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Rethinking and Accelerating Graph Condensation: A
Training-Free Approach with Class Partition
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Abstract
The increasing prevalence of large-scale graphs poses a significant

challenge for graph neural network training, attributed to their

substantial computational requirements. In response, graph con-

densation (GC) emerges as a promising data-centric solution aiming

to substitute the large graph with a small yet informative condensed

graph to facilitate data-efficient GNN training. However, existing

GC methods suffer from intricate optimization processes, neces-

sitating excessive computing resources and training time. In this

paper, we revisit existing GC optimization strategies and identify

two pervasive issues therein: (1) various GC optimization strate-

gies converge to coarse-grained class-level node feature matching

between the original and condensed graphs; (2) existing GC meth-

ods rely on a Siamese graph network architecture that requires

time-consuming bi-level optimization with iterative gradient com-

putations. To overcome these issues, we propose a training-free GC

framework termed Class-partitioned Graph Condensation (CGC),

which refines the node distribution matching from the class-to-

class paradigm into a novel class-to-node paradigm, transforming

the GC optimization into a class partition problem which can be

efficiently solved by any clustering methods. Moreover, CGC in-

corporates a pre-defined graph structure to enable a closed-form

solution for condensed node features, eliminating the need for back-

and-forth gradient descent in existing GC approaches. Extensive

experiments demonstrate that CGC achieves an exceedingly ef-

ficient condensation process with advanced accuracy. Compared

with the state-of-the-art GC methods, CGC condenses the Ogbn-

products graph within 30 seconds, achieving a speedup ranging

from 10
2× to 10

4× and increasing accuracy by up to 4.2%.

1 Introduction
Graph neural networks (GNNs) [7, 47, 51, 67] have garnered sig-

nificant attention for their exceptional representation capabilities

for complex graph data and have been utilized in a wide range of

real-world applications, including chemical molecules [42], social

networks [43], and recommender systems [57]. However, the in-

creasing prevalence of large-scale graphs within these real-world

applications poses formidable challenges in training GNN mod-

els. Most GNNs follow the message-passing paradigm [17], which

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

is formulated as convolutions over the entire graph and aggre-

gating information from multi-hop neighboring nodes. This pro-

cess leads to exponential growth in neighbor size [18, 59] when

applied to large-scale graphs, necessitating considerable training

computations. In response to the urgent demand for processing

large-scale graphs, a few studies borrow the idea of dataset distilla-

tion [28, 46] from computer vision (CV) and introduce graph con-

densation (GC) [24] to generate a compact yet informative graph to

accelerate the GNN training. By capturing essential characteristics

of the original large graph, GNNs trained on these small condensed

graphs can achieve comparable performance to those trained on

the original graphs. This efficacy enables GC to be applied to a

variety of applications rapidly, e.g., graph continual learning [32],

inference acceleration [14], and hyper-parameter search [8].

Despite the effectiveness of expediting GNN training, existing

GC practices still suffer from complex optimization and intensive

computation during the condensation process. As depicted in Fig-

ure 1 (a), to bridge the original and condensed graph, existing GC

methods employ the Siamese network architecture to encode both

graphs through a relay model, and the condensed graph is opti-

mized to simulate the class distributions of the original graph. This

framework necessitates a bi-level optimization procedure, with the

inner loop refining the relay model on the condensed graph and the

outer loop subsequently optimizing the condensed graph, ensuring

optimal model performance on both graphs. However, two main

issues persist in this framework: (1) Existing optimization strategies

in GC [24, 30, 31, 45, 53, 66] manifest a single, unified optimization

objective for all condensed nodes within the same class, resulting

in the coarse-grained optimization target for condensed nodes. (2)

Bi-level optimization involves iterative and intensive gradient com-

putations for both the relay model and condensed graph. Recent

efforts aim to expedite this process by simplifying outer or in-

ner loop optimizations. Techniques like distribution matching [30]

and the structure-free approach [66] respectively eliminate model

gradient calculations and adjacency matrix optimizations in the

outer loop. Meanwhile, approaches such as one-step matching [23],

kernel ridge regression (KRR) [45] and pre-trained model [53] sim-

plify the relay model updates in the inner loop. Despite these ad-

vancements, the optimization of the condensed graph still involves

back-and-forth gradient calculations and updates, resulting in a

time-consuming condensation procedure.

To address these issues, we investigate the foundational objec-

tive of existing optimization strategies and design an exceedingly

efficient GC approach with a training-free framework termed Class-

partitioned Graph Condensation (CGC). As illustrated in Figure

1(b), CGC refines the distribution matching from the class-to-class

paradigm to a delicate class-to-node distribution matching para-

digm. Notably, this refinement further simplifies the distribution

matching objective as a class partition problem, which can be ef-

ficiently optimized using any clustering method (e.g., K-Means).
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Figure 1: (a) The class-to-class matching paradigm in existing
GC methods. (b) Our proposed class-to-node matching para-
digm. 𝑓 denotes the relay model, D represents the distance
function, and 𝑔 measures the matching objective (refer to
Table 1 for details).

Moreover, CGC utilizes the pre-defined graph structure with the

Dirichlet energy constraint [25] to derive a closed-form solution for

the condensed node features. Equipped with these non-parametric

modules, CGC eliminates gradient-based optimization in existing

GC methods, enabling the condensation process to be executed

on CPUs only. This enhances both the efficiency and effectiveness

of the GC process, significantly broadening the utility of GC in

real-world applications.

The main contributions of this paper are three-fold:

• New observations and insights.We theoretically demonstrate

that existing GC optimization strategies converge to the class-

level distribution matching paradigm, and subsequently simplify

this process into a class partition problem, eliminating the so-

phisticated bi-level optimization and enabling efficient resolution

through any clustering method.

• New GC framework.We present CGC, the first training-free

GC framework characterized by a fine-grained class-to-node

matching paradigm and closed-form feature generation, facilitat-

ing both precise and efficient GC procedures. Furthermore, CGC

demonstrates considerable versatility, and any component within

the framework can be replaced with a variety of alternative meth-

ods, such as distinct propagation and partition techniques.

• State-of-the-art performance. Extensive experiments demon-

strate that CGC achieves advanced accuracy with an extremely

fast condensation procedure. For instance, it condenses the Ogbn-

products dataset within 30 seconds, which is 1,038× faster than

GCond [24] and 148× faster than the most efficient GC baseline

SimGC [53]. Our code is available at:

https://anonymous.4open.science/r/CGC-condensation/.

2 Rethinking Existing Graph Condensation
Methods

In this section, we first formally formulate the graph condensation

and then revisit the existing GC optimization strategies along with

their mutual connections. Subsequently, we formulate these strate-

gies within a unified framework and demonstrate their adherence

to a common class-level distribution matching paradigm. Finally,

we simplify this paradigm into a class partition problem, enabling

efficient optimization through clustering methods.

2.1 Problem Formulation
We consider a large-scale original graph T = {A,X} with 𝑁 nodes,

where A ∈ R𝑁×𝑁
is the adjacency matrix and X ∈ R𝑁×𝑑

de-

notes the 𝑑-dimensional node feature matrix. Each node belongs

to one of 𝑐 classes {𝐶1, · · · ,𝐶𝑐 }, translating into numeric labels

y ∈ {1, ..., 𝑐}𝑁 and one-hot labels Y ∈ R𝑁×𝑐
. Graph condensa-

tion [24] aims to generate a small condensed graph S = {A′,X′},
such that GNNs trained on S yield performance comparable to

those trained on T . Specifically, A′ ∈ R𝑁
′×𝑁 ′

, X′ ∈ R𝑁
′×𝑑

and

𝑐 ≤ 𝑁 ′ ≪ 𝑁 . Similarly, each node in S belongs to one of 𝑐

classes {𝐶′
1
, · · · ,𝐶′

𝑐 }, and labels are denoted as y′ ∈ {1, ..., 𝑐}𝑁 ′

or Y′ ∈ R𝑁
′×𝑐

. We follow GCond to pre-define the condensed node

labels, which preserve the same class proportion as the original

node labels. To facilitate the expression, we assume all nodes in the

original and condensed graphs are organized in ascending order

according to labels.

Notice that the generation of A′
is optional in existing GC meth-

ods [24, 63, 66]. If A′
is opted out, the identity matrix I is used

instead in GNN training, and this approach is termed the graphless

GC variant (a.k.a. structure-free GC [66]).

2.2 Class-level Matching Paradigm in GC
To achieve the GC objective, existing methods use a Siamese net-

work architecture with a relay model 𝑓 to encode both graphs as

shown in Figure 1 (a) and employ three kinds of optimization strate-

gies [19, 54, 58]: parameter matching, performance matching, and

distribution matching.

Parameter matching posits that the parameters of the GNN

classifier should possess high consistency whenever it is trained on

S or T . To this end, GCond [24] tries to match model parameters

at each training step and simplifies the objective to facilitate that

gradients generated by S match those from the same class in T :

L𝐺𝑀 = E
Θ∼Φ

[
𝑐∑︁
𝑖=1

D(∇ΘLS
𝑖 ,∇ΘLT

𝑖 )
]
, (1)

where Φ is the distribution of the relay model (i.e., the GNN clas-

sifier) parameter Θ, and we omit relay model update in the inner

loop for simplicity. D indicates the distance function. LS
𝑖

and LT
𝑖

are classification losses (e.g., cross-entropy loss) for class 𝑖 w.r.t S
and T , respectively. However, gradient matching [64] may accu-

mulate errors when the relay model is iteratively updated on S
over multiple steps. To mitigate this problem, SFGC [66] introduces

trajectory matching [3] to align the long-term training trajectories

of classification models. Nonetheless, to avoid overfitting one ini-

tialization of the relay model, it requires training hundreds of GNNs

on T to obtain the trajectories, resulting in heavy condensation

computations.

Performance matching aligns the performance of models

trained on S and T by ensuring that the model trained on S
achieves minimal loss on T [58]. To obtain the optimal model

on S, KiDD [55] and GC-SNTK [45] substitute the classification

task with the regression and incorporate KRR [38] in the GC proce-

dure for a closed-form solution of the relay model. The objective is

formulated as:

L𝑃𝑀 =




Y − ZZ′⊤ (
Z′Z′⊤ + 𝜆I

)−1 Y′



2 , (2)

2
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Table 1: The comparison of different GC optimization strategies.

Optimization strategy Representative methods 𝑓 𝑔

Parameter matching GCond [24], SFGC [66], GEOM [62], GCSR [34] GNN Classification model parameter

Performance matching GC-SNTK [45], KiDD [55] Graph kernel Regression model parameter

Distribution matching GCDM [30], GCEM [31], SimGC [53] GNN Class prototype

where Z′ ∈ R𝑁
′×𝑑

and Z ∈ R𝑁×𝑑
are node embeddings for S

and T , respectively. 𝜆 is a small constant weight of the regulariza-

tion term for numerical stability. ∥·∥ denotes the ℓ2 norm. How-

ever, graph kernels used in KRR are computationally intensive and

memory-consuming, limiting their scalability in large graphs.

Distribution matching directly aligns the class distributions of
the original and condensed graphs [63]. GCDM [30] and CaT [32]

first introduce this strategy in GC by minimizing the discrepancy

between class prototypes as:

L𝐷𝑀 = E
Θ∼Φ

[

P′Z′ − PZ


2] , (3)

where P′ ∈ R𝑐×𝑁
′
and P ∈ R𝑐×𝑁 are linear aggregation matrices

to construct 𝑐 class-level features, i.e., class prototypes, for S and

T , respectively. Specifically, P′
𝑖, 𝑗

= 1

|𝐶′
𝑖 |
if y′

𝑗
= 𝑖 , and P′

𝑖, 𝑗
= 0 other-

wise. P𝑖, 𝑗 = 1

|𝐶𝑖 | if y𝑗 = 𝑖 , and P𝑖, 𝑗 = 0 otherwise. Here,

��𝐶′
𝑖

��
and |𝐶𝑖 |

represent the sizes of class 𝑖 in S and T . By eliminating the need

to calculate model gradients and parameters, distribution matching

achieves an efficient and flexible condensation process, making it

prevalent in recent GC studies, e.g., eigenbasis matching [31] and

pre-trained model-based distribution matching [52, 53].

Analysis. Despite variations in format, existing optimization

strategies can be uniformly formulated in a matching paradigm as:

S = argmin

S
D

[
𝑔
(
𝑓 (S) ,Y′) , 𝑔 (𝑓 (T ) ,Y)

]
, (4)

where 𝑓 is the relay model. The function 𝑔 measures the matching

objective for distance functionD, which varies in format for diverse

optimization strategies as shown in Table 1. Besides adopting the

same framework, these three optimization strategies are inherently

interconnected. Inspired by the study in CV [58], we investigate

their relationship and put forward three propositions as follows:

Proposition 1. The performance matching objective is equivalent
to the optimal parameter matching objective.

Proposition 2. The distribution matching objective represents a
simplified formulation of the performance matching, omitting feature
correlation considerations.

Proposition 3. The distribution matching objective with a feature
correlation constraint provides an upper bound for the parameter
matching objective.

The proofs of propositions are deferred to the Appendix A.1, A.2

and A.3, respectively.

Remark 1. In light of Propositions 1-3, various optimization strate-
gies converge to class-level feature matching between the original and
condensed graphs, i.e., distribution matching in Eq. (3).

However, on top of the efficiency issue discussed earlier, this

matching paradigm only emphasizes on simulating the class dis-

tribution of the original graph by assigning a unified objective

for all condensed nodes in the same class, resulting in the coarse-

grained optimization target for each node. To mitigate these issues,

in the following subsection, we investigate the distribution match-

ing objective and refine the feature matching from the class-to-class

paradigm into the class-to-node paradigm, thereby providing each

condensed node with an explicit and efficient optimization target.

2.3 Simplifying Distribution Matching
For the sake of simplicity, we first follow existing GC methods [14,

24, 30, 32, 53] to specify the relay model 𝑓 as widely used SGC [49],

which decouples the propagation layer and transformation layer in

GNN for efficient graph encoding as:

Z′ = H′Θ = Â′𝐾X′Θ,

Z = HΘ = Â𝐾XΘ,
(5)

where Θ is the learnable weight matrix to transform the 𝐾-th order

propagated features H′
and H. Â′ = D̃′ 1

2 Ã′D̃′ 1
2 and Â = D̃

1

2 ÃD̃
1

2

represent the symmetric normalized adjacency matrices, where Ã′

and Ã are adjacency matrices with self-loops. D̃′
and D̃ are degree

matrices for Ã′
and Ã, respectively. Consequently, the distribution

matching objective in Eq. (3) is formulated as:

argmin

S
E

Θ∼Φ

[

P′H′Θ − PHΘ


2] . (6)

To facilitate the class-to-node distribution matching paradigm, we

enhance the aggregation matrix P with two objectives:

• The number of aggregated features is expanded from 𝑐 to 𝑁 ′
,

ensuring that each aggregated feature in the original graph cor-

responds to a distinct condensed node;

• Aggregations are performed within classes to preserve the class

semantics of aggregated features.

Consequently, it is expected that |𝐶𝑖 | original nodes in class 𝑖 will
be aggregated into |𝐶′

𝑖
| features to match with condensed nodes

in 𝐶′
𝑖
. This aggregation procedure analogizes to a class partition

problem, defined as follows:

Definition 1. Class partition. The class partition divides |𝐶𝑖 |
nodes in class 𝑖 into |𝐶′

𝑖
| non-overlapping sub-classes {𝑆𝑖

1
, ..., 𝑆𝑖|𝐶′

𝑖
| },

with each sub-class characterized by a centroid aggregated by con-
stituent nodes. The node mapping function of this partition is defined
as 𝜋𝑖 : {1, ..., |𝐶𝑖 |} → {1, ..., |𝐶′

𝑖
|} and the class-wise aggregation

matrix R𝑖 ∈ R |𝐶′
𝑖 |× |𝐶𝑖 | is formulated as:

R𝑖
𝑗,𝑘

=


1���𝑆𝑖𝑗 ��� if 𝜋𝑖 (𝑘) = 𝑗

0 otherwise

, (7)

where R𝑖
𝑗,𝑘

denotes the aggregation weight for node 𝑘 in class 𝑖 ,

and 𝜋𝑖 (𝑘) indicates the subclass index for node 𝑘 .
���𝑆𝑖𝑗 ��� represents

the size of sub-class 𝑆𝑖
𝑗
.
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Table 2: The comparison of simplified distribution matching
with the conventional objective. Speedup ratios compared
to GCDM-X are indicated in brackets (𝑟 : condensation ratio,
model: GCN).

Dataset 𝑟
Accuracy (%) Condensation time (s)

GCDM GCDM-X SimDM GCDM GCDM-X SimDM

Cora 2.60% 77.2±0.4 81.4±0.1 80.1±0.7 27.3 24.0 0.3 (80×)
Citeseer 1.80% 69.5±1.1 71.9±0.5 70.9±0.6 62.0 51.0 0.7 (73×)
Ogbn-arxiv 0.25% 59.6±0.4 61.2±0.1 66.1±0.4 690.0 469.0 7.1 (66×)
Flickr 0.50% 46.8±0.1 45.6±0.1 45.8±0.2 209.5 86.2 2.1 (41×)
Reddit 0.10% 89.7±0.2 87.2±0.1 90.6±0.1 921.9 534.8 8.2 (65×)

With the defined class partition, the aggregation matrix P ∈
R𝑐×𝑁 can be updated to P̂ ∈ R𝑁

′×𝑁
, which is constructed by or-

ganizing all class-wise aggregation matrices along the diagonal

as P̂ = diag(R1, ...,R𝑐 ). Assuming that condensed nodes are orga-

nized in ascending order based on their labels, P′ degrades into the

identity matrix I, and Eq. (6) can be reformulated as:

argmin

S,P̂
E

Θ∼Φ

[

H′Θ − P̂HΘ


2] ,

(8)

which is upper-bounded by:

E
Θ∼Φ

[

H′Θ − P̂HΘ


2] ≤ E

Θ∼Φ

[

H′ − P̂H


2 ∥Θ∥2

]
. (9)

Given that Θ is independent to S and P̂, we can minimise the

upper-bound by achieving:

argmin

S,P̂



H′ − P̂H


2 .

(10)

This objective can be further simplified under the graphless

GC variant, where S = {I,X′} and H′ = Â′𝐾X′ = I𝐾X′ = X′
.

Consequently, the objective is reformulated to:

argmin

X′,P̂



X′ − P̂H


2 .

(11)

Remark 2. The objective in Eq. (11) indicates that the condensed
node feature X′ in graphless GC can be obtained by performing class
partition on the propagated features H, eliminating the gradient-based
distribution matching optimization. This X′ can be directly used to
train GNNs with the identity matrix I.

Specifically, we can efficiently obtain the solution by applying

any Expectation-Maximization (EM) based clustering algorithms

(e.g., K-means) to each class, iteratively updating the cluster cen-

troid X′
and the aggregation matrix P̂ until convergence. Note that

another intuitive case arises when the size of the condensed graph

matches the number of classes, i.e., 𝑁 ′ = 𝑐 . In this scenario, P′ = I
and the conventional distribution matching objective in Eq. (6) de-

grades to calculating the class prototypes with the pre-defined P,
which is consistent with Eq. (11).

To validate the simplified objective, we compare the condensed

graph {I,X′}, derived by objective in Eq. (11) and termed SimDM,

with the conventional distribution matching-based methods (i.e.,

GCDM [30] and its graphless variation GCDM-X). The test accuracy

and condensation time are detailed in Table 2 and experimental

setting are deferred to Section 4. SimDM significantly excels in con-

densation time while maintaining comparable accuracy, confirming

the effectiveness of our class partition-based objective.
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(𝐈, 𝐗′)Data
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Propagation

Figure 2: The pipeline of CGC and CGC-X.

3 Class-partitioned Graph Condensation (CGC)
Despite the potential to accelerate the condensation procedure, the

class partition in SimDM neglects the data quality of the original

graphs, a critical aspect in addressing data-centric challenges in

GC. To establish a comprehensive data processing framework, we

further enhance SimDM by incorporating data assessment, augmen-

tation, and graph generation modules. Consequently, we introduce

a novel GC framework, as illustrated in Figure 2, where all five in-

volved modules are training-free, facilitating an efficient and robust

condensation process.

3.1 Feature Propagation
To eliminate the gradient calculation in the condensation proce-

dure, the non-parametric feature propagation module is deployed

to smooth the node features X according to the original graph

structure A and generate the node embeddings. The propagation

method is replaceable with a variety of choices with diverse char-

acteristics, e.g., SGC [49], personalized PageRank (PPR) [39] and

SAGE [18], etc. Without loss of generality, we follow existing GC

methods [14, 24, 30, 32, 53] and adopt the propagation method in

SGC to generate the node embeddings:

H(𝑙 ) = Â𝑙X, (12)

where 0 ≤ 𝑙 ≤ 𝐾 , and the embeddings in the last layer are denoted

as H = H(𝐾 )
for the final class partition.

3.2 Data Assessment
For the sake of robust class representation, we assess the node

embeddings prior to the class partition process. Inspired by [65, 68],

we incorporate node embeddings at various propagation depths and

utilize a simple linear layer W as the classifier for label prediction.

Ŷ = TW =
1

𝐾 + 1

𝐾∑︁
𝑙=0

H(𝑙 )W. (13)

Subsequently, the MSE loss is employed for optimization:

argmin

W



Y − Ŷ


2 . (14)

This loss facilitates an efficient and precise closed-form solution,

expressed as Ŵ = T+Y, where T+
denotes the pseudo inverse of

T. Afterwards, the linear classifier is utilised to evaluate node em-

beddings H(𝑙 )
for 0 ≤ 𝑙 ≤ 𝐾 , and their confidence scores w.r.t the

ground-truth are recorded as r ∈ R𝑁 (𝐾+1)
. Additionally, we calcu-

late the prediction errors for each class of H and represent these

class prediction errors as e = [𝑒1, ..., 𝑒𝑐 ]. The confidence scores r
reflect the reliability of node embeddings in class representation,

while the class prediction errors e highlight the difficulty associ-

ated with each class. In subsequent modules, these metrics will
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inform the data augmentation strategies and calibration of con-

densed features, aiming to enhance the quality of the condensed

graph.

3.3 Data Augmentation
Although the non-overlapping class partition in SimDM simplifies

optimization, it reduces the number of original nodes matched by

each condensed node, intensifying the dependency on the quan-

tity of nodes involved in the partition process. Concurrently, the

time complexity of class partition scales proportionally with the

increasing number of nodes. To address these issues and achieve

equilibrium, we propose augmenting underrepresented classes with

additional node embeddings to ensure robust class representations.

Specifically, we utilize the node embeddings with smaller propa-

gation depths as augmentations, i.e., H(𝑙 )
, where 0 ≤ 𝑙 < 𝐾 . It is

important to note that only training set nodes are involved, with

each node paired with its respective label. For clarity, we refer to

these node embeddings collectively as H. The utility of these em-

beddings offers threefold benefits. Firstly, these embeddings are an

intermediate product in the feature propagation process and incur

no additional computational overhead. Secondly, they aggregate

node features across various hops, exhibiting different levels of

smoothness [61]. Lastly, different from data augmentation methods

such as mixup, edge drop, or feature mask, these embeddings pre-

vent the introduction of excessive noises during the condensation

process.

Subsequently, class prediction errors e are used as sampling

weights to randomly select 𝑝% of the embeddings from H, where 𝑝
serves as a hyper-parameter controlling the size of augmentation

data. This sampling strategy prioritizes classes with higher errors,

potentially enhancing the class representation quality.

Consequently, the embeddings and labels of the sampled nodes

are represented as H𝑎𝑢𝑔 and y𝑎𝑢𝑔 , respectively, and the augmented

data for the condensation process are defined as H𝑐𝑜𝑛𝑑 = [H;H𝑎𝑢𝑔]
and y𝑐𝑜𝑛𝑑 = [y; y𝑎𝑢𝑔].

3.4 Class Partition
With enhanced label y𝑐𝑜𝑛𝑑 , we perform class partition on H𝑐𝑜𝑛𝑑
to address the optimization problem in Eq. (11). Initially, nodes

labeled in y𝑐𝑜𝑛𝑑 are categorised into 𝑐 classes {𝐶1, · · · ,𝐶𝑐 } with
corresponding embeddings {Ĥ1, · · · , Ĥ𝑐 }. Then, Ĥ𝑖 for class 𝑖 is
partitioned into |𝐶′

𝑖
| sub-classes {𝑆𝑖

1
, ..., 𝑆𝑖|𝐶′

𝑖
| } by applying any EM-

based clustering method and the node mapping function is denoted

by 𝜋𝑖 .

Subsequently, rather than utilizing the class-wise aggregation

matrix R𝑖 as initially defined in Eq. (7), we incorporate the confi-

dence scores r for each aggregated node to calibrate the condensed

node embeddings. Consequently, Eq. (7) is updated as:

R𝑖
𝑗,𝑘

=

{
r𝑘
𝜏 if 𝜋𝑖 (𝑘) = 𝑗

0 otherwise

, (15)

where R𝑖
𝑗,𝑘

denotes the aggregation weight for node 𝑘 in subclass

𝑗 , and 𝜋𝑖 (𝑘) indicates the subclass index for node 𝑘 . r𝑘 is the con-

fidence score of node 𝑘 , and 𝜏 represents the global temperature

to control the sensitivity for confidence scores. Following this, the

row-normalized aggregation matrix R̂𝑖 = norm(R𝑖 ) is employed to

produce aggregated embeddings as: H′
𝑖
= R̂𝑖 Ĥ𝑖 , and the condensed

node embeddings are constructed by: H′ = [H′
1
; ...;H′

𝑐 ].

3.5 Graph Generation
We follow existing GC methods to provide two parameterization

methods for the condensed graph, including CGC with the graph

generation and its graphless variant CGC-X.

According to Eq. (5), we expect a symmetric encoding proce-

dure between the original and condensed graphs. Therefore, our

objective is to construct A′
and X′

satisfying Â′𝐾X′ = H′
. To this

end, we utilize the pre-defined graph structure and calculate X′
in

a close-formed solution.

Specifically, we construct the condensed graph structure accord-

ing to the condensed node embeddings [69] as follows:

A′
𝑖, 𝑗 =

{
1 if cos(H′

𝑖
,H′

𝑗
) > 𝑇

0 otherwise

, (16)

where cos(·, ·) measures the cosine similarity and 𝑇 is the hyper-

parameter for graph sparsification. To ensure that generated fea-

tures change smoothly between connected nodes, we introduce

the Dirichlet energy constraint [25] in feature reconstruction loss

and quantify the smoothness of graph signals. The optimization

objective for X′
is formulated as:

L = argmin

X′




Â′𝐾X′ − H′



2 + 𝛼tr(X′⊤L′X′), (17)

where 𝛼 balances the losses, and tr(·) denotes the matrix trace.

L′ = D′ −A′
is the Laplacian matrix, whereD′

is the degree matrix.

Consequently, the closed-form solution for Eq. (17) is presented as:

Proposition 4. Assume an undirected condensed graph S =

{A′,X′}, the closed-form solution of Eq. (17) takes the form: X′ =
(Q⊤Q + 𝛼L′)−1Q⊤H′, where Q = Â′𝐾 .

The proof is deferred to the Appendix A.4. Although the closed-

form solution involves an inverse operation, the target matrix is

small (i.e., 𝑁 ′
-by-𝑁 ′

) and can be efficiently calculated.

A Graphless Variant. Based on Remark 2, the node embedding

H′
equivalents to the condensed node feature X′

when utilizing I
as the condensed graph structure and employing non-parametric

feature propagation for graph encoding. Consequently, H′
derived

in the Class Partition module can directly serve as the condensed

graph for CGC-X, i.e., S = {I,X′} = {I,H′}.
Comparison with Coarsening Methods. Similar to our sim-

plified GC objective in Eq. (11), coarsening methods develop the

aggregation matrix to merge original nodes into super-nodes and

transform the original graph structure into a smaller graph. How-

ever, these methods are implemented within an unsupervised par-

adigm, prioritizing the preservation of graph properties such as

spectral [36] and cut [35] guarantees while disregarding label in-

formation [19]. In contrast, our CGC framework synthesizes nodes

and connections under a supervised paradigm, thereby enhancing

the utility of downstream tasks.

The detailed algorithm and time complexity analysis can be

found in Appendix B and C, respectively.
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Table 3: The accuracy (%) comparison between our methods (CGC and CGC-X) and baselines. OOM means out-of-memory. The
best (bold) and runner-up (underlined) performances for (I,X′) and (A′,X′) are highlighted, respectively.
Dataset

(homo.)

𝑟
(I,X′) (A′,X′) Whole

Dataset
GCond-X GCDM-X SNTK-X SFGC GEOM CGC-X VN A-CM GCond GCDM SNTK SimGC GCSR CGC

Cora

(0.81)

1.30% 75.9±1.2 81.3±0.4 82.2±0.3 80.1±0.4 80.3±1.1 83.4±0.3 31.2±0.2 74.6±0.1 79.8±1.3 69.4±1.3 81.7±0.7 80.8±2.3 79.9±0.7 82.7±0.3
81.2±0.22.60% 75.7±0.9 81.4±0.1 82.4±0.5 81.7±0.5 81.5±0.8 83.4±0.4 65.2±0.6 72.8±0.2 80.1±0.6 77.2±0.4 81.5±0.7 80.9±2.6 80.6±0.8 83.5±0.1

5.20% 76.0±0.9 82.5±0.3 82.1±0.1 81.6±0.8 82.2±0.4 82.8±1.0 70.6±0.1 78.0±0.3 79.3±0.3 79.4±0.1 81.3±0.2 82.1±1.3 81.2±0.9 82.5±0.6

Citeseer

(0.74)

0.90% 71.4±0.8 69.0±0.5 69.9±0.4 71.4±0.5 71.1±0.2 73.1±0.8 52.2±0.4 65.1±0.1 70.5±1.2 62.0±0.1 66.4±1.0 73.8±2.5 70.2±1.1 73.9±0.8
71.7±0.11.80% 69.8±1.1 71.9±0.5 69.9±0.5 72.4±0.4 71.3±0.1 72.6±0.2 59.0±0.5 66.0±0.2 70.6±0.9 69.5±1.1 68.4±1.1 72.2±0.5 71.7±0.9 72.4±0.2

3.60% 69.4±1.4 72.8±0.6 69.1±0.4 70.6±0.7 72.1±1.0 72.9±0.2 65.3±0.5 66.1±0.2 69.8±1.4 69.8±0.2 69.8±0.8 71.1±2.8 74.0±0.4 72.5±0.1

Arxiv

(0.65)

0.05% 61.3±0.5 61.0±0.1 63.9±0.3 65.5±0.7 64.7±0.4 65.8±0.5 35.4±0.3 58.0±0.1 59.2±1.1 59.3±0.3 64.4±0.2 63.6±0.8 60.6±1.1 64.5±0.7
71.4±0.10.25% 64.2±0.4 61.2±0.1 65.5±0.1 66.1±0.4 67.5±0.3 66.8±0.1 43.5±0.2 60.0±0.3 63.2±0.3 59.6±0.4 65.1±0.8 66.4±0.3 65.4±0.8 67.0±0.3

0.50% 63.1±0.5 62.5±0.1 65.7±0.4 66.8±0.4 67.6±0.2 67.0±0.1 50.4±0.1 61.0±0.2 64.0±0.4 62.4±0.1 65.4±0.5 66.8±0.4 65.9±0.6 67.2±0.4

Flickr

(0.33)

0.10% 45.9±0.1 46.0±0.1 46.6±0.3 46.6±0.2 46.1±0.5 46.7±0.2 41.9±0.2 42.2±0.1 46.5±0.4 46.1±0.1 46.7±0.1 45.3±0.7 46.6±0.3 46.8±0.0
47.2±0.10.50% 45.0±0.2 45.6±0.1 46.7±0.1 47.0±0.1 46.2±0.2 47.0±0.1 44.5±0.1 45.2±0.3 47.1±0.1 46.8±0.1 46.8±0.1 45.6±0.4 46.6±0.2 47.1±0.1

1.00% 45.0±0.1 45.4±0.3 46.6±0.2 47.1±0.1 46.7±0.1 47.0±0.1 44.6±0.1 45.1±0.1 47.1±0.1 46.7±0.1 46.5±0.2 43.8±1.5 46.8±0.2 47.0±0.1

Reddit

(0.78)

0.05% 88.4±0.4 86.5±0.2 OOM 89.7±0.2 90.1+0.2 90.3±0.2 40.9±0.5 72.2±1.2 88.0±1.8 89.3±0.1 OOM 89.6±0.6 90.5±0.2 90.6±0.2
93.9±0.00.10% 89.3±0.1 87.2±0.1 OOM 90.0±0.3 90.4+0.1 90.8±0.0 42.8±0.8 73.5±1.0 89.6±0.7 89.7±0.2 OOM 90.6±0.3 91.2±0.2 91.4±0.1

0.20% 88.8±0.4 88.8±0.1 OOM 89.9±0.4 90.9+0.1 91.4±0.1 47.4±0.9 75.1±1.3 90.1±0.5 90.2±0.4 OOM 91.4±0.2 92.2±0.1 91.6±0.2

Products

(0.81)

0.025% 64.5±0.2 65.1±0.1 OOM 66.2±0.3 67.7±0.2 68.0±0.0 34.3±0.8 58.8±0.9 64.2±0.1 66.1±0.1 OOM 63.7±1.1 66.5±0.2 68.0±0.1
73.1±0.00.050% 65.2±0.3 66.8±0.2 OOM 67.0±0.2 68.4±0.3 68.9±0.2 35.1±0.9 60.1±0.6 64.7±0.2 67.4±0.4 OOM 64.9±1.2 67.8±0.3 68.9±0.3

0.100% 65.5±0.2 67.2±0.1 OOM 68.8±0.3 68.7±0.5 69.0±0.1 37.4±0.9 62.4±0.9 65.0±0.1 68.4±0.3 OOM 67.2±1.4 68.5±0.3 69.1±0.2

4 Experiments
Wedesign comprehensive experiments to validate the efficacy of our

proposed methods and explore the following research questions:

Q1: Compared to the other graph reduction methods, can the con-

densed graph generated by CGC and CGC-X achieve better GNN

performance?

Q2: Can the CGC and CGC-X condense the graph faster than other

GC approaches?

Q3: Can the condensed graph generated by CGC and CGC-X gen-

eralize well to different GNN architectures?

Q4: How do the different components, i.e., data augmentation, data

assessment and class partition methods affect CGC and CGC-X?

Q5: How do the different hyper-parameters affect the CGC and

CGC-X?

4.1 Experimental Setup
Datasets & Baselines.We evaluate our proposed methods on four

transductive datasets (Cora, Citeseer [26], Ogbn-arxiv (Arxiv) [20]

andOgbn-products (Products) [20]), as well as two inductive datasets

(Flickr and Reddit [59]), all with public splits. We compare 12

baselines, encompassing both graph coarsening and graph con-

densation methods with diverse optimization strategies: (1) graph

coarsening methods: Variation Neighborhoods (VN) [21, 35] and

A-ConvMatch (A-CM) [6]; (2) gradient matching-based GC meth-

ods: GCond and GCond-X [24]; (3) trajectory matching-based GC

methods: SFGC [66], GEOM [62] and GCSR [34]; (4) KRR-based GC

methods: SNTK and SNTK-X [45]; (5) distribution matching-based

GC methods: GCDM, GCDM-X [30] and SimGC [53]. Notice that

the suffix “-X” represents the graphless variant. More details about

the datasets and baselines are provided in Appendix D.1 and D.2,

respectively.

Implementations. Following GCond [24], we evaluate three con-

densation ratios (𝑟 = 𝑁 ′/𝑁 ) for each dataset. In the transductive

setting, 𝑁 represents the original graph size, while in the inductive

setting, 𝑁 indicates the sub-graph size observed in the training

stage. Two-layer GNNs with 256 hidden units are used for evalua-

tion. We adopt the propagation method in SGC for feature propaga-

tion and spectral clustering [12] with acceleration implementation

(i.e., FAISS [9]) for class partition (refer to Section 4.5 for results

of alternative class partition methods). For reproducibility, other

detailed implementations, hyper-parameters and computing infras-

tructure are summarised in Appendix D.3.

4.2 Effectiveness Comparison (Q1)
For the sake of fairness, we compare CGC-X and CGC with graph-

less and graph-generated GC baselines separately. The condensed

graphs generated by GC methods are evaluated to train a 2-layer

GCN and the test accuracies with standard deviation are reported in

Table 3. In the table, “Whole Dataset” refers to the GCN performance

which is trained on the original graph and we make the following

observations. Firstly, CGC-X and CGC consistently outperform

other baselines across all datasets. While GCSR achieves the best

performance on Citeseer and Reddit under the largest condensation

ratio, the performance gap between CGC and GCSR remains small.

Moreover, CGC significantly outperforms GCSR across other con-

densation ratios. Notably, on the Arxiv dataset, CGC demonstrates

substantial improvement over GCSR, highlighting the superiority

of our proposed method. Furthermore, our proposed method can

effectively mitigate the label sparsity issue in GC. On two datasets

with sparse labels, i.e., Cora and Citeseer, CGC and CGC-X consis-

tently achieve superior performances. This is contributed to the

data augmentation module which can introduce reliable nodes for

precise class distribution representation in the GC procedure.
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Table 4: The condensation time (seconds) comparison of different graph reduction methods. OOM denotes out-of-memory. 𝑟 is
set as 2.60%, 1.80%, 0.25%, 0.50%, 0.10% and 0.05% for six datasets, respectively.
Dataset VN A-CM GCond GCond-X GCDM GCDM-X SNTK SNTK-X SimGC SFGC GEOM GCSR CGC CGC-X

Cora 2.7 7.6 498.9 80.2 27.3 24.0 30.8 20.3 210.6 2,524.4 3,302.2 850.4 1.4 0.4

Citeseer 3.5 141.4 479.3 70.6 62.0 51.0 19.4 18.7 227.6 3,877.0 4,230.3 488.6 1.5 0.8

Arxiv 412.6 179.9 14,876.0 13,516.7 690.0 469.0 9,353.6 9,079.9 252.4 86,288.5 108,962.5 5,283.5 8.8 7.9

Flickr 243.8 160.1 1,338.3 1,054.7 209.5 86.2 562.6 510.0 345.8 52,513.0 54,601.9 1,202.6 7.5 6.8

Reddit 464.1 192.1 21,426.5 22,154.3 921.9 534.8 OOM OOM 475.8 246,997.1 248,837.4 1,747.3 18.5 17

Products 59,074.1 6,254.6 26,789.3 24,145.4 7,897.9 5,790.6 OOM OOM 3,824.3 283,068.2 284,941.5 18,901.3 31.5 25.8
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Figure 3: The accuracy and condensation time comparison of GC methods on Arxiv (𝑟 = 0.25%) and Reddit (𝑟 = 0.10%). SNTK and
SNTK-X are out-of-memory on Reddit dataset.

4.3 Efficiency Comparison (Q2)
We now report the condensation time of the proposed method

and baselines on different datasets. For each method, we repeated

the experiments 5 times and the averaged condensation time is

reported in Table 4. Instead of adopting the Siamese network archi-

tecture as other existing GC methods, CGC and CGC-X eliminate

the gradient-based optimization and achieve extremely efficient

condensation procedures. All datasets can be condensed within 1

minute, which is multiple orders of magnitude improvement com-

pared to other GC methods. In contrast, graph coarsening methods

use a hierarchical node aggregation paradigm to iteratively reduce

the graph size, which leads to high latency on large-scale datasets.

To facilitate a clearer comparison of the methods, Figure 3 shows

the accuracy of GC methods over their condensation time on the

transductive dataset (Arxiv) and inductive dataset (Reddit). The

relative condensation time to the fastest CGC-X is marked. Our

proposed CGC achieves the highest test accuracy, and CGC-X is

32.0× and 28.0× faster than the most efficient baseline SimGC.

4.4 Generalizability Comparison (Q3)
To compare the generalizability across different GNN architectures,

we assess the performance of GC methods under different GNN

models, including GCN, SGC, SAGE [18], APPNP [16], Cheby [5]

and GAT [44]. The detailed accuracies of graph-generated GCmeth-

ods are shown in Table 5. The results of graphless GC methods can

be found in Appendix E. We could observe that all GNNs trained

on the condensed graph generated by CGC exhibit similar levels

of performance and CGC achieves a significant improvement over

other compared baselines. This indicates the effectiveness of the

Table 5: The generalizability of GC methods with graph gen-
eration. SNTK is out-of-memory on Reddit. AVG indicates
the average value. The best performances are highlighted.
Dataset (𝑟 ) Method SGC GCN SAGE APPNP Cheby GAT AVG

Arxiv

(0.25%)

GCond 63.7 63.2 62.6 63.4 54.9 60.0 61.3

GCDM 61.2 59.6 61.1 62.8 55.4 61.2 60.2

SNTK 62.7 65.1 62.9 62.6 55.1 61.8 61.7

SimGC 64.3 66.4 60.4 61.5 54.7 61.1 61.4

GCSR 65.6 65.4 65.4 64.4 58.9 63.5 63.9

CGC 64.9 67.0 65.7 63.7 60.5 65.0 64.5

Flickr

(0.50%)

GCond 46.1 47.1 46.2 45.9 42.8 40.1 44.7

GCDM 44.3 46.8 45.8 45.2 41.8 41.9 44.3

SNTK 45.7 46.8 45.9 45.3 41.3 41.4 44.4

SimGC 43.4 45.6 44.4 44.8 42.8 41.2 43.7

GCSR 46.3 46.6 46.6 46.3 44.9 45.6 46.1

CGC 47.3 47.1 46.6 46.9 45.7 46.1 46.6

Reddit

(0.10%)

GCond 89.6 89.6 89.1 87.8 75.5 60.2 82.0

GCDM 88.0 89.7 89.3 88.9 74.9 69.3 83.3

SimGC 90.8 90.6 86.2 88.6 76.2 65.1 82.9

GCSR 91.0 91.2 91.0 88.9 80.4 86.4 88.2

CGC 91.3 91.4 90.2 88.7 81.7 89.1 88.7

pre-defined graph structure in our proposed method, which cap-

tures the relationship among aggregated features and encourages

smoothness among connected condensed nodes.

4.5 Ablation Study (Q4)
Data Augmentation. To validate the impact of data augmenta-

tion, CGC and CGC-X are evaluated by disabling the augmentation

component (termed “w/o AUG”) and results are shown in Table 6.
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Table 6: The ablation study. 𝑟 is set as 0.25%, 0.50% and 0.10%
for evaluated datasets, respectively.

Method Arxiv Flickr Reddit

CGC-X w/o AUG 66.5+0.1 46.6+0.2 90.7+0.1

CGC-X w/o CAL 66.3+0.2 46.2+0.2 90.6+0.1

CGC-X w K-means 66.7+0.1 46.9+0.1 90.7+0.1

CGC-X 66.8+0.1 47.0+0.1 90.8+0.0

CGC w/o AUG 66.4+0.1 46.7+0.1 90.9+0.1

CGC w/o CAL 66.5+0.2 46.3+0.1 91.0+0.1

CGC w K-means 67.2+0.2 46.9+0.2 91.3+0.2

CGC 67.0+0.3 47.1+0.1 91.4+0.1

Table 7: The performance comparison of different propaga-
tionmethods. 𝑟 is set as 2.60%, 1.80%, 0.25%, 0.50% and 0.10% for
five datasets, respectively. OOM indicates the out-of-memory.
The best performances are highlighted.

Dataset

CGC-X CGC

SGC PPR SAGE SGC PPR SAGE

Cora 83.4+0.4 81.0+0.5 81.1±0.5 83.5+0.1 80.9+0.7 80.0±1.8

Citeseer 72.6+0.2 70.5+2.0 73.0±0.2 72.4+0.2 70.5+2.0 72.9±0.3
Arxiv 66.8+0.1 66.3±0.2 65.4+0.6 67.0+0.3 65.7+0.1 65.9+0.3

Flickr 47.0+0.1 47.0+0.1 46.7+0.2 47.1+0.1 47.0+0.1 46.5+0.0

Reddit 90.8+0.0 90.9+0.1 88.7±0.7 91.4+0.1 91.0+0.1 89.5±0.3

Due to the data augmentation, our proposed methods can intro-

duce more labeled nodes in GC and facilitate a more precise class

representation, leading to better performance on all the datasets.

Data Assessment. We compare the results of CGC and CGC-X

with those obtained by removing the calibration of the condensed

node embeddings (referred to as "w/o CAL"), as shown in Table

6. When the class-wise aggregation matrix is replaced by Eq. (7),

the confidence score for each node is disregarded, leading to equal

aggregation of all nodes within the clusters. This modification

results in a performance drop across all datasets and verifies the

effectiveness of our data assessment module.

PartitionMethod. In addition to spectral clustering, we also tested
K-means for class partitioning, with results presented in Table 6.

The similar performance levels across methods indicate that our

proposed method is insensitive to the choice of partition method.

Propagation Method. We now represent the effect of different

propagation methods in our proposed method. Besides the propaga-

tion method in SGC, we further evaluate two propagation methods,

including personalised PageRank (PPR) [39] and SAGE [18]. The test

accuracies are shown in Table 7. We can observe that performance

varies for different propagation methods on different datasets. For

instance, SAGE achieves better performance on Citeseer. PPR out-

performs other methods on Reddit dataset. These results verify the

generalization of our proposed method and the proper propagation

method should be selected for different datasets.

4.6 Hyper-parameter Sensitivity Analysis (Q5)
Due to the training-free nature of our proposed methods, the num-

ber of hyper-parameters is significantly reduced. CGC contains

four hyper-parameters: the constraint weight 𝛼 , adjacency ma-

trix threshold 𝑇 , temperature 𝜏 , and augmentation ratio 𝑝 . Since

𝑇 and 𝛼 are specific to the condensed graph generation, CGC-X

contains only two hyper-parameters, making it the method with

the fewest hyper-parameters among existing graph condensation

approaches [54].

We examine the impact of these hyper-parameters on ourmethod’s

performance, with the results presented in Figure 4. A higher 𝑇

generally improves performance, indicating that a sparser adja-

cency matrix enhances node representation, in line with findings

from [24]. The optimal value for 𝛼 should be selected to balance

node smoothness with feature reconstruction. Additionally, 𝜏 con-

trols the contribution of nodes in the aggregation, and more com-

plex datasets like Flickr benefit from a smaller 𝜏 , which emphasizes

the reliability of node scores. The augmentation ratio 𝑝 determines

the number of augmented nodes, with increased augmentations

leading to better results. However, an excessive number of aug-

mented nodes can degrade performance and slow down the con-

densation process.

It is worth noting that the rapid condensation process of our

method could significantly simplify hyper-parameter tuning, em-

phasizing the practical utility and superior effectiveness of our

proposed method.
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Figure 4: Test accuracy across varying hyper-parameters: the
first row shows results for Cora (𝑟 = 2.60%), and the second
row for Flickr (𝑟 = 0.50%).

5 Conclusion
In this paper, we present CGC, a training-free GC framework de-

signed for efficient condensed graph generalization. CGC trans-

forms the class-level distribution matching paradigm identified in

existing GC methods into a class partition problem, enabling the

EM-based clustering solution for complex condensation optimiza-

tion. Moreover, CGC incorporates the pre-defined graph structure

and closed-form feature solution, facilitating efficient condensed

graph generation. Despite achieving a fast condensation procedure,

this work primarily focuses on simple attribute graphs. Future work

could extend the class partition framework to more practical graphs,

such as heterophilic graphs, digraphs, and dynamic graphs, thereby

broadening the horizons of GC applications.
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A Proof of Propositions
A.1 Proof of Proposition 1

Proposition 1. The performance matching objective is equivalent
to the optimal parameter matching objective.

The proof of Proposition 1 builds on the proposition from the

dataset distillation survey in CV [58]. To ensure self-containment,

we detail and expand propositions within the context of graph

theory.

Proof. Performance matching introduce KRR in optimization

and objectives for T and S are formulated as:

argmin

Θ
∥ZΘ − Y∥2 + 𝜆 ∥Θ∥2 ,

argmin

Θ



Z′Θ − Y′

2 + 𝜆 ∥Θ∥2 ,
(18)

where Z and Z′
are node embeddings for the original graph and the

condensed graph, respectively. Θ is the learnable weight matrix and

𝜆 is a small constant weight of the regularization term for numerical

stability. Their closed-form optimal solutions are:

Θ∗ = Z⊤ (
ZZ⊤ + 𝜆I

)−1 Y,

Θ′∗ = Z′⊤ (
Z′Z′⊤ + 𝜆I

)−1 Y′ .
(19)

We simplifies the regularization term in KRR model and assume

𝜆=0. Then, the optimal parameter matching objective, expressed in

the form of a least squares function, is formulated as:

L𝑃𝑀 = argmin

Z′



Θ∗ − Θ′∗

2 ,
= argmin

Z′




Z⊤ (
ZZ⊤)−1 Y − Z′⊤ (

Z′Z′⊤)−1 Y′



2 ,

= argmin

Z′




(Z⊤Z
)−1 Z⊤Y − Z′⊤ (

Z′Z′⊤)−1 Y′



2 ,

= argmin

Z′




(Z⊤Z
)−1 Z⊤Y −

(
Z⊤Z

)−1 Z⊤ZZ′⊤ (
Z′Z′⊤)−1 Y′




2 ,
= argmin

Z′




((Z⊤Z
)−1 Z⊤

) (
Y − ZZ′⊤ (

Z′Z′⊤)−1 Y′
)


2 ,

= argmin

Z′




Y − ZZ′⊤ (
Z′Z′⊤)−1 Y′




2 .
(20)
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The final step is justified by the independence of

(
Z⊤Z

)−1 Z⊤
from

Z′
. Then, the r.h.s of Eq. (20) is the performance matching objective.

□

A.2 Proof of Proposition 2
Proposition 2. The distribution matching objective represents a

simplified formulation of the performance matching, omitting feature
correlation considerations.

Proof. According to Proposition 1, the objective of performance

matching can be formulated as:

L𝑃𝑀 = argmin

Z′




(Z⊤Z
)−1 Z⊤Y −

(
Z′⊤Z′)−1 Z′⊤Y′




2 ,
= argmin

Z′

𝑐∑︁
𝑖=1




(Z⊤
𝑖 Z𝑖

)−1 Z⊤
𝑖 Y𝑖 −

(
Z′⊤
𝑖 Z′

𝑖

)−1 Z′⊤
𝑖 Y′

𝑖




2 , (21)

where subscript 𝑖 denotes the class, with Z𝑖 and Z′
𝑖
representing

original and condensed node embeddings in class 𝑖 . Y𝑖 and Y′
𝑖
repre-

senting one-hot labels for nodes in class 𝑖 . The distributionmatching

objective is calculated for class prototypes separately and formu-

lated as:

L𝐷𝑀 = argmin

Z′



P′Z′ − PZ


2 ,

= argmin

Z′

𝑐∑︁
𝑖=1






 1

|𝐶𝑖 |
Y⊤
𝑖 Z𝑖 −

1��𝐶′
𝑖

��Y′⊤
𝑖 Z′

𝑖






2 ,
= argmin

Z′

𝑐∑︁
𝑖=1






 1

|𝐶𝑖 |
Z⊤
𝑖 Y𝑖 −

1��𝐶′
𝑖

��Z′⊤
𝑖 Y′

𝑖






2 ,
(22)

where

��𝐶′
𝑖

��
and |𝐶𝑖 | represent the sizes of class 𝑖 in S and T , respec-

tively. By comparing Eq. (21) and Eq. (22), it can be deduced that the

performance matching objective can be transformed into distribu-

tion matching by excluding feature correlations and incorporating

class size normalization.

□

A.3 Proof of Proposition 3
Proposition 3. The distribution matching objective with a feature

correlation constraint provides an upper bound for the parameter
matching objective.

The proof of Proposition 3 is derived by extending the proposi-

tion in [58].

Proof. Without loss of generality, we take the representative

gradientmatching objective utilized in GCond for illustration, where

SGC is utilized as the relay model. Therefore, the node embeddings

are represented by:

Z′ = H′Θ, Z = HΘ, (23)

where Θ is the learnable weight matrix to transform propagated

features H′
and H. Due to that the objective of gradient matching

is calculated for each class separately, we define the losses for T
and S as:

LT
𝑖 =

1

2

∥H𝑖Θ − Y𝑖 ∥2 ,

LS
𝑖 =

1

2



H′
𝑖Θ − Y′

𝑖



2 , (24)

where H𝑖 and H′
𝑖
represent original and condensed propagated

features in class 𝑖 . Y𝑖 and Y′
𝑖
represent one-hot labels for nodes

in class 𝑖 . For simplicity, we specify the distance function D in

the gradient matching objective as the normalized least squares

function. Consequently, the objective function of gradient matching

is formulated as

L𝐺𝑀 =

𝑐∑︁
𝑖=1






 1

|𝐶𝑖 |
∇ΘLT

𝑖 − 1��𝐶′
𝑖

�� ∇ΘLS
𝑖






2 ,
=

𝑐∑︁
𝑖=1






 1

|𝐶𝑖 |
(H⊤

𝑖 H𝑖Θ − H⊤
𝑖 Y𝑖 ) −

1��𝐶′
𝑖

�� (H′⊤
𝑖 H′

𝑖Θ − H′⊤
𝑖 Y′

𝑖 )





2 ,

=

𝑐∑︁
𝑖=1






 1

|𝐶𝑖 |
H⊤
𝑖 H𝑖Θ − 1��𝐶′

𝑖

��H′⊤
𝑖 H′

𝑖Θ − 1

|𝐶𝑖 |
H⊤
𝑖 Y𝑖 +

1��𝐶′
𝑖

��H′⊤
𝑖 Y′

𝑖






2 ,
≤

𝑐∑︁
𝑖=1






 1

|𝐶𝑖 |
H⊤
𝑖 Y𝑖 −

1��𝐶′
𝑖

��H′⊤
𝑖 Y′

𝑖






2 + 𝑐∑︁
𝑖=1






 1

|𝐶𝑖 |
H⊤
𝑖 H𝑖 −

1��𝐶′
𝑖

��H′⊤
𝑖 H′

𝑖






2 ∥Θ∥2 ,

=

𝑐∑︁
𝑖=1






 1

|𝐶𝑖 |
Y⊤
𝑖 H𝑖 −

1��𝐶′
𝑖

��Y′⊤
𝑖 H′

𝑖






2 + 𝑐∑︁
𝑖=1






 1

|𝐶𝑖 |
H⊤
𝑖 H𝑖 −

1��𝐶′
𝑖

��H′⊤
𝑖 H′

𝑖






2 ∥Θ∥2 .

(25)

The first term in r.h.s is the distribution matching objective and the

second term quantifies differences in class-wise feature correlations.

□

A.4 Proof of Proposition 4
Proposition 4. Assume an undirected condensed graph S =

{A′,X′}, the closed-form solution of Eq. (17) take the form: X′ =

(Q⊤Q + 𝛼L′)−1Q⊤H′, where Q = Â′𝐾 .

The proof of Proposition 4 is derived by extending the proposi-

tion in [27].

Proof. Given an undirected graph S = {X′,A′}, L′ ∈ R𝑁
′×𝑁 ′

is defined as the Laplacian matrix of S by L′ = D′ − A′
, where D′

is the degree matrix. To solve the optimization problem in Eq. (17),

we first calculate ∇L(X′) and ∇2L(X′) as:
∇L(X′) = 2Q⊤ (QX′ − H′) + 𝛼 (L′ + L′⊤)X′

= 2(Q⊤Q + 𝛼L′)X′ − 2Q⊤H′ .
(26)

∇2L(X′) = 2(Q⊤Q + 𝛼L′). (27)

According to the definition of A′
in Eq. (16), L′ and Q are the pos-

itive semi-definite matrices. Therefore, ∇2L(X′) is the positive

semi-definite matrix and the optimization problem is a convex opti-

mization problem. We can get the closed-form solution by calculate

∇L(X′) = 0 and X′ = (Q⊤Q + 𝛼L′)−1Q⊤H′
.

□

B Algorithm
The detailed algorithm of CGC and CGC-X is shown in Algorithm

1. In detail, we first propagate node features according to the graph

structure via non-parametric propagation methods. Consequently,

a linear model is generated to assess embeddings and augmented

features are sampled according to evaluation results. Then, em-

beddings in each class are partitioned by clustering method (i.e.,

Clustering(·) in line 8) to generate aggregated embeddings H′
. H′

can serve as the condensed node feature for CGC-X. If condensed

graph structure is required, A′
and X′

can be generated by Eq. (16)

and Eq. (17), respectively.
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Algorithm 1: The framework of CGC and CGC-X.

1 Input: Original graph T = {A,X}, Y and pre-defined

condensed graph label Y′

2 Output: Condensed graph S
/* Feature Propagation */

3 Generate propagated features H(𝑙 )
according to Eq. (12).

/* Data Assessment */

4 Generate linear model and evaluate generated features.

/* Data Augmentation */

5 Sample features according to class prediction errors.

/* Class Partition */

6 Categorise H𝑐𝑜𝑛𝑑 into 𝑐 classes {Ĥ1, · · · , Ĥ𝑐 } according to

y𝑐𝑜𝑛𝑑 .
7 for 𝑖 = 1, . . . , 𝑐 do
8 Compute H′

𝑖
= Clustering(Ĥ𝑖 ).

9 Generate H′ = [H′
1
; . . . ;H′

𝑐 ].
/* Graph Generation */

10 if CGC-X then
11 Return: S = {I,H′}
12 else if CGC then
13 Generate A′

according to Eq. (16).

14 Generate X′
by solving Eq. (17).

15 Return: S = {A′,X′}

C Time Complexity Analysis
The pipeline of CGC consists of five components: feature prop-

agation, data assessment, data augmentation, class partition and

graph generalization. We analyse the time complexity for each

component separately. (1) Feature propagation contains the 𝐾 step

graph convolution and time complexity is: O (𝐾𝐸𝑑), where 𝑑 is

the node dimension and 𝐸 is the number of edges. (2) The solu-

tion of linear model involves the pseudo inverse of propagated

features. In practice, this least squares problem in Eq. (13) can be

effectively solved by torch.linalg.lstsq and the time complexity is

O
(
𝑁𝑑2

)
, where 𝑁 denotes the number of nodes. In addition, the

time complexity of node embedding prediction is O (𝑑𝐾𝑁𝑐), where
𝑐 represents the number of classes. (3) By leveraging propagated

nodes with smaller depth as augmentations, the data augmentation

module requires no additional computations. (4) Class partition

executes the EM-based clustering on each class. Take K-means

as an example, the time complexity for class 𝑖 is: O
(��𝐶′

𝑖

�� |𝐶𝑖 | 𝑑𝑡 ) ,
where 𝑡 indicates the number of iteration for K-means.

��𝐶′
𝑖

��
and

|𝐶𝑖 | represent the size of class 𝑖 in S and T respectively. (5) Graph

generation contains the adjacency matrix generation and feature

calculation. The former requires the pair-wise similarity calculation

whose complexity isO
(
𝑁 ′2𝑑

)
. The closed-form solution of the node

feature requires the inverse operation and the time complexity is

O
(
𝑁 ′3 + 𝑁 ′2𝑑 + (𝐾 + 1)𝑁 ′𝐸′ + 𝑑𝐸′

)
, where 𝐸′ is the edge number

of condensed graph.

In summary, the time complexity of CGC is dominated by class

partition and node feature generation. However, due to the small

size of the condensed graph and well-established clustering accel-

eration methods (e.g., FAISS [9]), CGC can be efficiently executed.

D Experimental Setup Details
D.1 Dataset Statistics
We evaluate our proposed methods on four transductive datasets,

i.e., Cora, Citeseer [26], Ogbn-arxiv (Arxiv) [20] and Ogbn-products

(Products) [20], as well as two inductive datasets, i.e., Flickr and

Reddit [59]. We adopt public splits throughout the experiments and

dataset statistics are shown in Table 8.

D.2 Baselines
We compare our proposed methods against 12 baselines, including

graph coarsening method and GC methods with diverse optimiza-

tion strategies:

(1) Variation Neighborhoods (VN) [21, 35]. The conventional graph

coarsening method that leverages the partition matrix to construct

the super-nodes and super-edges.

(2) A-ConvMatch (A-CM) [6]. A graph coarsening method hier-

archically reduces the graph size while preserving the output of

graph convolutions.

(3) GCond and GCond-X [24]. The first GC method that utilizes

the gradient matching to align the model parameters derived from

both graphs.

(4) GCDM and GCDM-X [30]. An efficient GC method that gener-

ates condensed graphs based on distribution matching by optimiz-

ing the maximum mean discrepancy between class prototypes.

(5) GC-SNTK and GC-SNTK-X [45]. An efficient GC method lever-

ages kernel ridge regression with a structure-based neural tangent

kernel to simplify the bi-level optimization process.

(6) SFGC [66]. A graphless GC method that aligns long-term model

learning behaviors through trajectory matching.

(7) SimGC [53]. An efficient GC method with the graph generation

that introduces the pre-trained model in distribution matching.

(8) GEOM [62]. A graphless GC method that explores the difficult

samples via trajectory matching.

(9) GCSR [34]. A trajectory matching-based GC method with the

self-expressive condensed graph structure.

D.3 Implementations
Condensation Ratios.We set 𝑟 following GCond. For transductive

datasets, 𝑟 is chosen as the {25%, 50%, 100%}, {25%, 50%, 100%}, 0.1%,

0.5%, 1%} and {0.32%, 0.63%, 1.26%} of the labeled nodes for Cora,

Citeseer, Arxiv and Products, respectively. For Inductive datasets,

𝑟 is set as {0.1%, 0.5%, 0.1%} and {0.05%, 0.1%, 0.2%} for Flickr and

Reddit.

Hyper-parameters.The hyper-parameters are determined through

the grid search on the validation set. The feature proportion depth

of the original graph and the condensed graph is set as 𝐾 = 2

for all datasets. The temperature 𝜏 is optimized from the set {10,

1, 0.8, 0.5, 0.3, 0.1, 0.01} and the augmentation ratio 𝑝 is searched

within the range [0, 100]. For the two hyper-parameters specific to

CGC, the weight 𝛼 is tuned from the set {0.3, 0.5, 1, 2, 3}, and the

threshold𝑇 is explored within the range [0.8, 1). We use the ADAM

optimization algorithm to train all the models. The learning rate

for the condensation process is determined through a search over
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Table 8: The statistics of datasets used in experiments.
Dataset #Nodes #Edges #Classes #Features Training/Validation/Test Task type

Cora 2,708 5,429 7 1,433 140/500/1,000 Transductive

Citeseer 3,327 4,732 6 3,703 120/500/1,000 Transductive

Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603 Transductive

Ogbn-products 2,449,029 61,859,140 47 100 196,615/39,323/2,213,091 Transductive

Flickr 89,250 899,756 7 500 44,625/22,312/22,313 Inductive

Reddit 232,965 23,213,838 41 602 153,932/23,699/55,334 Inductive

Table 9: The generalizability comparison of graphless GC
methods. SNTK-X is out-of-memory on Reddit dataset. AVG
indicates the average value. The best performances are high-
lighted.
Dataset (𝑟 ) Method SGC GCN SAGE APPNP Cheby AVG

Arxiv

(0.25%)

GCond-X 64.7 64.2 64.4 61.5 59.5 62.9

GCDM-X 64.4 61.2 63.4 60.5 60.2 61.9

SNTK-X 64.0 65.5 62.4 61.8 58.7 62.5

SFGC 64.8 66.1 64.8 63.9 60.7 64.1

GEOM 65.0 67.5 64.9 62.5 60.9 64.2

CGC-X 66.3 66.8 65.9 63.0 61.3 64.7

Flickr

(0.50%)

GCond-X 44.4 45.0 44.7 44.6 42.3 44.2

GCDM-X 45.8 45.6 42.6 42.4 42.4 43.8

SNTK-X 44.0 46.7 41.9 41.0 41.4 43.0

SFGC 47.0 47.0 42.5 40.7 45.4 44.5

GEOM 46.5 46.2 42.7 42.6 46.1 44.8

CGC-X 47.2 47.0 46.6 46.8 46.4 46.8

Reddit

(0.10%)

GCond-X 91.0 89.3 89.3 78.7 74.0 84.5

GCDM-X 90.9 87.2 89.2 79.1 75.1 84.3

SFGC 89.5 90.0 90.3 88.3 82.8 88.2

GEOM 89.6 90.4 90.5 89.4 82.6 88.5

CGC-X 91.5 90.8 90.9 89.0 82.6 89.0

the set {0.01, 0.001, 0.0001}. The weight decay is 5e-4. Dropout is

searched from [0, 1).

Computing Infrastructure. The codes are written in Python 3.9

and Pytorch 1.12.1. CGC and CGC-X are executed on CPUs and

all GNN models are trained on GPUs. The experiments for Ogbn-

products were conducted on a server equippedwith Intel(R) Xeon(R)

Gold 6326 CPUs at 2.90GHz and NVIDIA GeForce A40 GPUs with

48GB of memory. Other experiments were carried out on a server

featuring Intel(R) Xeon(R) Gold 6128 CPUs at 3.40GHz and NVIDIA

GeForce RTX 2080 Ti GPUs with 11GB of memory.

E Generalizability Comparison of Graphless
Methods

We compare the GNN architecture generalizability of graphless

GC methods, where {I,X′} is used in GNN training. Due to the

absence of condensed graph structure, we evaluate GNNs including

GCN, SGC, SAGE, APPNP and Cheby. According to the results

in Table 9, we could observe that our proposed CGC-X achieves

the best generalizability across different datasets and architectures.

Especially on the dataset Flickr, where the average improvements

are 2.3%. This verifies the high quality of the condensed feature

and the effectiveness of the class-to-node distribution matching

strategy.

F Related Work
Graph Condensation. GC [15, 19, 48, 54] has recently garnered

significant attention as a data-centric approach. Beyond the diverse

optimization strategies discussed in Section 2, other research efforts

have focused on enhancing these optimization strategies [29, 33, 40,

52, 60, 62] or developing superior condensed graph structures [13,

34] to improve condensed graph quality. Additionally, there is an

increasing emphasis on enhancing other aspects of models trained

on condensed graphs, such as generalizability [56], fairness [11, 37],

security [50] and explainability [10].

Graph Sparsification & Coarsening. Early explorations into

graph size reduction primarily focus on graph sparsification [4, 22]

and coarsening techniques [2]. These methods aim to eliminate

redundant edges and merge similar nodes while preserving es-

sential graph characteristics, such as the largest principal eigen-

values [36] and Laplacian pseudoinverse [1]. Recently, FGC [27]

incorporates node features into the coarsening process to improve

node merging. However, these methods overlook node label in-

formation, resulting in sub-optimal generalization across different

GNN architectures and downstream tasks. Additionally, VNG [41]

generates compressed graphs by directly minimizing propagation

errors. However, the compressed graph’s utility is restricted to

serving time and cannot be used for GNN training, limiting its

applicability.
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