
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Rethinking and Accelerating Graph Condensation: A
Training-Free Approach with Class Partition

Anonymous Author(s)

Abstract
The increasing prevalence of large-scale graphs poses a significant

challenge for graph neural network training, attributed to their

substantial computational requirements. In response, graph con-

densation (GC) emerges as a promising data-centric solution aiming

to substitute the large graph with a small yet informative condensed

graph to facilitate data-efficient GNN training. However, existing

GC methods suffer from intricate optimization processes, neces-

sitating excessive computing resources and training time. In this

paper, we revisit existing GC optimization strategies and identify

two pervasive issues therein: (1) various GC optimization strate-

gies converge to coarse-grained class-level node feature matching

between the original and condensed graphs; (2) existing GC meth-

ods rely on a Siamese graph network architecture that requires

time-consuming bi-level optimization with iterative gradient com-

putations. To overcome these issues, we propose a training-free GC

framework termed Class-partitioned Graph Condensation (CGC),

which refines the node distribution matching from the class-to-

class paradigm into a novel class-to-node paradigm, transforming

the GC optimization into a class partition problem which can be

efficiently solved by any clustering methods. Moreover, CGC in-

corporates a pre-defined graph structure to enable a closed-form

solution for condensed node features, eliminating the need for back-

and-forth gradient descent in existing GC approaches. Extensive

experiments demonstrate that CGC achieves an exceedingly ef-

ficient condensation process with advanced accuracy. Compared

with the state-of-the-art GC methods, CGC condenses the Ogbn-

products graph within 30 seconds, achieving a speedup ranging

from 10
2× to 10

4× and increasing accuracy by up to 4.2%.

1 Introduction
Graph neural networks (GNNs) [7, 47, 51, 67] have garnered sig-

nificant attention for their exceptional representation capabilities

for complex graph data and have been utilized in a wide range of

real-world applications, including chemical molecules [42], social

networks [43], and recommender systems [57]. However, the in-

creasing prevalence of large-scale graphs within these real-world

applications poses formidable challenges in training GNN mod-

els. Most GNNs follow the message-passing paradigm [17], which

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

is formulated as convolutions over the entire graph and aggre-

gating information from multi-hop neighboring nodes. This pro-

cess leads to exponential growth in neighbor size [18, 59] when

applied to large-scale graphs, necessitating considerable training

computations. In response to the urgent demand for processing

large-scale graphs, a few studies borrow the idea of dataset distilla-

tion [28, 46] from computer vision (CV) and introduce graph con-

densation (GC) [24] to generate a compact yet informative graph to

accelerate the GNN training. By capturing essential characteristics

of the original large graph, GNNs trained on these small condensed

graphs can achieve comparable performance to those trained on

the original graphs. This efficacy enables GC to be applied to a

variety of applications rapidly, e.g., graph continual learning [32],

inference acceleration [14], and hyper-parameter search [8].

Despite the effectiveness of expediting GNN training, existing

GC practices still suffer from complex optimization and intensive

computation during the condensation process. As depicted in Fig-

ure 1 (a), to bridge the original and condensed graph, existing GC

methods employ the Siamese network architecture to encode both

graphs through a relay model, and the condensed graph is opti-

mized to simulate the class distributions of the original graph. This

framework necessitates a bi-level optimization procedure, with the

inner loop refining the relay model on the condensed graph and the

outer loop subsequently optimizing the condensed graph, ensuring

optimal model performance on both graphs. However, two main

issues persist in this framework: (1) Existing optimization strategies

in GC [24, 30, 31, 45, 53, 66] manifest a single, unified optimization

objective for all condensed nodes within the same class, resulting

in the coarse-grained optimization target for condensed nodes. (2)

Bi-level optimization involves iterative and intensive gradient com-

putations for both the relay model and condensed graph. Recent

efforts aim to expedite this process by simplifying outer or in-

ner loop optimizations. Techniques like distribution matching [30]

and the structure-free approach [66] respectively eliminate model

gradient calculations and adjacency matrix optimizations in the

outer loop. Meanwhile, approaches such as one-step matching [23],

kernel ridge regression (KRR) [45] and pre-trained model [53] sim-

plify the relay model updates in the inner loop. Despite these ad-

vancements, the optimization of the condensed graph still involves

back-and-forth gradient calculations and updates, resulting in a

time-consuming condensation procedure.

To address these issues, we investigate the foundational objec-

tive of existing optimization strategies and design an exceedingly

efficient GC approach with a training-free framework termed Class-

partitioned Graph Condensation (CGC). As illustrated in Figure

1(b), CGC refines the distribution matching from the class-to-class

paradigm to a delicate class-to-node distribution matching para-

digm. Notably, this refinement further simplifies the distribution

matching objective as a class partition problem, which can be ef-

ficiently optimized using any clustering method (e.g., K-Means).

1

https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

𝑓

𝐇 𝐇′

(𝐀, 𝐗) (𝐀′, 𝐗′)

(𝐀, 𝐗)

𝐙′

𝑓
𝑔

𝒟𝐙

𝑓
(𝐀′, 𝐗′)

𝑔

Graph

data

Node

representation

Class-wise

matching objective

Class-partitioned

representation

Node

representation

Original

graph

Condensed

graph

(a) (b)

Figure 1: (a) The class-to-class matching paradigm in existing
GC methods. (b) Our proposed class-to-node matching para-
digm. 𝑓 denotes the relay model, D represents the distance
function, and 𝑔 measures the matching objective (refer to
Table 1 for details).

Moreover, CGC utilizes the pre-defined graph structure with the

Dirichlet energy constraint [25] to derive a closed-form solution for

the condensed node features. Equipped with these non-parametric

modules, CGC eliminates gradient-based optimization in existing

GC methods, enabling the condensation process to be executed

on CPUs only. This enhances both the efficiency and effectiveness

of the GC process, significantly broadening the utility of GC in

real-world applications.

The main contributions of this paper are three-fold:

• New observations and insights.We theoretically demonstrate

that existing GC optimization strategies converge to the class-

level distribution matching paradigm, and subsequently simplify

this process into a class partition problem, eliminating the so-

phisticated bi-level optimization and enabling efficient resolution

through any clustering method.

• New GC framework.We present CGC, the first training-free

GC framework characterized by a fine-grained class-to-node

matching paradigm and closed-form feature generation, facilitat-

ing both precise and efficient GC procedures. Furthermore, CGC

demonstrates considerable versatility, and any component within

the framework can be replaced with a variety of alternative meth-

ods, such as distinct propagation and partition techniques.

• State-of-the-art performance. Extensive experiments demon-

strate that CGC achieves advanced accuracy with an extremely

fast condensation procedure. For instance, it condenses the Ogbn-

products dataset within 30 seconds, which is 1,038× faster than

GCond [24] and 148× faster than the most efficient GC baseline

SimGC [53]. Our code is available at:

https://anonymous.4open.science/r/CGC-condensation/.

2 Rethinking Existing Graph Condensation
Methods

In this section, we first formally formulate the graph condensation

and then revisit the existing GC optimization strategies along with

their mutual connections. Subsequently, we formulate these strate-

gies within a unified framework and demonstrate their adherence

to a common class-level distribution matching paradigm. Finally,

we simplify this paradigm into a class partition problem, enabling

efficient optimization through clustering methods.

2.1 Problem Formulation
We consider a large-scale original graph T = {A,X} with 𝑁 nodes,

where A ∈ R𝑁×𝑁
is the adjacency matrix and X ∈ R𝑁×𝑑

de-

notes the 𝑑-dimensional node feature matrix. Each node belongs

to one of 𝑐 classes {𝐶1, · · · ,𝐶𝑐 }, translating into numeric labels

y ∈ {1, ..., 𝑐}𝑁 and one-hot labels Y ∈ R𝑁×𝑐
. Graph condensa-

tion [24] aims to generate a small condensed graph S = {A′,X′},
such that GNNs trained on S yield performance comparable to

those trained on T . Specifically, A′ ∈ R𝑁
′×𝑁 ′

, X′ ∈ R𝑁
′×𝑑

and

𝑐 ≤ 𝑁 ′ ≪ 𝑁 . Similarly, each node in S belongs to one of 𝑐

classes {𝐶′
1
, · · · ,𝐶′

𝑐 }, and labels are denoted as y′ ∈ {1, ..., 𝑐}𝑁 ′

or Y′ ∈ R𝑁
′×𝑐

. We follow GCond to pre-define the condensed node

labels, which preserve the same class proportion as the original

node labels. To facilitate the expression, we assume all nodes in the

original and condensed graphs are organized in ascending order

according to labels.

Notice that the generation of A′
is optional in existing GC meth-

ods [24, 63, 66]. If A′
is opted out, the identity matrix I is used

instead in GNN training, and this approach is termed the graphless

GC variant (a.k.a. structure-free GC [66]).

2.2 Class-level Matching Paradigm in GC
To achieve the GC objective, existing methods use a Siamese net-

work architecture with a relay model 𝑓 to encode both graphs as

shown in Figure 1 (a) and employ three kinds of optimization strate-

gies [19, 54, 58]: parameter matching, performance matching, and

distribution matching.

Parameter matching posits that the parameters of the GNN

classifier should possess high consistency whenever it is trained on

S or T . To this end, GCond [24] tries to match model parameters

at each training step and simplifies the objective to facilitate that

gradients generated by S match those from the same class in T :

L𝐺𝑀 = E
Θ∼Φ

[
𝑐∑︁
𝑖=1

D(∇ΘLS
𝑖 ,∇ΘLT

𝑖)
]
, (1)

where Φ is the distribution of the relay model (i.e., the GNN clas-

sifier) parameter Θ, and we omit relay model update in the inner

loop for simplicity. D indicates the distance function. LS
𝑖

and LT
𝑖

are classification losses (e.g., cross-entropy loss) for class 𝑖 w.r.t S
and T , respectively. However, gradient matching [64] may accu-

mulate errors when the relay model is iteratively updated on S
over multiple steps. To mitigate this problem, SFGC [66] introduces

trajectory matching [3] to align the long-term training trajectories

of classification models. Nonetheless, to avoid overfitting one ini-

tialization of the relay model, it requires training hundreds of GNNs

on T to obtain the trajectories, resulting in heavy condensation

computations.

Performance matching aligns the performance of models

trained on S and T by ensuring that the model trained on S
achieves minimal loss on T [58]. To obtain the optimal model

on S, KiDD [55] and GC-SNTK [45] substitute the classification

task with the regression and incorporate KRR [38] in the GC proce-

dure for a closed-form solution of the relay model. The objective is

formulated as:

L𝑃𝑀 =

Y − ZZ′⊤ (
Z′Z′⊤ + 𝜆I

)−1 Y′
2 , (2)

2

https://anonymous.4open.science/r/CGC-condensation/

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: The comparison of different GC optimization strategies.

Optimization strategy Representative methods 𝑓 𝑔

Parameter matching GCond [24], SFGC [66], GEOM [62], GCSR [34] GNN Classification model parameter

Performance matching GC-SNTK [45], KiDD [55] Graph kernel Regression model parameter

Distribution matching GCDM [30], GCEM [31], SimGC [53] GNN Class prototype

where Z′ ∈ R𝑁
′×𝑑

and Z ∈ R𝑁×𝑑
are node embeddings for S

and T , respectively. 𝜆 is a small constant weight of the regulariza-

tion term for numerical stability. ∥·∥ denotes the ℓ2 norm. How-

ever, graph kernels used in KRR are computationally intensive and

memory-consuming, limiting their scalability in large graphs.

Distribution matching directly aligns the class distributions of
the original and condensed graphs [63]. GCDM [30] and CaT [32]

first introduce this strategy in GC by minimizing the discrepancy

between class prototypes as:

L𝐷𝑀 = E
Θ∼Φ

[P′Z′ − PZ
2] , (3)

where P′ ∈ R𝑐×𝑁
′
and P ∈ R𝑐×𝑁 are linear aggregation matrices

to construct 𝑐 class-level features, i.e., class prototypes, for S and

T , respectively. Specifically, P′
𝑖, 𝑗

= 1

|𝐶′
𝑖 |
if y′

𝑗
= 𝑖 , and P′

𝑖, 𝑗
= 0 other-

wise. P𝑖, 𝑗 = 1

|𝐶𝑖 | if y𝑗 = 𝑖 , and P𝑖, 𝑗 = 0 otherwise. Here,

��𝐶′
𝑖

��
and |𝐶𝑖 |

represent the sizes of class 𝑖 in S and T . By eliminating the need

to calculate model gradients and parameters, distribution matching

achieves an efficient and flexible condensation process, making it

prevalent in recent GC studies, e.g., eigenbasis matching [31] and

pre-trained model-based distribution matching [52, 53].

Analysis. Despite variations in format, existing optimization

strategies can be uniformly formulated in a matching paradigm as:

S = argmin

S
D

[
𝑔
(
𝑓 (S) ,Y′) , 𝑔 (𝑓 (T) ,Y)

]
, (4)

where 𝑓 is the relay model. The function 𝑔 measures the matching

objective for distance functionD, which varies in format for diverse

optimization strategies as shown in Table 1. Besides adopting the

same framework, these three optimization strategies are inherently

interconnected. Inspired by the study in CV [58], we investigate

their relationship and put forward three propositions as follows:

Proposition 1. The performance matching objective is equivalent
to the optimal parameter matching objective.

Proposition 2. The distribution matching objective represents a
simplified formulation of the performance matching, omitting feature
correlation considerations.

Proposition 3. The distribution matching objective with a feature
correlation constraint provides an upper bound for the parameter
matching objective.

The proofs of propositions are deferred to the Appendix A.1, A.2

and A.3, respectively.

Remark 1. In light of Propositions 1-3, various optimization strate-
gies converge to class-level feature matching between the original and
condensed graphs, i.e., distribution matching in Eq. (3).

However, on top of the efficiency issue discussed earlier, this

matching paradigm only emphasizes on simulating the class dis-

tribution of the original graph by assigning a unified objective

for all condensed nodes in the same class, resulting in the coarse-

grained optimization target for each node. To mitigate these issues,

in the following subsection, we investigate the distribution match-

ing objective and refine the feature matching from the class-to-class

paradigm into the class-to-node paradigm, thereby providing each

condensed node with an explicit and efficient optimization target.

2.3 Simplifying Distribution Matching
For the sake of simplicity, we first follow existing GC methods [14,

24, 30, 32, 53] to specify the relay model 𝑓 as widely used SGC [49],

which decouples the propagation layer and transformation layer in

GNN for efficient graph encoding as:

Z′ = H′Θ = Â′𝐾X′Θ,

Z = HΘ = Â𝐾XΘ,
(5)

where Θ is the learnable weight matrix to transform the 𝐾-th order

propagated features H′
and H. Â′ = D̃′ 1

2 Ã′D̃′ 1
2 and Â = D̃

1

2 ÃD̃
1

2

represent the symmetric normalized adjacency matrices, where Ã′

and Ã are adjacency matrices with self-loops. D̃′
and D̃ are degree

matrices for Ã′
and Ã, respectively. Consequently, the distribution

matching objective in Eq. (3) is formulated as:

argmin

S
E

Θ∼Φ

[P′H′Θ − PHΘ
2] . (6)

To facilitate the class-to-node distribution matching paradigm, we

enhance the aggregation matrix P with two objectives:

• The number of aggregated features is expanded from 𝑐 to 𝑁 ′
,

ensuring that each aggregated feature in the original graph cor-

responds to a distinct condensed node;

• Aggregations are performed within classes to preserve the class

semantics of aggregated features.

Consequently, it is expected that |𝐶𝑖 | original nodes in class 𝑖 will
be aggregated into |𝐶′

𝑖
| features to match with condensed nodes

in 𝐶′
𝑖
. This aggregation procedure analogizes to a class partition

problem, defined as follows:

Definition 1. Class partition. The class partition divides |𝐶𝑖 |
nodes in class 𝑖 into |𝐶′

𝑖
| non-overlapping sub-classes {𝑆𝑖

1
, ..., 𝑆𝑖|𝐶′

𝑖
| },

with each sub-class characterized by a centroid aggregated by con-
stituent nodes. The node mapping function of this partition is defined
as 𝜋𝑖 : {1, ..., |𝐶𝑖 |} → {1, ..., |𝐶′

𝑖
|} and the class-wise aggregation

matrix R𝑖 ∈ R |𝐶′
𝑖 |× |𝐶𝑖 | is formulated as:

R𝑖
𝑗,𝑘

=

1���𝑆𝑖𝑗 ��� if 𝜋𝑖 (𝑘) = 𝑗

0 otherwise

, (7)

where R𝑖
𝑗,𝑘

denotes the aggregation weight for node 𝑘 in class 𝑖 ,

and 𝜋𝑖 (𝑘) indicates the subclass index for node 𝑘 .
���𝑆𝑖𝑗 ��� represents

the size of sub-class 𝑆𝑖
𝑗
.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 2: The comparison of simplified distribution matching
with the conventional objective. Speedup ratios compared
to GCDM-X are indicated in brackets (𝑟 : condensation ratio,
model: GCN).

Dataset 𝑟
Accuracy (%) Condensation time (s)

GCDM GCDM-X SimDM GCDM GCDM-X SimDM

Cora 2.60% 77.2±0.4 81.4±0.1 80.1±0.7 27.3 24.0 0.3 (80×)
Citeseer 1.80% 69.5±1.1 71.9±0.5 70.9±0.6 62.0 51.0 0.7 (73×)
Ogbn-arxiv 0.25% 59.6±0.4 61.2±0.1 66.1±0.4 690.0 469.0 7.1 (66×)
Flickr 0.50% 46.8±0.1 45.6±0.1 45.8±0.2 209.5 86.2 2.1 (41×)
Reddit 0.10% 89.7±0.2 87.2±0.1 90.6±0.1 921.9 534.8 8.2 (65×)

With the defined class partition, the aggregation matrix P ∈
R𝑐×𝑁 can be updated to P̂ ∈ R𝑁

′×𝑁
, which is constructed by or-

ganizing all class-wise aggregation matrices along the diagonal

as P̂ = diag(R1, ...,R𝑐). Assuming that condensed nodes are orga-

nized in ascending order based on their labels, P′ degrades into the

identity matrix I, and Eq. (6) can be reformulated as:

argmin

S,P̂
E

Θ∼Φ

[H′Θ − P̂HΘ
2] ,

(8)

which is upper-bounded by:

E
Θ∼Φ

[H′Θ − P̂HΘ
2] ≤ E

Θ∼Φ

[H′ − P̂H
2 ∥Θ∥2

]
. (9)

Given that Θ is independent to S and P̂, we can minimise the

upper-bound by achieving:

argmin

S,P̂

H′ − P̂H
2 .

(10)

This objective can be further simplified under the graphless

GC variant, where S = {I,X′} and H′ = Â′𝐾X′ = I𝐾X′ = X′
.

Consequently, the objective is reformulated to:

argmin

X′,P̂

X′ − P̂H
2 .

(11)

Remark 2. The objective in Eq. (11) indicates that the condensed
node feature X′ in graphless GC can be obtained by performing class
partition on the propagated features H, eliminating the gradient-based
distribution matching optimization. This X′ can be directly used to
train GNNs with the identity matrix I.

Specifically, we can efficiently obtain the solution by applying

any Expectation-Maximization (EM) based clustering algorithms

(e.g., K-means) to each class, iteratively updating the cluster cen-

troid X′
and the aggregation matrix P̂ until convergence. Note that

another intuitive case arises when the size of the condensed graph

matches the number of classes, i.e., 𝑁 ′ = 𝑐 . In this scenario, P′ = I
and the conventional distribution matching objective in Eq. (6) de-

grades to calculating the class prototypes with the pre-defined P,
which is consistent with Eq. (11).

To validate the simplified objective, we compare the condensed

graph {I,X′}, derived by objective in Eq. (11) and termed SimDM,

with the conventional distribution matching-based methods (i.e.,

GCDM [30] and its graphless variation GCDM-X). The test accuracy

and condensation time are detailed in Table 2 and experimental

setting are deferred to Section 4. SimDM significantly excels in con-

densation time while maintaining comparable accuracy, confirming

the effectiveness of our class partition-based objective.

(𝐀′, 𝐗′)

𝐗

𝐀

𝐘

(𝐈, 𝐗′)Data

Assessment

Graph

Generation
Class

Partition𝐇 𝐇′

Data

Augmentation

Feature

Propagation

Figure 2: The pipeline of CGC and CGC-X.

3 Class-partitioned Graph Condensation (CGC)
Despite the potential to accelerate the condensation procedure, the

class partition in SimDM neglects the data quality of the original

graphs, a critical aspect in addressing data-centric challenges in

GC. To establish a comprehensive data processing framework, we

further enhance SimDM by incorporating data assessment, augmen-

tation, and graph generation modules. Consequently, we introduce

a novel GC framework, as illustrated in Figure 2, where all five in-

volved modules are training-free, facilitating an efficient and robust

condensation process.

3.1 Feature Propagation
To eliminate the gradient calculation in the condensation proce-

dure, the non-parametric feature propagation module is deployed

to smooth the node features X according to the original graph

structure A and generate the node embeddings. The propagation

method is replaceable with a variety of choices with diverse char-

acteristics, e.g., SGC [49], personalized PageRank (PPR) [39] and

SAGE [18], etc. Without loss of generality, we follow existing GC

methods [14, 24, 30, 32, 53] and adopt the propagation method in

SGC to generate the node embeddings:

H(𝑙) = Â𝑙X, (12)

where 0 ≤ 𝑙 ≤ 𝐾 , and the embeddings in the last layer are denoted

as H = H(𝐾)
for the final class partition.

3.2 Data Assessment
For the sake of robust class representation, we assess the node

embeddings prior to the class partition process. Inspired by [65, 68],

we incorporate node embeddings at various propagation depths and

utilize a simple linear layer W as the classifier for label prediction.

Ŷ = TW =
1

𝐾 + 1

𝐾∑︁
𝑙=0

H(𝑙)W. (13)

Subsequently, the MSE loss is employed for optimization:

argmin

W

Y − Ŷ
2 . (14)

This loss facilitates an efficient and precise closed-form solution,

expressed as Ŵ = T+Y, where T+
denotes the pseudo inverse of

T. Afterwards, the linear classifier is utilised to evaluate node em-

beddings H(𝑙)
for 0 ≤ 𝑙 ≤ 𝐾 , and their confidence scores w.r.t the

ground-truth are recorded as r ∈ R𝑁 (𝐾+1)
. Additionally, we calcu-

late the prediction errors for each class of H and represent these

class prediction errors as e = [𝑒1, ..., 𝑒𝑐]. The confidence scores r
reflect the reliability of node embeddings in class representation,

while the class prediction errors e highlight the difficulty associ-

ated with each class. In subsequent modules, these metrics will

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

inform the data augmentation strategies and calibration of con-

densed features, aiming to enhance the quality of the condensed

graph.

3.3 Data Augmentation
Although the non-overlapping class partition in SimDM simplifies

optimization, it reduces the number of original nodes matched by

each condensed node, intensifying the dependency on the quan-

tity of nodes involved in the partition process. Concurrently, the

time complexity of class partition scales proportionally with the

increasing number of nodes. To address these issues and achieve

equilibrium, we propose augmenting underrepresented classes with

additional node embeddings to ensure robust class representations.

Specifically, we utilize the node embeddings with smaller propa-

gation depths as augmentations, i.e., H(𝑙)
, where 0 ≤ 𝑙 < 𝐾 . It is

important to note that only training set nodes are involved, with

each node paired with its respective label. For clarity, we refer to

these node embeddings collectively as H. The utility of these em-

beddings offers threefold benefits. Firstly, these embeddings are an

intermediate product in the feature propagation process and incur

no additional computational overhead. Secondly, they aggregate

node features across various hops, exhibiting different levels of

smoothness [61]. Lastly, different from data augmentation methods

such as mixup, edge drop, or feature mask, these embeddings pre-

vent the introduction of excessive noises during the condensation

process.

Subsequently, class prediction errors e are used as sampling

weights to randomly select 𝑝% of the embeddings from H, where 𝑝
serves as a hyper-parameter controlling the size of augmentation

data. This sampling strategy prioritizes classes with higher errors,

potentially enhancing the class representation quality.

Consequently, the embeddings and labels of the sampled nodes

are represented as H𝑎𝑢𝑔 and y𝑎𝑢𝑔 , respectively, and the augmented

data for the condensation process are defined as H𝑐𝑜𝑛𝑑 = [H;H𝑎𝑢𝑔]
and y𝑐𝑜𝑛𝑑 = [y; y𝑎𝑢𝑔].

3.4 Class Partition
With enhanced label y𝑐𝑜𝑛𝑑 , we perform class partition on H𝑐𝑜𝑛𝑑
to address the optimization problem in Eq. (11). Initially, nodes

labeled in y𝑐𝑜𝑛𝑑 are categorised into 𝑐 classes {𝐶1, · · · ,𝐶𝑐 } with
corresponding embeddings {Ĥ1, · · · , Ĥ𝑐 }. Then, Ĥ𝑖 for class 𝑖 is
partitioned into |𝐶′

𝑖
| sub-classes {𝑆𝑖

1
, ..., 𝑆𝑖|𝐶′

𝑖
| } by applying any EM-

based clustering method and the node mapping function is denoted

by 𝜋𝑖 .

Subsequently, rather than utilizing the class-wise aggregation

matrix R𝑖 as initially defined in Eq. (7), we incorporate the confi-

dence scores r for each aggregated node to calibrate the condensed

node embeddings. Consequently, Eq. (7) is updated as:

R𝑖
𝑗,𝑘

=

{
r𝑘
𝜏 if 𝜋𝑖 (𝑘) = 𝑗

0 otherwise

, (15)

where R𝑖
𝑗,𝑘

denotes the aggregation weight for node 𝑘 in subclass

𝑗 , and 𝜋𝑖 (𝑘) indicates the subclass index for node 𝑘 . r𝑘 is the con-

fidence score of node 𝑘 , and 𝜏 represents the global temperature

to control the sensitivity for confidence scores. Following this, the

row-normalized aggregation matrix R̂𝑖 = norm(R𝑖) is employed to

produce aggregated embeddings as: H′
𝑖
= R̂𝑖 Ĥ𝑖 , and the condensed

node embeddings are constructed by: H′ = [H′
1
; ...;H′

𝑐].

3.5 Graph Generation
We follow existing GC methods to provide two parameterization

methods for the condensed graph, including CGC with the graph

generation and its graphless variant CGC-X.

According to Eq. (5), we expect a symmetric encoding proce-

dure between the original and condensed graphs. Therefore, our

objective is to construct A′
and X′

satisfying Â′𝐾X′ = H′
. To this

end, we utilize the pre-defined graph structure and calculate X′
in

a close-formed solution.

Specifically, we construct the condensed graph structure accord-

ing to the condensed node embeddings [69] as follows:

A′
𝑖, 𝑗 =

{
1 if cos(H′

𝑖
,H′

𝑗
) > 𝑇

0 otherwise

, (16)

where cos(·, ·) measures the cosine similarity and 𝑇 is the hyper-

parameter for graph sparsification. To ensure that generated fea-

tures change smoothly between connected nodes, we introduce

the Dirichlet energy constraint [25] in feature reconstruction loss

and quantify the smoothness of graph signals. The optimization

objective for X′
is formulated as:

L = argmin

X′

Â′𝐾X′ − H′
2 + 𝛼tr(X′⊤L′X′), (17)

where 𝛼 balances the losses, and tr(·) denotes the matrix trace.

L′ = D′ −A′
is the Laplacian matrix, whereD′

is the degree matrix.

Consequently, the closed-form solution for Eq. (17) is presented as:

Proposition 4. Assume an undirected condensed graph S =

{A′,X′}, the closed-form solution of Eq. (17) takes the form: X′ =
(Q⊤Q + 𝛼L′)−1Q⊤H′, where Q = Â′𝐾 .

The proof is deferred to the Appendix A.4. Although the closed-

form solution involves an inverse operation, the target matrix is

small (i.e., 𝑁 ′
-by-𝑁 ′

) and can be efficiently calculated.

A Graphless Variant. Based on Remark 2, the node embedding

H′
equivalents to the condensed node feature X′

when utilizing I
as the condensed graph structure and employing non-parametric

feature propagation for graph encoding. Consequently, H′
derived

in the Class Partition module can directly serve as the condensed

graph for CGC-X, i.e., S = {I,X′} = {I,H′}.
Comparison with Coarsening Methods. Similar to our sim-

plified GC objective in Eq. (11), coarsening methods develop the

aggregation matrix to merge original nodes into super-nodes and

transform the original graph structure into a smaller graph. How-

ever, these methods are implemented within an unsupervised par-

adigm, prioritizing the preservation of graph properties such as

spectral [36] and cut [35] guarantees while disregarding label in-

formation [19]. In contrast, our CGC framework synthesizes nodes

and connections under a supervised paradigm, thereby enhancing

the utility of downstream tasks.

The detailed algorithm and time complexity analysis can be

found in Appendix B and C, respectively.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: The accuracy (%) comparison between our methods (CGC and CGC-X) and baselines. OOM means out-of-memory. The
best (bold) and runner-up (underlined) performances for (I,X′) and (A′,X′) are highlighted, respectively.
Dataset

(homo.)

𝑟
(I,X′) (A′,X′) Whole

Dataset
GCond-X GCDM-X SNTK-X SFGC GEOM CGC-X VN A-CM GCond GCDM SNTK SimGC GCSR CGC

Cora

(0.81)

1.30% 75.9±1.2 81.3±0.4 82.2±0.3 80.1±0.4 80.3±1.1 83.4±0.3 31.2±0.2 74.6±0.1 79.8±1.3 69.4±1.3 81.7±0.7 80.8±2.3 79.9±0.7 82.7±0.3
81.2±0.22.60% 75.7±0.9 81.4±0.1 82.4±0.5 81.7±0.5 81.5±0.8 83.4±0.4 65.2±0.6 72.8±0.2 80.1±0.6 77.2±0.4 81.5±0.7 80.9±2.6 80.6±0.8 83.5±0.1

5.20% 76.0±0.9 82.5±0.3 82.1±0.1 81.6±0.8 82.2±0.4 82.8±1.0 70.6±0.1 78.0±0.3 79.3±0.3 79.4±0.1 81.3±0.2 82.1±1.3 81.2±0.9 82.5±0.6

Citeseer

(0.74)

0.90% 71.4±0.8 69.0±0.5 69.9±0.4 71.4±0.5 71.1±0.2 73.1±0.8 52.2±0.4 65.1±0.1 70.5±1.2 62.0±0.1 66.4±1.0 73.8±2.5 70.2±1.1 73.9±0.8
71.7±0.11.80% 69.8±1.1 71.9±0.5 69.9±0.5 72.4±0.4 71.3±0.1 72.6±0.2 59.0±0.5 66.0±0.2 70.6±0.9 69.5±1.1 68.4±1.1 72.2±0.5 71.7±0.9 72.4±0.2

3.60% 69.4±1.4 72.8±0.6 69.1±0.4 70.6±0.7 72.1±1.0 72.9±0.2 65.3±0.5 66.1±0.2 69.8±1.4 69.8±0.2 69.8±0.8 71.1±2.8 74.0±0.4 72.5±0.1

Arxiv

(0.65)

0.05% 61.3±0.5 61.0±0.1 63.9±0.3 65.5±0.7 64.7±0.4 65.8±0.5 35.4±0.3 58.0±0.1 59.2±1.1 59.3±0.3 64.4±0.2 63.6±0.8 60.6±1.1 64.5±0.7
71.4±0.10.25% 64.2±0.4 61.2±0.1 65.5±0.1 66.1±0.4 67.5±0.3 66.8±0.1 43.5±0.2 60.0±0.3 63.2±0.3 59.6±0.4 65.1±0.8 66.4±0.3 65.4±0.8 67.0±0.3

0.50% 63.1±0.5 62.5±0.1 65.7±0.4 66.8±0.4 67.6±0.2 67.0±0.1 50.4±0.1 61.0±0.2 64.0±0.4 62.4±0.1 65.4±0.5 66.8±0.4 65.9±0.6 67.2±0.4

Flickr

(0.33)

0.10% 45.9±0.1 46.0±0.1 46.6±0.3 46.6±0.2 46.1±0.5 46.7±0.2 41.9±0.2 42.2±0.1 46.5±0.4 46.1±0.1 46.7±0.1 45.3±0.7 46.6±0.3 46.8±0.0
47.2±0.10.50% 45.0±0.2 45.6±0.1 46.7±0.1 47.0±0.1 46.2±0.2 47.0±0.1 44.5±0.1 45.2±0.3 47.1±0.1 46.8±0.1 46.8±0.1 45.6±0.4 46.6±0.2 47.1±0.1

1.00% 45.0±0.1 45.4±0.3 46.6±0.2 47.1±0.1 46.7±0.1 47.0±0.1 44.6±0.1 45.1±0.1 47.1±0.1 46.7±0.1 46.5±0.2 43.8±1.5 46.8±0.2 47.0±0.1

Reddit

(0.78)

0.05% 88.4±0.4 86.5±0.2 OOM 89.7±0.2 90.1+0.2 90.3±0.2 40.9±0.5 72.2±1.2 88.0±1.8 89.3±0.1 OOM 89.6±0.6 90.5±0.2 90.6±0.2
93.9±0.00.10% 89.3±0.1 87.2±0.1 OOM 90.0±0.3 90.4+0.1 90.8±0.0 42.8±0.8 73.5±1.0 89.6±0.7 89.7±0.2 OOM 90.6±0.3 91.2±0.2 91.4±0.1

0.20% 88.8±0.4 88.8±0.1 OOM 89.9±0.4 90.9+0.1 91.4±0.1 47.4±0.9 75.1±1.3 90.1±0.5 90.2±0.4 OOM 91.4±0.2 92.2±0.1 91.6±0.2

Products

(0.81)

0.025% 64.5±0.2 65.1±0.1 OOM 66.2±0.3 67.7±0.2 68.0±0.0 34.3±0.8 58.8±0.9 64.2±0.1 66.1±0.1 OOM 63.7±1.1 66.5±0.2 68.0±0.1
73.1±0.00.050% 65.2±0.3 66.8±0.2 OOM 67.0±0.2 68.4±0.3 68.9±0.2 35.1±0.9 60.1±0.6 64.7±0.2 67.4±0.4 OOM 64.9±1.2 67.8±0.3 68.9±0.3

0.100% 65.5±0.2 67.2±0.1 OOM 68.8±0.3 68.7±0.5 69.0±0.1 37.4±0.9 62.4±0.9 65.0±0.1 68.4±0.3 OOM 67.2±1.4 68.5±0.3 69.1±0.2

4 Experiments
Wedesign comprehensive experiments to validate the efficacy of our

proposed methods and explore the following research questions:

Q1: Compared to the other graph reduction methods, can the con-

densed graph generated by CGC and CGC-X achieve better GNN

performance?

Q2: Can the CGC and CGC-X condense the graph faster than other

GC approaches?

Q3: Can the condensed graph generated by CGC and CGC-X gen-

eralize well to different GNN architectures?

Q4: How do the different components, i.e., data augmentation, data

assessment and class partition methods affect CGC and CGC-X?

Q5: How do the different hyper-parameters affect the CGC and

CGC-X?

4.1 Experimental Setup
Datasets & Baselines.We evaluate our proposed methods on four

transductive datasets (Cora, Citeseer [26], Ogbn-arxiv (Arxiv) [20]

andOgbn-products (Products) [20]), as well as two inductive datasets

(Flickr and Reddit [59]), all with public splits. We compare 12

baselines, encompassing both graph coarsening and graph con-

densation methods with diverse optimization strategies: (1) graph

coarsening methods: Variation Neighborhoods (VN) [21, 35] and

A-ConvMatch (A-CM) [6]; (2) gradient matching-based GC meth-

ods: GCond and GCond-X [24]; (3) trajectory matching-based GC

methods: SFGC [66], GEOM [62] and GCSR [34]; (4) KRR-based GC

methods: SNTK and SNTK-X [45]; (5) distribution matching-based

GC methods: GCDM, GCDM-X [30] and SimGC [53]. Notice that

the suffix “-X” represents the graphless variant. More details about

the datasets and baselines are provided in Appendix D.1 and D.2,

respectively.

Implementations. Following GCond [24], we evaluate three con-

densation ratios (𝑟 = 𝑁 ′/𝑁) for each dataset. In the transductive

setting, 𝑁 represents the original graph size, while in the inductive

setting, 𝑁 indicates the sub-graph size observed in the training

stage. Two-layer GNNs with 256 hidden units are used for evalua-

tion. We adopt the propagation method in SGC for feature propaga-

tion and spectral clustering [12] with acceleration implementation

(i.e., FAISS [9]) for class partition (refer to Section 4.5 for results

of alternative class partition methods). For reproducibility, other

detailed implementations, hyper-parameters and computing infras-

tructure are summarised in Appendix D.3.

4.2 Effectiveness Comparison (Q1)
For the sake of fairness, we compare CGC-X and CGC with graph-

less and graph-generated GC baselines separately. The condensed

graphs generated by GC methods are evaluated to train a 2-layer

GCN and the test accuracies with standard deviation are reported in

Table 3. In the table, “Whole Dataset” refers to the GCN performance

which is trained on the original graph and we make the following

observations. Firstly, CGC-X and CGC consistently outperform

other baselines across all datasets. While GCSR achieves the best

performance on Citeseer and Reddit under the largest condensation

ratio, the performance gap between CGC and GCSR remains small.

Moreover, CGC significantly outperforms GCSR across other con-

densation ratios. Notably, on the Arxiv dataset, CGC demonstrates

substantial improvement over GCSR, highlighting the superiority

of our proposed method. Furthermore, our proposed method can

effectively mitigate the label sparsity issue in GC. On two datasets

with sparse labels, i.e., Cora and Citeseer, CGC and CGC-X consis-

tently achieve superior performances. This is contributed to the

data augmentation module which can introduce reliable nodes for

precise class distribution representation in the GC procedure.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: The condensation time (seconds) comparison of different graph reduction methods. OOM denotes out-of-memory. 𝑟 is
set as 2.60%, 1.80%, 0.25%, 0.50%, 0.10% and 0.05% for six datasets, respectively.
Dataset VN A-CM GCond GCond-X GCDM GCDM-X SNTK SNTK-X SimGC SFGC GEOM GCSR CGC CGC-X

Cora 2.7 7.6 498.9 80.2 27.3 24.0 30.8 20.3 210.6 2,524.4 3,302.2 850.4 1.4 0.4

Citeseer 3.5 141.4 479.3 70.6 62.0 51.0 19.4 18.7 227.6 3,877.0 4,230.3 488.6 1.5 0.8

Arxiv 412.6 179.9 14,876.0 13,516.7 690.0 469.0 9,353.6 9,079.9 252.4 86,288.5 108,962.5 5,283.5 8.8 7.9

Flickr 243.8 160.1 1,338.3 1,054.7 209.5 86.2 562.6 510.0 345.8 52,513.0 54,601.9 1,202.6 7.5 6.8

Reddit 464.1 192.1 21,426.5 22,154.3 921.9 534.8 OOM OOM 475.8 246,997.1 248,837.4 1,747.3 18.5 17

Products 59,074.1 6,254.6 26,789.3 24,145.4 7,897.9 5,790.6 OOM OOM 3,824.3 283,068.2 284,941.5 18,901.3 31.5 25.8

101 102 103 104 105

Condensation time (s)

58

60

62

64

66

68

A
cc

ur
ac

y
(%

)

CGC
1.1x

CGC-X
1.0x

GCond
1883.0x

GCond-X
1711.0x

GCDM
87.3x

GCDM-X
59.4x

SFGC
10922.6x

SimGC
32.0x

SNTK
1184.0x

SNTK-X
1149.4xGCSR

668.8x

GEOM
13792.7x

Arxiv

102 103 104 105

Condensation time (s)

87

88

89

90

91

92

A
cc

ur
ac

y
(%

)

CGC
1.1x

CGC-X
1.0x

GCond
1260.4x

GCond-X
1303.2x

GCDM
54.2x

GCDM-X
31.5x

SFGC
14529.2x

SimGC
28.0x

GCSR
102.8x

GEOM
14637.5x

Reddit

Figure 3: The accuracy and condensation time comparison of GC methods on Arxiv (𝑟 = 0.25%) and Reddit (𝑟 = 0.10%). SNTK and
SNTK-X are out-of-memory on Reddit dataset.

4.3 Efficiency Comparison (Q2)
We now report the condensation time of the proposed method

and baselines on different datasets. For each method, we repeated

the experiments 5 times and the averaged condensation time is

reported in Table 4. Instead of adopting the Siamese network archi-

tecture as other existing GC methods, CGC and CGC-X eliminate

the gradient-based optimization and achieve extremely efficient

condensation procedures. All datasets can be condensed within 1

minute, which is multiple orders of magnitude improvement com-

pared to other GC methods. In contrast, graph coarsening methods

use a hierarchical node aggregation paradigm to iteratively reduce

the graph size, which leads to high latency on large-scale datasets.

To facilitate a clearer comparison of the methods, Figure 3 shows

the accuracy of GC methods over their condensation time on the

transductive dataset (Arxiv) and inductive dataset (Reddit). The

relative condensation time to the fastest CGC-X is marked. Our

proposed CGC achieves the highest test accuracy, and CGC-X is

32.0× and 28.0× faster than the most efficient baseline SimGC.

4.4 Generalizability Comparison (Q3)
To compare the generalizability across different GNN architectures,

we assess the performance of GC methods under different GNN

models, including GCN, SGC, SAGE [18], APPNP [16], Cheby [5]

and GAT [44]. The detailed accuracies of graph-generated GCmeth-

ods are shown in Table 5. The results of graphless GC methods can

be found in Appendix E. We could observe that all GNNs trained

on the condensed graph generated by CGC exhibit similar levels

of performance and CGC achieves a significant improvement over

other compared baselines. This indicates the effectiveness of the

Table 5: The generalizability of GC methods with graph gen-
eration. SNTK is out-of-memory on Reddit. AVG indicates
the average value. The best performances are highlighted.
Dataset (𝑟) Method SGC GCN SAGE APPNP Cheby GAT AVG

Arxiv

(0.25%)

GCond 63.7 63.2 62.6 63.4 54.9 60.0 61.3

GCDM 61.2 59.6 61.1 62.8 55.4 61.2 60.2

SNTK 62.7 65.1 62.9 62.6 55.1 61.8 61.7

SimGC 64.3 66.4 60.4 61.5 54.7 61.1 61.4

GCSR 65.6 65.4 65.4 64.4 58.9 63.5 63.9

CGC 64.9 67.0 65.7 63.7 60.5 65.0 64.5

Flickr

(0.50%)

GCond 46.1 47.1 46.2 45.9 42.8 40.1 44.7

GCDM 44.3 46.8 45.8 45.2 41.8 41.9 44.3

SNTK 45.7 46.8 45.9 45.3 41.3 41.4 44.4

SimGC 43.4 45.6 44.4 44.8 42.8 41.2 43.7

GCSR 46.3 46.6 46.6 46.3 44.9 45.6 46.1

CGC 47.3 47.1 46.6 46.9 45.7 46.1 46.6

Reddit

(0.10%)

GCond 89.6 89.6 89.1 87.8 75.5 60.2 82.0

GCDM 88.0 89.7 89.3 88.9 74.9 69.3 83.3

SimGC 90.8 90.6 86.2 88.6 76.2 65.1 82.9

GCSR 91.0 91.2 91.0 88.9 80.4 86.4 88.2

CGC 91.3 91.4 90.2 88.7 81.7 89.1 88.7

pre-defined graph structure in our proposed method, which cap-

tures the relationship among aggregated features and encourages

smoothness among connected condensed nodes.

4.5 Ablation Study (Q4)
Data Augmentation. To validate the impact of data augmenta-

tion, CGC and CGC-X are evaluated by disabling the augmentation

component (termed “w/o AUG”) and results are shown in Table 6.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 6: The ablation study. 𝑟 is set as 0.25%, 0.50% and 0.10%
for evaluated datasets, respectively.

Method Arxiv Flickr Reddit

CGC-X w/o AUG 66.5+0.1 46.6+0.2 90.7+0.1

CGC-X w/o CAL 66.3+0.2 46.2+0.2 90.6+0.1

CGC-X w K-means 66.7+0.1 46.9+0.1 90.7+0.1

CGC-X 66.8+0.1 47.0+0.1 90.8+0.0

CGC w/o AUG 66.4+0.1 46.7+0.1 90.9+0.1

CGC w/o CAL 66.5+0.2 46.3+0.1 91.0+0.1

CGC w K-means 67.2+0.2 46.9+0.2 91.3+0.2

CGC 67.0+0.3 47.1+0.1 91.4+0.1

Table 7: The performance comparison of different propaga-
tionmethods. 𝑟 is set as 2.60%, 1.80%, 0.25%, 0.50% and 0.10% for
five datasets, respectively. OOM indicates the out-of-memory.
The best performances are highlighted.

Dataset

CGC-X CGC

SGC PPR SAGE SGC PPR SAGE

Cora 83.4+0.4 81.0+0.5 81.1±0.5 83.5+0.1 80.9+0.7 80.0±1.8

Citeseer 72.6+0.2 70.5+2.0 73.0±0.2 72.4+0.2 70.5+2.0 72.9±0.3
Arxiv 66.8+0.1 66.3±0.2 65.4+0.6 67.0+0.3 65.7+0.1 65.9+0.3

Flickr 47.0+0.1 47.0+0.1 46.7+0.2 47.1+0.1 47.0+0.1 46.5+0.0

Reddit 90.8+0.0 90.9+0.1 88.7±0.7 91.4+0.1 91.0+0.1 89.5±0.3

Due to the data augmentation, our proposed methods can intro-

duce more labeled nodes in GC and facilitate a more precise class

representation, leading to better performance on all the datasets.

Data Assessment. We compare the results of CGC and CGC-X

with those obtained by removing the calibration of the condensed

node embeddings (referred to as "w/o CAL"), as shown in Table

6. When the class-wise aggregation matrix is replaced by Eq. (7),

the confidence score for each node is disregarded, leading to equal

aggregation of all nodes within the clusters. This modification

results in a performance drop across all datasets and verifies the

effectiveness of our data assessment module.

PartitionMethod. In addition to spectral clustering, we also tested
K-means for class partitioning, with results presented in Table 6.

The similar performance levels across methods indicate that our

proposed method is insensitive to the choice of partition method.

Propagation Method. We now represent the effect of different

propagation methods in our proposed method. Besides the propaga-

tion method in SGC, we further evaluate two propagation methods,

including personalised PageRank (PPR) [39] and SAGE [18]. The test

accuracies are shown in Table 7. We can observe that performance

varies for different propagation methods on different datasets. For

instance, SAGE achieves better performance on Citeseer. PPR out-

performs other methods on Reddit dataset. These results verify the

generalization of our proposed method and the proper propagation

method should be selected for different datasets.

4.6 Hyper-parameter Sensitivity Analysis (Q5)
Due to the training-free nature of our proposed methods, the num-

ber of hyper-parameters is significantly reduced. CGC contains

four hyper-parameters: the constraint weight 𝛼 , adjacency ma-

trix threshold 𝑇 , temperature 𝜏 , and augmentation ratio 𝑝 . Since

𝑇 and 𝛼 are specific to the condensed graph generation, CGC-X

contains only two hyper-parameters, making it the method with

the fewest hyper-parameters among existing graph condensation

approaches [54].

We examine the impact of these hyper-parameters on ourmethod’s

performance, with the results presented in Figure 4. A higher 𝑇

generally improves performance, indicating that a sparser adja-

cency matrix enhances node representation, in line with findings

from [24]. The optimal value for 𝛼 should be selected to balance

node smoothness with feature reconstruction. Additionally, 𝜏 con-

trols the contribution of nodes in the aggregation, and more com-

plex datasets like Flickr benefit from a smaller 𝜏 , which emphasizes

the reliability of node scores. The augmentation ratio 𝑝 determines

the number of augmented nodes, with increased augmentations

leading to better results. However, an excessive number of aug-

mented nodes can degrade performance and slow down the con-

densation process.

It is worth noting that the rapid condensation process of our

method could significantly simplify hyper-parameter tuning, em-

phasizing the practical utility and superior effectiveness of our

proposed method.

0.3 0.5 1 2 3
77

80

83

A
cc

ur
ac

y
(%

)

0.7 0.7
5 0.8 0.8

5 0.9 0.9
5

T

77

80

83

10 1 0.8 0.5 0.3 0.10.0
1

77

80

83

10 30 50 80 10
0

p

77

80

83

CGC-X CGC

0.3 0.5 1 2 3
45

46

47

A
cc

ur
ac

y
(%

)

0.7 0.7
5 0.8 0.8

5 0.9 0.9
5

T

45

46

47

10 1 0.8 0.5 0.3 0.10.0
1

45

46

47

10 30 50 80 10
0

p

45

46

47

Figure 4: Test accuracy across varying hyper-parameters: the
first row shows results for Cora (𝑟 = 2.60%), and the second
row for Flickr (𝑟 = 0.50%).

5 Conclusion
In this paper, we present CGC, a training-free GC framework de-

signed for efficient condensed graph generalization. CGC trans-

forms the class-level distribution matching paradigm identified in

existing GC methods into a class partition problem, enabling the

EM-based clustering solution for complex condensation optimiza-

tion. Moreover, CGC incorporates the pre-defined graph structure

and closed-form feature solution, facilitating efficient condensed

graph generation. Despite achieving a fast condensation procedure,

this work primarily focuses on simple attribute graphs. Future work

could extend the class partition framework to more practical graphs,

such as heterophilic graphs, digraphs, and dynamic graphs, thereby

broadening the horizons of GC applications.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Gecia Bravo Hermsdorff and Lee Gunderson. 2019. A unifying framework for

spectrum-preserving graph sparsification and coarsening. Advances in Neural
Information Processing Systems 32 (2019).

[2] Chen Cai, Dingkang Wang, and Yusu Wang. 2021. Graph coarsening with neural

networks. arXiv preprint arXiv:2102.01350 (2021).
[3] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and

Jun-Yan Zhu. 2022. Dataset distillation by matching training trajectories. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4750–4759.

[4] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang.

2021. A unified lottery ticket hypothesis for graph neural networks. In Interna-
tional conference on machine learning. PMLR, 1695–1706.

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In

Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain.

[6] Charles Dickens, Edward Huang, Aishwarya Reganti, Jiong Zhu, Karthik Subbian,

and Danai Koutra. 2024. Graph coarsening via convolution matching for scalable

graph neural network training. In Companion Proceedings of the ACM on Web
Conference 2024. 1502–1510.

[7] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. 2022. Data augmentation

for deep graph learning: A survey. ACM SIGKDD Explorations Newsletter 24, 2
(2022), 61–77.

[8] Mucong Ding, Xiaoyu Liu, Tahseen Rabbani, Teresa Ranadive, Tai-Ching Tuan,

and Furong Huang. 2022. Faster Hyperparameter Search for GNNs via Calibrated

Dataset Condensation. arXiv (2022).

[9] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,

Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.

The Faiss library. arXiv preprint arXiv:2401.08281 (2024).
[10] Junfeng Fang, Xinglin Li, Yongduo Sui, Yuan Gao, Guibin Zhang, Kun Wang,

XiangWang, and Xiangnan He. 2024. Exgc: Bridging efficiency and explainability

in graph condensation. arXiv preprint arXiv:2402.05962 (2024).
[11] Qizhang Feng, Zhimeng Jiang, Ruiquan Li, Yicheng Wang, Na Zou, Jiang Bian,

and Xia Hu. 2023. Fair Graph Distillation. In NeurIPS.
[12] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. 2023. Scalable Attributed-

Graph Subspace Clustering. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 37.

[13] Jian Gao and JiansheWu. 2023. Multiple sparse graphs condensation. Knowledge-
Based Systems 278 (2023), 110904.

[14] Xinyi Gao, Tong Chen, Yilong Zang, Wentao Zhang, Quoc Viet Hung Nguyen,

Kai Zheng, and Hongzhi Yin. 2024. Graph Condensation for Inductive Node

Representation Learning. In ICDE.
[15] Xinyi Gao, Junliang Yu, Wei Jiang, Tong Chen, Wentao Zhang, and Hongzhi Yin.

2024. Graph condensation: A survey. arXiv preprint arXiv:2401.11720 (2024).
[16] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2019.

Predict then Propagate: Graph Neural Networks meet Personalized PageRank.

In International Conference on Learning Representations (ICLR).
[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In International
Conference on Machine Learning. PMLR, 1263–1272.

[18] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. 1024–1034.

[19] Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B Aditya Prakash,

and Wei Jin. 2024. A Comprehensive Survey on Graph Reduction: Sparsification,

Coarsening, and Condensation. IJCAI (2024).
[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,

Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for

machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[21] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.

Scaling up graph neural networks via graph coarsening. In Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining. 675–684.

[22] Bo Hui, Da Yan, Xiaolong Ma, and Wei-Shinn Ku. 2023. Rethinking Graph

Lottery Tickets: Graph Sparsity Matters. International Conference on Learning
Representations (ICLR) (2023).

[23] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang,

and Bing Yin. 2022. Condensing Graphs via One-Step Gradient Matching. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 720–730.

[24] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil

Shah. 2022. Graph Condensation for Graph Neural Networks. In International
Conference on Learning Representations.

[25] Vassilis Kalofolias. 2016. How to learn a graph from smooth signals. In Artificial
intelligence and statistics. PMLR, 920–929.

[26] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

[27] Manoj Kumar, Anurag Sharma, Shashwat Saxena, and Sandeep Kumar. 2023.

Featured graph coarsening with similarity guarantees. In International Conference
on Machine Learning. PMLR, 17953–17975.

[28] Shiye Lei and Dacheng Tao. 2024. A Comprehensive Survey of Dataset Distilla-

tion. TPAMI (2024).
[29] Xinglin Li, Kun Wang, Hanhui Deng, Yuxuan Liang, and Di Wu. 2023. Attend

who is weak: Enhancing graph condensation via cross-free adversarial training.

arXiv preprint arXiv:2311.15772 (2023).
[30] Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. 2022. Graph condensa-

tion via receptive field distribution matching. arXiv preprint arXiv:2206.13697
(2022).

[31] Yang Liu, Deyu Bo, and Chuan Shi. 2024. Graph Condensation via Eigenbasis

Matching. ICML (2024).

[32] Yilun Liu, Ruihong Qiu, and Zi Huang. 2023. CaT: Balanced Continual Graph

Learning with Graph Condensation. In ICDM.

[33] Yezi Liu and Yanning Shen. 2024. TinyGraph: Joint Feature and Node Condensa-

tion for Graph Neural Networks. arXiv preprint arXiv:2407.08064 (2024).
[34] Zhanyu Liu, Chaolv Zeng, and Guanjie Zheng. 2024. Graph Data Condensation

via Self-expressive Graph Structure Reconstruction. SIGKDD (2024).

[35] Andreas Loukas. 2019. Graph Reduction with Spectral and Cut Guarantees. J.
Mach. Learn. Res. 116 (2019).

[36] Andreas Loukas and Pierre Vandergheynst. 2018. Spectrally Approximating Large

Graphs with Smaller Graphs. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018 (Proceedings of Machine Learning Research).

[37] Runze Mao, Wenqi Fan, and Qing Li. 2023. Gcare: Mitigating subgroup unfairness

in graph condensation through adversarial regularization. Applied Sciences 13,
16 (2023), 9166.

[38] TimothyNguyen, Zhourong Chen, and Jaehoon Lee. 2021. DatasetMeta-Learning

from Kernel Ridge-Regression. In ICLR.
[39] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[40] Arash Rasti-Meymandi, Ahmad Sajedi, Zhaopan Xu, and Konstantinos N Pla-

taniotis. 2024. GSTAM: Efficient Graph Distillation with Structural Attention-

Matching. arXiv preprint arXiv:2408.16871 (2024).
[41] Si Si, Felix Yu, Ankit Singh Rawat, Cho-Jui Hsieh, and Sanjiv Kumar. 2022. Serving

Graph Compression for Graph Neural Networks. In The Eleventh International
Conference on Learning Representations.

[42] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-

supervised and semi-supervised graph-level representation learning via mutual

information maximization. arXiv preprint arXiv:1908.01000 (2019).
[43] Xiangguo Sun, Hong Cheng, Bo Liu, Jia Li, Hongyang Chen, Guandong Xu,

and Hongzhi Yin. 2023. Self-supervised hypergraph representation learning

for sociological analysis. IEEE Transactions on Knowledge and Data Engineering
(2023).

[44] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada.

[45] Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li. 2024. Fast graph conden-

sation with structure-based neural tangent kernel. WWW (2024).

[46] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. 2018.

Dataset distillation. ArXiv preprint (2018).
[47] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S Yu Philip. 2022.

A survey on heterogeneous graph embedding: methods, techniques, applications

and sources. IEEE Transactions on Big Data 9, 2 (2022), 415–436.
[48] Yuxiang Wang, Xiao Yan, Shiyu Jin, Hao Huang, Quanqing Xu, Qingchen Zhang,

Bo Du, and Jiawei Jiang. 2024. Self-Supervised Learning for Graph Dataset

Condensation. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 3289–3298.

[49] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and

Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In

Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA. 6861–6871.

[50] Jiahao Wu, Ning Lu, Zeiyu Dai, Wenqi Fan, Shengcai Liu, Qing Li, and Ke Tang.

2024. Backdoor Graph Condensation. arXiv preprint arXiv:2407.11025 (2024).
[51] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems (2020).

[52] Zhenbang Xiao, Shunyu Liu, Yu Wang, Tongya Zheng, and Mingli Song. 2024.

Disentangled condensation for large-scale graphs. arXiv preprint arXiv:2401.12231
(2024).

[53] Zhenbang Xiao, YuWang, Shunyu Liu, HuiqiongWang, Mingli Song, and Tongya

Zheng. 2024. Simple Graph Condensation. Machine Learning and Knowledge

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Discovery in Databases (ECML PKDD) (2024).
[54] Hongjia Xu, Liangliang Zhang, Yao Ma, Sheng Zhou, Zhuonan Zheng, and Bu

Jiajun. 2024. A Survey on Graph Condensation. arXiv preprint arXiv:2402.02000
(2024).

[55] Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao

Yang, and Hanghang Tong. 2023. Kernel Ridge Regression-Based Graph Dataset

Distillation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 2850–2861.

[56] Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang,

Yang You, and Jianxin Li. 2023. Does Graph Distillation See Like Vision Dataset

Counterpart?. In NeurIPS.
[57] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2023.

Self-supervised learning for recommender systems: A survey. IEEE Transactions
on Knowledge and Data Engineering (2023).

[58] Ruonan Yu, Songhua Liu, and Xinchao Wang. 2023. Dataset distillation: A com-

prehensive review. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2023).

[59] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-

tor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning

Method. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

[60] Tianle Zhang, Yuchen Zhang, Kun Wang, Kai Wang, Beining Yang, Kaipeng

Zhang, Wenqi Shao, Ping Liu, Joey Tianyi Zhou, and Yang You. 2024. Two Trades

is not Baffled: Condense Graph via Crafting Rational Gradient Matching. arXiv
preprint arXiv:2402.04924 (2024).

[61] Wentao Zhang, Mingyu Yang, Zeang Sheng, Yang Li, Wen Ouyang, Yangyu Tao,

Zhi Yang, and Bin Cui. 2021. Node Dependent Local Smoothing for Scalable

Graph Learning. Advances in Neural Information Processing Systems 34 (2021).
[62] Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier

Bresson, Wei Jin, and Yang You. 2024. Navigating Complexity: Toward Lossless

Graph Condensation via Expanding Window Matching. ICML (2024).

[63] Bo Zhao andHakan Bilen. 2023. Dataset condensationwith distributionmatching.

In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. 6514–6523.

[64] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2021. Dataset Condensation

with Gradient Matching. In ICLR.
[65] Jianan Zhao, Hesham Mostafa, Michael Galkin, Michael Bronstein, Zhaocheng

Zhu, and Jian Tang. 2024. GraphAny: A FoundationModel for Node Classification

on Any Graph. arXiv preprint arXiv:2405.20445 (2024).
[66] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan

Zhu, and Shirui Pan. 2023. Structure-free Graph Condensation: From Large-scale

Graphs to Condensed Graph-free Data. In NeurIPS.
[67] Yizhen Zheng, Shirui Pan, Vincent Lee, Yu Zheng, and Philip S Yu. 2022. Rethink-

ing and scaling up graph contrastive learning: An extremely efficient approach

with group discrimination. Advances in Neural Information Processing Systems
35 (2022), 10809–10820.

[68] Hao Zhu and Piotr Koniusz. 2020. Simple spectral graph convolution. In Interna-
tional Conference on Learning Representations.

[69] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang.

2021. Deep graph structure learning for robust representations: A survey. arXiv
preprint arXiv:2103.03036 14 (2021), 1–1.

Appendix

Contents
A Proof of Propositions 10

A.1 Proof of Proposition 1 10

A.2 Proof of Proposition 2 11

A.3 Proof of Proposition 3 11

A.4 Proof of Proposition 4 11

B Algorithm 11

C Time Complexity Analysis 12

D Experimental Setup Details 12

D.1 Dataset Statistics 12

D.2 Baselines 12

D.3 Implementations 12

E Generalizability Comparison of Graphless Methods 13

F Related Work 13

A Proof of Propositions
A.1 Proof of Proposition 1

Proposition 1. The performance matching objective is equivalent
to the optimal parameter matching objective.

The proof of Proposition 1 builds on the proposition from the

dataset distillation survey in CV [58]. To ensure self-containment,

we detail and expand propositions within the context of graph

theory.

Proof. Performance matching introduce KRR in optimization

and objectives for T and S are formulated as:

argmin

Θ
∥ZΘ − Y∥2 + 𝜆 ∥Θ∥2 ,

argmin

Θ

Z′Θ − Y′2 + 𝜆 ∥Θ∥2 ,
(18)

where Z and Z′
are node embeddings for the original graph and the

condensed graph, respectively. Θ is the learnable weight matrix and

𝜆 is a small constant weight of the regularization term for numerical

stability. Their closed-form optimal solutions are:

Θ∗ = Z⊤ (
ZZ⊤ + 𝜆I

)−1 Y,

Θ′∗ = Z′⊤ (
Z′Z′⊤ + 𝜆I

)−1 Y′ .
(19)

We simplifies the regularization term in KRR model and assume

𝜆=0. Then, the optimal parameter matching objective, expressed in

the form of a least squares function, is formulated as:

L𝑃𝑀 = argmin

Z′

Θ∗ − Θ′∗2 ,
= argmin

Z′

Z⊤ (
ZZ⊤)−1 Y − Z′⊤ (

Z′Z′⊤)−1 Y′
2 ,

= argmin

Z′

(Z⊤Z
)−1 Z⊤Y − Z′⊤ (

Z′Z′⊤)−1 Y′
2 ,

= argmin

Z′

(Z⊤Z
)−1 Z⊤Y −

(
Z⊤Z

)−1 Z⊤ZZ′⊤ (
Z′Z′⊤)−1 Y′

2 ,
= argmin

Z′

((Z⊤Z
)−1 Z⊤

) (
Y − ZZ′⊤ (

Z′Z′⊤)−1 Y′
)2 ,

= argmin

Z′

Y − ZZ′⊤ (
Z′Z′⊤)−1 Y′

2 .
(20)

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

The final step is justified by the independence of

(
Z⊤Z

)−1 Z⊤
from

Z′
. Then, the r.h.s of Eq. (20) is the performance matching objective.

□

A.2 Proof of Proposition 2
Proposition 2. The distribution matching objective represents a

simplified formulation of the performance matching, omitting feature
correlation considerations.

Proof. According to Proposition 1, the objective of performance

matching can be formulated as:

L𝑃𝑀 = argmin

Z′

(Z⊤Z
)−1 Z⊤Y −

(
Z′⊤Z′)−1 Z′⊤Y′

2 ,
= argmin

Z′

𝑐∑︁
𝑖=1

(Z⊤
𝑖 Z𝑖

)−1 Z⊤
𝑖 Y𝑖 −

(
Z′⊤
𝑖 Z′

𝑖

)−1 Z′⊤
𝑖 Y′

𝑖

2 , (21)

where subscript 𝑖 denotes the class, with Z𝑖 and Z′
𝑖
representing

original and condensed node embeddings in class 𝑖 . Y𝑖 and Y′
𝑖
repre-

senting one-hot labels for nodes in class 𝑖 . The distributionmatching

objective is calculated for class prototypes separately and formu-

lated as:

L𝐷𝑀 = argmin

Z′

P′Z′ − PZ
2 ,

= argmin

Z′

𝑐∑︁
𝑖=1

 1

|𝐶𝑖 |
Y⊤
𝑖 Z𝑖 −

1��𝐶′
𝑖

��Y′⊤
𝑖 Z′

𝑖

2 ,
= argmin

Z′

𝑐∑︁
𝑖=1

 1

|𝐶𝑖 |
Z⊤
𝑖 Y𝑖 −

1��𝐶′
𝑖

��Z′⊤
𝑖 Y′

𝑖

2 ,
(22)

where

��𝐶′
𝑖

��
and |𝐶𝑖 | represent the sizes of class 𝑖 in S and T , respec-

tively. By comparing Eq. (21) and Eq. (22), it can be deduced that the

performance matching objective can be transformed into distribu-

tion matching by excluding feature correlations and incorporating

class size normalization.

□

A.3 Proof of Proposition 3
Proposition 3. The distribution matching objective with a feature

correlation constraint provides an upper bound for the parameter
matching objective.

The proof of Proposition 3 is derived by extending the proposi-

tion in [58].

Proof. Without loss of generality, we take the representative

gradientmatching objective utilized in GCond for illustration, where

SGC is utilized as the relay model. Therefore, the node embeddings

are represented by:

Z′ = H′Θ, Z = HΘ, (23)

where Θ is the learnable weight matrix to transform propagated

features H′
and H. Due to that the objective of gradient matching

is calculated for each class separately, we define the losses for T
and S as:

LT
𝑖 =

1

2

∥H𝑖Θ − Y𝑖 ∥2 ,

LS
𝑖 =

1

2

H′
𝑖Θ − Y′

𝑖

2 , (24)

where H𝑖 and H′
𝑖
represent original and condensed propagated

features in class 𝑖 . Y𝑖 and Y′
𝑖
represent one-hot labels for nodes

in class 𝑖 . For simplicity, we specify the distance function D in

the gradient matching objective as the normalized least squares

function. Consequently, the objective function of gradient matching

is formulated as

L𝐺𝑀 =

𝑐∑︁
𝑖=1

 1

|𝐶𝑖 |
∇ΘLT

𝑖 − 1��𝐶′
𝑖

�� ∇ΘLS
𝑖

2 ,
=

𝑐∑︁
𝑖=1

 1

|𝐶𝑖 |
(H⊤

𝑖 H𝑖Θ − H⊤
𝑖 Y𝑖) −

1��𝐶′
𝑖

�� (H′⊤
𝑖 H′

𝑖Θ − H′⊤
𝑖 Y′

𝑖)
2 ,

=

𝑐∑︁
𝑖=1

 1

|𝐶𝑖 |
H⊤
𝑖 H𝑖Θ − 1��𝐶′

𝑖

��H′⊤
𝑖 H′

𝑖Θ − 1

|𝐶𝑖 |
H⊤
𝑖 Y𝑖 +

1��𝐶′
𝑖

��H′⊤
𝑖 Y′

𝑖

2 ,
≤

𝑐∑︁
𝑖=1

 1

|𝐶𝑖 |
H⊤
𝑖 Y𝑖 −

1��𝐶′
𝑖

��H′⊤
𝑖 Y′

𝑖

2 + 𝑐∑︁
𝑖=1

 1

|𝐶𝑖 |
H⊤
𝑖 H𝑖 −

1��𝐶′
𝑖

��H′⊤
𝑖 H′

𝑖

2 ∥Θ∥2 ,

=

𝑐∑︁
𝑖=1

 1

|𝐶𝑖 |
Y⊤
𝑖 H𝑖 −

1��𝐶′
𝑖

��Y′⊤
𝑖 H′

𝑖

2 + 𝑐∑︁
𝑖=1

 1

|𝐶𝑖 |
H⊤
𝑖 H𝑖 −

1��𝐶′
𝑖

��H′⊤
𝑖 H′

𝑖

2 ∥Θ∥2 .

(25)

The first term in r.h.s is the distribution matching objective and the

second term quantifies differences in class-wise feature correlations.

□

A.4 Proof of Proposition 4
Proposition 4. Assume an undirected condensed graph S =

{A′,X′}, the closed-form solution of Eq. (17) take the form: X′ =

(Q⊤Q + 𝛼L′)−1Q⊤H′, where Q = Â′𝐾 .

The proof of Proposition 4 is derived by extending the proposi-

tion in [27].

Proof. Given an undirected graph S = {X′,A′}, L′ ∈ R𝑁
′×𝑁 ′

is defined as the Laplacian matrix of S by L′ = D′ − A′
, where D′

is the degree matrix. To solve the optimization problem in Eq. (17),

we first calculate ∇L(X′) and ∇2L(X′) as:
∇L(X′) = 2Q⊤ (QX′ − H′) + 𝛼 (L′ + L′⊤)X′

= 2(Q⊤Q + 𝛼L′)X′ − 2Q⊤H′ .
(26)

∇2L(X′) = 2(Q⊤Q + 𝛼L′). (27)

According to the definition of A′
in Eq. (16), L′ and Q are the pos-

itive semi-definite matrices. Therefore, ∇2L(X′) is the positive

semi-definite matrix and the optimization problem is a convex opti-

mization problem. We can get the closed-form solution by calculate

∇L(X′) = 0 and X′ = (Q⊤Q + 𝛼L′)−1Q⊤H′
.

□

B Algorithm
The detailed algorithm of CGC and CGC-X is shown in Algorithm

1. In detail, we first propagate node features according to the graph

structure via non-parametric propagation methods. Consequently,

a linear model is generated to assess embeddings and augmented

features are sampled according to evaluation results. Then, em-

beddings in each class are partitioned by clustering method (i.e.,

Clustering(·) in line 8) to generate aggregated embeddings H′
. H′

can serve as the condensed node feature for CGC-X. If condensed

graph structure is required, A′
and X′

can be generated by Eq. (16)

and Eq. (17), respectively.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Algorithm 1: The framework of CGC and CGC-X.

1 Input: Original graph T = {A,X}, Y and pre-defined

condensed graph label Y′

2 Output: Condensed graph S
/* Feature Propagation */

3 Generate propagated features H(𝑙)
according to Eq. (12).

/* Data Assessment */

4 Generate linear model and evaluate generated features.

/* Data Augmentation */

5 Sample features according to class prediction errors.

/* Class Partition */

6 Categorise H𝑐𝑜𝑛𝑑 into 𝑐 classes {Ĥ1, · · · , Ĥ𝑐 } according to

y𝑐𝑜𝑛𝑑 .
7 for 𝑖 = 1, . . . , 𝑐 do
8 Compute H′

𝑖
= Clustering(Ĥ𝑖).

9 Generate H′ = [H′
1
; . . . ;H′

𝑐].
/* Graph Generation */

10 if CGC-X then
11 Return: S = {I,H′}
12 else if CGC then
13 Generate A′

according to Eq. (16).

14 Generate X′
by solving Eq. (17).

15 Return: S = {A′,X′}

C Time Complexity Analysis
The pipeline of CGC consists of five components: feature prop-

agation, data assessment, data augmentation, class partition and

graph generalization. We analyse the time complexity for each

component separately. (1) Feature propagation contains the 𝐾 step

graph convolution and time complexity is: O (𝐾𝐸𝑑), where 𝑑 is

the node dimension and 𝐸 is the number of edges. (2) The solu-

tion of linear model involves the pseudo inverse of propagated

features. In practice, this least squares problem in Eq. (13) can be

effectively solved by torch.linalg.lstsq and the time complexity is

O
(
𝑁𝑑2

)
, where 𝑁 denotes the number of nodes. In addition, the

time complexity of node embedding prediction is O (𝑑𝐾𝑁𝑐), where
𝑐 represents the number of classes. (3) By leveraging propagated

nodes with smaller depth as augmentations, the data augmentation

module requires no additional computations. (4) Class partition

executes the EM-based clustering on each class. Take K-means

as an example, the time complexity for class 𝑖 is: O
(��𝐶′

𝑖

�� |𝐶𝑖 | 𝑑𝑡) ,
where 𝑡 indicates the number of iteration for K-means.

��𝐶′
𝑖

��
and

|𝐶𝑖 | represent the size of class 𝑖 in S and T respectively. (5) Graph

generation contains the adjacency matrix generation and feature

calculation. The former requires the pair-wise similarity calculation

whose complexity isO
(
𝑁 ′2𝑑

)
. The closed-form solution of the node

feature requires the inverse operation and the time complexity is

O
(
𝑁 ′3 + 𝑁 ′2𝑑 + (𝐾 + 1)𝑁 ′𝐸′ + 𝑑𝐸′

)
, where 𝐸′ is the edge number

of condensed graph.

In summary, the time complexity of CGC is dominated by class

partition and node feature generation. However, due to the small

size of the condensed graph and well-established clustering accel-

eration methods (e.g., FAISS [9]), CGC can be efficiently executed.

D Experimental Setup Details
D.1 Dataset Statistics
We evaluate our proposed methods on four transductive datasets,

i.e., Cora, Citeseer [26], Ogbn-arxiv (Arxiv) [20] and Ogbn-products

(Products) [20], as well as two inductive datasets, i.e., Flickr and

Reddit [59]. We adopt public splits throughout the experiments and

dataset statistics are shown in Table 8.

D.2 Baselines
We compare our proposed methods against 12 baselines, including

graph coarsening method and GC methods with diverse optimiza-

tion strategies:

(1) Variation Neighborhoods (VN) [21, 35]. The conventional graph

coarsening method that leverages the partition matrix to construct

the super-nodes and super-edges.

(2) A-ConvMatch (A-CM) [6]. A graph coarsening method hier-

archically reduces the graph size while preserving the output of

graph convolutions.

(3) GCond and GCond-X [24]. The first GC method that utilizes

the gradient matching to align the model parameters derived from

both graphs.

(4) GCDM and GCDM-X [30]. An efficient GC method that gener-

ates condensed graphs based on distribution matching by optimiz-

ing the maximum mean discrepancy between class prototypes.

(5) GC-SNTK and GC-SNTK-X [45]. An efficient GC method lever-

ages kernel ridge regression with a structure-based neural tangent

kernel to simplify the bi-level optimization process.

(6) SFGC [66]. A graphless GC method that aligns long-term model

learning behaviors through trajectory matching.

(7) SimGC [53]. An efficient GC method with the graph generation

that introduces the pre-trained model in distribution matching.

(8) GEOM [62]. A graphless GC method that explores the difficult

samples via trajectory matching.

(9) GCSR [34]. A trajectory matching-based GC method with the

self-expressive condensed graph structure.

D.3 Implementations
Condensation Ratios.We set 𝑟 following GCond. For transductive

datasets, 𝑟 is chosen as the {25%, 50%, 100%}, {25%, 50%, 100%}, 0.1%,

0.5%, 1%} and {0.32%, 0.63%, 1.26%} of the labeled nodes for Cora,

Citeseer, Arxiv and Products, respectively. For Inductive datasets,

𝑟 is set as {0.1%, 0.5%, 0.1%} and {0.05%, 0.1%, 0.2%} for Flickr and

Reddit.

Hyper-parameters.The hyper-parameters are determined through

the grid search on the validation set. The feature proportion depth

of the original graph and the condensed graph is set as 𝐾 = 2

for all datasets. The temperature 𝜏 is optimized from the set {10,

1, 0.8, 0.5, 0.3, 0.1, 0.01} and the augmentation ratio 𝑝 is searched

within the range [0, 100]. For the two hyper-parameters specific to

CGC, the weight 𝛼 is tuned from the set {0.3, 0.5, 1, 2, 3}, and the

threshold𝑇 is explored within the range [0.8, 1). We use the ADAM

optimization algorithm to train all the models. The learning rate

for the condensation process is determined through a search over

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 8: The statistics of datasets used in experiments.
Dataset #Nodes #Edges #Classes #Features Training/Validation/Test Task type

Cora 2,708 5,429 7 1,433 140/500/1,000 Transductive

Citeseer 3,327 4,732 6 3,703 120/500/1,000 Transductive

Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603 Transductive

Ogbn-products 2,449,029 61,859,140 47 100 196,615/39,323/2,213,091 Transductive

Flickr 89,250 899,756 7 500 44,625/22,312/22,313 Inductive

Reddit 232,965 23,213,838 41 602 153,932/23,699/55,334 Inductive

Table 9: The generalizability comparison of graphless GC
methods. SNTK-X is out-of-memory on Reddit dataset. AVG
indicates the average value. The best performances are high-
lighted.
Dataset (𝑟) Method SGC GCN SAGE APPNP Cheby AVG

Arxiv

(0.25%)

GCond-X 64.7 64.2 64.4 61.5 59.5 62.9

GCDM-X 64.4 61.2 63.4 60.5 60.2 61.9

SNTK-X 64.0 65.5 62.4 61.8 58.7 62.5

SFGC 64.8 66.1 64.8 63.9 60.7 64.1

GEOM 65.0 67.5 64.9 62.5 60.9 64.2

CGC-X 66.3 66.8 65.9 63.0 61.3 64.7

Flickr

(0.50%)

GCond-X 44.4 45.0 44.7 44.6 42.3 44.2

GCDM-X 45.8 45.6 42.6 42.4 42.4 43.8

SNTK-X 44.0 46.7 41.9 41.0 41.4 43.0

SFGC 47.0 47.0 42.5 40.7 45.4 44.5

GEOM 46.5 46.2 42.7 42.6 46.1 44.8

CGC-X 47.2 47.0 46.6 46.8 46.4 46.8

Reddit

(0.10%)

GCond-X 91.0 89.3 89.3 78.7 74.0 84.5

GCDM-X 90.9 87.2 89.2 79.1 75.1 84.3

SFGC 89.5 90.0 90.3 88.3 82.8 88.2

GEOM 89.6 90.4 90.5 89.4 82.6 88.5

CGC-X 91.5 90.8 90.9 89.0 82.6 89.0

the set {0.01, 0.001, 0.0001}. The weight decay is 5e-4. Dropout is

searched from [0, 1).

Computing Infrastructure. The codes are written in Python 3.9

and Pytorch 1.12.1. CGC and CGC-X are executed on CPUs and

all GNN models are trained on GPUs. The experiments for Ogbn-

products were conducted on a server equippedwith Intel(R) Xeon(R)

Gold 6326 CPUs at 2.90GHz and NVIDIA GeForce A40 GPUs with

48GB of memory. Other experiments were carried out on a server

featuring Intel(R) Xeon(R) Gold 6128 CPUs at 3.40GHz and NVIDIA

GeForce RTX 2080 Ti GPUs with 11GB of memory.

E Generalizability Comparison of Graphless
Methods

We compare the GNN architecture generalizability of graphless

GC methods, where {I,X′} is used in GNN training. Due to the

absence of condensed graph structure, we evaluate GNNs including

GCN, SGC, SAGE, APPNP and Cheby. According to the results

in Table 9, we could observe that our proposed CGC-X achieves

the best generalizability across different datasets and architectures.

Especially on the dataset Flickr, where the average improvements

are 2.3%. This verifies the high quality of the condensed feature

and the effectiveness of the class-to-node distribution matching

strategy.

F Related Work
Graph Condensation. GC [15, 19, 48, 54] has recently garnered

significant attention as a data-centric approach. Beyond the diverse

optimization strategies discussed in Section 2, other research efforts

have focused on enhancing these optimization strategies [29, 33, 40,

52, 60, 62] or developing superior condensed graph structures [13,

34] to improve condensed graph quality. Additionally, there is an

increasing emphasis on enhancing other aspects of models trained

on condensed graphs, such as generalizability [56], fairness [11, 37],

security [50] and explainability [10].

Graph Sparsification & Coarsening. Early explorations into

graph size reduction primarily focus on graph sparsification [4, 22]

and coarsening techniques [2]. These methods aim to eliminate

redundant edges and merge similar nodes while preserving es-

sential graph characteristics, such as the largest principal eigen-

values [36] and Laplacian pseudoinverse [1]. Recently, FGC [27]

incorporates node features into the coarsening process to improve

node merging. However, these methods overlook node label in-

formation, resulting in sub-optimal generalization across different

GNN architectures and downstream tasks. Additionally, VNG [41]

generates compressed graphs by directly minimizing propagation

errors. However, the compressed graph’s utility is restricted to

serving time and cannot be used for GNN training, limiting its

applicability.

13

	Abstract
	1 Introduction
	2 Rethinking Existing Graph Condensation Methods
	2.1 Problem Formulation
	2.2 Class-level Matching Paradigm in GC
	2.3 Simplifying Distribution Matching

	3 Class-partitioned Graph Condensation (CGC)
	3.1 Feature Propagation
	3.2 Data Assessment
	3.3 Data Augmentation
	3.4 Class Partition
	3.5 Graph Generation

	4 Experiments
	4.1 Experimental Setup
	4.2 Effectiveness Comparison (Q1)
	4.3 Efficiency Comparison (Q2)
	4.4 Generalizability Comparison (Q3)
	4.5 Ablation Study (Q4)
	4.6 Hyper-parameter Sensitivity Analysis (Q5)

	5 Conclusion
	References
	A Proof of Propositions
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2
	A.3 Proof of Proposition 3
	A.4 Proof of Proposition 4

	B Algorithm
	C Time Complexity Analysis
	D Experimental Setup Details
	D.1 Dataset Statistics
	D.2 Baselines
	D.3 Implementations

	E Generalizability Comparison of Graphless Methods
	F Related Work

