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ABSTRACT

Early drug discovery plays a crucial role in the development of new medications
by focusing on the identification and optimization of lead molecules that specif-
ically bind to target proteins. However, this process is accompanied by various
challenges, such as the vastness of molecule libraries, high attrition rate, and the
intricate nature of molecular interactions. To overcome these challenges, there is
a paradigm shift towards integrating intelligence and automation into end-to-end
operations. Intelligent computing aids in the discovery and recommendation of
molecules, while automated experiments offer data validation and feedback. This
innovative approach can be viewed as an active probabilistic learning problem,
assuming that active molecules binding to a specific target are typically a small
proportion and exhibit cluster-distributed characteristics. Based on this formu-
lation, we propose a novel active probabilistic drug discovery (APDD) method,
which iteratively updates the binding probabilities of molecules to progressively
enhance drug discovery performance with three consecutive steps of probabilistic
clustering, selective docking, and active wet-experiment. We conduct extensive
experiments on two benchmark datasets of DUD-E and LIT-PCBA and a simu-
lated virtual library. The results demonstrate the feasibility and efficiency of our
approach, showcasing substantial cost savings with an average reduction of 80% in
computational docking expenses and 70% in wet experimental costs, while main-
taining high accuracy in lead molecule discovery.

1 INTRODUCTION

Early drug discovery plays a critical role in the pharmaceutical industry and scientific community
(Hughes et al., 2011). It encompasses the application of computational drug design and chemical
biology techniques to effectively identify and optimize lead molecules. Computational drug design
utilizes knowledge of the target’s structure or known active ligands to aid in the identification of
potential candidate drugs, employing either a structure-based or ligand-based approach depending
on available information (Yu & MacKerell, 2017). On the other hand, chemical biology focuses on
comprehending the mechanism of action of a chemical modulator on a specific target (Grigalunas
et al., 2020). Nonetheless, the intricate behavior of drug molecules poses substantial challenges in
early drug discovery, leading to high failure rates and significant hurdles to be overcome (Ngwe-
wondo et al., 2021).

In recent years, there has been a strong focus on integrating intelligent computing and automated
experimentation into accelerating the drug discovery process (Schneider, 2018; Wei et al., 2023;
Ivanenkov et al., 2023). The objective is to explore a wider range of chemical possibilities while
reducing costs. Intelligent computing plays a crucial role by recommending molecules for further
investigation (Wei et al., 2023). By analyzing vast amounts of data, such as chemical structures and
biological assays, intelligent computing can identify potential drug candidates (Wei et al., 2023) that
are more likely to succeed. This not only speeds up the process of identifying promising molecules
but also reduces the need for extensive laboratory experiments (Wei et al., 2023). Automated exper-
imentation is another important component of this integrated approach (Schneider, 2018). Through
high-throughput screening techniques and the use of automated technologies, researchers can effi-
ciently test numerous molecules against specific targets or disease models (Schneider, 2018). The
results from automated experiments validate the predictions made by intelligent computing and help
refine the models (Schneider, 2018). The continuous feedback loop between computational pre-
dictions and experimental results enables researchers to learn and optimize their hypotheses. This
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iterative cycle allows for more efficient and targeted drug discovery, reducing the time and resources
required to develop innovative therapies (Wei et al., 2023).

To achieve this end-to-end early drug discovery, the design of a novel machine learning framework
plays an essential role (Yoo et al., 2023). From the aspect of machine learning, this new paradigm
of early drug discovery can be formulated as an active probabilistic learning problem. Specifically,
it is based on the assumption that the number of active molecules capable of binding to a target
protein of interest within a molecule library is typically relatively small and clustered within the
chemical space (Singh et al., 2023). probabilistic clustering algorithms can be employed to identify
these desirable clusters, and representative molecules can be selected from these clusters through
active learning techniques. Automated experiments are conducted on the selected molecules, and
the feedback generated by these experiments is used to optimize the drug discovery models (Wei
et al., 2023). This iterative process of experiment and feedback helps to refine the model, leading to
more accurate predictions and a higher likelihood of discovering effective drug candidates.

Based on this formulation, we propose a novel approach termed Active Probabilistic Drug Discov-
ery (APDD), which comprises three primary components. Firstly, molecules are partitioned into
clusters using probabilistic clustering algorithms with substructure features. This clustering method
helps identify relevant chemical features and group molecules based on their similarities. Second,
representative molecules from each cluster are selected for molecular docking simulations using
Vina-GPU+ (Ding et al., 2023). These simulations aim to identify clusters featuring molecules with
high docking probabilities, which serve as potential candidates for further experimentation. Finally,
a few molecules from these clusters are selected through active learning techniques to undergo next
wet experimental screening to provide feedback for the model. The feedback generated by these
experiments is integrated into the model to refine its predictions and improve its performance itera-
tively.

To evaluate the effectiveness of our proposed APDD method, comprehensive experiments were con-
ducted on 90 targets from well-established benchmark datasets DUD-E (Mysinger et al., 2012) and
LIT-PCBA (Tran-Nguyen et al., 2020), which are widely used for early drug discovery evaluations.
The experimental results showcased that the APDD method demonstrated substantial computational
cost savings by an impressive 80% on average, compared to traditional drug discovery methods.
Furthermore, the APDD method achieved remarkable reductions in wet experimental costs, with an
average reduction of 70%. Despite these significant cost reductions, the APDD method maintained
comparable screening accuracy1. We also evaluate APDD for virtual screening with simulation ex-
periments over 1.4 million molecules, which further validate the feasibility and efficiency of APDD.
To sum up, the primary contributions of this work lie in formulating this new paradigm for early
drug discovery and designing a novel machine learning algorithm that is effective and can easily be
extended to accommodate an extra-large virtual molecule library.

2 RELATED WORK

Automated systems have played a significant role in early drug discovery over the years (Schneider,
2018). Medium-to-high throughput drug screening in specialized assays has become commonplace
in the pharmaceutical industry, resulting in increased laboratory efficiency, lower overall attrition
rates, and reduced costs throughout the drug discovery value chain (Shinn et al., 2019). On the other
side, the introduction of intelligent computing-driven early drug discovery has further accelerated
the growth of the pharmaceutical sector, leading to a revolutionary change in the industry (Pasrija
et al., 2022). Moving forward, an ideal approach for early drug discovery would involve the integra-
tion of intelligent computing and automated systems (Schneider, 2018; Wei et al., 2023; Ivanenkov
et al., 2023). This integration has huge potential to expedite drug development and approval process,
ultimately enabling therapies to reach patients more quickly (Wei et al., 2023). The benefits of this
approach are numerous (Schneider, 2018). By applying standardized procedures with automated
support, measurement errors can be minimized, and material consumption can be reduced. Addi-
tionally, the use of automated systems allows for shorter screening and testing cycles, enabling rapid
feedback loops and molecule optimization. Moreover, this approach enables molecular optimization
based on multiple relevant biochemical and biological endpoints without personal bias (Schneider,
2018). In short, considering the vast size of the chemical space, estimated to be between 1030 and

1The code and data will be freely available upon acceptance.

2



Under review as a conference paper at ICLR 2024

1060 drug-like molecules, a key challenge for medicinal chemists is determining “what to make and
test next” (Schneider, 2018). Automated and intelligent drug discovery platforms must be capable
of providing accurate answers to this question (Schneider, 2018).

Currently, numerous research institutions and pharmaceutical companies are actively engaged in re-
search and development in this field (Wei et al., 2023; Ivanenkov et al., 2023). In academia, for ex-
ample, Moreira-Filho et al. (2021) highlighted the recent advancements in automating whole organ-
ism screening, target-based assays, fragment-based drug discovery (FBDD), computer-aided drug
design (CADD), and the integration of intelligent computing tools in drug design projects, marking
a new era in the discovery of anti-schistosomiasis drugs (Moreira-Filho et al., 2021). Grisoni et al.
(2021) proposed a design-make-test-analyze framework as a blueprint for automated drug design,
utilizing intelligent computing and miniaturized bench-top synthesis, and successfully applied this
framework to explore the chemical space of known LXRα agonists and generate novel molecular
candidates (Grisoni et al., 2021). In the industrial sector, for instance, XtalPi Ltd. developed the
ID4Inno drug discovery platform (Wei et al., 2023). This innovative “trinity” paradigm combines
artificial intelligence, automated experiments, and expert knowledge to explore a broader chemical
space with increased efficiency and reduced costs (Wei et al., 2023). The platform has been vali-
dated by the discovery of potent hit molecules against PI5P4K-β, a novel anti-cancer target (Wei
et al., 2023). Insilico Medicine Inc. launched Pharma. AI, a fully automated AI-driven drug discov-
ery platform (Ivanenkov et al., 2023). This platform demonstrates efficient identification of novel
molecular structures targeting DDR1 and CDK20 (Ivanenkov et al., 2023). Collaborating with Stra-
teos, Inc., Eli Lilly has introduced a web-based platform that provides broad access to the world’s
first cloud laboratory2. It integrates automated biology and chemistry research capabilities, creating
a closed-loop system that accelerates the design-make-test-analyze drug discovery cycle.

3 FORMULATION

Early drug discovery involves various initial steps to identify molecules that exhibit desirable char-
acteristics for developing effective drugs. Early drug discovery will typically rely on a combination
of intelligence and automated systems to facilitate seamless operations and enhance the overall per-
formance of the methods employed. Artificial intelligence plays a crucial role in the discovery and
recommendation of potential molecules, while automated experiments ensure data validation and
provide valuable feedback. From a machine learning perspective, this innovative paradigm to early
drug discovery can be formulated as an active probabilistic learning problem. Firstly, this paradigm
is built on the assumption that within a compound library, the number of active molecules capable
of binding to a specific target protein of interest is generally limited and tends to be concentrated
within a specific region of the chemical space (Singh et al., 2023). Secondly, the outcomes of early
drug discovery typically yield a list of diverse molecules with the highest affinity. However, the hit
rate of the top-ranked molecules remains limited, ranging from only 10-35% (Gorgulla et al., 2020;
Sadybekov et al., 2022; Gorgulla et al., 2023). Studies on the progression from hits to clinical drug
candidates have shown that hit molecules, on average, share only 50% structural similarity with
the final drugs (Brown, 2023). Also, it is widely recognized that computational docking affinity
scores struggle to achieve a strong correlation with experimental results due to the complex nature
of the physical processes involved. Consequently, it becomes more crucial for prioritizing a list of
molecules based on the highest binding probabilities than solely considering their affinity scores.
Thirdly, the utilization of probability clustering algorithms allows for the identification of these
desirable clusters, from which representative molecules can be selected using active learning tech-
niques. Finally, the selected molecules undergo automated experiments, and the feedback obtained
from these experiments is utilized to optimize the drug discovery models.

4 METHOD

In this section, we will present a comprehensive overview of the construction process for the Active
Probabilistic Drug Discovery (APDD) framework. We will commence by elucidating the method-
ology employed for probabilistic clustering of a ligand molecule library, leveraging substructure
features as outlined in Section 4.1. Subsequently, in Section 4.2, we will delve into the intricacies

2https://strateos.com/medicinal-chemistry/.
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associated with the utilization of Vina-GPU+ for the docking process of representative molecules
from each cluster. Moving forward, Section 4.3 will introduce our query strategy, which actively
selects molecules, alongside an explanation of how we refine docking probabilities by incorporating
wet lab results, ultimately amplifying the effectiveness of our drug discovery efforts.

4.1 MOLECULE CLUSTERING

Molecule Clustering plays an important role in reducing the computation cost of traditional
Drug Discovery methods, as traversing through millions of molecules remains prohibitively time-
consuming for tools like AutoDock Vina. In the past, there are several proposals to alleviate this
problem:

• apply unsupervised clustering methods like UMAP (Hernández-Hernández & Ballester, 2023) to
reduce the amount of molecules and selecting centroid molecules with high Vina score;

• separate molecules based on their chemical properties to eliminate the molecules with redundant
attributes (Gorgulla et al., 2023), which fails to provide a clear quantitative understanding of the
structure-activity relationship;

• employing a combination of fragments/synthons to initially dock a minimal enumeration library
(Sadybekov et al., 2022). this approach may overlook potential synthons due to other repulsive
regions and still necessitates the evaluation of a large number of combinations involving validated
synthons and scaffolds.

More importantly, these methods cannot effectively separate the active molecules with other de-
coys molecules, which limits their applicability to real-world scenarios. To address these issues,
we turn to Probabilistic Clustering algorithms (MPC, (Liu et al., 2022)) , which provides quantita-
tive measurement and requires no prior knowledge to learn distance-probability mapping function
automatically from multi-view distribution by consistency constraints (Liu et al., 2023).

To apply probabilistic clustering to molecules, two significant challenges need to be addressed:
molecular representations and probability estimation. Drawing inspiration from (Hernández-
Hernández & Ballester, 2023), we utilize Morgan fingerprints as the molecular representation and
leverage the Faiss (Johnson et al., 2019) library to retrieve the k-nearest neighbors for each molecule
based on hashed fingerprints. The probability between molecules is defined as the likelihood of bind-
ing to the same drug target. Additionally, previous studies have shown that successful docking of
a molecule onto a protein pocket depends on certain critical fragments in the molecule fitting well
with the local structure of the pocket (Sarfaraz et al., 2020). Therefore, we estimate pairwise proba-
bilities by measuring the substructure similarity between molecules, which is further validated using
statistics from Lit-PCBA/DUD-E/PubChem datasets.

Specifically, we approximate this probability with the Tanimoto similarity of molecular pairs, which
is denoted as follows:

P (eij = 1∣FP(i),FP(j)) =
FP(i) ∩ FP(j)
FP(i) ∪ FP(j) , (1)

where eij represents the event that molecule i and j can both dock the same protein, FP denotes
the morgan fingerprint, and ∩,∪ quantifies common/total substructures between two Morgan finger-
prints. To perform molecular clustering based on this probability, we adopt the Fast probabilistic
clustering algorithm (MPC) (Liu et al., 2022). This algorithm aims to cluster similar molecules into
the same groups while maximizing the overall likelihood of all pairwise matching events, under the
assumption of independence.

4.2 INITIAL SCREENING

Regarding the docking of a molecule dataset, the current screening algorithms often encounter the
challenge of maintaining a balance between precision and computational cost. Multiple docking
algorithms (Halgren et al., 2004) (Corso et al., 2022) (Eberhardt et al., 2021) and scoring functions
(Singh et al., 2023) (Yang et al., 2023) (Heinzelmann & Gilson, 2021) have been employed to
predict the binding affinity and pose of each small molecule within the binding site. In our study, we
utilize VinaGPU+, which accelerates the popular autodock vina by 100 speedup, during the Initial
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Screening stage. However, alternative or multiple docking methods can also be employed in this
stage. In order to alleviate the significant computational burden associated with traversing the entire
molecular library, we only dock the representative molecules that are selected from the clustering
results using MPC.

In this context, we consider the initial screening from two perspectives: (i) how to ensure that
the selected molecules will not deviates severely from the majority molecules in a cluster (e.g.,
its estimated affinity is -4.0, while the average estimated affinity in this cluster is -7.0) (ii) how to
estimate a reasonable binding probability for a molecule based on its vina score.

• To address the first problem, we propose a method to reduce the risk of selecting outlier molecules
by considering the overall Tanimoto similarity. Specifically, we define representative molecules as
those that maximize the accumulated pairwise probability, denoted as∑j∈w P (eij = 1). This crite-
rion ensures that the representative molecule shares the highest number of common substructures
with other molecules in the cluster. Empirical findings demonstrate that this approach significantly
decreases the likelihood of selecting outlier samples. In practice, we adopt an iterative selection
process, choosing a small number of representatives with the highest accumulated pairwise prob-
ability. To prevent redundancy, we ensure that these representatives have a similarity of no more
than 0.8 with existing representatives in each cluster.

• To address the second problem, we employ isotonic regression to learn the mapping function from
open labeled data, which includes proteins and molecules with active or inactive label information.
We limit the maximum estimated probability to 0.3, based on extensive studies (Gorgulla et al.,
2023) (Sadybekov et al., 2022), which have shown that the hit success rate with top docking
scores is approximately 0.3. It is worth noting that for more reliable scoring methods, such as
MMGBSA (Yang et al., 2023) or FEP (Heinzelmann & Gilson, 2021), the maximum probability
can be statistically calculated using labeled samples with top scores.

It is important to note that the appropriate fusion of multi-modal docking scores obtained from dif-
ferent tools, each with its own theoretical basis and influencing factors, can significantly reduce the
risk of cluster miss. Considering the efficient integration of various modalities of information by
probabilistic clustering in multi-modal clustering tasks (Liu et al., 2022), we adopt a similar ap-
proach to amalgamate different scoring results. This process consists of two steps: (i) Initially, we
convert the evaluation results obtained from each computational method into binding probabilities:
P (ei = 1∣smi ), where ei denotes whether molecule i binds to the receptor protein, and smi repre-
sents the estimation of the docking score for molecule i generated by m-th method. We follow the
procedure from probabilistic clustering, extracting known active molecules and decoy molecules,
calculating their docking scores, and then employing monotonic regression to establish a mapping
function from the docking scores to binding probabilities. (ii) Drawing inspiration from MPC, we
employ the following equation to fuse probabilities generated by various algorithms, which has been
proven to be an equivalent transformation assuming conditional independence among the multiple
modalities:

P (ei = 1∣s1i , s2i ,⋯, ski ) =
∏j∈[1,⋯,k] P (ei = 1∣sji )

∏j∈[1,⋯,k] P (ei = 1∣sji ) +∏j∈[1,⋯,k] P (ei = 0∣sji )
.

4.3 ACTIVE PROBABILISTIC SCREENING

Active Learning has been widely utilized to enhance the performance of drug screening (Yu et al.,
2021). However, we observe that previous active screening methods are often limited to well-studied
proteins, resulting in poor generalization ability when applied to unseen proteins (Corso et al., 2022),
or requiring a considerable number of wet experiments for model retraining/fine-tuning (Warmuth
et al., 2001). In contrast, we have observed that active clustering can effectively mitigate these
issues. This is because active clustering does not necessitate prior knowledge about the target pro-
tein or any existing active molecules. We believe that in the refinement stage of drug discovery,
incorporating active probabilistic clustering to locally adjust molecular binding probabilities can
significantly enhance the recall rate of active molecules. Clustering active molecules (or molecules
with high binding probabilities) can provide valuable information regarding diverse binding modes
and assist in constructing pharmacophores, which are crucial for further drug optimization.
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During the initial screening phase, the feedback results L are sorted based on the binding probability
of representative molecules. In this stage, our objective is to increase the expected recall of the top
K molecules, as expressed by the following formulation:

E[n] = ∑
i∈L[0∶K]

P (ei = 1). (2)

Here, ei = 1/0 indicates whether molecule i successfully binds or fails to bind to the target protein.
To maximize this value with a limited number of wet lab experiment results, we propose an Active
Probabilistic Refinement method consisting of two key components: (i) A query strategy that selects
the candidate molecule with the highest expected recall improvement. (ii) The context probability
refinement mechanism.

Our query strategy quantifies the potential impact of conducting wet experiments on a molecule i
from cluster W by evaluating the expected improvement in E[n]. This consideration is reasonable
within the context of probabilistic molecule clustering and drug screening for two main reasons.

Firstly, our approach is built upon the fundamental assumption that active molecules are distributed
within clusters. Adjusting the docking probability based on wet experiment results increases the
likelihood of discovering similar active molecules. By targeting specific molecules within a cluster,
we can potentially uncover additional active molecules with similar characteristics.

Secondly, effective docking tools are more likely to assign a higher affinity score to active molecules
compared to inactive molecules. Consequently, clusters containing active molecules are more likely
to be prioritized for investigation ahead of clusters primarily composed of inactive molecules.

To formally define the expected recall improvement, we employ the following formula:

E[∆n∣i] = P (ei = 1) ∑
j∈W

[P (ej = 1∣ei = 1, sij , dj) − P (dj = 1∣di, sij , dj)], (3)

where W denotes the cluster that contains mol i. Eq.(3) only consider the probability gain when
mol i is checked to be active, since we assume there exists many candidates with similar binding
probability to take the vacancy of top i when mol i is checked to be inactive.

As we only dock the representative molecules in each cluster at first, we are not able to calculate
this formula strictly, hence we propose two variants with different granularity: molecule-based and
cluster-based.

For the cluster-based, we have E[∆n∣i] = P (ei = 1)(1−P (ei = 1))∣W ∣. This formula approximates
the difference between P (ej = 1∣ei = 1, sij , dj) and P (ej = 1∣di, sij , dj) by 1 − P (ei = 1). Intu-
itively, this indicates that as the probability of molecule i being active increases, the probabilities of
its neighboring molecules being active also tend to increase proportionally.

For the molecule-based, P (ej = 1∣ei = 1, sij , dj) is calculated by independent event assumption of
ei = 0/1, ej = 0/1, eij = 0/1. ei/j = 1 means i/j-th mol binds to the target, eij = 1 means i-th bind
to the same target with j-th mol:

P (ej = 1∣di, sij , dj) =
PiSijPj + (1 − Pi)(1 − Sij)Pj

Pj(PiSij + (1 − Pi)(1 − Sij)) + (Pi(1 − Sij) + (1 − Pi))(1 − Pj)
(4)

Em(∆n∣i) = P (ei = 1) ∑
j∈wi

[P (ej = 1∣ei = 1, sij , dj) − P (ej = 1∣di, sij , dj)]. (5)

To select molecules for wet experiments, we follow a two-step process. Firstly, we sort the molecules
based on a rapid computation of cluster-based recall gain using Equation (4.3). Next, we expand the
molecules from the top clusters and dock them using Vina-GPU+. We then calculate the exact
molecule-based recall gain using Equation (5). Finally, we select the molecule with the highest
molecule-based recall gain for the wet lab experiment.

If the wet lab experiment confirms the activity of the selected molecule, we update its binding prob-
ability to 1. On the other hand, if the experiment shows no activity, we set the binding probability to
0. Furthermore, we update the posterior probability of the corresponding cluster using Equation (4).
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It is important to note that the context probability refinement Equation (4) only covers pairwise
posterior probability computation. However, it can be easily extended when there are multiple
molecules with wet experiment results within a single cluster. To accomplish this, we simply enu-
merate all possible combinations of 0s and 1s for the neighbor molecules (limited to a maximum of
10 for computational efficiency). We then calculate the probability density and compute the poste-
rior probability by comparing the positive events against the sum of all events’ probability density.

Lastly, this process of active molecule selection, wet lab experimentation, and refinement is itera-
tively performed until the expected recall number meets our requirements or the number of wet lab
experiments reaches the limit.

5 EXPERIMENTS

Our experiments are structured as follows: In Section 5.1, we present the details of our experimental
setup. Next, in Section 5.2, we evaluate the effectiveness of APDD compared to a baseline method
using two well-known screening datasets. Additionally, in Section 5.3, we validate our assumption
that active molecules exhibit cluster-grouping behavior by analyzing statistical results from proba-
bilistic clustering. Finally, in Section 5.4, we investigate the efficacy of APDD when the size of the
molecule dataset exceeds one million.

5.1 EXPERIMENT SETTING

Datasets. We evaluate the performance of APDD using two well-known drug discovery datasets:
DUD-E (Mysinger et al., 2012) containing 102 target proteins, and LIT-PCBA (Tran-Nguyen et al.,
2020) consisting of 15 target proteins. To facilitate drug discovery on these proteins and the vast
number of molecules, our data preparation involves three steps: (i) We extract the pocket coor-
dinates from the existing complex structures of the target proteins. (ii) Next convert the proteins
and molecules into the standard ’.pdbqt’ format to enable docking using VinaGPU+. (iii) Extract
Morgan fingerprints of all active/decoy molecules.

After the dataset preparation, we identified 79 proteins in DUD-E and 11 proteins in LIT-PCBA that
fulfilled the experiment conditions without requiring further preprocessing or encountering docking
errors. Table 1 provides detailed information on these proteins.

Baseline and Implementation. Existing screening methods typically select molecules with the
highest docking scores for wet experiments (Sadybekov et al., 2022; Gorgulla et al., 2023). To
emulate this approach, we employ VinaGPU+ to dock target protein with all candidate molecules.
Subsequently, we conduct wet lab experiments on molecules with the best affinity scores in a se-
quential manner until a predetermined recall number is achieved. We refer to this baseline scheme
as Vina Enumeration (VE) for ease of reference.

Regarding the implementation of APDD, we set the number of k-nearest neighbors as 50 for Fast
Probabilistic Clustering (FPC). During the Active Probabilistic Refinement procedure, we select two
representative molecules from each cluster. We terminate the APDD cycle when the recall rate of
the top 100 molecules reaches the target recall rate. It is worth noting that machine learning models
cannot be retrained or fine-tuned due to the limited number of wet experiments. As a result, these
methods are not included in the baseline comparison.

Evaluation. We use two different metrics to measure the performance of APDD: The reduction of
Vina-GPU+ docking and wet lab experiments for discovering active molecules.

5.2 PERFORMANCE COMPARISON

We evaluate the performance of APDD with VinaGPU+ on these 79 target proteins of DUD-E and
11 targets of LIT-PCBA respectively. Specifically, we observe how the scale of molecule datasets,
different types of proteins and the ROC of docking scoring influence the performance of APDD. We
report the results on DUD-E in Table 2, and the result on LIT-PCBA in Table 3. Our observations
are as follows:

• APDD achieves the same recall rate with significantly fewer VinaGPU+ docking and wet lab
experiments on most of the proteins in both DUD-E and LIT-PCBA. APDD achieves 82%/75%

7



Under review as a conference paper at ICLR 2024

Table 1: The table presents the detailed experimental results for each target protein in DUD-E. The ‘WLE’
column indicates the number of wet lab experiments conducted, while the ‘Docking’ column represents the
number of VinaGPU+ docking runs performed.

target WLE Docking target WLE Docking
APDD VE per (%) APDD VE per(%) APDD VE per (%) APDD VE per(%)

aa2ar 95 2430 3.9 6884 32032 21.5 hxk4 32 269 11.9 662 4790 13.8
abl1 132 1253 10.5 2006 10932 18.3 inha 26 145 17.9 322 2343 13.7
ace 139 1087 12.8 3540 17180 20.6 ital 35 1725 2.0 1680 8638 19.4
aces 125 2784 4.5 5044 26703 18.9 jak2 31 174 17.8 910 6607 13.8

adrb1 120 1087 11.0 3150 16105 19.6 kif11 24 42 57.1 1084 6965 15.6
adrb2 138 1333 10.4 2962 15233 19.4 kit 173 1173 14.7 1960 10616 18.5
akt1 84 5431 1.5 3710 16743 22.2 kith 15 201 7.5 384 2907 13.2
akt2 43 430 10.0 1350 7017 19.2 kpcb 38 81 46.9 1548 8836 17.5
aldr 34 184 18.5 1694 9159 18.5 lck 154 2363 6.5 5658 27820 20.3
andr 81 199 40.7 2322 14619 15.9 lkha4 34 86 39.5 1498 9620 15.6
aofb 49 792 6.2 534 7022 7.6 met 43 159 27.0 2036 11416 17.8

bace1 160 1340 11.9 3870 18383 21.1 mk01 25 119 21.0 736 4629 15.9
braf 42 194 21.6 1816 10100 18.0 mk10 51 1005 5.1 874 6712 13.0

casp3 64 1809 3.5 1824 10898 16.7 mk14 133 775 17.2 7782 36428 21.4
cdk2 91 228 39.9 5722 28323 20.2 nram 32 860 3.7 1262 6298 20.0
comt 12 81 14.8 444 3891 11.4 pa2ga 43 437 9.8 954 5248 18.2
cp3a4 242 1134 21.3 1802 11967 15.1 parp1 70 243 28.8 6102 30558 20.0
cxcr4 18 654 2.8 582 3446 16.9 pgh1 169 777 21.8 1580 11011 14.3
dhi1 88 785 11.2 3370 19679 17.1 pgh2 65 92 70.7 4316 23614 18.3
dpp4 97 1398 6.9 7880 38135 20.7 plk1 32 641 5.0 1122 6907 16.2
drd3 50 50 100.0 6832 34561 19.8 pnph 67 198 33.8 1608 7053 22.8
dyr 63 806 7.8 4332 17432 24.9 ppara 83 209 39.7 3306 19770 16.7
egfr 121 611 19.8 7258 35592 20.4 pparg 137 1124 12.2 4436 25784 17.2
esr1 69 88 78.4 4462 21081 21.2 ptn1 78 1872 4.2 1310 7380 17.8
esr2 66 154 42.9 4548 20574 22.1 pur2 20 90 22.2 668 2750 24.3
fa7 50 342 14.6 1342 6364 21.1 pygm 29 736 3.9 602 4027 14.9

fa10 66 570 11.6 4600 20629 22.3 pyrd 23 32 71.9 1224 6561 18.7
fabp4 12 12 100.0 494 2797 17.7 reni 95 296 32.1 1414 7062 20.0
fak1 51 192 26.6 932 5450 17.1 rxra 32 32 100.0 1422 7081 20.1

fkb1a 52 575 9.0 1030 5911 17.4 sahh 20 40 50.0 732 3513 20.8
fpps 120 1452 8.3 2162 8934 24.2 src 135 2859 4.7 7264 35027 20.7
glcm 37 619 6.0 538 3854 14.0 tgfr1 29 114 25.4 1220 8633 14.1
gria2 68 141 48.2 2161 12003 18.0 thrb 155 1515 10.2 6224 27465 22.7
grik1 32 448 7.1 1262 6651 19.0 try1 209 1919 10.9 5972 26428 22.6
hdac2 144 319 45.1 1832 10486 17.5 tryb1 42 593 7.1 1562 7798 20.0
hivint 52 567 9.2 884 6749 13.1 tysy 35 136 25.7 1116 6859 16.3
hivpr 73 332 22.0 3106 16102 19.3 urok 79 1437 5.5 2166 10012 21.6
hivrt 67 853 7.9 3064 19233 15.9 wee1 25 25 100.0 1210 6251 19.4
hmdh 65 387 16.8 1642 8920 18.4 xiap 43 628 6.8 1030 5250 19.6
hs90a 27 595 4.5 848 4938 17.2 – – – – – – –

Table 2: The table presents the detailed experimental results for each target protein in DUD-E

target WLE Docking target WLE Docking
APDD VE per (%) APDD VE per(%) APDD VE per (%) APDD VE per(%)

ADRB2 40351 75491 53.5 48838 311765 15.7 ALDH1 499 730 68.4 21512 107237 20.1
FEN1 20440 30101 67.9 38130 351078 10.9 GBA 44178 70468 62.7 49503 291404 17.0
IDH1 9710 25543 38.0 38605 358796 10.8 KAT2A 36740 30457 120.6 37633 342923 11.0

MAPK1 5822 2009 289.8 11992 61875 19.4 MTORC1 1506 3899 38.6 2223 33069 6.7
OPRK1 2274 48793 4.7 34275 269499 12.7 PKM2 13465 10290 130.9 33640 245225 13.7

VDR 13129 29393 44.7 33793 263303 12.8 – – – – – – –

reduction of docking/wet experiments in DUD-E, while 85%/40% in LIT-PCBA. Moreover, we
notice that APDD shows such advantage in both cases where the number of molecules is only less
than 4k and where the number of molecules reaches more than 300k, which reveals that APDD is
robust to the size of datasets and different chemical properties and pocket structures.

• We have observed that VinaGPU+ sometimes provides low-quality assessments for the majority
of molecules, resulting in two unexpected outcomes: (i) Both APDD and VE require thousands
of wet lab experiments to achieve the target recall rate. This is attributed to the extremely low
AUC value of the VinaGPU+ scores, i.e., less than 0.5. (ii) APDD requires the same or even more
wet lab experiments to discover the target number of active molecules. In this case, we find that
VinaGPU+ scores for all molecules uniformly fall within a small range (e.g., [-7, -9] for MAPK1
and KAT2A, and [-5, -7] for PKM2), making it meaningless to compare the required amount of
wet lab experiments in this scenario.
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Table 3: The distribution of the clusters that contain active molecules

Rk Pk
protein k = 2 k = 4 k = 6 k = 2 k = 4 k = 6

DUD-E

aa2ar 0.18 0.37 0.52 1.0 1.0 1.0
abl1 0.40 0.53 0.60 1.0 1.0 1.0
ace 0.24 0.40 0.50 1.0 1.0 1.0
aces 0.23 0.37 0.55 1.0 1.0 1.0

LIT-PCBA

ADRB2 0.47 0.64 0.64 0.66 0.57 0.57
ALDH1 0.33 0.62 0.76 0.74 0.55 0.47
FEN1 0.39 0.64 0.76 0.76 0.56 0.49
GBA 0.16 0.27 0.45 0.75 0.54 0.35

Table 4: The performance of APDD and VE on five proteins from DUD-E, where we augment the inactive
molecules to over 1.4 million.

target WLE Docking target WLE Docking
APDD VE per (%) APDD VE per(%) APDD VE per (%) APDD VE per(%)

aa2ar 390 33238 1.2 398970 1411696 28.3 adrb1 5922 54425 10.88 398892 1411469 28.26
casp3 426 72965 0.6 398902 1411412 28.26 dhi1 957 9967 9.6 398950 1411544 28.26
esr1 39 176 22.2 398978 1411610 28.26 – – – – – – –

5.3 EXPLORATION ON MOLECULE DISTRIBUTION

In this section, we aim to explore why APDD can save the unnecessary VinaGPU+ docking and the
wet lab experiments simultaneously. We report the distribution of the clusters with active molecules
for four proteins in DUD-E and four proteins in LIT-PCBA as an instance in Table 3. We observe
two metrics: The first is the active molecule ratio Rk, which is calculated between two quantities:
(i) the cumulative sum of active molecules within clusters that contains no more than k molecules,
and (ii) the overall count of active molecules. The second is the active cluster purity Pk, which is
calculated between two quantities: (i) the cumulative sum of active molecules within clusters that
contains no more than k molecules, and (ii) the total number of molecules in these clusters.

As Table 3 shows, We find that active molecules are completely separated from inactive molecules
in datasets of DUD-E, and the majority of the active molecules are concentrated together in a few
clusters whose size is fewer than eight. We attribute the separation between active and inactive
molecule to the key assumption that the majority of active molecules are grouped together rather
than uniformly distributed with the inactive molecules.

5.4 PERFORMANCE ON LARGE DATASETS

Previous drug discovery process is typically implemented on ligand sets with over millions of
molecules. Hence, we aim to investigate the performance of APDD upon millions of molecules.
Specifically, we randomly select five proteins from DUD-E and take the inactive molecules of every
protein (1.4 million in total) as the inactive molecules of this selected protein. We then test APDD
and VE on these augmented datasets, and report the result in Table 4. We observe that APDD
still successfully recovers the preset number of active molecules with 20% VinaGPU+ docking and
wet experiments compared to VE. This shows that potential of APDD in real world drug discovery
applications.

6 CONCLUSION

In the field of early drug discovery, there is a growing trend towards using both intelligent computing
and automation to drive the entire process. This new approach can be seen as an active probabilis-
tic learning problem within the realm of machine learning. To address this, we present a novel
method called active probabilistic drug discovery (APDD), which combines ligand-based screening
through molecule clustering and structure-based screening using docking methods. We conducted
extensive experiments on 90 targets from benchmark datasets such as DUD-E and LIT-PCBA for
drug screening purposes. The results demonstrated that the APDD method achieved substantial cost
savings while maintaining high screening accuracy. Our proposed paradigm aims to eliminate the
need for lead optimization by significantly expanding the size of virtual molecule libraries, thereby
facilitating comprehensive coverage of drug-like chemical space in well-organized clusters.
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