(θt)||2
]
≤ D2

√
T +D3

√
T (log T + 1), (18)

where D2 = L̄(θT ) − L̄(θ0) +
8C̄2

rCd(2−γ)
(1−γ)3 E{(SE

i ,AE
i )∼µπE (·,·)}i≥0

[
α0|Qsoft

θ0,π0
(SE

0 , AE
0 ) −

Qsoft
θ0

(SE
0 , AE

0 )|−αT |Qsoft
θT ,πT

(SE
T , AE

T )−Qsoft
θT

(SE
T , AE

T )|
]

and D3 = 2(1−γ)
λ

(
32CQC̄2

rCd

(1−γ)3 +
8C̄2

rCL

(1−γ)2

)
.

Then we can see that

E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[T−1∑
t=0

|| 1

t+ 1

t∑
i=0

∇Li(θt; (S
E
i , AE

i ))||2
]
,

≤ 2E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[T−1∑
t=0

|| 1

t+ 1

t∑
i=0

∇Li(θt; (S
E
i , AE

i ))− γi∇L̄(θt)||2
]
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+ 2E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[T−1∑
t=0

|| 1− γt

(t+ 1)(1− γ)
∇L̄(θt)||2

]
,

≤ 2E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[T−1∑
t=0

|| 1

t+ 1

t∑
i=0

∇Li(θt; (S
E
i , AE

i ))− γi∇L̄(θt)||2
]

+ 2E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[T−1∑
t=0

||∇L̄(θt)||2
]
,

(q)

≤
T−1∑
t=0

8C̄2
r (2− γ)2

(t+ 1)(1− γ)4
+ 2E{(SE

i ,AE
i )∼µπE (·,·)}i≥0

[T−1∑
t=0

||∇L̄(θt)||2
]
,

≤ D1(log T + 1) +D2

√
T +D3

√
T (log T + 1),

where D1 =
8C̄2

r (2−γ)2

(1−γ)4 . The (q) follows (11). Note that to achieve this local regret rate, we actually
need to take an extra expectation over the dynamics P because we need to roll out πt to formulate gt.
Here, we omit the expectation over the dynamics.

B.5 Proof of Theorem 1

We know that

E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[ t∑
i=0

||∇Li(θt; (S
E
i , AE

i ))||2
]
,

≤ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[ t∑
i=0

||γi∇L̄(θt)||2
]

+ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[ t∑
i=0

||∇Li(θt; (S
E
i , AE

i ))− γi∇L̄(θt)||2
]
,

≤ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[ t∑
i=0

||∇L̄(θt)||2
]

+ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[ t∑
i=0

||∇Li(θt; (S
E
i , AE

i ))− γi∇L̄(θt)||2
]
,

(a)

≤ O(
√
t+ 1 +

√
t+ 1 log(t+ 1)) +

t∑
i=0

γ2i · 4C̄2
r

(
2− γ

1− γ

)2

,

⇒ E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[
1

t+ 1

t∑
i=0

||∇Li(θt; (S
E
i , AE

i ))||2
]
≤ O(

1√
t+ 1

+
log(t+ 1)√

t+ 1
+

1

t+ 1
),

(19)

where (a) follows (18) and (11).

Therefore,

T−1∑
t=0

E{(SE
i ,AE

i )∼PπE
i (·,·)}i≥0

[
|| 1

t+ 1

t∑
i=0

∇Li(θt; (S
E
i , AE

i ))||2
]
,

≤
T−1∑
t=0

E{(SE
i ,AE

i )∼PπE
i (·,·)}i≥0

[
1

t+ 1

t∑
i=0

||∇Li(θt; (S
E
i , AE

i ))||2
]
,

≤
T−1∑
t=0

E{(SE
i ,AE

i )∼µπE (·,·)}i≥0

[
1

t+ 1

t∑
i=0

||∇Li(θt; (S
E
i , AE

i ))||2
]
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+

T−1∑
t=0

1

t+ 1

t∑
i=0

[
E{(SE

i ,AE
i )∼PπE

i (·,·)}i≥0
[||∇Li(θt; (S

E
i , AE

i ))||2

− E{(SE
i ,AE

i )∼µπE (·,·)}i≥0
[||∇Li(θt; (S

E
i , AE

i ))||2]
]
,

(s)

≤ D1 log T +D2

√
T +D3 log T

√
T +

T−1∑
t=0

1

t+ 1

t∑
i=0

8CM C̄2
r

(
2− γ

1− γ

)2

ρiγ2i,

≤ D1 log T +D2

√
T +D3 log T

√
T +

T−1∑
t=0

1

t+ 1
· 8CM C̄2

r

(
2− γ

1− γ

)2
1

1− ργ2
,

≤
(
D1 +

8CM C̄2
r (2− γ)2

(1− ργ2)(1− γ)2

)
log T +D2

√
T +D3 log T

√
T ,

where (s) follows (19) and Proposition 1. Note that to achieve this local regret rate, we actually need
to take an extra expectation over the dynamics P because we need to roll out πt to formulate gt. Here,
we omit the expectation over the dynamics.

B.6 Proof of Theorem 2

Suppose the expert reward function rE and the parameterized reward function rθ are both linear, i.e.,
rE = θ⊤Eϕ and rθ = θ⊤ϕ, where ϕ : S × A → Rn

+ is an n-dimensional feature vector such that
||ϕ(s, a)|| ≤ C̄r for any (s, a) ∈ S ×A. The proof follows the similar idea with that of Theorem 1
where follow two-step process: step (i) quantifies the regret under the stationary distribution µπE (·, ·)
and step (ii) quantifies the difference between the correlated distribution PπE

t and the stationary
distribution µπE . We start our proof with the following claim:
Claim 6. If the parameterized reward function rθ is linear, the function L̄(θ) is λ-strongly convex for
any θ.

Proof. Recall that L̄(θ) = E(S̄,Ā)∼µπE (·,·)[− log πθ(Ā|S̄)] + λ
2 ||θ − θ̄||2. Define L̄(θ; (S,A)) ≜

− log πθ(Ā|S̄) + λ
2 ||θ − θ̄||2, from Lemma 3, we can see that

∇L̄(θ; (S̄, Ā)) = Eπθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S̄

]
−Eπθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S̄, A0 = Ā

]
+λ(θ−θ̄).

Therefore, we have that

∇2
θθL̄(θ; (S̄, Ā)),

= ∇θE
πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S̄

]
−∇θE

πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S̄, A0 = Ā

]
+ λ.

Now, we take a look at

∇θE
πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S̄, A0 = Ā

]
= ∇θ

{
ϕ(S̄, Ā)

+

∫
s1∈S

P (s1|S̄, Ā)

∫
at+1∈A

πθ(a1|s1)Eπθ

S,A

[ ∞∑
i=1

γiϕ(Si, Ai)

∣∣∣∣S1 = s1, A1 = a1

]
da1ds1

}
,

=

∫
s1∈S

P (s1|S̄, Ā)

∫
a1∈A

{
∇θπθ(a1|s1) · Eπθ

S,A

[ ∞∑
i=1

γiϕ(Si, Ai)

∣∣∣∣S1 = s1, A1 = a1

]

+ πθ(a1|s1) · ∇θE
πθ

S,A

[ ∞∑
i=1

γiϕ(Si, Ai)

∣∣∣∣S1 = s1, A1 = a1

]}
da1ds1.

Keep the expansion, we can see that

∇θE
πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S̄, A0 = Ā

]
,
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= Eπθ

S,A

{ ∞∑
i=1

∇θπθ(A
′
i|S′

i) · E
πθ

S,A

[ ∞∑
i=1

γiϕ(Si, Ai)

∣∣∣∣S1 = S′
1, A1 = A′

1

]∣∣∣∣S′
0 = S̄, A′

0 = Ā

}
,

∇θE
πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S̄

]
,

= Eπθ

S,A

{ ∞∑
i=0

∇θπθ(A
′
i|S′

i) · E
πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S′
0, A0 = A′

0

]∣∣∣∣S′
0 = S̄

}
,

Thus we have that

E(S̄,Ā)∼µπE (·,·)

{
∇θE

πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S̄

]
−∇θE

πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S̄, A0 = Ā

]}
,

= E(S̄,Ā)∼µπE (·,·)E
πθ

S′,A′

{
∇θπθ(A

′
0|S′

0) · E
πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S′
0, A0 = A′

0

]∣∣∣∣S′
0 = S̄0

}

+ E(S̄,Ā)∼µπE (·,·)

{
Eπθ

S′,A′

{ ∞∑
i=1

∇θπθ(A
′
i|S′

i) · E
πθ

S,A

[ ∞∑
i=1

γiϕ(Si, Ai)

∣∣∣∣S1 = S′
1, A1 = A′

1

]∣∣∣∣S′
0 = S̄

}

− Eπθ

S,A

{ ∞∑
i=1

∇θπθ(A
′
i|S′

i) · E
πθ

S,A

[ ∞∑
i=1

γiϕ(Si, Ai)

∣∣∣∣S1 = S′
1, A1 = A′

1

]∣∣∣∣S0 = S̄, A0 = Ā

}}
,

= E(S̄,Ā)∼µπE (·,·)E
πθ

S′,A′

{
∇θπθ(A

′
0|S′

0) · E
πθ

S,A

[ ∞∑
i=0

γiϕ(Si, Ai)

∣∣∣∣S0 = S′
0, A0 = A′

0

]∣∣∣∣S′
0 = S̄0

}
(a)
= E(S̄,Ā)∼µπE (·,·)E

πθ

S′,A′

{
πθ(A

′
0|SE

0 )[X − EX]X|S0 = S̄

}
,

= Cov(X) ≻ 0, (20)

where (a) follows Lemma 3, X ≜ Eπθ

S,A[
∑∞

i=0 γ
iϕ(Si, Ai)|S0 = S̄, A0 = A] is a random vector,

EX ≜ Eπθ

S,A[
∑∞

i=0 γ
iϕ(Si, Ai)|S0 = S̄] is the expectation of X over the action distribution, and

Cov(X) is the covariance matrix of the random vector X with itself, which is always positive definite
because the policy πθ is always stochastic.

Therefore, we can see that

||∇2
θθL̄(θ)|| = ||Cov(X) + λ||

(b)

≥ λ,

where (b) follows (20).

Step (i). We first quantify the regret under the stationary distribution µπE (·, ·). Suppose θ∗ ∈
argmin L̄(θ) = argmin 1−γT

1−γ L̄(θ) = argminE(SE
t ,AE

t )∼µπE [
∑T−1

t=0 Lt(θ; (S
E
t , AE

t ))].

||θt+1 − θ∗||2 = ||θt − αtgt − θ∗||2 = ||θt − θ∗||2 + α2
t ||gt||2 − 2αt⟨gt, θt − θ∗⟩,

⇒ E[||θt+1 − θ∗||2],
(c)

≤ E[||θt − θ∗||2] + 16α2
t C̄

2
r

(1− γ)2
− 2αt⟨

1− γt+1

1− γ
∇L̄(θt), θt − θ∗⟩ − 2αt⟨gt −

1− γt+1

1− γ
∇L̄(θt), θt − θ∗⟩,

(21)

where (c) follows (8)

Since L̄(θ) is λ-strongly convex, we have that

L̄(θ∗) ≥ L̄(θt) + ⟨∇L̄(θt), θ
∗ − θt⟩+

λ

2
||θt − θ∗||2,

⇒ L̄(θt)− L̄(θ∗) ≤ ⟨∇L̄(θt), θt − θ∗⟩ − λ

2
||θt − θ∗||2,
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(d)

≤ 1− γ

2αt(1− γt+1)

[
||θt − θ∗||2 − ||θt+1 − θ∗||2

]
− 1− γ

1− γt+1
⟨gt −

1− γt+1

1− γ
∇L̄(θt), θt − θ∗⟩

+
8αtC̄

2
r

(1− γ)(1− γt+1)
− λ

2
||θt − θ∗||2,

⇒ E(SE
t ,AE

t )∼µπE (·,·)[L̄(θt)− L̄(θ∗)],

≤ 1− γ − λαt(1− γt+1)

2αt(1− γt+1)
E(SE

t ,AE
t )∼µπE (·,·)[||θt − θ∗||2]− 1− γ

2αt(1− γt+1)
E(SE

t ,AE
t )∼µπE (·,·)[||θt+1 − θ∗||2]

+
8αtC̄

2
r

(1− γ)(1− γt+1)
+

1− γ

1− γt+1
E(SE

t ,AE
t )∼µπE (·,·)

[
||gt −

1− γt+1

1− γ
∇L̄(θt)|| · ||θt − θ∗||

]
,

(e)

≤ 1− γ − λαt(1− γt+1)

2αt(1− γt+1)
E(SE

t ,AE
t )∼µπE (·,·)[||θt − θ∗||2]− 1− γ

2αt(1− γt+1)
E(SE

t ,AE
t )∼µπE (·,·)[||θt+1 − θ∗||2]

+
8αtC̄

2
r

(1− γ)(1− γt+1)
+

Ĉ(1− γ)

1− γt+1
E(SE

t ,AE
t )∼µπE (·,·)

[
||gt −

1− γt+1

1− γ
∇L̄(θt)||

]
, (22)

where (d) follows (21), and (e) follows Claim 1 which shows that the trajectory of θt is bounded and
thus there is a positive constant Ĉ such that ||θt − θ∗|| ≤ Ĉ.

Telescoping (22) from t = 0 to t = T − 1, we can see that

E(SE
t ,AE

t )∼µπE (·,·)

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))−
T−1∑
t=0

Lt(θ
∗; (SE

t , AE
t ))

]
,

= E(SE
t ,AE

t )∼µπE (·,·)

[T−1∑
t=0

γtL̄(θt)−
T−1∑
t=0

γtL̄(θ∗)

]
,

≤ E(SE
t ,AE

t )∼µπE (·,·)

[T−1∑
t=0

L̄(θt)−
T−1∑
t=0

L̄(θ∗)

]
,

(f)

≤ 1− γ − λα0

2α0
E(SE

t ,AE
t )∼µπE (·,·)[||θt − θ∗||2]− 1− γ

2αT−1(1− γT )
E(SE

t ,AE
t )∼µπE (·,·)[||θT − θ∗||2]

+
4C̄rCdĈ

(1− γ)2

[
|Qsoft

θ0,π0
(S,A)−Qsoft

θ0 (S,A)| − |Qsoft
θT ,πT

(S,A)−Qsoft
θT (S,A)|+

t−1∑
i=0

8αiCQC̄r

1− γ

]
,

≤ D̄4 +
32CQCdĈC̄2

r

λ(1− γ)3
(log T + 1), (23)

where (f) follows (16), and D̄4 = 1−γ−λα0

2α0
E(SE

t ,AE
t )∼µπE (·,·)[||θt − θ∗||2] −

1−γ
2αT−1(1−γT )

E(SE
t ,AE

t )∼µπE (·,·)[||θT − θ∗||2] + 4C̄rCdĈ
(1−γ)2 [|Qsoft

θ0,π0
(S,A) − Qsoft

θ0
(S,A)| −

|Qsoft
θT ,πT

(S,A)−Qsoft
θT

(S,A)|].

Step (ii). We now quantify the difference between the stationary distribution µπE (·, ·) and the
correlated distribution PπE

t (·, ·). Note that ||θt|| is bounded (proved in Claim 1), the soft Bellman
policy πθ is continuous in θ and (s, a), and we assume that the state-action space is bounded, there
is a positive constant Cπ such that || log πθt(a|s)|| ≤ Cπ for any (s, a) ∈ S ×A. We start with the
following relation:∣∣∣∣∣∣∣∣E(SE

t ,AE
t )∼µπE (·,·)

[
Lt(θt; (S

E
t , AE

t ))

]
− E(SE

t ,AE
t )∼PπE

t (·,·)

[
Lt(θt; (S

E
t , AE

t ))

]∣∣∣∣∣∣∣∣,
= γt

∣∣∣∣∣∣∣∣∫
s∈S

∫
a∈A

|PπE
t (s, a)− µπE (s, a)| · || log πθt(a|s)||dads

∣∣∣∣∣∣∣∣,
≤ CπCMγtρt,

⇒
∣∣∣∣∣∣∣∣E(SE

t ,AE
t )∼µπE (·,·)

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))

]
− E(SE

t ,AE
t )∼PπE

t (·,·)

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))

]∣∣∣∣∣∣∣∣,
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≤ CπCM

1− γρ
. (24)

Therefore, we have that

E(SE
t ,AE

t )∼PπE
t

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))

]
−min

θ
E(SE

t ,AE
t )∼PπE

t

[T−1∑
t=0

Lt(θ; (S
E
t , AE

t ))

]
,

≤ E(SE
t ,AE

t )∼PπE
t

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))

]
− E(SE

t ,AE
t )∼µπE

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))

]

+ E(SE
t ,AE

t )∼µπE

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))−
T−1∑
t=0

Lt(θ
∗; (SE

t , AE
t ))

]

+ E(SE
t ,AE

t )∼µπE

[T−1∑
t=0

Lt(θ
∗; (SE

t , AE
t ))

]
−min

θ
E(SE

t ,AE
t )∼PπE

t

[T−1∑
t=0

Lt(θ; (S
E
t , AE

t ))

]
,

≤ E(SE
t ,AE

t )∼PπE
t

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))

]
− E(SE

t ,AE
t )∼µπE

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))

]

+ E(SE
t ,AE

t )∼µπE

[T−1∑
t=0

Lt(θt; (S
E
t , AE

t ))−
T−1∑
t=0

Lt(θ
∗; (SE

t , AE
t ))

]

+ E(SE
t ,AE

t )∼µπE

[T−1∑
t=0

Lt(θ
∗; (SE

t , AE
t ))

]
− E(SE

t ,AE
t )∼PπE

t

[T−1∑
t=0

Lt(θ
∗; (SE

t , AE
t ))

]
,

(g)

≤ CπCM

1− γρ
+ D̄4 +

32CQCdĈC̄2
r

λ(1− γ)3
(log T + 1) +

CπCM

1− γρ
,

= D4 +D5(log T + 1),

where (f) follows (23) and (24), D4 = 2CπCM

1−γρ + D̄4, and D5 =
32CQCdĈC̄2

r

λ(1−γ)3 .

C Meta-Regularization Algorithm and Convergence Guarantee

To solve problem (5), we use a double-loop method, i.e., we first solve the lower-level problem for K
iterations to get an approximate ϕj,K of ϕj and then use the approximate ϕj,K to solve the upper-level
problem. We do not use a single-loop method to solve (5) because we need to get the task-specific
adaptation ϕj for each task Tj . The single-loop method only partially solves the lower-level problem
by one-step gradient descent and thus the obtained parameter can be far away from ϕj .

Lemma 5. The gradient of the lower-level problem in (5) is E
πϕ

S,A

[∑∞
t=0 γ

t∇ϕrϕ(St, At)
∣∣S0 =

str0
]
−
∑∞

t=0 γ
t∇ϕrϕ(s

tr
t , a

tr
t ) +

λ
1−γ (ϕ− θ̄) where (strt , a

tr
t ) ∈ Dtr

j .

We roll out the policy πϕ from str
t to get a trajectory sϕ0 , a

ϕ
0 , · · · where sϕ0 = str

t and approximate the
lower-level gradient by gϕ =

∑∞
t=0 γ

t∇ϕrϕ(s
ϕ
t , a

ϕ
t )−

∑∞
t=0 γ

t∇ϕrϕ(s
tr
t , a

tr
t ) +

λ
1−γ (ϕ− θ̄). We

update ϕj,k+1 = ϕj,k − βkgϕj,k
for K times to get ϕj,K where βk is the step size and ϕj,k is the

parameter at time k, and use ϕj,K to calculate the approximate of the hyper-gradient d
dθ̄
L(ϕj ,Deval

j ).

Lemma 6. The hyper-gradient (i.e., gradient of the upper-level problem in (5)) is d
dθ̄
L(ϕj ,Deval

j ) =[
I + 1−γ

λ ∇2
ϕϕL(ϕj ,Dtr

j )
]−1∇ϕL(ϕj ,Deval

j ), where

∇ϕL(ϕj ,Deval
j ) = |Deval

j | · E
πϕj

S,A

[ ∞∑
t=0

γt∇ϕrϕj
(St, At)

∣∣∣∣S0 ∼ P0

]
−

|Deval
j |∑

v=1

∞∑
t=0

γt∇ϕrϕj
(svt , a

v
t ),

∇2
ϕϕL(ϕj ,Dtr

j ) = E
πϕj

S,A

[ ∞∑
t=0

γt∇2
ϕϕrϕj (St, At)

∣∣∣∣S0 = str0

]
−

∞∑
t=0

γt∇2
ϕϕrϕj (s

tr
t , a

tr
t ) + e.
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The |Deval
j | is the number of trajectories in Deval

j , (svt , a
v
t ) ∈ Deval

j , and e is an extra term whose
expression can be found in Appendix C.2.

To approximate the hyper-gradient, we first roll out πϕj,K
to get two trajectories sϕj,K

0 , a
ϕj,K

0 , · · · and
s̄
ϕj,K

0 , ā
ϕj,K

0 , · · · where s
ϕj,K

0 is drawn from P0 and s̄
ϕj,K

0 = str
0 . We estimate ∇ϕL(ϕj ,Deval

j ) via

∇̄ϕL(ϕj,K ,Deval
j ) = |Deval

j | ·
∑∞

t=0 γ
t∇ϕrϕj,K

(s
ϕj,K

t , a
ϕj,K

t ) −
∑|Deval

j |
v=1

∑∞
t=0 γ

t∇ϕrϕj,K
(svt , a

v
t )

and estimate the term ∇2
ϕϕL(ϕj ,Dtr

j ) via ∇̄2
ϕϕL(ϕj,K ,Dtr

j ) =
∑∞

t=0 γ
t∇2

ϕϕrϕj,K
(s̄

ϕj,K

t , ā
ϕj,K

t )−∑∞
t=0 γ

t∇2
ϕϕrϕj,K

(strt , a
tr
t ). Therefore, we can approximate the hyper-gradient term d

dθ̄
L(ϕj ,Deval

j )

via hj = [I + 1−γ
λ ∇̄2

ϕϕL(ϕj,K ,Dtr
j )]

−1∇̄ϕL(ϕj,K ,Deval
j ). We omit the extra term e in the approxi-

mate hj and its impact on the convergence can be bounded (proved in Appendix C.4).

To solve the upper-level problem in (5), at each iteration n, we sample a batch of B tasks, and
compute the task-specific adaptation ϕj,K and the hyper-gradient hj for each task. The update law to
solve the upper-level problem is: θ̄n+1 = θ̄n − τn

B

∑B
j=1 hj where τn is the step size. Note that the

time index k is for the lower-level problem and n is for the upper-level problem.

Algorithm 2 Meta-regularization
Input: Initialized meta-prior θ̄0 and task-specific adaptation ϕj,0

Output: Learned prior θ̄N
1: for n = 0, 1, · · · , N − 1 do
2: Sample a batch of B tasks {Tj}Bj=1 ∼ PT
3: for each task Tj do
4: for k = 0, 1, · · · ,K − 1 do
5: Compute the soft Bellman policy πϕj,k

via soft Q-learning or soft actor-critic
6: Roll out the policy πϕj,k

to get a trajectory s
ϕj,k

0 , a
ϕj,k

0 , · · ·
7: Compute the gradient gϕj,k

=
∑∞

t=0 γ
t∇ϕrϕj,k

(s
ϕj,k

t , a
ϕj,k

t )−
∑∞

t=0 γ
t∇ϕrϕj,k

(str
t , a

tr
t )

+ λ
1−γ (ϕj,k − θ̄n)

8: Update ϕj,k+1 = ϕj,k − βkgϕj,k

9: end for
10: Compute the soft Bellman policy πϕj,K

via soft Q-learning or soft actor-critic
11: Roll out the policy πϕj,K

to get two trajectories sϕj,K

0 , a
ϕj,K

0 , · · · and s̄
ϕj,K

0 , ā
ϕj,K

0 , · · ·
12: Compute the hyper-gradient hj = [I + 1−γ

λ ∇̄2
ϕϕL(ϕj,K ,Dtr

j )]
−1∇̄ϕL(ϕj,K ,Deval

j )
13: end for
14: Update θ̄n+1 = θ̄n − τn

B

∑B
j=1 hj

15: end for

Lemma 7 (Convergence of the lower-level problem). Suppose Assumptions 1-2 hold and λ ≥ CL

2 +η

where η ∈ (0, CL

2 ). Let βk = 1−γ
η(k+1) , then we have

E[||ϕj,K − ϕj ||2] ≤ O(
1

K
).

Assumption 3. The parameterized reward function rθ has bounded third-order gradient, i.e.,
||∇3

θθθrθ(s, a)|| ≤ Ĉr for any (s, a) where Ĉr is a positive constant.

Theorem 3 (Convergence of the upper-level problem). Suppose Assumption 3 and the condition in
Lemma 7 hold. Let τn = (n+ 1)−1/2 and define F (θ̄) as Ej∼PT [L(ϕj ,Deval

j )] under the meta-prior
θ̄. Then we have the following convergence:

1

N

N−1∑
n=0

E[||∇F (θ̄n)||2] ≤ O(
1√
N

+
logN√

N
+

1

K
) + C1,

and the expression of C1 can be found in (27).
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C.1 Proof of Lemma 5

The proof is similar to that of Lemma 1. We first prove the case of deterministic dynamics and
the corresponding result can be an unbiased estimate in cases of stochastic dynamics (proved in
Subsection B.2).

∇ϕL(ϕ,Dtr
j ) = −

∞∑
t=0

γt∇ϕ log πϕ(a
tr
t |str

t ),

= −
∞∑
t=0

γt

[
∇ϕQ

soft
ϕ (str

t , a
tr
t )−∇ϕV

soft
ϕ (str

t )

]
,

= −
∞∑
t=0

γt

[
∇ϕrϕ(s

tr
t , a

tr
t ) + γ∇ϕV

soft
ϕ (str

t+1)−∇ϕV
soft
ϕ (str

t )

]
,

= ∇ϕV
soft
ϕ (str

0)−
∞∑
t=0

γt∇ϕrϕ(s
tr
t , a

tr
t ),

(a)
= E

πϕ

S,A

[ ∞∑
t=0

γt∇ϕrϕ(St, At)

∣∣∣∣S0 = str
0

]
−

∞∑
t=0

γt∇ϕrϕ(s
tr
t , a

tr
t ),

where (a) follows the proof of Lemma 3.

C.2 Proof of Lemma 6

Since the lower-level problem of (5) is unconstrained and ϕi is the optimal solution, we know that

∇ϕL(ϕj ,Dtr
j ) +

λ

1− γ
(ϕj − θ̄) = 0 (25)

We further take derivative of both sides in (25) with respect to θ̄ and we get that[
∇2

ϕϕL(ϕj ,Dtr
j ) +

λ

1− γ

]
∇θ̄ϕj −

λ

1− γ
= 0 ⇒ ∇θ̄ϕj =

[
I +

1− γ

λ
∇2

ϕϕL(ϕj ,Dtr
j )

]−1

.

Therefore, we have that

d

dθ̄
L(ϕj ,Deval

j ) = (∇θ̄ϕj)
⊤∇ϕL(ϕj ,Deval

j ) =

[
I +

1− γ

λ
∇2

ϕϕL(ϕj ,Dtr
j )

]−1

∇ϕL(ϕj ,Deval
j ).

Similar to Lemma 5, we can know that

∇ϕL(ϕj ,Deval
j ) =

|Deval
j |∑

v=1

E
πϕj

S,A

[ ∞∑
t=0

γt∇ϕrϕj
(St, At)

∣∣∣∣S0 = sv0

]
−

|Deval
j |∑

v=1

∞∑
t=0

γt∇ϕrϕj
(svt , a

v
t ),

(26)

where (svt , a
v
t ) ∈ ζv and ζv ∈ Deval

j .

Since there is usually abundant data in Deval
j and S0 ∼ P0, we can reformulate (26) as the following:

∇ϕL(ϕj ,Deval
j ) ≈ |Deval

j | · E
πϕj

S,A

[ ∞∑
t=0

γt∇ϕrϕj (St, At)

∣∣∣∣S0 ∼ P0

]
−

|Deval
j |∑

v=1

∞∑
t=0

γt∇ϕrϕj (s
v
t , a

v
t ).

Claim 7. The second-order information ∇2
ϕϕQ

soft
ϕ (s, a) = ∆(s, a) +E

πϕ

S,A[
∑∞

t=0 γ
tCov(St)|S0 =

s,A0 = a] and ∇2
ϕϕV

soft
ϕ (s) = ∆(s) + E

πϕ

S,A[
∑∞

t=0 γ
tCov(St)|S0 = s] where ∆(s, a) =

E
πϕ

S,A[
∑∞

t=0 γ
t∇2

ϕϕrϕ(St, At)|S0 = s,A0 = a], ∆(s) = E
πϕ

S,A[
∑∞

t=0 γ
t∇2

ϕϕrϕ(St, At)|S0 = s],
and Cov(s) ≜

∫
a∈A πϕ(a|s)[∆(s, a)−∆(s)]∆(s)da is the covariance matrix of ∆(s, ·) at state s.
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The proof of Claim 7 follows the proof of Lemma 4

Now we take a look at the term ∇2
ϕϕL(ϕj ,Dtr

j ) and consider the case of deterministic dynamics:

∇2
ϕϕL(ϕj ,Dtr

j ) = −
∞∑
t=0

γt∇2
ϕϕ log πϕj (a

tr
t |str

t ),

= −
∞∑
t=0

γt

[
∇2

ϕϕQ
soft
ϕj

(str
t , a

tr
t )−∇2

ϕϕV
soft
ϕj

(str
t )

]
,

= −
∞∑
t=0

γt

[
∇2

ϕϕrϕj
(str

t , a
tr
t ) + γ∇2

ϕϕV
soft
ϕj

(str
t+1)−∇2

ϕϕV
soft
ϕj

(str
t )

]
,

= ∇2
ϕϕV

soft
ϕj

(str
0)−

∞∑
t=0

γt∇2
ϕϕrϕj

(str
t , a

tr
t ),

(a)
= E

πϕj

S,A [

∞∑
t=0

γt∇2
ϕϕrϕj (St, At)|S0 = str

0]−
∞∑
t=0

γt∇2
ϕϕrϕj (s

tr
t , a

tr
t )

+ E
πϕj

S,A [

∞∑
t=0

γtCov(St)|S0 = str
0],

where (a) follows Claim 7. As proved in Subsection B.2, we can still use this expression in the case
of stochastic dynamics. We define e ≜ E

πϕj

S,A [
∑∞

t=0 γ
tCov(St)|S0 = str

0]. However, e is intractable
to compute because it requires to compute COV(St) at every visited state. To approximate the
covariance matrix COV(St), we need to empirically roll out the policy πϕj from St for enough times
to get enough samples. We need to do these policy roll-outs at every state St. For example, suppose
we roll out the policy πϕj ten times to get ten samples at each state St. Empirically, we need to do
these roll-outs 10× T̄ where T̄ is a very large integer that we regard as infinity because the trajectory
horizon is infinite. This is intractable because we need to roll out the policy for too many times.
Moreover, we cannot guarantee that we can approximate COV(St) well given that we only use ten
samples to approximate it.

C.3 Proof of Lemma 7

We know that ||∇2
ϕϕL(ϕ,Dtr

j )+
λ

1−γ || ≤ ||∇2
ϕϕL(ϕ,Dtr

j )||+ λ
1−γ ≤

∑∞
t=0

(
||∇2Lt(ϕ)||+λγt

)
(a)

≤
1

1−γCL where (a) follows (6). Therefore, the lower-level objective function in (8) is CL

1−γ -smooth.
Moreover, since λ ≥ CL

2 + η, then ||∇2
ϕϕL(ϕ,Dtr

j )|| ≤
CL−2η
2(1−γ) . Therefore, the lower-level objective

function in (8) is 2η
1−γ -strongly convex. Following the standard result for strongly-convex and smooth

stochastic optimization, we can reach the result in Lemma 7.

C.4 Proof of Theorem 3

In this proof, we first bound the hyper-gradient approximation error (i.e., || d
dθ̄
L(ϕj ,Deval

j ) − hj ||)
and then prove the convergence. Define h̄j ≜ [I + 1−γ

λ ∇̄2
ϕϕL(ϕj ,Dtr

j )]
−1∇ϕL(ϕj ,Deval

j ) where

∇̄2
ϕϕL(ϕj ,Dtr

j ) ≜ E
πϕj

S,A [
∑∞

t=0 γ
t∇2

ϕϕrϕj
(St, At)|S0 = str

0] −
∑∞

t=0 γ
t∇2

ϕϕrϕj
(str

t , a
tr
t ). Therefore,

we have that

||h̄j −
d

dθ̄
L(ϕj ,Deval

j )||,

≤
∣∣∣∣∣∣∣∣[I + 1− γ

λ
∇2

ϕϕL(ϕj ,Dtr
j )]

−1 − [I +
1− γ

λ
∇̄2

ϕϕL(ϕj ,Dtr
j )]

−1

∣∣∣∣∣∣∣∣ · ||∇ϕL(ϕj ,Deval
j )||,

≤
[∣∣∣∣∣∣∣∣[I + 1− γ

λ
∇2

ϕϕL(ϕj ,Dtr
j )]

−1

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣[I + 1− γ

λ
∇̄2

ϕϕL(ϕj ,Dtr
j )]

−1

∣∣∣∣∣∣∣∣] · ||∇ϕL(ϕj ,Deval
j )||,

(a)

≤
(

2λ

2λ+ 2η − CL
+

λ

λ− 2C̃r

)
·
2|Deval

j |C̄r

1− γ
≜ C1 > 0, (27)
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where (a) follows the fact that ||I + 1−γ
λ ∇2

ϕϕL(ϕj ,Dtr
j )|| ≥ 1 − || 1−γ

λ ∇2
ϕϕL(ϕj ,Dtr

j )|| ≥ 1 −
CL−2η

2λ given that ||∇2
ϕϕL(ϕ,Dtr

j )|| ≤
CL−2η
2(1−γ) (proved in the proof of Lemma 7). Therefore ||[I +

1−γ
λ ∇2

ϕϕL(ϕj ,Dtr
j )]

−1|| ≤ 2λ
2λ+2η−CL

. Similarly, we can bound ||[I + 1−γ
λ ∇̄2

ϕϕL(ϕj ,Dtr
j )]

−1|| ≤
λ

λ−2C̃r
given that ||∇̄2

ϕϕL(ϕj ,Dtr
j )|| ≤ 2C̃r

1−γ . Note that λ > CL

2 and CL > C̃r (proved in (6)),
therefore C1 is a positive constant.

Now, we bound the term ||hj − h̄j ||. We define ∆ϕj
= I + 1−γ

λ ∇̄2
ϕϕL(ϕj ,Dtr

j ) and ∆ϕj
=

I + 1−γ
λ ∇̄2

ϕϕL(ϕj,K ,Dtr
j ). Thus we have ||∆−1

ϕj
|| ≤ λ

λ−2C̃r
(follows (27)) and similarly ||∆−1

ϕj,K
|| ≤

λ
λ−2C̃r

. Therefore,

E[||hj − h̄j ||] = E

[∣∣∣∣∣∣∣∣∆−1
ϕj,K

∇ϕL(ϕj,K ,Deval
j )−∆−1

ϕj
∇ϕL(ϕj ,Deval

j )

∣∣∣∣∣∣∣∣],
≤ E

[∣∣∣∣∣∣∣∣∆−1
ϕj,K

∇ϕL(ϕj,K ,Deval
j )−∆−1

ϕj,K
∇ϕL(ϕj ,Deval

j )

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∆−1
ϕj,K

∇ϕL(ϕj ,Deval
j )−∆−1

ϕj
∇ϕL(ϕj ,Deval

j )

∣∣∣∣∣∣∣∣],
≤ E

[
||∆−1

ϕj,K
|| · ||∇ϕL(ϕj,K ,Deval

j )−∇ϕL(ϕj ,Deval
j )||+ ||∆−1

ϕj,K
−∆−1

ϕj
|| · ||∇ϕL(ϕj ,Deval

j )||
]
,

(b)

≤ λ

λ− 2C̃r

· |Deval
j | · CL − 2η

2(1− γ)
||ϕj,K − ϕj ||+ E[||∆−1

ϕj,K
−∆−1

ϕj
||] · |Deval

j | · 2C̄r

1− γ
,

≤ O(
1

K
) + E[||∆−1

ϕj,K
|| · ||∆−1

ϕj
|| · ||∆−1

ϕj,K
−∆−1

ϕj
||] · |Deval

j | · 2C̄r

1− γ
,

≤ O(
1

K
) + C̄LE[||∆−1

ϕj,K
|| · ||∆−1

ϕj
||] · |Deval

j | · 2C̄r

1− γ
||ϕj,K − ϕj || ≤ O(

1

K
), (28)

where ||∇3
ϕϕϕL(ϕj ,Dtr

j )|| ≤ C̃L. The expression of C̃L can be derived following the proof
of Lemma 4 by notifying Assumption 3. The (b) holds because (i) ||∇2

ϕϕL(ϕ,Deval
j )|| =

|Deval
j |

|Dtr
j |
||∇2

ϕϕL(ϕ,Dtr
j )|| ≤ |Deval

j | · Cl−2η
2(1−γ) and (ii) ||∇ϕL(ϕj ,Deval

j )|| ≤ |Deval
j | · 2C̄r

1−γ (see the ex-

pression of ∇ϕL(ϕj ,Deval
j ) in Lemma 5).

E[||hj −
d

dθ̄
L(ϕj ,Deval

j )||] ≤ E[||hj − h̄j ||+ ||h̄j −
d

dθ̄
L(ϕj ,Deval

j )||]
(c)

≤ C1 +O(
1

K
), (29)

where (c) follows (27)-(28). Define F (θ̄) as Ej∼PT [L(ϕj ,Deval
j )] under the meta-prior θ̄. Note that

||hj || ≤ ||∆−1
ϕj,K

|| · ||∇ϕL(ϕj,K ,Deval
j )|| ≤ λ

λ−2C̃r
· |Deval

j | · 2C̄r

1−γ . Therefore,

F (θ̄n+1) ≥ F (θ̄n) + (∇F (θ̄n))
⊤(θ̄n+1 − θ̄n)−

|Deval|(CL − 2η)

4(1− γ)
||θ̄n+1 − θ̄n||2,

≥ F (θ̄n) +
τn
B

B∑
j=1

(∇F (θ̄n))
⊤hj −

|Deval|(CL − 2η)τ2n
4(1− γ)

|| 1
B

B∑
j=1

hj ||2,

≥ F (θ̄n) +
τn
B

B∑
j=1

(∇F (θ̄n))
⊤hj −

|Deval|(CL − 2η)τ2n
4(1− γ)

· λ

λ− 2C̃r

· |Deval
j | · 2C̄r

1− γ
,

≥ F (θ̄n) +
τn
B

B∑
j=1

(∇F (θ̄n))
⊤hj −

2λC̄r|Deval|2(CL − 2η)τ2n
4(1− γ)2(λ− 2C̃r)

,

⇒ E[F (θ̄n+1)] ≥ E[F (θ̄n)] + τnE[||∇F (θ̄n)||2] +
τn
B

B∑
j=1

E[hj −
d

dθ̄
L(ϕj ,Deval

j )]

+
τn
B

B∑
j=1

E[
d

dθ̄
L(ϕj ,Deval

j )−∇F (θ̄n)]−
2λC̄r|Deval|2(CL − 2η)τ2n

4(1− γ)2(λ− 2C̃r)
,
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(d)

≥ E[F (θ̄n)] + τnE[||∇F (θ̄n)||2] + τn(C1 +O(
1

K
))− 2λC̄r|Deval|2(CL − 2η)τ2n

4(1− γ)2(λ− 2C̃r)
,

⇒ 1

N

N−1∑
n=0

τNE[||∇F (θ̄n)||2] ≤
1

N

N−1∑
n=0

τnE[||∇F (θ̄n)||2],

≤ 1

N
[F (θ̄N )− F (θ̄0)] +

1

N

N−1∑
n=0

τn(C1 +O(
1

K
)) +

1

N

N−1∑
n=0

2λC̄r|Deval|2(CL − 2η)τ2n
4(1− γ)2(λ− 2C̃r)

,

⇒ 1

N

N−1∑
n=0

E[||∇F (θ̄n)||2] ≤ O(
1√
N

+
logN√

N
+

1

K
) + C1,

where |Deval| ≜ supi∼PT
{|Deval

j |} and (d) follows (29).

D Experiment details

The code was running on a laptop whose processor is AMD Ryzen 7 4700U with Radeon Graphics,
2.00GHz, and the installed RAM is 20.0GB. The operating system is Ubuntu 18.04. We use a neural
network to parameterize the learned reward function. The neural network has two hidden layers
where each hidden layer has 64 neurons. The activation functions are respectively ReLU and Tanh.

D.1 Baselines

Here we provide the update rule for each baseline. Given a learned reward function rθ, the policy
updates of the four baselines are the same with that of MERIT-IRL, i.e., one-step policy iteration.
The difference is the reward update.

IT-IRL: IT-IRL is MERIT-IRL without the meta-regularization term. Therefore, the reward update
of IT-IRL is θt+1 = θt − αtg

′
t where g′t =

∑∞
i=0 γ

i∇θrθt(s
′
i, a

′
i)−

∑∞
i=0 γ

i∇θrθt(s
′′
i , a

′′
i ). Recall

from Subsection 4.1 that {(s′i, a′i)}i≥0 is generated by the learned policy πθt starting from the initial
state s′0 = sE0 , and {(s′′i , a′′i )}i≥0 is generated by the learned policy πθt starting from (s′′t , a

′′
t ) where

(s′′i , a
′′
i ) = (sEi , a

E
i ) for 0 ≤ i ≤ t.

Naive MERIT-IRL: This method has the meta-regularization term, however, it uses the naive way
(depicted in the middle of Figure 1) to update the reward function. In specific, it only compares
the partial expert trajectory {sEi , aEi }ti=0 and partial learner trajectory {s′i, a′i}ti=0. Therefore, the
reward update of Naive MERIT-IRL is θt+1 = θt − αtg

′′
t where g′′t =

∑t
i=0 γ

i∇θrθt(s
′
i, a

′
i) −∑t

i=0 γ
i∇θrθt(s

E
i , a

E
i ) +

λ(1−γt+1)
1−γ (θ − θ̄).

Naive IT-IRL: This method does not have the meta-regularization term and uses the naive way to
update the reward function. Therefore, the reward update of Naive IT-IRL is θt+1 = θt − αtg

′′′
t

where g′′′t =
∑t

i=0 γ
i∇θrθt(s

′
i, a

′
i)−

∑t
i=0 γ

i∇θrθt(s
E
i , a

E
i ).

Hindsight: This method is a standard IRL method with the meta-regularization term where the
complete expert trajectory {sEi , aEi }i≥0 and the complete learner trajectory {s′i, a′i}i≥0 are compared
to update the reward function. Therefore, the reward update of Hindsight is θt+1 = θt−αtg

′′′′
t where

g′′′′t =
∑∞

i=0 γ
i∇θrθt(s

′
i, a

′
i)−

∑∞
i=0 γ

i∇θrθt(s
E
i , a

E
i ) +

λ(1−γt+1)
1−γ (θ − θ̄).

D.2 MuJoCo

D.2.1 Walker

Figure 2b shows that MERIT can achieve similar performance with the expert after t = 600 while
the other three in-trajectory learning baselines fail to imitate the expert before the ongoing trajectory
terminates. Note that the naive methods (i.e., Naive MERIT-IRL and Naive IT-IRL) have much
smaller improvement from t = 0 compared to MERIT-IRL and IT-IRL. The reason is that the naive
reward update method is flawed. Intuitively, the reward update mechanism of these two baselines are
myopic as explained in Subsection 4.1. Theoretically, the gradients g′′t of Naive MERIT-IRL and g′′′t
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of Naive IT-IRL are biased estimate of (4) even if πt approaches πθt since (4) includes the trajectory
suffix (i > t) terms while g′′t and g′′′t only include the trajectory prefix (i ≤ t) terms.

MERIT-IRL performs much better than IT-IRL. The reason is that the meta-regularization term
restricts the learned reward parameter within a certain neighborhood of the meta-prior θ̄ (proved in
Appendix B.3). Given that θ̄ is trained over a family of relevant tasks, it is expected that the actual
reward function parameter of our task shall be “close" to θ̄ [24, 43, 56], i.e., inside this neighborhood.
Therefore, MERIT-IRL can efficiently learn the expert’s reward function. On the contrary, IT-IRL
does not have the meta-prior θ̄ as a guidance and thus has to search over the whole parameter space,
which is extremely difficult to learn the expert’s reward function when the data is lacking. Note that
MERIT-IRL and Naive MERIT-IRL have better initial performance than IT-IRL and Naive IT-IRL
since MERIT-IRL and Naive MERIT-IRL starts at the meta-prior θ̄ while IT-IRL and Naive IT-IRL
initializes randomly.

D.2.2 Hopper

Figure 2c shows that MERIT can achieve similar performance with the expert after t = 500 while
the other three in-trajectory learning baselines fail to imitate the expert before the ongoing trajectory
terminates.

D.3 Stock Market

We use the real-world data of 30 constitute stocks in Dow Jones Industrial Average from 2021-01-01
to 2022-01-01. The 30 stocks are respectively: ‘AXP’, ‘AMGN’, ‘AAPL’, ‘BA’, ‘CAT’, ‘CSCO’,
‘CVX’, ‘GS’, ‘HD’, ‘HON’, ‘IBM’, ‘INTC’, ‘JNJ’, ‘KO’, ‘JPM’, ‘MCD’, ‘MMM’, ‘MRK’, ‘MSFT’,
‘NKE’, ‘PG’, ‘TRV’, ‘UNH’, ‘CRM’, ‘VZ’, ‘V’, ‘WBA’, ‘WMT’, ‘DIS’, ‘DOW’.

The state of the stock market MDP is the perception of the stock market, including the open/close
price of each stock, the current asset, and some technical indices [47]. The action has the same
dimension as the number of stocks where each dimension represents the amount of buying/selling the
corresponding stock. The detailed formulation of the MDP can be found in FinRL [47, 57].

The turbulence index is a technical index of stock market and is included as a dimension of the state
[47, 57]. The function p2 is defined as the amount of buying the stocks whose turbulence index is
larger than the turbulence threshold. Therefore, the more the target investor buys the stocks whose
turbulence index is larger than the turbulence threshold, the larger p2 will be and thus the smaller
reward the target investor will receive.

Discussion on the experiment results. In Figure 2d, MERIT-IRL can achieve the similar cumulative
reward with the expert when only the first 60% of the trajectory is observed while IT-IRL can achieve
performance close to the expert after t = 220. This shows that the meta-regularization can help
imitate the expert faster. In contrast, Naive MERIT-IRL and Naive IT-IRL barely improves because
the naive reward update method is flawed. Intuitively, the reward update mechanism of these two
baselines are myopic as explained in Subsection 4.1. Theoretically, the gradients g′′t of Naive MERIT-
IRL and g′′′t of Naive IT-IRL are biased estimate of (4) even if πt approaches πθt since (4) includes
the trajectory suffix (i > t) terms while g′′t and g′′′t only include the trajectory prefix (i ≤ t) terms.

The last row in Table 1 shows the final results of the algorithms. We can see that MERIT-IRL
achieves much better performance than the other in-trajectory learning baselines (i.e., IT-IRL, Naive
MERIT-IRL, and Naive IT-IRL). MERIT-IRL achieves comparable performance with Hindsight and
the expert. Note that it is not expected that MERIT-IRL outperforms Hindsight since Hindsight has
the complete expert trajectory to learn.

E Potential negative societal impact

Since MERIT-IRL can infer the reward function of the expert, potential negative societal impact
may occur when the learner is malicious. Take the stock market experiment as an example, private
information like preferences or habits of the investors may be leaked by using MERIT-IRL. To avoid
this situation, the investors needs to take additional strategies such as protecting its investment data
from unsecure resources.
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F Limitations

From the objective (2), we can see that the goal of MERIT-IRL is to align with the expert demon-
stration, i.e., finding a reward function such that its corresponding policy makes the expert trajectory
most likely. An ideal case is that we can also directly quantify the reward learning performance and
study the reward identifiability issue. Thus, a future work is to study the reward identifiability issue
in the context of in-trajectory IRL.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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