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Abstract: Manipulating objects through physical contact on a moving robot
demands perception that simultaneously captures the broad spatiotemporal con-
text and task-critical visuomotor details. Biological vision addresses this tension
through foveation: high-acuity sensing at the point of fixation, complemented by
action-sensitive peripheral vision—an architecture that has independently evolved
across species. In contrast, contemporary robotic systems typically downsample
high-resolution camera streams, imposing a trade-off between field of view and
visual detail that undermines decision-making. Our analysis demonstrates that
human foveated active perception consistently predicts future task-relevant land-
marks several hundred milliseconds in advance, providing long-horizon contex-
tual cues for action planning while also revealing fine-grained details that indicate
where visual attention should be directed. These findings suggest that wide-field
passive vision systems today will be superseded by active perception that moves
towards mega-pixel, foveated architectures.
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1 Introduction

Hand–eye coordination—the integration of actively controlled gaze with fine-motor hand move-
ments—is fundamental to human motor skills. In competitive sports, for example, athletes enhance
performance through eye-training exercises that deliberately regulate gaze to track projectiles or
opponents’ body cues. In everyday life, the absence of such coordination makes even simple pick-
and-place tasks impossible. In contrast, robotic perception systems remain limited: they typically
rely on passively mounted cameras with fixed intrinsics, where gaze control is replaced by soft-
attention mechanisms computed from downsampled visual input. Despite the availability of modern
cameras capable of streaming tens of millions of pixels per frame, robotic pipelines often operate
only on VGA-resolution inputs, sacrificing visual detail for tractability.

This work addresses this gap by introducing a data-collection pipeline that synchronizes five critical
streams: precise eye-gaze trajectories, high resolution egocentric RGB video, per-frame depth, real-
time hand and head tracking. Our setup combines off-the-shelf extended-reality (XR) devices with
targeted custom hardware, enabling fine-grained study of visuomotor coordination.

Our approach is motivated by cognitive and neural science research showing that gaze is not merely
reactive but proactively guides motor behavior. In manipulation tasks, gaze trajectories consistently
precede hand movements, thereby signaling future intent and reducing uncertainty [1]. Leverag-
ing this principle, we seek to endow robots with the capacity to dynamically allocate sensing re-
sources—zooming in on task-critical details while maintaining peripheral awareness of the broader
environment.
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Figure 1: Humans coordinate head, hand, and eye movements to accomplish dexterous manipulation
tasks. Our data pipeline captures this multimodal coordination by jointly recording eye gaze, RGB-
D video, hand pose, and head pose using an extended-reality headset. By aligning these streams, we
construct embodied datasets that couple human foveation with fine-grained motor trajectories. This
allows for our further analysis of how gaze guides action, and provides rich supervision foundation
for training robotic perception systems that anticipate and plan like humans.

At the same time, progress in robotics has been constrained by data limitations. Most existing
datasets emphasize static image-label pairs or narrow action demonstrations, without high-resolution
egocentric video with eye-tracking and hand motion. This restricts the development of embodied
perception systems that can learn how visual attention modulates motor planning. Our protocol
directly addresses this gap by capturing multimodal streams of foveated gaze, pixel-rich RGB-D
video, hand trajectories, and head pose during dexterous manipulation (see Fig. 1).

Ultimately, our goal is to bridge the disconnect between human and robotic perception–action sys-
tems. Human motor control integrates peripheral monitoring with focal precision in a seamless per-
ception–action loop, whereas robotic systems remain bottlenecked by passive visual pipelines and
coarse attentional models. By grounding our dataset in the principles of biological foveation, we
lay the foundation for next-generation robotic vision architectures capable of anticipating, planning,
and executing complex actions in dynamic settings.

2 Methods

Modern extended-reality (XR) head-mounted devices are becoming increasingly common in ev-
eryday life, offering immersive experiences for work, learning, and entertainment. These systems
generate rich streams of visual and proprioceptive data; however, access to such information is often
constrained by privacy considerations [2]. In this work, we present a data collection pipeline for
long-horizon dexterous manipulation that synchronously records high-resolution RGB image, depth
image, human foveation signals, and hand and head poses using the Apple Vision Pro [3]. The Apple
Vision Pro offers accurate, low-latency hand pose tracking, making it well-suited for fine-grained
manipulation tasks. Nonetheless, its public APIs do not expose eye-tracking data or provide direct
access to raw camera streams. To overcome these limitations, we augment the device with a custom
eye-tracking algorithm and integrate an external camera system to capture both RGB and depth data.

2.1 From Pupil to Point of Regard: Preliminaries

Eye tracking objectively measures and records where a person looks and how their eyes move [4, 5].
This is achieved by measuring either the eye’s position relative to the head or the orientation of the
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gaze [4, 6]. Video-based eye tracking, which utilizes a camera directed at the eye to monitor its
movements, has become increasingly popular in research due to its non-invasive nature and minimal
impact on gaze behavior [4, 6]. Most remote and head-mounted eye trackers currently on the market
employ video-based techniques, incorporating a camera alongside an infrared illumination source.
In these systems, the pupil and cornea are essential for accurate tracking. Algorithms analyze the
position of the pupil’s center and the four corneal reflections relative to this center to determine the
gaze point on a screen or within a scene, depending on the type of eye tracker used [4, 6]. The
accuracy of this gaze mapping relies heavily on the precise measurement of these ocular features,
allowing the system to track the eye’s movements with high precision.

In our approach, we bypass explicit gaze-vector estimation and instead directly regress 2D screen
coordinates from eye images. This process is followed by a light calibration step to align the outputs
with the target display, ensuring accurate gaze mapping without the need for complex gaze-vector
calculations.

2.2 Hardware setup and training data collection

IR camera. The Apple Vision Pro integrates two infrared (IR) cameras per eye, illuminated by lens-
embedded IR LEDs, to enable precise gaze tracking. As the proprietary sensors are unavailable, we
employ a low-cost infrared camera to capture eye images (Fig. 2).

Figure 2: Infrared-illuminated eye images showing left, forward, and right gaze directions.

Front view camera. Since the front-view cameras are inaccessible, we employ a third-party RGB-D
camera as an alternative. The camera is mounted onto the Apple Vision Pro, and the pose between
the external camera and the headset is estimated. This pose enables us to project the predicted eye
gaze into the image space captured by the mounted camera.

Camera mount design. We designed the front-view and infrared (IR) camera mounts and fabricated
them with 3D printing. This approach ensures ease of reproduction and consistency in the resulting
components.

Training data collection. We designed a controlled gaze-tracking experiment in which a single
stimulus was presented on a full-screen 16 × 16 grid. The stimulus moved sequentially across
grid cells, and participants were instructed to continuously fixate on it while corresponding eye
images and gaze coordinates were recorded. Within each grid cell, the stimulus was positioned
randomly to capture gaze targets across a continuous spatial distribution. Furthermore, the grid and
point positions are defined relative to the head position, enabling data collection without requiring
participants to remain stationary.

2.3 Model training for gaze estimation

For gaze estimation, we adopt a ResNet-50 backbone [7] as the feature extractor. The original
classification head is removed and replaced with a regression head that directly predicts the 2D
screen coordinates of the gaze point.

Formally, given an eye image I , the model fθ predicts the normalized coordinates:

ĝ = fθ(I), ĝ ∈ [−1, 1]2 (1)
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where ĝ = (x̂, ŷ) denotes the predicted 2D screen coordinates.

To train the model, we employ the Huber loss [8], also known as the smooth L1 loss, which balances
sensitivity to small errors with robustness against outliers. For a prediction ĝ and ground truth g,
the point-wise Huber loss is defined as:

Lδ(ĝ,g) =

{
1
2∥ĝ − g∥2, ∥ĝ − g∥ ≤ δ,

δ · ∥ĝ − g∥ − 1
2δ

2, otherwise.
(2)

where δ controls the transition between the quadratic and linear regimes.

The training objective is the average Huber loss across all training samples:

L =
1

N

N∑
i=1

Lδ(ĝi,gi), (3)

where N is the number of training samples.

2.4 Stabilization, accuracy enhancements

We observe two primary failure modes in the baseline gaze regressor: (i) temporal instability, and
(ii) insufficient accuracy.

Figure 3: Moving light stripe artifacts. Illu-
mination flicker from the embedded LEDs pro-
duces horizontal light stripe artifacts, highlighted
by red horizontal lines , across the eye image.

Temporal instability refers to frame-to-frame
jitter that arises even when the observer main-
tains fixation on a single point. It is caused by
illumination flicker from the embedded LEDs,
which produces moving light-stripe artifacts
(Fig. 3), and by variations in pupil dilation
(Fig. 4). To mitigate jitter while preserving re-
sponsiveness to genuine saccades, we introduce
a Transition Confidence Network (TCN) that es-
timates the probability that a given pair of eye
images corresponds to the same gaze target.

We record extended fixation sequences on a sin-
gle target, capturing diverse illumination stripe
patterns and natural pupil dynamics for con-
structing data pairs. Each image in the pair is encoded independently using the same shared-weight
encoder Eϕ with a ResNet-18 [7] backbone. Specifically, given two images I1 and I2, their corre-
sponding embeddings are obtained as follows:

1′′×1′′ 0.9′′×0.9′′

Figure 4: Pupil dilation annotated with bounding boxes. Left: Pupil at its larger state. Right:
Same eye with a smaller pupil.
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z1 = Eϕ(I1), z2 = Eϕ(I2) (4)

These embeddings are then used to assess the similarity between the two images in the pair. We
compute the predicted probability of the same-gaze:

p =
1

1 + e−(w z⊤
1 z2+b)

(5)

where w, b are learned scalars.

We train the TCN using the binary cross-entropy loss:

LTCN = − [c log p+ (1− c) log(1− p)] (6)

where c ∈ {0, 1} denotes the ground-truth label.

At inference, the TCN output serves as a gating signal applied to the regressor’s predictions. Specif-
ically, let ĝt denotes the regressor’s prediction at frame t and g̃ the stabilized estimate. Given a
pair of successive eye images (It−1, It), the TCN predicts the probability pt that the two images
correspond to the same gaze. If pt ≥ γ, the stabilized output is preserved; otherwise, it is reset to
the current regressor prediction:

g̃ =

{
g̃, if pt ≥ γ,

ĝt, if pt < γ,
(7)

where γ is a confidence threshold.

This strategy suppresses within-fixation jitter while allowing for rapid response at saccade onsets.

Insufficient accuracy. Each time the headset is donned, small pose changes introduce a session-
dependent drift between the eye camera and display coordinate frames, degrading gaze prediction
accuracy (Fig. 5). To compensate for this bias without retraining the model, we apply a lightweight
post-hoc calibration to the network outputs.

Figure 5: Session-dependent drift in gaze prediction. Left: eye images from different sessions with
the same gaze direction. Right: the alignment of these images, highlighting session drift.

At the beginning of each session, participants sequentially fixate on eight on-screen targets. For each
fixation i, we record the corresponding eye image Ii and the ground-truth 2D gaze position gi ∈ R2.
The network (Sec. 2.3) predicts the gaze position as ĝi = fθ(Ii). To account for session-specific
variability, we estimate a transformation that best aligns the predicted positions with the ground truth
by solving the following Procrustes problem:

min
s∈R+, t∈R2

8∑
i=1

∥∥gi −
(
s ĝi + t

)∥∥2
2
. (8)
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The optimal parameters (s⋆, t⋆) obtained from this calibration are then applied to all subsequent
predictions in the session:

gcal = s⋆ ĝ + t⋆. (9)

This calibration procedure effectively compensates for session-specific drift and enhances accuracy,
while leaving the underlying network unchanged and incurring minimal computational overhead.

3 Applications

3.1 Collecting Robot-Free Real-World Dexterous Demonstrations

Using the Apple Vision Pro headset, we capture synchronized streams of hand and head poses,
high-resolution RGB and depth images, and eye-gaze signals during real-world manipulation. These
multimodal recordings provide rich embodied demonstrations that can be re-targeted to robots, en-
abling them to replicate human gestures and achieve more precise control in long-horizon dexterous
manipulation tasks.

3.2 Annotating Gaze-Free Passive Videos

We enhance existing video datasets by annotating them with eye-gaze information. By replaying
these videos in a VR environment, we can capture real-time gaze trajectories as users watch and
interact with the content. This augments otherwise static video corpora with foveation signals,
enriching them with human attention cues useful for robotics training. The resulting gaze-informed
datasets enable robots to learn not only from controlled demonstrations but also from large-scale
community video resources. This approach also has limitations (See Sec 4.3).

4 Results: Understanding Situational Eye-Gaze Data In Embodied Contexts

Our eyes are the window to the outside world, and a window to our inner world. They tell as much
of a story about us as the rest of our bodies.

4.1 Reading Future Intent from Gaze Trajectories

Eye gaze reliably precedes motor actions, providing a powerful signal of future intent. To demon-
strate this, we implemented a target-selection task in our Vision Pro APP. On each trial, four buttons
were displayed, with one randomly designated as the target. Participants were instructed to select
the target by clicking on it. We measured two key variables: (i) Tgaze, the first frame in which the
gaze landed on the target, and (ii) Tclick, the first frame in which the participant clicked the target.
The gaze-to-click latency for each trial was then defined as Tlag = Tclick − Tgaze.

Table 1 reports the mean gaze-to-click latency across tasks. On average, gaze preceded the click
by approximately 790 ms, showing that gaze reliably reveals intent before action. This anticipa-
tory property offers a valuable prior for robot learning, enabling earlier and more responsive goal
inference.

1 2 3 4 Average
Tlag(ms) 902.12 588.45 704.35 964.96 789.97

Table 1: Gaze-to-click latency, showing that eye gaze indicates future intent before action execution.

4.2 Active Foveation: A Key Driver of Precise Motor Skills and Hand–Eye Coordination

We conduct a randomized controlled experiment to test whether task-relevant gaze shifts (“active
foveation”) improve hand–eye coordination. Participants were split into two cohorts, either with or
without structured gaze training. Task performance was measured by completion time-based success
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Task w/o FOV w/ FOV
Easy
Touch a button <1 <1
Pick up a ball <1 <1
Open a door handle <1 <1
Medium
Pick up a cup 2.1 <1
Stack one block on another 1.3 1.02
Open a drawer <1 <1
Hand an object to someone 1.4 <1
Hard
Pour water into a cup 2.6 2.3
Insert a key into a lock 3.1 1.2
Peel a banana 1.8 1.9
Success Rate 0.7 0.9

Table 2: Task completion time and success rate with and without active foveation. Red indi-
cates tasks that did not meet the expected time benchmark.

rate, where success is defined as completing the task within a baseline human-defined expected time
threshold.

The gaze-trained cohort consistently outperformed the control group, completing tasks in less time
and achieving higher success rates. Improvements were strongest in tasks requiring fine spatial
alignment, reinforcing the role of active foveation in enhancing hand–eye coordination.

Eye-tracking overlays further illustrate the effect. Under the foveation condition, gaze trajectories
were dispersed and purposeful, consistently targeting task-relevant features. In contrast, under the
non-foveation condition, gaze remained largely fixed, resulting in overlapping pupil traces and lower
task success.

4.3 Key Differences Between Passively Labeled and Actively Collected Behavior Data

Eye-gaze signals from passively labeled datasets are less predictive than those collected actively.

Suppose the task is pick the orange into its category. In passive labeling, gaze lacks contextual
grounding, so it is difficult to infer intent until after an action begins. If both a cucumber and an
orange are on the table, gaze alone does not reveal which object will be picked up. In this sense,
passive gaze typically follows intention rather than predicting it. In active labeling, by contrast,
gaze is directly anchored to the specified task, so it immediately reflects the user’s intention and
is therefore far more informative. Passive gaze signals can be improved by adding context before
labeling (e.g., task prompt like “pick up the orange”).

5 Conclusion

In conclusion, this work emphasizes the potential of foveated active perception to advance robotic
systems, mimicking the human visuomotor coordination process. By introducing a novel data col-
lection pipeline that synchronizes high-resolution RGB-D video, gaze trajectories, and hand and
head motion, we lay the foundation for next-generation robotic vision architectures. Our findings
suggest that this approach can improve task planning and execution in dynamic environments. In
the future, we aim to explore the integration of this data into robotic systems, enabling robots to
anticipate, plan, and execute complex actions with greater efficiency and context-awareness.
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