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Abstract

Graph Transformers, which incorporate self-
attention and positional encoding, have recently
emerged as a powerful architecture for various
graph learning tasks. Despite their impressive per-
formance, the complex non-convex interactions
across layers and the recursive graph structure
have made it challenging to establish a theoret-
ical foundation for learning and generalization.
This study introduces the first theoretical investi-
gation of a shallow Graph Transformer for semi-
supervised node classification, comprising a self-
attention layer with relative positional encoding
and a two-layer perceptron. Focusing on a graph
data model with discriminative nodes that deter-
mine node labels and non-discriminative nodes
that are class-irrelevant, we characterize the sam-
ple complexity required to achieve a desirable
generalization error by training with stochastic
gradient descent (SGD). This paper provides the
quantitative characterization of the sample com-
plexity and number of iterations for convergence
dependent on the fraction of discriminative nodes,
the dominant patterns, and the initial model errors.
Furthermore, we demonstrate that self-attention
and positional encoding enhance generalization
by making the attention map sparse and promot-
ing the core neighborhood during training, which
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explains the superior feature representation of
Graph Transformers. Our theoretical results are
supported by empirical experiments on synthetic
and real-world benchmarks.

1. Introduction

Graph Transformers (Dwivedi & Bresson, 2021; Kreuzer
etal., 2021; Ying et al., 2021) were developed for graph ma-
chine learning as a response to the impressive performance
of Transformers demonstrated in various domains (Vaswani
et al., 2017; Kenton & Toutanova, 2019; Brown et al., 2020;
Dosovitskiy et al., 2020; Chen et al., 2019). It is designed
specifically to handle graph data by constructing positional
embeddings that capture important graph information and
using nodes as input tokens for the Transformer model. Em-
pirical results have shown that Graph Transformers (GT)
outperform classical graph neural networks (GNN), such as
graph convolutional networks (GCN), in graph-level learn-
ing tasks such as molecular property prediction (Rong et al.,
2020; Kreuzer et al., 2021; Wu et al., 2021), image classifi-
cation (Gabrielsson et al., 2022; Rampasek et al., 2022), as
well as node-level tasks like document analysis (Zhang &
Zhang, 2020; Hu et al., 2020c;b; ZHANG et al., 2022; Chen
et al., 2023), semantic segmentation (Rampasek et al., 2022;
Hussain et al., 2022), and social network analysis (Zhao
et al., 2021; Dwivedi & Bresson, 2021; Chen et al., 2022).

Despite the notable empirical advancements, some critical
theoretical aspects of Graph Transformers remain much less
explored. These include fundamental inquiries such as:

e Under what conditions can a Graph Transformer achieve
adequate generalization?
o What is the advantage of self-attention and positional
encoding in graph learning?

Some recent works (Ying et al., 2021; Chen et al., 2023) the-
oretically study GTs by comparing their expressive power
with other graph neural networks without self-attention.
Meanwhile, other studies (Kreuzer et al., 2021; Rampéasek
et al., 2022; Gabrielsson et al., 2022) explain the design of
positional encoding (PE) in terms of graph topology and
spectral theory. However, these analyses only establish the
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existence of a desired GT model, rather than its achievability
through practical learning methods. Additionally, none of
the existing works have theoretically examined the general-
ization of GTs, which is essential to explain their superior
performance and guide the model and algorithm design.

To the best of our knowledge, this paper presents the first
learning and generalization analysis of a basic shallow GT
trained using stochastic gradient descent (SGD). We focus
on a semi-supervised binary node classification problem on
structured graph data, where each node feature corresponds
to either a discriminative or a non-discriminative pattern,
and each ground truth node label is determined by the dom-
inant discriminative pattern in the core neighborhood.We
explicitly characterize the required number of training sam-
ples, i.e., the sample complexity, and the number of SGD
iterations to achieve a desired generalization error. Our sam-
ple complexity bound indicates that graphs with a larger
fraction of discriminative nodes tend to have superior gen-
eralization performance. Moreover, our analysis reveals
that better generalization performance can be achieved by
using graph sampling methods that prioritize class-relevant
nodes.Our technical contributions are highlighted below:

First, this paper establishes a novel framework for the
optimization and generalization analysis of shallow GTs.
We consider a shallow GT model with non-convex interac-
tions across layers, including learnable self-attention and PE
parameters, and Relu, softmax activation functions, while
the state-of-the-art works on GNNs (Maskey et al., 2022;
Tang & Liu, 2023; Zhang et al., 2023c) exclude attention
layers due to such difficulties. This paper develops a novel
and extendable feature-learning framework for analyzing
the optimization and generalization of GTs.

Secondly, this paper theoretically characterizes the bene-
fits of the self-attention layer of GTs. Our analysis shows
that self-attention evolves in a way that promotes class-
relevant nodes during training. Thus, a GT trained produces
a sparse attention map. Compared with GCNs without self-
attention, GTs have a lower sample complexity and faster
convergence rate for better generalization.

Third, this paper theoretically demonstrates that posi-
tional embedding improves the generalization by pro-
moting the nodes in the core neighborhood. Different
from the state-of-the-art theoretical studies on Transformers
that either ignore PE in analyzing generalization (Li et al.,
2023a; Tian et al., 2023; Tang & Liu, 2023) or only charac-
terize the expressive power of PE (Rampasek et al., 2022;
Gabrielsson et al., 2022), this paper analyzes the generaliza-
tion of a GT with a trainable relative positional embedding
and proves that, with no prior knowledge, positional em-
bedding trained with SGD can identify and promote the
core neighborhood. This, in turn, leads to fewer training
iterations and a smaller sample complexity.

2. Related Works

Theoretical study on GTs. Previous research has applied
tools of topology theory, spectral theory, and expressive
power to explain the success of GTs. For example, Ying et al.
(2021); Chen et al. (2023) illustrates that proper weights
of the Transformer layer can represent basic operations of
popular GNN models and capture more multi-hop infor-
mation. Rampasek et al. (2022) explains the necessity of
PEs in distinguishing links that cannot be learned by 1-
Weisfeiler-Leman test (Weisfeiler & Leman, 1968). Kreuzer
et al. (2021); Gabrielsson et al. (2022) depict that the PE
can measure the physical interactions between nodes and
reconstruct the raw graph as a bijection.

Theoretical analyses of GNNs. The works in (Cong et al.,
2021; Zhang et al., 2023a) characterize the expressive power
of GNNs by studying the Weisfeiler-Leman test, inter-nodal
distances, and graph biconnectivity. Verma & Zhang (2019);
Cong et al. (2021); Zhou & Wang (2021) analyze the stabil-
ity of training GCNs. References (Liao et al., 2021; Garg
et al., 2020; Oono & Suzuki, 2020; Zhang et al., 2020b)
characterize the generalization gap via concentration bound
for transductive learning or dependent variables. In (Li et al.,
2022a; Zhang et al., 2023c; Sun et al., 2024), the authors
explore the generalization of GNNs with node sampling.

Learning neural networks on structured data. Shi et al.
(2021); Brutzkus & Globerson (2021); Allen-Zhu & Li
(2022); Zhang et al. (2023c); Chowdhury et al. (2023) study
one-hidden-layer fully-connected networks or convolutional
neural networks given data containing discriminative and
background patterns. This framework is extended to self-
supervised learning and ensemble learning (Wen & Li, 2021;
2022; Allen-Zhu & Li, 2023). The learning and generaliza-
tion of one-layer single-head Transformers are studied in
(Jelassi et al., 2022; Li et al., 2023a; Oymak et al., 2023; Li
et al., 2023c;b; 2024a; Zhang et al., 2024; Luo et al., 2024)
based on the spatial or pattern-space association between
tokens.

3. Problem Formulation and Learning
Algorithm

Let G = (V,€) denote an

un-directed graph, where V w Sy oy

is the set of nodes with size ® ()

|[V| = N and € is the set of S@T '

edges. X € RN denotes E

the matrix of the features of N ugs»")l"%i;%‘

nodes, where the n-th column \ )

of X, denoted by x,, € RY,

represents the feature of node

n. Assume |x,| = 1 for all

nodes without loss of general-

ity. We study a binary node

Output

Wgxn Woxn, Wyx,

AN

Figure 1. Graph Transform-
ersin (1)
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classification problem '. The label of node n is y, €
{+1,—1}. Let £ C V denote the set of labeled nodes.
Given X and labels in £, the objective of semi-supervised
learning for node classification is to predict the unknown
labels in V — L. The learning process is implemented on a
basic one-layer Graph Transformer in (1)?, which includes
a single-head self-attention layer and a two-layer perceptron
with a relative positional embedding.

F(x,) =a'Relu(Wy Z Wy
seTn )
- softmax,, (Wgx,)  Wozx,, + u(TS’n)b)),

where x,,,z, € R% and 7" is the set of nodes for the
aggregation computation of node n. softmax, (g(s,n)) =
exp(g(s,n))/ > ;e exp(g(j, n)) if we denote g(s,n) =
wSTW;(—Wan + “El;,n)b' Wiy € Rmexd Wq €
R™a*4 and Wy, € R™*? are key, query, and value pa-
rameters to compute the self-attention representation by
multiplying X. Wy € R™*™ and a € R™ are the hidden
and output weights in the two-layer feedforward network.
We define the one-hot distance vector w s ) € RZ, where
the non-zero index reflects the truncated distance between
nodes s and n. It is an indicator of the shortest-path distance
(SPD) between nodes. Then,

e;, ifSPDofs,nisi—1landi < Z, @)
U(sn) = . .. .
(s:m) ez, ifSPDofsnisi—1andi > Z,

where e; is the i-th standard basis in RZ. This architecture
originates from (Vaswani et al., 2017) and is widely used in
(Kreuzer et al., 2021; Zhao et al., 2021; ZHANG et al., 2022;
Rampééek et al., 2022) for node classification on graphs.
The PE u( )b is motivated by (Ying et al., 2021; RampaSek
et al., 2022; Gabrielsson et al., 2022; Wu et al., 2022; Zhang
et al., 2023d), which is one of the most commonly used PEs
in GTs. *

Denote ¢ = (a, Wo, Wy, Wi, Wq, b) as the set of pa-
rameters to train. The semi-supervised learning problem
solves the following empirical risk minimization problem

In (@),

min:fN ‘gwn7yn7¢
v el ze:ﬁ 3)
Un, yn;P) =max{l — y, - F(x,),0},

'Extension to graph classification and multi-classification is
briefly discussed in Appendix E.4 and E.5.

2Since the queries and keys are normalized, we remove the
/Mg scaling in the softmax function as in (Li et al., 2023a; Tian
et al., 2023; Tarzanagh et al., 2023; Oymak et al., 2023).

3As the first work on the generalization of GT, we mainly study
this PE for simplicity of the presentation. The analytical framework
is extendable to GTs with other PEs. We briefly introduce the
formulation and analysis of absolute PE, such as Laplacian vectors
and node degree, in Appendix E.2.

where {(x,,,yn; ) is the Hinge loss function. Assume
(xn, yn) are identically distributed but dependent samples
drawn from some unknown distribution D. The sample
dependence results from the dependence of node labels on
neighboring node features. The test/generalization perfor-
mance of a learned model ¥ is evaluated by the population
risk f(v)), where

f(w) :f(a’? WOa WV7 WK7Wva>

4
=E(z,y)~p[max{l —y - F(x),0}]. @)

Training Algorithm: The training problem (3) is solved
via a stochastic gradient descent (SGD), as summarized in
Algorithm 1. At each iteration ¢, the gradient is computed
using a batch B; with |B;| = B and step size n with all
parameters in ¢ except a. At iteration ¢, we uniformly
sample a subset S of nodes from the whole graph for
aggregation of each node n.

Following the framework “pre-training & fine-tuning” for
node classification using (Zhang et al., 2020a; Zhang &
Zhang, 2020; Hu et al., 2020b; Liu et al., 2021), we set

W(O), W(O), and WI(<0 ) come from an initial model. Every

entry of Wéo) is generated from N(0,&2). Every entry
of a'® is sampled from {+1/y/m, —1/y/m} with equal
probability. b(®) = 0. a is fixed during the training*.

4. Theoretical Results
4.1. Theoretical Insights

Before formally introducing our data model in Section 4.2
and the formal theoretical results in Section 4.3, we first
summarize our key insights. We consider a data model
where node features are noisy versions of discriminative
patterns that directly determine the node labels and non-
discriminative patterns that do not affect the labels. v, is
the fraction of discriminative nodes, The node labels are
determined by a majority vote of discriminative patterns in
a so-called core neighborhood. A small es corresponds to
a clear-cutting vote in sampled nodes in the core neighbor-
hood. ¢ and § are the initial model error. €y is the fraction
of labels that are inconsistent with structural information.

(P1). A new theoretical framework of a convergence and
generalization analysis using SGD for GT. This paper
develops a new framework to analyze GTs based on a more
general graph data model than existing works like (Zhang
et al., 2023c). We show that with a proper initialization,

*It is common to fix the output layer weights as the random
initialization in the theoretical analysis of neural networks, includ-
ing NTK (Allen-Zhu et al., 2019a; Arora et al., 2019) and feature
learning (Karp et al., 2021; Allen-Zhu & Li, 2022; Li et al., 2023a)
type of approaches. The optimization problem of Wqo, Wi, Wy,
Wy, and b with non-linear activations is still highly non-convex
and challenging.
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the learning model converges with a desirable generaliza-
tion error. The sample complexity bound is linear in 7;2,
(©(1) — es)~2. The required number of iterations is pro-
portional to (1 — 2¢5)~'/2 and (©(1) — &)~ /2. The result
indicates that a larger fraction of discriminative nodes and a
smaller confusion ratio improve the sample complexity. A
smaller fraction of inconsistent labels and smaller embed-
ding noises accelerate the convergence.

(P2). Self-attention helps GTs perform better than
Graph convolutional networks. We theoretically illustrate
that the attention weights, i.e., softmax values of each node
in the self-attention module, become increasingly sparse dur-
ing the training and are concentrated at discriminative nodes.
GTs can then learn more distinguishable representations for
different classes, outperforming GCNss.

(P3) Positional embedding promotes the core neighbor-
hood. We prove that starting from zero initialization, the po-
sitional embedding eventually finds the core neighborhood
and assigns nodes in the core neighborhood with higher
weights, which improves the generalization.

4.2. Data Model Assumptions

Each node feature x,, is one of M (2 < M < mg,my)
distinct patterns {g1, po,---,par} in RY, ie., @, =
pj,¥n € V and for a certain j € [M;]. pq and po are
two discriminative patterns that correspond to the label 1
and —1, respectively. All other patterns ps, tog, - -, phas
are referred to as non-discriminative patterns that do not
determine the labels. Let x = minj<;«j<nm [l pei — M || >0
denote the minimum distance between different patterns.
Denote the set of nodes that are noisy versions of p; as Dy,
l € [M],and UM D, = V. Letyy = |D1UDs|/|V| = O(1)
represent the fraction of nodes that contain discriminative
patterns®. We assume the dataset is balanced, i.e., the gap
between the numbers of positive and negative labels is at

most O(v/N).

If node n has the label y™ = 1, the nodes in D; are are
called class-relevant nodes for node n, and nodes in Dy
called confusion nodes for node n. Conversely, if y" = —1,
D5 and D; are class-relevant and confusion nodes for node
n, respectively. We use notations Dy and D for the class-
relevant and confusion nodes for node n without specifying
D, and D,. We define distance-z neighborhood of node n,
denoted by N7, as the set of nodes that are away from node
n with distance z. The average winning margin of each
node n and the core distance z,,, are defined as follows.

Definition 4.1. The winning margin for each node n of
distance-z and the average winning margin for all the nodes

>The pattern of each node n € V follows a categorical distribu-
tion with probability (v1,v2,- -+ ,vm), where v1 = vo = v4/2
andvs +va+---+vy =1—1q

of distance-z are defined as

. 1
An(2) = [DINN=IDEONT, Al2) = > An(2),

ney
&)
for any z € [Z — 1]. The core distance is defined as

Zm = arg zEHFZai(H A(z). (6)

Assumption 4.2. There exists Vg C V with |Vy|/|V| >
1 — o (eg € (0,1)) such that A, (z,,) > 0 holds for all
n € Vy.

Figure 2 provides an exam- ome K
ple of a winning margin. As- . s
sumption 4.2 indicates that distance-2

the node label y™ for every
node n € YV, is consistent
with a majority voting of p;
and po patterns in the core
neighborhood N, , i.e., if
y" =1 (or y® = —1), then
there are more nodes that
correspond to p1 (or p2) in Figure 2. Example of the
N . This assumption is ver- winning margin. Node n
ified in Table 6 of Appendix has a non-discriminative

distance-1

0 Yn=+1

%istance—os
core neighbom

Zy, =2

A.1. We can deduce that feature p3 and label +1.
€p < 0.051s asmall valuein ~ Then A,(1) = -2, and
three real-world datasets. We An(2) = 3.

also assume |NV* |is not too small to facilitate the sampling.
We set [N | > N/poly(Z) for all n to avoid a trivial size
of the core neighborhood.

Assumption B.1 in Appendix B requires the pre-trained
model maps the query, key, and value embeddings to be
close to orthogonal vectors with an error of o < O(1/M)
for queries and keys and § < 0.5 for values. It is the same as
Assumption 1 in (Li et al., 2023a). Such assumptions on the
orthogonality of embeddings or data are widely employed
in state-of-the-art generalization analysis for Transformers
(Oymak et al., 2023; Tian et al., 2023). 6

4.3. Main Theoretical Results for Graph Transformers

We define confusion ratio €s as the average fraction of con-
fusion nodes in the distance-z,,, neighborhood over all itera-
tions and all labeled nodes. Some notations are summarized
in Table 1.

Definition 4.3. The confusion ratio €g is

We conduct experiments to verify the existence of discrimina-
tive nodes and the core neighborhood with four real-world datasets
in Appendix A.1. We also show Assumption 4.2 and B.1 are not
strong by comparing existing works in Appendix E.1.
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Table 1. Some important notations

Vv The set of all the nodes DY, DI Sets of class-relevant nodes and confusion nodes for node n
* 9 #
L The set of labeled nodes T The set of nodes for aggregation for n
ggreg
D The set of nodes of the pattern f¢; Sll’t Sn’t Sampled class-relevant and confusion nodes out of 7™ at iteration ¢
P 7 y Oy p!
Yd The fraction of discriminative nodes A(z ) Average winning margin of all nodes at the distance-z neighborhood
./\/ i Distance-z neighborhood of node n Zm The core distance that has the largest winning margin
z g 2 2 g
€S confusion ratio, the average fraction of confusion nodes in sampled nodes of distance-z,, neighborhood

Zm

SHtusy NNz |

|8;;’t AN

N

€S = ]Etzo,ne(u{ZSDl)mL |(

where S/"" and S;;’t denote the sampled class-relevant and
confusion nodes in 7" for node n in training iteration ¢,
respectively.

‘We then introduce our major theoretical results.

Theorem 4.4. (Generalization Guarantee of Graph Trans-
formers) As long as for any € € (0,1), the model with
m > Q(M?log N), and the batch size B > Q(e~?log N)
and the number of sampled nodes |S™"| for each iteration t
larger than Q(1). Then, after T iterations such that

T =01 1-2¢) 2186712, ®)
as long as the number of known labels satisfies

(1+62 )-logN
(1—2es(1 —~q) —0)?

|£] > max{Q( ), BT}, (9)

where 0, = max,cy [N | measures the maximum num-
ber of nodes in distance-z,, neighborhood, for some es €
(0,1/2) and €y € (0, 1/2), then with a probability of at least
0.99, the returned model trained by Algorithm 1 achieves a
desirable testing loss as

f(W) < 2¢0 +e. (10)

Remark 1. (Generalization improvement by good graph
properties) Theorem 4.4 shows that given all required condi-
tions and an € fraction of inconsistent labels in testing, the
trained model can achieve a diminishing testing loss 2¢g + €.
The first term in (9) dominates when ¢ is not very close to’
1/2, i.e., the fraction of inconsistent labels is small. Then
the sample complexity in (9) scales with 1/73, (1 — es) ™2
and (©(1) — o)~2. Hence, a larger fraction of nodes of
discriminative patterns (a larger v4), a smaller fraction of
confusion patterns in the core neighborhood (a smaller €s),
a smaller embedding noise (a smaller o) can reduce the
sample complexity. The required number of iterations also

"The exact condition is when ¢g < 1/2 — 62 %¢™4/2.

Zm

reduces with a smaller fraction of inconsistent labels ¢y and
the embedding noise o.

Remark 2. (Impact of graph sampling) A graph sampling
method that can sample more class-relevant nodes in the
distance-z,, neighborhood can improve the learning by re-
ducing egs.

4.4. What Does Self-Attention Improve? A Comparison
with GCN

We show that the attention weights become concentrated on
class-relevant nodes in Lemma 4.5. It increases the distance
between output vectors from different classes, which in turn
improves the test accuracy. In contrast, Theorem 4.6 shows
that without the self-attention layer, GCN requires more
iterations and training samples.

Lemma 4.5. (Sparse attention map) The attention weights
for each node become increasingly concentrated on those
correlated with class-relevant nodes during the training,
ie.,

-
Z softmaxn(miTW[((t) Wg)zcn +ua7n)b(t))

iesmt

1— C
N n,
{1_68_7]Ca

at a sublinear rate of O(1/t) as t increases for a large
C>0andalln € V.

(1D

n: discriminative,

n: non-discriminative,

Lemma 4.5 indicates that the outputs of the self-attention
layer for all nodes, which are weighted summations of value
vectors, evolve in the direction of the class-relevant value
features along the training. Then it promotes learning class-
relevant features while ignoring other features. Lemma 4.5
is a generalization of Proposition 2 in (Li et al., 2023a),
which considers a shallow ViT with one self-attention layer
without positional embedding or graph structure. Here, we
extend the analysis to node classification on graphs with PE.

Theorem 4.6 indicates that without the self-attention layer,
the resulting GCN requires more training iterations and
samples to achieve the desired generalization, even if the
core distance z,, is known, and the learning is performed
on the core neighborhood only. Specifically,

Theorem 4.6. (Generalization of GCN) When fixing Wy =
Wg =0andb=0in (1), and all ™" (n € L) and T"
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(n € V — L) are subsets of N' , the resulting GCN (Kipf &
Welling, 2017; Nt & Maehara, 2019) learning on the core
neighborhood N .. can achieve a desirable generalization
of 2¢g + € with the same condition in Theorem 4.4, but
the number of iterations and the sample complexity should

satisfy

T =0(n"*(1—26) 221 -06)"1%), @12
L] > max{Q((v5 — o) *(1+ 67 )log N), BT}, (13)

When m > mg,, my, i.e., the number of parameters is
almost the same for GCN and GT, Theorem 4.6 shows that
GCN requires @(7;2) times more training samples and
iterations® to achieve desirable testing loss than those using
GT in (9) and (8), respectively. This explains the advantage
of using self-attention layers as in insight (P2).

4.5. How Does Positional Encoding Guide the Graph
Learning Process?

In this section, we study how PE affects learning perfor-
mance. Our insight is that the learnable parameter for the
PE promotes the core neighborhood for classification and,
thus, improves the sample complexity and required number
of iterations for generalization. To see this, first, Lemma 4.7
shows that the largest entry in b(T) indeed corresponds to
the core distance z,,,. Therefore, PE “attracts the attention’
of GT to the z,,-distance neighborhood. Then, Theorem 4.8
indicates that learning with the positional embedding has
the same generalization performance as an artificial learning
process when the core neighborhood N7 is known, and
the learning is performed on V" only.

Lemma 4.7. Starting from b®) = 0, if T satisfies (8), the
returned model trained by Algorithm 1 satisfies

b1 — b1 > Q(ya(A(zm) — A(2)),  (14)

bl

Lemma 4.7 shows that b,,_ is the largest one among all 1 <
2z < Z — 1 because A(z,,) is the largest by (6). Because the
softmax function employs e’> when computing the attention
map, nodes at the z,,-distance neighborhood dominate the
attention weights.

Theorem 4.8. (The equivalent effect of the positional em-
bedding)® when b = 0in (1), and all S™* (n € L) and T"

8 All the sample complexity and iteration bounds in this paper
are obtained based on sufficient conditions for desirable generaliza-
tion. Rigorously speaking, necessary conditions are also required
to compare the generalization of different network architectures.
However, necessary conditions are rarely considered in the litera-
ture due to technical challenges. Here, we still believe it is a fair
comparison of sufficient conditions because we employ the same
tools to analyze different neural network architectures.

“We discuss the application of Theorem 4.8 to analyze the
generalization of one-layer GAT in Appendix E.3.

(n € V — L) are subsets of N! , a desirable generaliza-
tion can be achieved when the sample complexity and the
number of iterations satisfy (9) and (8) in Theorem 4.4.

The learning process described in Theorem 4.8 is artificial
because z,, is generally unknown. Theorem 4.8 shows that
learning with position embedding has an equivalent general-
ization performance to learning from the core neighborhood
NI only.

4.6. Proof Sketch

The main proof idea of Theorem 4.4 is to unveil a joint learn-
ing mechanism of GTs for our graph data model: (i) identify-
ing discriminative features and the core neighborhood using
PE and (ii) determining the labels of non-discriminative
nodes through a majority vote in the core neighborhood by
self-attention. Several lemmas are introduced to support the
proof.

Specifically, by supportive Lemmas C.5 and C.6, we first
characterize two groups of neurons that respectively activate
the self-attention layer output of p; and po nodes from
initialization. Then, Lemma C.1 shows that the neurons
of Wy in these two groups grow along the two directions
of the discriminative pattern embeddings. Lemma C.4 in-
dicates that the updates of W7y, consist of neuron weights
from these two groups. Meanwhile, Lemma C.2 states that
W and Wk evolve to promote the magnitude of query
and key embeddings of discriminative nodes. Lemma C.3
depicts the training trajectory of the learning parameter of
PE that emphasizes the core neighborhood. Different from
the proof in (Li et al., 2023a; Tian et al., 2023; Li et al.,
2023c; Tarzanagh et al., 2023) that does not consider PE and
graph structure, we make the proof of each lemma tractable
by studying gradient growth per distance-z neighborhood
for each z rather than directly characterizing the gradient
growth over the whole graph. Such a technique enables a
dynamic tracking of per-parameter gradient updates. As
a novel aspect, we prove Lemma C.3 by showing that its
most significant gradient component is proportional to the
average winning margin in the core neighborhood.

Proof of Theorem 4.4 We can build the generalization
guarantee in Theorem 4.4 from the above. First, Lemma
C.2 and C.3 collaborate to illustrate that attention weights
correlated with class-relevant nodes become close to 1 when
nt = ©(1). Second, we compute the network output by
Lemmas C.1 and C.4. By enforcing the output to be either
> 1or < —1 to achieve ¢y Hinge loss, we derive the sample
complexity bound and the required number of iterations by
concentration inequalities.

The proof of Theorem 4.6 and 4.8 follow a similar idea
as Theorem 4.4. When the self-attention layer weights are
fixed at 0 in Theorem 4.6, since that 74 = ©(1) and a given
core neighborhood still ensure non-trivial attention weights
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correlated with class-relevant nodes along the training, the
updates of W, and Wy, are order-wise the same as Lemmas
C.1 and C.4. Then, we can apply Lemmas C.1 and C.4 to
derive the required number of samples and iterations for
desirable generalization. Likewise, given a known core
neighborhood in Theorem 4.8, the remaining parameters
follow the same order-wise update as Lemmas C.1, C.2 and
C.4. Hence, Theorems 4.6 and 4.8 can be proved.

5. Numerical Expriments
5.1. Experiments on Synthetic Data

Graph data generation: The graph contains 1000 nodes
in total. M = 10, p; to pps are selected as orthonormal
vectors in R%, where d is 20. Node features that corre-
spond to pattern p; are sampled from Gaussian distributions
N (i, & - I), where cg = 0.01, and I € R is the iden-
tity matrix. 7,4/2 fraction of nodes are selected as noisy
versions of class-discriminative g1 and po, respectively.
The remaining nodes are evenly distributed among other
non-discriminative M — 2 patterns. 4 = 0.4 unless other-
wise specified. Our graph construction method is motivated
by and extends from that in (Zhang et al., 2023c). Every
non-discriminative node is labeled with +1 or -1 with equal
probability. If labeled +1, that non-discriminative node is
randomly connected with 120 - (1 — es) nodes of p; and
120 - es of ps for some €g in [0,1/2). If labeled -1, it
is randomly connected with 120 - (1 — eg) nodes of po
and 120 - €5 of p1. We also add edges among pt; nodes
themselves, and edges among g2 nodes themselves to make
each node degree at least 120. There is no edge between
1 nodes and po nodes. The ground-truth label for gy or
L2 nodes is +1 or -1, respectively. ¢y = 0 if not otherwise
specified.

Learner network and algorithm: The learner network is
a one-layer GT defined in equation 1. Set dimensions of
embeddings to be m, = m; = 20. The number of neurons
m of Wo is 400. § = 0.2,0 = 0.1,and € = 0.01. W, =
Wéo) = 621/, W‘SO) = 02U /c3, where each entry of

Wéo) follows N(0,£2). U is an m, x m, orthonormal
matrix. The step size n = 0.01. S™* contains node n and
60 uniformly sampled nodes from distance-1 and distance-2
neighborhood for each node n at iteration .

Sample complexity and convergence rate: We first study
the impact of the fraction -4 of discriminative nodes on
the sample complexity. Let es = 0.05. We implement 20
independent experiments with the same -, and |£| while
randomly generating graph structure, node features, and
sampled labels. An experiment is successful if the Hinge
testing loss is smaller than 10~3. A black block means all
the trials fail, while a white block means they all succeed.
Figure 3 (a) shows that the sample complexity is indeed

almost linear in ’yd_Q, as indicated in 9. We next set v = 0.4
and vary es. Figure 3 (b) shows that the sample complexity
is linear in (1 — es) ™2, which is consistent with our result
in (9). We then change ¢, and evaluate the prediction error
when the number of training iterations changes, when 4 =
0.4, es = 0, and |£| = 400. Figure 4 shows that a larger
€0 requires more iterations to converge, and the convergent
testing loss is around 2¢, which is consistent with (10).

600 600

Number of labeled nodes
Number of labeled nodes

6 10 16 1.00 1.15 1.30
7 (-e9”

(a) (b)
Figure 3. The impact of 74 and es on the sample complexity
of GT.

Attention map and
comparison with GCN:
We then verify the spar-
sity of the attention map
during the training. Let
|£ | = 400, Yd =
0.2. In Figure 5, the
blue circled line shows
the summation of atten-
tion weights on class-
relevant nodes averaged
over all labeled nodes
increases to be close to 1 during training, which justifies
(11), since when €5 = 0, the left side of (11) converges to
1-— nc for C' > 0 for all nodes. Meanwhile, the summation
of attention weights on other nodes decreases to be close to
0, as shown in the red dotted line. We also compare the per-
formance on GT in (1) and a one-layer GCN with a similar
architecture, and Wy and Wg, being 0, es = 0.2. Figures
6 and 7 show the sample complexity and the required num-
ber of iterations of GCN are almost linear in v * and ~y; %,
consistent with theoretical results in (13) and (12), respec-
tively. In contrast, the theoretical sample complexity and
the number of iterations of GT are respectively linear in
7(;2 (also see Figure 3) and independent of v,4, which are
order-wise smaller than GCN.

Testing Hinge loss

Epoches
Figure 4. The test Hinge loss
against the number of epochs for
different €q.

5.2. Experiments on Real-world Dataset

Dataset and neural network model: We evaluate node clas-
sification tasks on three benchmarks, a seven-classification
citation graph PubMed (Kipf & Welling, 2017), a five-
classification Actor co-occurrence graph (Chien et al., 2021),
and a four-classification computer vision graph PascalVOC-
SP-1G (Dwivedi et al., 2022), which are a homophilous, het-
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Figure 9. Test accuracy of GT with/without PE and GCN when the number of labeled nodes varies. Left to right: PubMed, Actor,

PascalVOC-SP-1G.

erophilous, and a long-range graph, respectively. Please re-
fer to Appendix A for detailed information on these datasets
and results on large-scale dataset Ogbn-Arxiv (Hu et al.,
2020a). The network contains four layers of four-head
Transformer blocks. We implement the SPD-based PE as
defined in (2) with Z = 20 and uniformly sample 20 nodes
across the whole graph for feature aggregation of each node
during every iteration.

Success of PE: The blue circled lines in Figure 8 show the
average values of each dimension of the last-layer learned
PE vector b(™) in these three datasets. We additionally
train multiple models with the same setup, except that only
distance-z nodes are used for training and label prediction,
i.e., S™* (for all labeled nodes n and iteration t) and 7™ (for
all unlabeled nodes n) belong to N7. |S™!] is still 20. The
red dashed curves show the test accuracy of these models.
One can see that the test accuracy of these models has a
similar trend as that of b, values. This justifies the success
of PE and the existence of a core neighborhood defined in
Definition 4.1.

Comparison of GTs with/without PE and GCN. We use
a four-layer GCN defined in (Kipf & Welling, 2017). The

model size of GCN is slightly larger than GT by < 10%.
Figure 9 shows that GT with PE has a better performance
than that without PE and is better than GCN. This verifies
Theorem 4.6 and discussions in Section 4.5.

6. Conclusion, Limitation, and Future Work

This paper presents a novel theoretical analysis of Graph
Transformers by explicitly characterizing the required sam-
ple complexity and the number of training steps to achieve
a desirable generalization for node classification tasks. The
analysis is based on a new graph data model that includes
class-discriminative features that determine classes and
class-irrelevant features, as well as a core neighborhood
that determines the labels based on a majority vote of class-
discriminative features. This paper shows that the sample
complexity and iterations are reduced when the fraction
of class-discriminative nodes increases and/or the sampled
nodes have a clear-cutting vote in the core neighborhood.
This paper also proves that attention weights are concen-
trated on those of class-relevant nodes, and the positional
embedding promotes the core neighborhood. All the the-
oretical results are centered on simplified shallow Trans-
former architectures, while experimental results on real-
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world datasets and deep neural network architectures sup-
port our theoretical findings. Future direction includes theo-
retically analyzing and designing other models with milder
assumptions and devising better graph sampling methods.
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APPENDIX

The appendix contains five sections. We add some extra experiments in Section A. In Section B, we introduce some
definitions and assumptions in accordance with the main paper for ease of proof. Section C first lists some key
lemmas and then provides the proof of Theorem 4.4, Theorem 4.6, Theorem 4.8, Lemma 4.5, and Lemma 4.7. Section
D shows the proof of lemmas of this paper. We finally add the extension of our analysis and other discussions in
Section E.

We first briefly introduce some additional related works here on theoretical learning and generalization of neural networks
without considering structured data. Some works (Zhong et al., 2017; Fu et al., 2020; Li et al., 2022b; Zhang et al., 2023b; Li
et al., 2024b) study the generalization performance following the model recovery framework by probing the local convexity
around a ground truth parameter. The neural-tangent-kernel (NTK) analysis (Jacot et al., 2018; Allen-Zhu et al., 2019a;b;
Cao & Gu, 2019; Zou & Gu, 2019; Chen et al., 2020; Li et al., 2022a; Sun et al., 2024) considers strongly overparameterized
networks to linearize the neural network around the initialization. The generalization performance is independent of the
feature distribution.

A. Additional Experiments
A.1. Verifying assumptions made on the graph data model

For the assumption on the graph data model, we conduct several experiments to verify this assumption on the real-world
dataset Cora, PubMed, Actor, and Pascal VOC-SP-1G.

Existence of discriminative nodes. We first compute the eigenvalue of the covariance matrix of the feature matrix of data
of all classes in Figures 10, 11, 12, and 13. One can observe that the feature matrix is almost low-rank, which indicates
that node features from the same class can be represented by a few eigenvectors. Therefore, for each class, we select the
top three eigenvectors and compute the 3-dimensional representations of each node feature with these three eigenvectors.
Then, we select all nodes with features that are less than 7 /4 angle away from the mean of 3-dimensional representations as
discriminative nodes. Non-discriminative nodes are the remaining nodes of each class. Tables 2, 3, 4 show the fraction of
discriminative nodes in each class. One can see a large fraction of the node features in each class is close to its top three
eigenvectors.

The core distance (Assumption 4.2). We further probe the core distance of each dataset by computing the fraction of
nodes of which the label is aligned with the majority vote of the discriminative nodes in the distance-z neighborhood. To
extend the definition from binary classification in our formulation to multi-classification tasks, we use the average number
of confusion nodes per class in the distance-z neighborhood as |D% NN, the number of confusion nodes in the distance-z
neighborhood of node n. Figure 14 shows the value of a normalized A(z) for z = 1,2, -, 12, where A(z) is divided by
|| to control the gap of different numbers of nodes in different neighborhoods. The empirical result indicates that (1)
homophilous graphs Cora and PubMed have a decreasing value of the normalized A(z) as z increases. The gap between
the largest and the smallest normalized A(z) is large. This implies the core distance is 1 for Cora and PubMed and is
aligned with the PE-based sampling performance of PubMed in Figure 8. (2) the heterophilous graph Actor has the largest
normalized A(z) at z = 1, but the difference from other z is very small. This is consistent with the result in Figure 8 where
the PE-based sampling has a close performance of less than 0.5% across z. (3) the long-range graph PascalVOC-SP-1G has
the normalized A(z) when z = 1, but the value when z = 12 is also remarkable. This corresponds to Figure 8 where the
testing performance of Pascal VOC-SP-1G is the highest when z = 1 or z = 12.

Table 6 shows that the fractions of nodes satisfying A,,(2,,) > 0 are all greater than 86% for all the four graph datasets. This
fraction is especially larger than 95% in Cora, PubMed, and PascalVOC-SP-1G, which indicates a very small ¢; < 0.05. A
slightly larger ¢y ~ 0.14 for Actor is consistent with the challenge in training it with the state-of-the-art performance around
42% ((Huang et al., 2023)), which is consistent with the generalization bound scaling by €, in Theorem 4.4.

We then verify the balanced dataset assumption and show a difference of no more than O(\/ﬁ ) could be achieved in
practical datasets. Table 9 shows that for Cora and Actor, this condition holds since the largest gap between the average
number of nodes and the number of any class of nodes is smaller than O(\/N )= 10\/N .
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Figure 11. Eigenvalues of the covariance matrix of the feature matrix of all classes of PubMed

A.2. Experiments on Synthetic Dataset

This section compares the required number of iterations for Graph Transformer and GCN by their orders in 4. The
experiment setup follows Section 5.1. We set the number of known labels to be 800. For Graph Transformer, es = 0.05.
For GCN, es = 0.2. Figure 15 (a) shows that the required number of iterations is independent of 4. In contrast, Figure 15
(b), which is exactly Figure 7 indicates the number of iterations is linear in 'Yd_2'

A.3. Experiments on Real-world Datasets

We first add an introduction to the dataset Pascal VOC-SP-1G we evaluate. This belongs to the Long Range Graph Benchmark,
Pascal VOC-SP (Dwivedi et al., 2022), which is a computer vision dataset for node classification containing 11, 355 graphs,
5,443, 545 nodes, and 30, 777, 444 edges in total. Since this dataset is large, we pick the 2nd graph from the whole dataset
and name this graph Pascal VOC-SP-1G, which contains 479 nodes and 2, 718 edges for node classification. The dimension
of the node feature is 14. The number of classes is 3. Note that the size of the graph is not small compared with WebKB
datasets (Pei et al., 2020), including Cornell, Texas, and Wisconsin, which contain 183, 183, and 251 nodes in each dataset,
respectively.

Meanwhile, to verify the scalability of our conclusion, we conduct the experiments on the large-scale graph dataset Ogbn-
Arxiv (Hu et al., 2020a), which is a citation network with for node classification. The detailed statistics of these four datasets
can be found in Table A.3.

We show the results of the Ogbn-Arxiv in Figure 16 and 17, where the dimension of b(") is set to be 5. We still plot b,(zT)
with blue-circled lines for these datasets. Red dashed curves denote the test accuracy of the models learned with nodes all

sampled from the distance-z neighborhood for z € {1,2,--- | 5}. The result of Ogbn-Arxiv shows a large bgT) when z is

around 1. One can also observe that the testing accuracy using only distance-z nodes has a similar trend as b,(zT) with the
largest accuracy around z = 1. This is consistent with our conclusions on PubMed from Figure 16 in Section 5.2 since
Ogbn-Arxiv and PubMed are both citation networks that are homophilous.
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Figure 17 showcases that for Ogbn-Arxiv, GT with PE has a better performance than that without PE and GCN. The
conclusion is consistent with Figure 9

B. Preliminaries

We first formally state the Algorithm 1. The notations used in the Appendix is summarized in Table 8.
The loss function of a single data is defined in the following.

Loss(x;, y1) = max{1l —y; - F(x;),0}. (15)

The formal algorithm is as follows. At each iteration ¢, the gradient is computed using a mini-batch B; with |B;| = B and
step size 7. We first pre-train Wy for T} steps and then implement a full training with all parameters in 1) except a for
T(> Tp) steps. At iteration ¢, we uniformly sample a subset S™* of nodes from the whole graph for aggregation of each

node n. We set that W‘(,O), W, and W1(<0 ) come from an initial model. Every entry of Wéo) is generated from (0, £2).

Every entry of a(%) is sampled from {+1//m, —1//m} with equal probability. b(®) = 0. a does not update during the
training.

Assumption B.1. (Li et al., 2023a) Define P = (p1,p2, -+ ,pym) € R™*M Q = (q1,q2, -+ ,qun) € R™*M and
R = (r1,79, - ,7ar) € R™*M a5 three feature matrices, where P = {p1,p2,--- ,Pam}, @ = {q1,42,--- ,qu } and
R = {r1,ra,- - ,rp} are three sets of orthonormal bases. Define the noise terms z;(¢), n;(t) and o, (t) with ||z, (0)|| < o
and ||, (0)]] o; (0)]] < 0 for j € [L]. qv = 71, g2 = r. Suppose [Wi ||, | W[l W]l < 1.0 < O(1/M) and
d < 1/2. Then, for x; € S]’-L
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class 1 class 2 class 3 class 4 class 5 class 6 class 7
82.05% | 88.02% | 82.54% | 78.12% | 78.17% | 83.56% | 76.11%

Table 2. The fraction of discriminative nodes in each class of Cora

class 1 class 2 class 3
82.18% | 93.34% | 80.48%

Table 3. The fraction of discriminative nodes in each class of PubMed

1. W‘(,O):Bl =p; + z;(0).
2. WI((O):EZ =q;+ TL]‘(O).
3. Wéo)wl =7r;+ Oj(O).

Assumption B.1 is a straightforward combination of Assumption 1 in (Li et al., 2023a) and the equation min c[py) ||, —
il = 0,Yn € V by applying the triangle inequality to bound the error terms for tokens. We then provide a condition
which is equivalent to the equation min;eas ||, — p]] = 0,Vn € V, i.e., if nodes 7 and j correspond to the same pattern
k € [M],i.e., i € Dy and j € Dy, we have x; ' x; > 1. If nodes i and j correspond to the different feature k, 1 € [M],
k#lie.,i € Dyandj € Dy, k # [, we have mfa:j < A < 1. Here, we scale up all nodes a bit to make the threshold of
linear separability 1 for the simplicity of presentation.

Definition B.2. Define

.
V,(t) = W‘(/t) Z :cnsoftmaxn(msTWI(f) Wg)mn + u&n)b(t)). (17)
seTn

for the node n. Define W, (0), U, (0) as the sets of lucky neurons such that

Wa(0) = {i: WS Vi(0) > 0,1 € S}, (18)
Up(0) = {i: W) V(0) > 0,1 € 83" (19)

i)
Definition B.3. When n € D; U D5, we have

L dn(t) = (X.ez NN Sg’t|e\|q1(t)|\2+o|\q1<t>\|+b§” +Y s[NP nSmE) — Smt ebi”)fl.

2. vn(t) = (Cez NP NSP el O —olla®I+62 5~ (V70 87t) — Splets”) 1,
3. palt) = Tz WD 01 S0 el O —elan Iy, (1),
When n ¢ D; U Dy, we have

L én(t) = (X,ez (N2 NS + NP NS ela@IPHolla®i+el 4 s~ (v us™h) /Syt usy ™) et”) -,

2. va(t) = (Cez (N2 NSP | + NP NS el O =ellas @I+ 4 5~ (Ve U 8™ /(87 U Sy [ebt) .

3. palt) = Xz INZ NS el OF —ela @I+t (1),

class 1 class 2 class 3 class 4 class 5
42.09% | 53.33% | 57.85% | 60.93% | 64.79%

Table 4. The fraction of discriminative nodes in each class of Actor
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class 1

class 2

class 3

98.62%

100%

100%

Table 5. The fraction of discriminative nodes in each class of PascalVOC-SP-1G

Cora

PubMed

Actor

PascalVOC-SP-1G

95.68%

95.50%

86.31%

98.54%

Table 6. The fraction of nodes satisfying A (

Zm) >0

We then cite useful results of the concentration bounds on sub-gaussian variables.

Definition B.4. (Vershynin, 2010) We say X is a sub-Gaussian random variable with sub-Gaussian norm K > 0, if
1
(E[X|?)» < K./p forall p > 1. In addition, the sub-Gaussian norm of X, denoted || X||y,, is defined as || X|y, =

_1 1
sup,,>1 p~ 2 (E[X|P)7.

Lemma B.5. (Vershynin (2010) Proposition 5.1, Hoeffding’s inequality) Let X1, Xo, - - -
sub-gaussian random variables, and let K = max; | X;||y,. Then for every a = (aq, - - -

{lzay

have

where ¢ > 0 is an absolute constant.

}<e exp(—

C. Key Lemmas and Proof of the Main Theorems

ct?

al?)

We first present our key lemmas, followed by the proof of the main theorems.

Forl € S * for the data with y,, = 1, define

We later can show that

Vi(t) =

sest

> wi

seSmt

t
b T b T
—ny (Y VOWS o+ > viopaw ) .

b=1 i€W, (b)

We have the following Lemmas:

Lemma C.1. For the lucky neuron i € W;(0) and b € [T'), we have that the major component of WO(i_-)

Loy U 20) § s

of pi, Le.,

t)
W(()(z Pz

nEBb

iEW; (b)

neBby

Table 7. The statistics of datasets.

.
azssoftmaxn(msTW[((t) Wg)a:n + u(Ts’n)b(t)).

-
Z softmaxn(wSTW[(f) Wg)acn + uz;,n)b(t))pl +z(t) + Z W;(t)p;

j#1

()

Dataset #Nodes #Edges #Classes | #Features Type

PubMed 19,717 44,324 3 500 Citation network
Actor 7,600 26,659 5 932 Actors in movies
Pascal VOC-SP-1G 479 2,718 3 14 Computer vision
Ogbn-Arxiv 169,343 | 1,166,243 40 128 Citation network
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Table 8. Summary of notations

F(a;), Loss(zi, y1) The network output for the node z; and the loss function of a single node.

p;(t), g;(t), r;(t) The features in value, key, and query vectors at the iteration ¢ for pattern j, respectively. We have

p;(0) = pj;, g;(0) = g;, and 7;(0) = 7;.

zi(t), m;(t), 0;(t) The error terms in the value, key, and query vectors of the j-th node compared to their features at

iteration ¢.

Wi (0), Uy (0) The set of lucky neurons for node /.

dn(t), vn(t), pn(t), A Approximate value of some attention weights at iteration ¢. A is the threshold between inner

products of tokens from the same pattern and different patterns.

S]M S]@’t is the set of sampled nodes of pattern j at iteration ¢ to compute the aggregation of node n.
0 The maximum number of nodes in distance-z neighborhood for all nodes, which is no larger than
VN.
average # of each class | 10v/N | largest gap to the average
Cora 386.86 520.38 431.14
Actor 1520 871.78 667

Table 9. The fraction of discriminative nodes in each class of Actor

0 < b o

O(iw) EWO(L_)PD forp € {p23p37 e 7pM}7
2
0 2w & g1 —2¢0) wm 2
PO RNy S (A U SE- NORRS
neBy neBy

and for the noise z(t),
t t
WS 2@l < oW |l

For i € U;(0), we also have equations as in (23) to (26), including
2
(t) > & nt*(1 — 2e) m
WO(i,,)pQ ~ 4B Z 1B Z apn(t)"'§7
neby neBy

® L wo
Wo(i,~)p S ﬁWO(i,-)pl’ forp € {p17p37p4a T 7pM}7

2
(WS 2= (5 3 20 5 g,
neBby neBby
For the noise z(t),
WSz <aws I
For unlucky neurons i and j € W;(0), k € U;(0), p € P, we have

(t) o (t) (t)
Woi,p= \/Emm{WO<J>->p1’WO(k‘-)pZ}’

WS 2l < oW |,

1.
W5, P < 5 min{|Wg) 17 IWg,, I}

Lemma C.2. There exists K(t),Q(t) >0, t=0,1,--- ,T — 1 such that for r € St ifue.,

= 1, defining

(24)

(25)

(26)

27)

(28)

(29)

(30)

(3D

(32)

(33)

(34)
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Algorithm 1 Training with Stochastic Gradient Descent (SGD)

1: Input: Training data {(X, y,)}ner, the step size n, the number of iterations T', batch size B.

2: Initialization: Each entry of Wé ) and a® from A/ (0,£?) and Uniform({+1/y/m, —1/y/m}), respectively. W(O)

WI((0 ) and Wc(g ) are initialized from a fair model. b(®) = 0.

3: Node sampling: At each iteration ¢, sample S™* for each node n to replace 7" in (1) when computing the #(-) function

in (3).
4: Training by SGD: Fort = 0,1, - -- 7T —land W € {W, () W(t) W}((t), Wg), b1}

Wi =wi =y E Y Vwo l@n, yn; @, WS WP Wl W p0) (16)
neBb;
5: Output: WS", W w, wi b®
ri(t) = (35)
where i = 1,2. Then, we have
softmaxl(wTTWI(;H)WgH)wZ + uz;’l)b(tﬂ))
6(1+K(t))l\th(t)\|2*5|\Q1(t)H+b(th (36)
e :
NZzeZ NN St T+ K @)llar ()2 o llan(T)[+b7 4 ez [NRASHT) - 8?7T|ebg)
Similarly, for r ¢ Si’t, we have
.
softmax, (@, T WD Wgﬂ)a:l + u(T,_,l)b(t))
bLY) (37
< .
T ez VPN ST |e(+K @)l ()2 ~ollay (T)|+687 ez |(NPASHT) - ST |ept”
Lemma C.3. During the training, we fix bét) = bgo) =Q(1). Forz > 1,
-8
(1- 260 pn(b)m* ént m Yd
SER S8 55 o 2. 2 N
b 1 neBy b=1neB, ( )
St NNE | - \sl AN |sivt NN = IS5 NN
K|Sht| K|Skt
It 1 Lt ()
1—2e ym? ftm IS* NNL — S NN
(t) 0 pn Ui 2 d z # z
b > n— Z Z Z Y. el KIsT (39)
b 1 neBy b=1neBy
Lemma C.4. For the update of W‘(/t), there exists A < ©(1) such that
t
T T
Wz, =pi—ny (Y ViOWS + Y AOWS ) +z0), jest, (40)
b=1 €W, (0) igWn (0)
¢
T T
Wal =py—ny (Y VOWs) |+ Y MWW )+ (D), sy, (41)
b=1 i€l (0) i¢U(0)
t m
Wi =p -5 >N AV Wéb() L), GeSTN(STTUS), (42)

b=1 i=1
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ll2; @) < o, (43)
with
Wi(t) <wvn(t)[S]'], 1€ S], (44)
1 — 2¢g 1 .
() < _=
Vit) S 55— D —opa(®), i €M), (45)
TLEBIH,
1-— 260 1 .
(1) > z
Vi) 2 55— D e, i €U(0), (46)
neBy _
Vi(t) > — \/%a’ if i is an unlucky neuron. 47)

Lemma C.5. (Li et al., 2023a) If the number of neurons m is larger enough such that
m > M?log N, (48)
the number of lucky neurons at the initialization W, (0)|, |U;(0)| satisfies
IWi0)], U +1(0)] = Q(m). (49)

Lemma C.6. Under the condition that m > M? log N, we have the following result.
Fori € Wi(0) and | € D, we have

WS vi)] =1 (50)
Fori € U;(0) and | € Ds, we have
WS Vi) =1 (51)

Proof of Theorem 4.4:
Denote the set of neurons with positive a; as K and the set of neurons with negative a; as K_. For y,, = 1, recall from
(11) and Definition B.3, we have

1 1
Flz,)= Y. aRelu(Wg()i)Vn(t))wL Yo SRelu(WS! Va(t))

1€EW, (0) €K /Wi (0) “ (52)
1
-y 5Relu(wgt(1)vn(t>).
i€k
Therefore,
1
3 aRelu(wg({_)Vn(t))
i€EW,, (0)
1 1
- ¥ ERelu(Wg()“Vn(t))—i— 3 ERelu(Wg({)Vn(t))
€W, (0) €W (t)
1
Zf'Wg()l ( Z pssoftmaxn(astW(f) W(t)mn)—i-z +ZWZ
a ES”f l#s
T T (53)
—nt YD VOWE o+ ST VAW ) Wa(0)]+0
JEWR(0) J¢Wn (0)
m /1 &nt’m 1—26 — 2¢
SR S S R IR E=) pi)
neby neBy b= 1n68b+
13 nt2(1 — 2¢q) m
GB X m L G
neBy neBy
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where the second step results from the formulation of V;,(¢) in (22) and the last step is by (142). Meanwhile, we have

1 ®
Z ERCIU(WO“) Vn(t)) > 0. (54)
€KL /Wi (0)

To deal with the upper bound of the third term in (52), we have

1 (t 1 (t
‘ > ;Relu(WO()i)Vn(t))‘ <S> 5ReIU(Wo(),L>W(t))- (55)
iek_ =
Note that at the ¢-th iteration,
K(t)
1 1—2¢ &n( t+ m 1 1 < (D)
ZUE Z ( Z Z pu(b) — o) +nm @Z Z p
neby neBy nEBb b=1neBb,
€ (=2t + 1)2 mo r . o
(=05 > - S Zpa(®)?)én()(S™] - 1SV Dlas ()]
neBy neBby
1
~ellar ()12 =dllgqr (D)
Since that "
> .
@(1)2 (14 min (K0}
] . (57)
>
R U+ amre—siamn) -
To find the order-wise lower bound of g1 (T"), we need to check the equation
1
< T
a(1) 5 U+ omrsiamr) (58)
One can obtain
O(VIogT(1 ~ 9)) = a(T) < O(T). (59)
We require that
T
§77T m 1—2e¢ 1—2e 1
( > = 2 pulb) = 0)pa(T) +1m 53T ST Spald)
4B 2B a
neBy neby b=1 ’nGBbJr
S nT*(1 — 2¢0) m 2 6
(S J- AT 2R0) jiad 0
(= 3 B Y Bpum))?) (60)
neBby neBy
=aon’T° + anT?,

>1,

where the first step is by letting a = /m and m > M?log N. We replace p,,(b) with p,,(T) because when b achieves the
level of T, b°* p,, (b)°2 is the same order as b°* for 01, 02 > 0. Thus,

T
mepn(b)oz > Ty, (0(1) - T)%2 > T Ty, (T)°. (61)
We also require

B Z O(1). (62)

Note that p,, (¢) is dependent on other Y-, _ > 6. nodes. Hence, we know that each p,, (T)) is dependent on other 1+ _ - 02
variables of p;(T) for j,n € V. Itis easy to find that p,, (T’) is a 1-sub-gaussian random variable because its absolute value
is upper bounded by 1. By Lemma 7 in (Zhang et al., 2020b), we can obtain

Eple (X e pn(T)— |£|ED[pn(T)])] < elCl+3 2 62) (63)
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When 1T = O(1), we have |b,(T")| = ©(1) and |b,(T) — b,/ (T)| < ©(1). Therefore, when n € D; U Dy, we have

pn(T)
Yz NP N SET ella (@I =cllan D]+
Ses NN ST elan (D)2 ~ollax (7)1 +68" 4 ez (NP NSHT) - SPT|ebt”
>1—-7n°.

When n ¢ Dy U Ds, we have
pn(T)
=Y NP ST |elarMIF-ela @I+ (N (a0 S|+ N ST
zE€EZ zEZ
el IF=ela M LNy snT) /(ST u sy Tt~
z€EZ

mn n (T)7 (T) n mn mn n,
>3 NI NSETIT( = 6) e P (Y (INE N ST+ N N ST
z€EZ z2EZ
(T)

(D1 = 6)C ) 4 3T NP USHT)/(SET U SpT e )
z€EZ

Nz, NSy
V2 NSET + N

Zm

2( —(T(1 = 8))Ceb=(D),

N S;;’T|)

¢ =Ep[pn(T)]

Y ez (T —0)CISHT ANt ]

> ez(T(1 - 5))C|(S?’T U SQn’T) NNP|eb=(T) 4 0(1)
(T(1-9))

(T(1-19))° +e()

(1= 7)1 —es — (T(1 — §))~Ceb=D) 1 7y(1 — 1)

1

> (1—=7q)-Ep

+7a-

c

>
2 1—es(l—vq)—n".

Hence, define
17 ifTLEDl UDQ
T)>p (T) = monsp”
pn(T) = P (T) Nz, 0S5 ifn ¢ Dy UD,.

Zm

(N7 nS™T |+ |N 7

Zm Zm

nsy )’
Therefore,
Ve NSy
T T
(V2 NS [+ N NSy

Erzonevlph(D)] = 1 < (1= 7)Engm,um |

We can also derive
Enee[(1 -5, (T))] < 2Bp[1 = p,(T)] < 21— 7a)es,

where the first inequality is by 1 — (p!,(7))% < (1 — p/,(T))(1 + p,,(T)) < 2(1 — p!,(T)). We have
1 / /
i 2 (1) = () - 1
<[z S CAT) = D T) = B [,(T) — )0}, (7)
nel

+Eneclll = p(T)?]] + Enec[op, (T)]

<\/(1 +02 )-logN
~ £]

+2(1 —yq)es + o,
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1 1462 )-logN
7 Zm(Tﬁ—l\g\/(rAgw(l—m)es, 7
neL
1 1462 )-logN
‘E an(T)—l‘ﬁ\/(rE)'-&-(l—Vd)Gs- (72)
neLl

‘We can then have
—lo -1 “1l4 -1
pon =97 (1 5)12_ (73)
\/a (1—260)5

As long as
(1+62 )-logN

L] > max{Q) , BT}, (74)
2] 2 max{ gy 5 ) BT
we can obtain
F(a,) > 1. (75)
Similarly, we can derive that for y,, = —1,
F(x,) < —1. (76)

Note that due to the existence of gradient noise by imperfectly balanced training batch, for any W € U,

1 Ofn(T) Ofn () Ofn(T) _Be _
Pr<H|Bb|n§b x( —E[ s M>’E{6W H<e B < N=C 77)

if B > e=2log N for some C > 1. Then, the batch size should satisfy B > ¢~2log N. Hence, for all n € V,,

In(¥) <e. (78)

We then have for nodes with actual labels,
J(U) <26+, (79)

with the conditions of sample complexity and the number of iterations.

Proof of Lemma 4.5:
This Lemma is proved by (64) and (65).

Proof of Theorem 4.6:
The main proof idea is similar to the proof of Theorem 4.4. A major difference is that the aggregation matrix does not
update, i.e., p, (t) stays at ¢ = 0. Since that a given core neighborhood and a v4; = ©(1) fraction of discriminative nodes
still ensures non-trivial attention weights correlated with class-relevant nodes along the training, the updates of Wy and
Wy, are order-wise the same as Lemmas C.1 and C.4.
Since that
ez IS NN
pu(0) = { Trez 1SN o (N2 |18 AT et

ifneSPtusyt

Dz St ANT . n,t n,t 80
Soa (ST is W g e (ST VST ®0
=0(1),
there exists ¢y > 0, such that
Efpa(0)] =72~ ©(va) + (1 = 1)O(5) = e, 81)
1
E(lpn(0)  ¢yyal’] < 70+ ©(33) + (1 = 7a) - O(17a £ 5*73) < O(73). (82)
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Therefore,

1 N
2 2PN eT) =) = 3|

g]ﬁ fjpnm)(pn(m ~ 0) ~E[pa(0)(pa(0) - 0)]|

\E (19 (0)% = 7pa(0) = 2931 (83)
log N )
=Y ] +o +\/ Ipn +cwd|} [Ipn(O)—cwdl}
log N
+o+0O(y
|£‘ ( d)

where the first step is because p,, (T') does not update since Wf(f) and Wg) are fixed at initialization W1(<) and W(O) nd
the second step is by Cauchy-Schwarz inequality. Since that

log N
S o <00, (84)
we have )
(1462 )logN
L] >Q 85
1212 (=), (85)
and
n7%
T = . (86)
(1—2€0)%(1—0)273
Proof of Lemma 4.7:
When ¢t = T, we have nT' > ©(1). Since that by Lemma C.3 and
T n,T T
1 |SET NN 1 |D"m\/”|
sy Sy ®
b=1neB, b: By

with high probability for some 1 > €, > 0, we can derive (14).

Proof of Theorem 4.8:

When b = 0 is fixed during the training, but S™* and 7™ are subsets of N, 7, the bound for p,, (T') is still the same as in (64)
and (65). Given a known core neighborhood in Theorem 4.8, the remaining parameters follow the same order-wise update
as Lemmas C.1, C.2 and C.4. The remaining proof steps just follow the remaining contents in the proof of Theorem 4.4.

D. Useful lemmas

We prove Lemma C.1, C.2, C.4, and C.3 jointly by induction. Lemma C.1 first studies the gradient update of lucky neurons
in W (¢) in directions of p1, ps, and other p. We divide the updates into several terms and solve each of them. By applying
a known result of PDE, we bound the component in the direction of p;, which is the most important one. The updates of
other neurons follow the above procedure. Lemma C.2 computes the gradient update of Wy and Wi in different directions
of ;. By controlling the gradient update to be positive in the directions of discriminative nodes, we get a lower bound of B.
Meanwhile, we obtain the update of key and query embeddings. Lemma C.4 is derived by considering different components
of Wo,, ., in the gradient. In proving Lemma C.3, we characterize the update of different distance z in terms of components
from different neighborhoods. Combining concentration bounds, we remove the influence on unimportant terms and only
retain one part, which represents the update of the average winning margin of the majority vote, i.e., the update of A(z).
For Lemma C.6, We characterize the updates of the lucky neurons to the desired directions to show lucky neurons can
activate the self-attention output of discriminative nodes along the training.
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Proof of Lemma C.1:
At the t-th iteration, if s € S? ’t, we can obtain

= Z WX(,t)a:Ssoftmaxn(wsTW[((t) Wg)a:n—ku(z,n)b(t))

V(1)
seShit
T
= Z softmaxn(wSTWI((t) Wg’)mn + uErS,n)b( p1+ z(t) + Z W (88)
SES j#1
: ® T ® T
b=1 ieW, (0) i¢W; (b)

I € [M], where the last step comes from Lemma C.4. Then we can derive that for k € 7"

n (t)
S, |5, it AN edlar®l+b
= S Pn(t), (89)

Wi (t) <
S oez ISP N NPlela @I~ +o)lla B+

This is the reason why we ignore the impact of W;(¢) on

which is much smaller than 6)( ) when t is large.

_ ) T
1300 iew (o) Vil )Wé() L+ Tiemo) V(b)/\W(g(> ). Hence,
OLoss( mn,yn Z T
ey Z = Yn Z a’L WO(;) ( ) }V(t) . (90)
’nEBb aWO(Z) TLEBb leSnt
Denote that for j € [M],
1 t
t b
Hi=% nyna: WS Vi(t) > 0](=m) Y Vi)W p;. 1)
neBy b=1 kEW; (b)
1 : b
t
Hi=% > nynail[W5) Vi(t) = 0](~1) Vi)W p, 92)
neBy b=1 kg W, (b)
and we can then derive
¢+ T ® "
< O ’pj><WO<z> ’p7>
1
== > il [WE) Vi) > 0Vi(t) p;
leBy
_1 ®
= > mynail (W5 Vi(t) = 0z(t) "p;
leBy 93)
1
+ = Z nynai]l[Wg()i)Vl(t) > 0] Z softmaxl(:c;rW[({t) Wg):cl + u(s’l)b(t))
leBy SES;
1
+ = > mmal W) Vi) > 0] Wit)p) p; + Ha + Hi
l€B, k#l
:=Hy + Hy + H3 + Hy + Hy,
where
H, Z nynail WS Vit) > 0)z(t) p;, (94)
nGBb
1 T
H, = 3 Z nynai]l[Wg()i)Vl(t) > 0] Z softmaxl(acSTWI((t) Wg)a:l + U(Ts,l)b(t))plij, (95)
SES;

neBy
26
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1
Hy= Zl; yas W) Vi(t) > 0] ;wl (t)p] p;- (96)
neby J

‘We then show the statements in different cases.
(1) When j = 1, since that Pr(y,, = 1) = Pr(y, = —1) = 1/2, by Hoeffding’s inequality in (20), one can obtain

log B _
> < ¢
>/ 227) < B~ ©7)

Pr ()zl(t)—rpl‘ > \/(U)Qlogm) <m~¢. (98)

Hence, with a high probability, we have
| S77(0) /logmlogB. 99)
a B

For i € W, (0), by the reasoning in (141) later, we can obtain

(5

neBy

WO(Z Z W wssoftmaxl(wsTW(t) Wé)wl + U, l)b( )) 0. (100)
seShit

Denote py, (t) = |1 vy () el OIF=285lar (Ol Hence, for k ¢ W(0),

1 1
Hyzn- 3 D o1l pa(t)(1 ~ 2e0), a0l
neBby
Hs =0, (102)
t
1 n? 1 m oM
Hizp 33 e S 201 = 260) Ip[P(1 = e — 5 Wo,, 1,

B D aes, ©2B s, ¢ ™ (103)

t
1 n? o, 1 m
[Ha| S5 L=€m—=)s= > ——pu(®)lp1[*Wo,, P2
B w2 aM
b=1neB, neby (]04)

Hence, if we combine (99), (101), (102), (103), and (104), we can derive

T T
<Wg::1) ap1> - <Wét()1) 7p1>

1 oM
Zgg Z(pn(t 1_260 —0+772 Z 67n_7)
neBy ’I’LEBb
oM
Wou,pill = 260) ”E: > T =en = =5) (105)
nEBb
Utho(k ,P1
-Wo., 140) - —————
O(l-,-)p2( ) \/Ea )
77 nt(1 — 2ep) m oM
an 1—260)—U+TZ;Pn(t)'(l—ﬁm—T)
nEBb neBby
-Wo, ,p1).
Since that W(O), ~ N(0, &1 , from the property of Gaussian distribution, we have
O, m
0
Pr([Wy) (| S€) S¢€ (106)
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Therefore, with high probability for all ¢ € [m], we can derive

0
IWo, Il 2 €.

(107)

When 1 is very small, given pj,(t) as the order of a constant, (105) leads to a PDE on the lower bound of Wo,, ,p1 since

the last step of (105) is always positive. Denote y(¢) as a lower bound of Wo,, ,p1, we have

dy(t)

ot

—O( - 3 (a1 200) — o) + T2 S (),

2B
neby neBby

Therefore, we can derive

2 t
_ ntZ(1—2¢q) >, o (¢) 1
y(t) =B =neby iB €By )( N B Z (pn(t)(1 —2¢9) — 0)

neBby

~ 15 nu? (1—2e9) my (1)
. aB ZimeBy 1B neBy a Pn du+Co)

Note that
¢ nu2(1—2e m
/ e_a% Eneb’b %Zneﬁb Tp”(t)du
— 00
o0 U’Z — <€ m
S/ 675 Ynen, R Dones, 7pn(t)du
— 00
1 (1 — 2¢p) m
=2 - (— ASSEE o t -1
V(30 LR S T, )
neBby neBy
—1
=0(n"").
t nu? (1—2¢ m
/ e_ﬁ Znesb % ZnEBb 7Pn,(t)du
— 00
0 uz — <€ m
2/ 675 Ynen, % 2nen, ?pn(t))du
— 00
=0(n).
Hence,

1

5(0) = Lo 3 (pul®)(1 = 260) = o) + Co = O(7'€) + Co = €,
neBby

Co=¢(1-0(n"),
Wéﬂfﬁm Zy(t)

(t+1)2(1-2¢9)
n B (0] Z

1
>eﬁ ZneBb neBy, %pw(t)g
~Y

2 — € m
2 E s D L2 5 ™ ) te

4B
neBby neBy
(2) When p; € P/p*, we have
Hs =0,
1 n [logmlogB 4
Hy| < — Y -l -
1< 3 3 w0 ol
neBy,
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/logmlogB 1
|H4‘ < 7 Z a b)Wg(,y)pJ
t
n*tm o+ 7> llogmlogB 1 m T
|H5| N B QWO(k',')pl ; Z ; ;pn(t)WO(iy.)pQ’
b

b=1

For k ¢ W,(0),

with high probability. (117) is from (25). Then, combining (99), (115), (116), (117) and (118), we have

t+1) T t) T
(Wi ) (W m)|

1
L= Y ) +o
neBy
t
pn(0)ym o+ log mlog B
+;TWO<M”]) B

Comparing (105) and (119), we have
(t+1), < L o (+1)
WO(L.) p] ~ \/7WO(L
(3) If i € U;(0), from the derivation of (114) and (120), we can obtain
2
e+, s & n(t+1)°(1 — 2¢) m
WSz £ S )+

4B
neBy neby

t+1 t+1
wo ))ijch()( Ups,  forp € P/ps.

logmlog B
|Hy + Hy| < 2| =525 p)?,
Following (117) and (118), we have
t
n? logmlogB 1 m T
Hy| < — —pn (D)W, p,
|Ha _z:: o\ 2Bn€6 P (b) 0P

b

77 2tm ®) n? [logmlogB 1 m ®)
< VV o e © _ \%%
5l = Oue P 1+Z V"B 2B L o PrOWoy  pe:

b

@ If i & (Wi(0) Ut n(0)),

Thus, combining (123), (124), and (125), we can derive

t+1) T T
(W p) - <w(g(;_) )|
n pa(b)nm logmlog B
< pl+or Y o 3 Oy ), [osmioe S
b=1

nEBb

Comparing (105) and (126), we can obtain

)« Lo

O, pJN\f Oi.) PLs
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for j € W;(0).
(5) In this part, we study the bound of W(()t()i .) and the product with the noise term according to the analysis above.
By (43), for the lucky neuron i, since that the update of Wg() ) lies in the subspace spanned by P, we can obtain

M
t+1 t+1 t+1
W1 = Z Sp)? > (Wi p)?
) 1)%(1 — 260)) e
n(t+ — 2¢p m
Z(CTB D iB D, gpa®)’,
neBy neBy
1 1
WSzl <|oIws (129)
For the unlucky neuron ¢, we can similarly get
W7 < ||Wo(7 I, (130)
where j is a lucky neuron. The proof of Lemma C.1 finishes here.
Proof of Lemma C.2:
We first study the gradient of W(t+1) in part (a) and the gradient of W( 1 in part (b).
(a) from (15), we can obtain
1 Z 8Loss ,yn)
leBb
1 Z OLoss( X”,yn) OF(X™)
leBz, 8F X" oWg
1 m
=g Z (—yn) Z%HWOU,) Z vassoftmaxl(wsTW,}FWle + uz;’l)b(t)) > 0]
leBy =1 seSht
. (Wo“ Z vassoftmaxl(ws WK Wox: + u( )b(t))
seSht (131)
Z softmaxl(azr WKWQa:l + u(r z)b )WK( — a:r)a:l—r)
restt
1 m
=1 Z (—u1) Zai]]'[WO(i,J Z Wy softmax; (x| W, Wox; + uz;vl)b(t)) > 0]
neBy i=1 seSht
. (WOH,-) Z vassoftmaxl(a:STWI—(rWle + u(TSJ)b(t))
seSht
- (Wgaxs — Z softmax; (x, ' Wi Wox; + u(TT,,l)b(t))WKmr)mlT>.
resSht
()Ifl e S"*orl € S, say | € S]*, we have the following derivation.
At the initial point, we can obtain
0 0 0\ (0
Wé(;_) Z W‘(/ )wssoftmaxl((WIyws) Wc(g Ja; + uz;’l)b(o)) >0, (132)
seSht
and
softmaxl((W( )a:s) W(O)azl + g, l)b(o)) > Q1 Z softmaxl((W( )a;r) W( Ja, + U, z)b( ), (133)

TES
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for s € Si’t
Forr,l € 8", if u()., = 1,by (36) we have
softmaxl(erW(t)Wg)wl + u( )b( ))

qu(t)\|2*5llq1(t)|\+b(*)

2z .
N e Ve N SET el DIP-ollar I+ 4 5 (N7 A ST — 85T et

Likewise, for r ¢ Si’t and [ € Si’t, we have

softmax; (x,. ' W (1)t W(tH)mZ + u(Tr’l)b(t))
< i

~

Y ez NENSHT lan (T)[12=clla (T)[+65 4 Yoz [NEASHT) - ST |ent™

Therefore, for s, 7,1 € S, let

.
W, — Z softmax; (z, T W Wg)a:l + u(TT)l)b(t))WI((t)acr = BL(t)qu(t) + BL(t),

resht

where

L) > e (NN SH — |NE NSy )eb=)

B Zzez |,/\/2 N SE’T|e|\Q1(T)|\2—0\|Q1(T)H+b(zT) + Ezez |(Nzn N&nT) — SIL,Tleb(zT)

2 a8~ 187"1),
1, l,
Bi(t) S eXla®lig 6) (IS4 = 187"]) < di(t)(ISY] = 18-

Meanwhile,

M M
BL(t) ~0(1) - oé-(t) + Q(t)r2(t) + Z v (t) — Z Z softmaxl(m:WI((t)TWC(?t)wl)ra(t)
n=3

a=1resht

M
S0+ Y Gral)
n=1

for some Q. (t) > 0 and ~, > 0. Here
5t
|7t — S|

G < BT ()

for [ > 2. Note that |¢/| = 0if |[S™*| = |S]""|,
For i € W,;(0), by Lemma C.6,

.
Wg&» Z Wz softmax, (z, T W Wc(gt):cz + U(Ts,l)b(t)) > 0.
SeSl,t

Then we study how large the coefficient of g1 (¢) in (131).
Ifs e Si’t, from basic mathematical computation given (23) to (26),

Wg() wit )wssoftmaxl(:csTW(t) Wéz):cl + g l)b(t))

p(t) 71— 2 En(t+1)2
I DMICE
ISl neBy nEBb
pa(b 3 (1 — 2eq)n(t + 1)° m 2)
— — (= —p(t .
. o) (S Y U2l E DY sm )
b 1 neBy neby neby
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If s € Sy and j € S, from (27) to (30), we have

:
WY W0 ot "W W + w6

T |Sn,t|

WS Wl jsoftmax(@; T Wik Wz + ul)  b0) - 6,(2) pzl(t) '
If ¢ L.t Lt . 1.t
ieW(0),s ¢ (S7"USy ), and j € Sy,

-
Wét()mW‘(/t)a;SSOftmaxz(:csTWK(t) Wg)wz + u&l)b(t))
(t) (t) T (t)T (t) T (t) |Si’t
SWo,, Wy ssoftmaxi(@; Wi Wo i+ ugnb™)ailt) - e

by (31) to (33).
Hence, fori € W,;(0), j € St combining (137) and (142), we can obtain

wh o3 Wz, softmax(z, Wi Wa +ul, 50)aq ()T
geslt
WPz, — 3 softmax (2, W W+l bW,z
resht

(1—26025nt+1 m 1 an +nmiz pa(b)

neBy nEBb b=1neB,
£ (1 —2e0)n(t + 1) m 2 Lt obt 2
(= Z; - 2; Zp(t)?) én(8)(1S] = ISEDllas (1)1
n b n b

Fori € U(t) and [ € Sb*, j € 89*, and k € W)(0),

W S Wi softmax (@, "W Wz +ul, b (1)
éESl t

.(WI(;)CBS B Z SOﬂmaxl(mrTW(t) WC(Q)iBl +U(s )b(t))W( )mr)wlTa:j

resSmt

N(l_Qeozan_l an +nm— an _

neby nGBb b 1neBy
3 (1 — 2e0)n(t + 1)2 m it
'(cTBn%;b 1B ZI; Zp(6))on(®1S5] - Bu()lan (1)

Fori ¢ (W,(t) Uly(t)) and l € b, j € &9,

.
W(()t()i,‘) Z W‘S-t)wssoftmaxl(acsTWK(t) Wg)ml+ua.,l)b(t))q1(t)T
seSh:t
.
~(WI(§):BS— Z softmaxl(mrTWI(f) Wg)xl+U2;,z)b(t))wr)szwj
Tesl,t
.
Wg()k) Z W‘St)wssoftmaxl(:csTWK(t) Wg)ivl+u(Ts,l)b(t))q1(t)T

SESl t

(W(It T, — Z softmaxl(wTTW(t) Wg)a:l +u( )b( ))wr)wz x; -
resSh:t
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Therefore, by the update rule,

D). . 1 OLoss( X, y,) )
W, Tz =Wy, 5 ngb <76WQ W, )zr:]
=i (t) + K()q(t) + O(1) - m;(t) + | K| (¢) +Z%(11 (148)
=1+ K(1)q:(t) + 6(1) - n(t) + [Kel(t) +ZWH
where the last step is by
qi(t) = ka1 (t) - m1(2), (149)
and
qa(t) = ka(t) - ra(t), (150)

for k1(t) > 0 and k2(t) > 0 from induction, i.e., g1 (t) and 71 (¢), g1 (t) and r1(¢) are from the same direction, respectively.
Define qc;(z) = = " q;(t)/||q1(t)|| and denote

A(l,i) =a;1[Wo,, , > Wyazsoftmax,(z, | Wy Woz, + u, ;)b) > 0]

seSht
'<W0<i,-> Z WV$SSOftmaXl(£ESTW[—(FWQ$l+U2;7l)b (151)
seSht
- (Wgaxs — Z softmaxl(erW;Wle + ugﬂyl)b)WKmT)wlT).
reSht
‘We then have
K(t)
1 . .
(D SN SR NUE) B B SR G I SR eN()]
1EBy LES) i€W,(0) 1EB,,leSh? i€l n (0)
1Y tw Y w@ey)|-| Y Y@
1€By,leSh? igWi(0)UlU;,, (0) 1€By,leSL? i=1
- <—yl>zqct<A<z,i>>)) (152)
lEBy leSht—Spt -8 i=1
oy 3 (L 3 S S o) Y
~TB a a2 4B n myB
neBby nehy neBby b=1neB,
¢ (1 —2e)n(t +1)° m 2 Lt Lt 2
(- o) S B2 S T (1)) () (1]~ 181 ()]
neby neBy
>0,
< > K@) S (153)
1= 75 T TE————
B %, |Smt| — |87
1 Sit
K0S = 3 A K@) —2 L (154)
B neBy | B |‘917
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as long as

(1—2602577t+1 an +77m7 Dn(b B

neBby nEBb b 1 neBy
1-2 1)2
(3 U2t D s %pzu))?)@(t)(\slﬂ—\Si’t>||q1<t>||2
neby neby ) (155)
N(l_Qeo anttl an —0)+nm QLZ p”(b)(l—U)
neBby nGBb b=1nebB, @
£ - ( —260>n<t+1>2 m

G5 2 ZI; " (0))an (IS5 51 (1)l 1)1

To find the sufficient condition for (155), we compare the LHS with two terms of RHS in (155). Note that when
n,t
17", by (138),

G ()™ = IS7]) Z BT (D). (156)
Moreover,
12 ¢ (1)[S5). (157)
For the second term on RHS, we can derive the bound in the same way.
(ii) Then we provide a brief derivation of WgH)a:j for j ¢ (S7"" U S3") in the following.
To be specific, for j € S,, /(S{"" U SI),
1 OLoss(X,yn)
n Z I S L (t)
< B neBby aWQ
t
1 m (1 — 2e En(t ) 1 Pn(b)
SR IR Ll e e A SRR 9b LR
neBby neby neBby b=1neB,
3 (1 —2e0)n(t + 1)2 m I,
1= a)( 3 R S By )2)6n (08" — IS D lan (1)),
neby neBy
where ,
pu(t)
ez [SPE AN et O Zhy KOa@=3lla ]I+ (159)

ez |(SITUSHY AN en®T Zia K (b)q1 (b)=3]llq1 (1)[|+%")
When K (b) is close to 01, we have

— ISP 185

t

Hv1+K la()|f? 2 eXb= KOIa O > 3™ i (5) |, (0)], (160)

b=1

where the first step comes from log(1 + ) &~ x when 2z — 0T. Therefore, one can derive that

1 OLoss(X™, yn) ., S .
<"B n%;b ij ; ql(t)> 2 6(1) - K(1). (161)

At the same time, the value of p/, (¢) will increase to 1 along the training, making the component of g; (¢) the major part in

NE Yones, Wm?. This is also the same for g (%).
Q

Hence, if j € Sl"’t forl > 3,
Wi e = q(t) +6(1) - n,(t) + 0(1) - K(t)(q1(t) + qa(t)) + quz (162)
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Similarly, for j € S;”,

(++1),, 55|
W, =(1+K(t) =
|31'

(b) For the gradient of Wi, we have

Z OLoss( :Jcn,yn) OF (x,,)
B 8F :En é)WK

neBby

:E Z (—yn) Z a;1[Wo,, , Z Wy softmax; (x| Wy Wox; + uz—s,l)b(t)) > 0]

neBby =1 seSht

. (WO@-) Z vassoftmaxl(wsTWI}rWle + u&l)b(t))Wgwl
seSLt
- Z softmax; (x, ' Wi Wox +u(ll)b(t)):cr)T).
reSht

Hence, for j € Sf"t, we can follow (148) to derive

W e~ (1+Q(1)qu(t) +©(1) - 0;(t) + [Qe(t)ra(t) + Z it

where
Q) 2K (t)(1—A) >0,
for A < 1, and
S|

RAPS Q) ———ant
5 % 90 s
1 S5
< E . -
|Q€(t)‘ ~ B el Q(t) |Sn’t‘ _ |S:qt‘ °

Similarly, for j € SJ"*, we can obtain
Wz ~ (14 Q(1)ga(t) + O(1) - 0 (t) + Qe (t)|r1 (1) + Zwm

For j € Sl”’t, 1=3,4,---, M, we can obtain

Wi e, ~ qi(t) +6(1) - 0;(t) + O(1) - |Qs(B)|ri(t) + ©(1) - Q )+ ZW%

where
Qr()] S Q).
Therefore, for I € S}, if j € S,
T
Q)jTWI((t—H) Wét+1)wl
2+ K@)+ QM) lgi®)* = dllgi(t)]| + Ke(£)Qe(8)[lg2(®) |72 (1)

M
+ Z%%’H%(t)||”7‘l(t)||

=3

2+ K@)+ QM) la®)]* — dllg(t)]]

M
7 )a2(t) +O(1) - n(t) + O(1) - K(t)ar(t) + Y viau(t)
=2

=2 nEBb

57| oL 57|
D5 3 QO e e VI [ S 3 K)o 2
$ = D, S = 18] |Smt] — |S:

21+ K () +Qt)llgr()I* — dllqr (1),

35

(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)

(172)



What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding

where the second step is from Cauchy-Schwarz inequality.
Ifj ¢ S,
T
CCjTWI(<t+1) Wc(gt—i_l)ml

SA+E0)Qr®ar()I” + Ke(t)Qs®)lla2(t)II* +vlla(®)I* + 8l g1 (t)]]
<Qr®llar () + dllgr (t)]-

Therefore, for r, [ € Si’t, if U(r )., = 1, we have

softmaxl(erW(t+l)WC(;H):Bl + u( )b(t+1))

LOFEO) a1 =3las )]|+5)

Y.z WP N SET et EOIa DI —olay DI+ 45~ (N §nT) — §pT|ent

z

Similarly, for r ¢ Si’t and [ € Si’t, we have

+
softmaxl(mrTW}(fH) Wg+l)wl+u )b(t))
p(t)

20

<

~

Yoz N A SET [0 K )l (D) —ollar (D) +6 4 5~ (Nn A SnT) — ST [en”

The same conclusion holds if I ¢ (S* U S3").

Hence

(t+1) = VI +K@D)a ().
@t +1) = /(1 + K(1)g2(t).
r(t+1) = /(1 +Q(t))ri(t).

(t+1) =1 +Q(1)ra(t)

t).
It can also be verified that this Lemma holds when ¢ = 1.

q(t+1

T2 t+1

Proof of Lemma C.3:
1 OLoss(x,, yn)
"G 2. b
neBy
1 OLoss(x,,, ypn) OF (x,,)
0z %; OF (z,) b

—nB Z -y Z 1[Wo,, ., Z Wy x;softmax; (x| WKWQacl +u( l)b( )) >0]- (Wo(i,.)

leBy =1 seSLT
Z Wy & softmax; (' Wi Wox; + u(‘s l)b Z softmax; (z, ' W Woz +ug l)b(t))

SES; resSnit

(u(sy — u(r,l)))

1 m
=15 Z (—u) Zaiﬂ[WO(m Z Wy softmax; (x| Wy Wox; + uz;yl)b(t)) >0]- (WO(M

leBy i=1 seShit
. Z vassoftmaxl(msTW;Wle + uz;yl)b(t))(u(svl) — Z softmaxl(:anW;(—Wle
SES; resSn.t
+ uz;’l)b(t))U(r,l))) .
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Therefore, we can derive

Wo, ., - Z vassoftmaxl(wsTW;(—Wle + uz—s’l)b(t))(u(syl)z
seSht
- Z softmax;(z,. ' Wi Woa, —&—uz;,l)b(t))u(r’l)z)
resSht
=Wo,,. Z vassoftmaxl(wsTW;(—Wle + u?;’l)b(t))(l
seSLINNF
— Z softmaxl(erW;WQa:l + u(j;’l)b(t))) +Wo,, , Z Wy x,
TeSl,thflz Sesl’tf./\[lz
- softmax; (x| Wi Wom, + u(, ;) b") (- Z softmax; (z, " Wx Woz; + u(, b))
rGSlvtﬂle
=Wo,, Z vassoftmaxl(acsTWI}rWQ:cl + u{s)l)b(t)) Z
seSHENNF reSht—N7
. softmaxl(erW;WQ:cl + u(T,_,l)b(t)) — WO(i.,) Z Wy,
seSLt—NF
- softmax; (x| Wi Wox; + u(ll)b(t)) Z softmax; (x,. ' W Wox; + u(TM)b(t))
reSLENNE

)

:P1+P2+P37

where the second step is by

( Z + Z Ysoftmax; (z ' Wi Wz, + “Ze,z)b) =1
SESLINNT T seSLt-N7T!

Define
P= >  Wo,, Wyzsoftmax(x, Wy Woz, +uf, ,b")
sESLtNNFNSL!
Z softmax; (x, ' Wi Woz; + u(TT)l)b(t)) - Z Wo,, Wy,
re(Sht—N7)NSL? s€(Sht—N7)NSL!
- softmax; (zs Wi Wox; + ug;yl)b(t)) Z softmax;(z,. ' WL Wox; + u?nl)b(t)),
reSLtNNFNSL?
Py = Z Wo(i)_)anzssoftmaxl(:/cSWl;(r Wox; + u?s’l)b) Z softmaxl(erWEWle
seSLtNNF —Sb? reSht—Nl
. +u(t.7l)b(t)) — Z WO(MWV:cssoftmaxl(msWI}rWle + u(ll)b) Z
sE(SLt-N1)-5." reSLENNT

- softmax; (x| Wi Wom + u, ;) b'"),

Py = Z WO(Hvassoftmaxl(wSWI}rWle + u(TS}l)b(t)) Z
seShtnNFNSL? re(Sht—N1)-Sb?
. softmaxl(mrTW;Wng + u(TTJ)b(t)) — Z Wo(i,,)Wvl's

se(Sht—NHNSLE

. softmaxl(:cSW;(—WQm+uISJ)b(t)) Z softmax;(z,. ' Wi Wox; + uz;,,l)b(t)).
reStNNF—SL?
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Note that (S — N7 1) NSL) + (SHENNFTINSE!) + (8P — Sb') = SHt. For s, j € SL*, by (225) and (226), we have

WPz, — Wz =o.

Combining (26), we can obtain

n,t 1 n,t n,t 1
(t) ISl m'/\/’z| |Sl | _ |Sl mNz‘
‘P1| SJHWO(L_)H |Sl’t| ( |Sl’t| |Sl,t| )
Let
T, = > Wo,, , Wy zsoftmax; (z, W Woz))
sESLNNF —Sbt -8l
Z softmax; (x,. ' W Wox; + u&l)b(t)) - Z Wo...,
reSht=N] se(Sht—N1)—-Sbt -8kt
. vassoftmaxl(xSW;Wle) Z softmaxl(erW;Wle + u&l)b(t)),
T-esl,tm‘/\/lz
T,= Y  Wo, Wya,softmax,(z.Wg Wox; + u/, ,b"))
sESHINNF NS
Z softmaxl(cchW;Wle + ug,’l)b(t)) — Z Wo Wyvzs
re(Sht-NHNSL' sE(SHt—NHNSL*

- softmax; (zs Wi Wox; + uz;,l)b(t)) Z softmax;(z,. ' Wi Wox; + uz;,,l)b(t)),

reSbtNNFNSY!
T3 = Z Wo,. , vassoftmaxl(:cSW;Wle + u(Ts,Z)b(t)) Z
sESlvtﬂJ\/lzﬂS;;" T-Esl,t_./\/'zl_s;&
. softmaxl(erW;Wle + ugﬁﬁl)b(t)) — Z Wo, \Wyxs
se(Sbt—NHNSY?

- softmax; (z.Wg Wox; + u/, b'")) > softmax; (z, " Wx Wox; + u(, o).

reSLINNF—S4*
Therefore,

Py =T+ 1T + T3,
I, 1,
IV - st 78#t| Sht — A
| St
Lﬁﬂ%H%ﬁﬁﬁﬂM%
|Sl,t| |Sl,t| |Sl,t| )
Fory, = 1,5 € St* and j € S}, by (225), (226), and (227), we have

T <o W) -

)

n<o|Wy |-

WS WPz, - Wz,
t

b) w T
=W (o1 —pa+zt) =y > Vi)W —nz S viows) )

b=1i€W,, (b) b=1 il (b)

T

S0y > AOWS, f 13 Y wewd
b=1i¢W, (b b=1i¢U(b)
1—260 fn t+1
N p’I’L
- 2
g > 3 2 -<% y & 262;““’ 5 o))
b=1neB, a neBy neBy a
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o < SntPm | mptme - Ent*m
WS, (Wi, = Wilep)| S 55 + = () (195)
Given i € W;(0), with regard to P», we first consider the case when ¢t = 0. Then with probability at least 1 — -C >
1— (MZ)=% for C,C" > 0, when z = z,,,
N N
"Sltz [j e DinN N SH — —‘Z [j € D; N NENSHY]
=t = (196)
_‘Sltﬁ/\/’l |D; NN log |S™t| o1
Shi| N |St| -~ poly(Z)’
1 < 1 <
. Lt 1 . Lt 1
]WZMJ € SM NN Bl Z”J e St AN
=1 3=t (197)
:‘ [SH NN V] log |S™t| PR
|84 N |S™t 7 poly(Z)
For z = z,, ify; = 1
(DLUD) NN _ N _ [P0 (198)
|(Dy UDy)| N = |D
Therefore, we have
[SeE AN St - VY 1 199)
SL SN +[SE N (v =N T N+ V=N poly(Z)
Forv = 3,4, --- , M, when z = z,,, we can derive
SN WA V=N e _ISTnv =N e) (200)
SttaNt T W poly(Z) T |Sh A poly(Z)’
1, Lt _ Al
St A=) _ISEnm-NDL L eq) o)
SPEANE T |SE N poly(Z)
Hence, we have
SN IS0 V- AD| S AN IS A (A o0
|84 |84 |84 |84 ~ poly(z)’
S ONISE OO M) IS OMIS nw-AY 1 03)
|88 |84 |88 |SHY] ~ poly(z)
Then take the case where w4 is the class-relevant pattern as an example, we have
Lt z It __ Az Lt It AL n
itle itle itle
ISt N NF N S (1— 260 pa(b)m fnt m 9
. |Sht|e ) K bz; zl; ) 1 l* + T (204)
nebyp

S SltﬂNl—Sltﬂ./\fl 1 — 2¢p) D mfntm
21 o [STONICISTON 020 57 5 S

b=1neB,
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given that
Ty := Z WO(Mchcssoftmaxl(a:sWI—(rWle + u&l)b(t))
sESLINNFN(SLPUSL?)
Z softmax; (z, " Wx Woz; + u(, ,b")
resSht—N1-S4t st
(205)
- Z Wo,, ., Wy x softmax; (x, Wi Wz, + u(Ts,l)b(t))
sE(SHt—NHN(SL USLY)
Z softmax;(z,. ' Wi Woz; + ugrhl)b(t)),
reSLtNNF -S4t —sbt
and 55
n°t°m
Ty <o (206)
T el
One can obtain the opposite conclusion if
I, L
SNV -NDl V=M o) STV =MDl e
Skt m\/ll - W poly(Z) = |SH N M| poly(Z) o)
l,
SNV -N)H o)
SN poly(Z)

We can conclude that b, will increase during the updates with the condition (200) and decrease with the condition (207).
When ¢ is large, given that [N!| = ©(|S"t|), define

— MY _ min{p®
K : rzneazx{bz } I;Iélg{bz . (208)

Therefore,

P+ T3

((1 _ U)2K|Si7t mMz| i ‘(Sht _Mz) N Sé7t|
~ (K|Sl’t NN + [Sht — N1)?

(1 —2¢0)? pn(b)m fnt m
‘WT Z Z o2 ) ||le2
b=1neBb, (209)

_(1_|_0-)2.

K9¢—Nbﬂ8ﬂ-Kw“ﬂAﬁﬂS?)
(K|SH NN+ ]85 — N2

. t
>(1_ o) K|Sp'| - (|3§vtmv;| — S5 N ) 1= 260)° 303 pn(b)m(fntQm)Qup "
~ (K|SHENNE + |Sbt— NE))? B = = a a?
=1neBy
Sl’t\ |Sl’t NN — hi | (1 —2¢)? pn(b)m  Ent*m
>(1 — 2, ‘ 1 1 z 2 zl n 2 2.
/\J( U) ‘ K|Sl7t| n B ; — a ( a2 ) ||p1H
—1 neB,
By combining (187), (192), (193), and 209, we can derive,
1 Z 8Loss ,yn)
nGBh (210)
o1 (1—260)® Pu(b)m? Ent>m L |SYISY AN — ISE N Y
NnE Z n B Z T( a2 ) [pal”- B K|Stt|
néeBy b=1neBy
If uespy,. =
OLoss(X™, yn)
T t+1 7 n
uly (0D - ngy 3 TS, @11)
nEBy z
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T p®)
U(s’l)b

1< 1726(){ pn m fntm 9 m\
22> 3w S R ? - 2

b=1neBb, b=1neB,

S AN —1SY NN (212)

If we want to compute the difference term bgi)l — bg), note that we only need to study the differences in P; + 75 given the
previous analysis. Since that the term WO(M Wy x ¢softmax; (a:é;WI—(r Wox; + u(TsJ)b(t)) is larger when s € Nzlm, we can
bound the difference Ps + T3 using terms in (209). To find the lower bound, we apply the result in (194) and then directly
use the fraction of sampled nodes in different neighborhoods because concentration bounds can control the error. To be
more specific, on the one hand, if V. Zl is too small for one z € [Z — 1] and [ € V, the left-hand side of (202), (203), and
(204) are close to zero, and these three equations still hold. On the other hand, if we want to see whether terms (202) and
(203) with z = z,, are larger them with other z # z,,, we have the following derivation. Take (202) as an example,

DL NNLID: N (V= NI = D N NP, N (V= ND)| = D, NN - D] = D NN - DL (213)

DN DN (V=N ) = D NN [IDL N (V=N
~(IDL N NLID: 0 (V = ND)| = D N NLI[DL N (V = D))
=(DLNNL | = DL NN - D3] = (ID: NS, | = [D: NS - | D]

Yd
(V1= IVE]) - < |Pil = (P NN. | = DinN) - DL

zm, |

(214)

Yd Yd
+ (DL NN, | = IVE, | = (DL AL = IV 5) - D

2
1
=5(IDLON,, [ = Dy NNZ | = (DL NN = D N NSD) - D]

>0

where the first step is by (213), the second step comes from mathematical derivation, the third step is obtained from that
Wi, 1 =2,3,---, M is uniformly distributed in the whole graph, and the last step is by the definition of z,,, in (6). We can
derive (203) in the same way. Hence,

b(t) _ bg)
260 pn(b)m? fnt m Vd
20— ZZ ZZ = Vlpl? - =
B i3 2 (215)
neby b=1neB,
S AN |- |3l SONE |sf;t NN — |s;f NN
( K|Stt| a K|Stt| )
Note that finally nT = O(1). Therefore, K = O(1).
Proof of Lemma C.4:
For the gradient of Wy,
OLoss, Z OLoss(X™, y,) OF(X™)
oWy, B v OF(X™) oWy
neby
— Z Z —y)a; 1 [Wo,, Z Wy a;softmax; (x| WKWQa:l —|—u(S l)b) > 0] (216)
nEBb =1 seSht
. WO(@',-) Z softmaxl(:cSTW;WQ:cl + ug)l)b)—rws—r.
seSht
Consider a node n where y,, = 1. Let | € S}
-
S softmax, (z. "W W m, +ul,,000) > pat). 217)

sesp?
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Then for j € 87, g € V,

OL " n)
- Z oss(X y

neby

W(t)

.
=— Z —y1) Zal Wg() B Z softmaxl(a:STWI(;) Wg)ml—l-uz;’l)b(t))w‘(,t)ws > 0]

lEBb seSht
wo Z softmax; (x TW(t) Wl +ul b, @,
O, I\bs Q M (s,0) s
seSnt
(> Vi)Wo, "+ > Mi®)Wo, "),
1€EW;(0) i¢W;(0)

If : € W;(0), we have

Similarly, if ¢ € U (¢),

Therefore, we can derive

(0) (b)
-n Z WO(m Z V WO(7
JEW(0)

|772Wob()) Z V;(b Wow T

gGU; n )
7 pn(b)m W 2
,SEZ Z a O(L 12lp1 1%,
b=1neB,
T _ ntm|p|?
_ntWO@-,.) Z ij(t)WO(jﬁ.) g TH

FEWL(0)Uly, 7 (0))

Hence,
()Ifj € S foronen € V,

n n OLoss(X™,y n
e )
t+1 w T t+1
=P1—10 Z Z WO( D
b=1ieW(nb) b=1ig¢W,, (b)
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(2)If j € S5, we have

(t+1) (0) n OLoss( X", yn) | <x(0) .n
W =W _”(—aWV W )wj
t+1 o T t41 o T (226)
=pr-ny. > V;(b)W((J()M —nY Y AW+ ().
b=1 i€l (b) b=1 i¢U (b)

B3)Ifj € St /(S USH?), we have

(t+1) 0 _ (@ g (OLOSS(X™ yn )| o 0
Wy =Wy ’7( oWy Wy ) i
t41 m T (227)
=pr—nY Y MW+ ().
b=1 1=1
Here
llz;(®)] <o (228)

for t > 1. Note that this Lemma also holds when ¢t = 1.

Proof of Lemma C.6:
We prove this lemma by induction.
When ¢ = 0. For ¢ € W;(0) and | € Dy, we have that

WO(L Z softmaxl(:chW W(t)a:l +0)p1 + 2(0) + Z Wi (0)py) 2 £(B(1) — o) > 0. (229)
GES J#1
Hence, the conclusion holds. When ¢ = 1, we have

Wi v

:Wg()i,_) ( Z softmaxl(wsTW(t) Wg)a:l + g, l)b(t) p1+ z(t) + Z W”

sEST J#1 (230)
t—1 ) T (®) T
b b
30 vews T+ Y vepwd ).
b=0 icW,(0) igWi(0)

Denote 6; as the angle between V;(0) and Wgz) ,- Since that ng , Is initialized uniformed on the m, — 1-sphere, we
have E[#!] = 0. By Hoeffding’s inequality (20), we have

1 . log N
0 — _— 0; 231
|wio 2 on, 2 =V @b
€W, (0)
with probability of at least 1 — N 1%, When m > M?log N, we can obtain that
| Z o; — (37) (232)
Wi (0
eWi(0)
Therefore, for i € W;(0), we have
—1
Woi, > > wgf;;_) > 0. (233)
b=0 i€ W, (0)

Similarly, we have that Zz;é 2 iew, ©) Wéb)_ s close to —V;"(0). Given that A < 1, we can approximately acquire that

t—
® T ® T
O( )WZ Z Vi)Wo, , + Z BAWo,, ) >0 39
b=0 icW;(0) i¢ Wi (0)
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After the first iterations, we know that U(I l)b(t) increases the most from ua l)b(o) by 74 fraction of discriminative

nodes if s € N/ Zlm. Because the softmax is based exponential functions, the most significance increase in N, zlm enlarges

> oot softmax; (x TW(t)—l—W(t)alz + /] ,b®). Since that i € W,(0), we then have
sGSl’t I\Fs K Q l (s,0) . n s

-
WS (3 softmaxi(@, W Wz +ul, ) b0)pr+2(t) + Y W(t)p;) > 0. (235)
seSy J#1

Therefore, we have
W) V() > 0. (236)

Meanwhile, the addition from Wgz) ,to W(()l()) is approximately a summation of multiple V;(0) such that Wg?) V;(0) >

0 and j € S7. Therefore, Vj(O)TVl(O) > (. Therefore, we can obtain

w

) Vi) >o. (237)

(2) Suppose that the conclusion holds when ¢t = s. When ¢t = s + 1, we can follow the derivation of the case where ¢t = 1.
Although the unit vector of Wg() , ho longer follows a uniform distribution, we know that (231) holds since the angle is

bounded and has a mean which is very close to V;(0). Then, the conclusion still holds.
One can develop the proof for I ,, (0) following the above steps.

E. Extension of our analysis and additional discussion
E.1. Assumption on the pre-trained model
For the assumption on the pre-trained model, we provide the following discussion.

We would like to clarify that the training problem of the graph transformer (GT) is very challenging to analyze due to
its significant non-convexity, and some form of assumptions is needed to facilitate the analysis. In fact, even for the
conventional Transformers, the existing state-of-the-art theoretical optimization and generalization analyses all make some
assumptions on the data, embedding or initial models, or make further simplifications on the Transformer model. For
example, (Oymak et al., 2023) assumes orthogonality on the raw data. Jelassi et al. (2022) simplifies the self-attention layer
by only considering the positional encoding (PE). Tian et al. (2023); Li et al. (2023c) use linear activation in the MLP layer.
About the initialization, (Li et al., 2023a) assumes orthogonality on the initialization of embeddings. Tarzanagh et al. (2023)
requires that the initialization of the query embedding is close to the optimal solution.

The initialization assumption made in our manuscript is the same as (Li et al., 2023a) but for a GT. We would like to
emphasize that our initialization assumption is at least no stronger than the existing initialization assumptions in (Li et al.,
2023a) and (Tarzanagh et al., 2023). Notably, our work proposes a novel theoretical framework for the training dynamics
and generalization of GT for the first time, where the number of trainable parameters is more than the above existing works.
Third, although we have assumptions on the initialization for theoretical analysis, our experiments on real-world datasets in
Section 5.2 are implemented from random initialization. The performance is aligned with our theoretical findings.

E.2. Extension to other positional encodings

Our theoretical analysis is general and can be applied to different positional encodings. Specifically, Theorem 4.4 is based
on proving these two parts, (i) the success of positional encoding, i.e., the positional encoding can identify the correct
structure information (which is the core neighborhood in our data model), (ii) if structural information is known, analyzing
the sample complexity and convergence rate of Graph Transformer. We next discuss the extension of both parts to other
positional encoding separately.

For part (i), the success of positional encoding, because different types of positional encoding can learn different types
of structure information the best, this analysis needs to be case-by-case for different positional encoding. However, our
technique and insight can be potentially useful with some modifications to other positional encodings. For example,
Laplacian eigenvectors can essentially divide a graph into several clusters considering its relationship to spectral clustering
(Von Luxburg, 2007) and would work best for a data model where data labels depend on clusters. Moreover, Random Walk
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PE can encode structural information such as whether the node is part of an m-long circle (Rampések et al., 2022). Degree
PE (Ying et al., 2021), one of the standard centrality measures, can capture the local degree information. PE using distance
from the centroid of the whole graph (Rampasek et al., 2022) can represent global distance information. Our techniques in
analyzing the core neighborhood can be useful in analyzing these positional encodings. Similarly to our framework of the
core neighborhood, where a large amount of class-relevant nodes is located, one can respectively construct data models for
these positional encodings where class-relevant nodes are dominant for nodes within the corresponding structures, such as a
cluster, an m-long circle, a certain degree, and a certain distance to the centroid of the whole graph. The remaining step of
the generalization analysis is to learn this data model by Graph Transformer using positional encoding, which is elaborated
in detail in the next paragraph.

For part (ii), our proof technique can be easily generalized to other positional encodings with some straightforward
transformation. Specifically, positional encoding can be divided into absolute and relative positional encodings. What
we study in this work belongs to relative positional encodings. Absolute positional encodings can be formulated as a
concatenation to the initial node feature, either by their raw definition (Kreuzer et al., 2021; Rampasek et al., 2022)
or by transferring from a bias term (Gabrielsson et al., 2022) (Wz +a = (W, W’)(zT,b'")T, where the trainable
positional encoding a is transferred into a fixed augmented feature b’ and a trainable augmented weight W'). The structural
information is then incorporated into the node representation (x, b"). Denote the positional encoding b’ for a query node ¢
as bj,. Denote the PE of one core-neighborhood node ¢ and one other neighboring node o for this query node as by, and
b’ respectively. Suppose all the b’ are normalized. Then, given that the defined positional encoding b’ can locate the core
neighborhood, i.e., the distance between bg and b; is much smaller than the distance between b; and b;, we can deduce
that the inner product between b/, and b; is much larger than the inner product between b/, and b; This leads to a dominant
attention weight between the query node ¢ and the core-neighborhood node c based on the definition of self-attention. Then,
one could ignore other neighbors and focus only on core-neighborhood nodes when computing the Graph Transformer
output. Then the proof in Theorem 4.4 for part (ii) applies directly.

E.3. Extension of the analysis on GAT

From a high-level understanding, a one-layer GAT can be regarded as a Graph Transformer that only uses distance-1
neighborhood information. Therefore, our Theorem 4.8 can be applied to analyze the generalization of a one-layer GAT
when its self-attention follows the self-attention mechanism in 1 of our manuscript, given the distance-1 neighborhood as
the core neighborhood. From a perspective of training dynamics, GATSs also share a common mechanism that computes the
aggregation based on the similarity between node features as Graph Transformer does, although the attention layer of GAT
(Velickovié et al., 2018) is different. In this sense, one-layer GAT can generalize as well as Graph Transformer if the graph
satisfies that the latent core neighborhood is the distance-1/distance-small neighborhood, such as homophilous graphs. The
generalization analysis of using GATs on graphs with a larger distance of core neighborhoods and its comparison with graph
transformers needs more effort, and we will leave it as future work.

E.4. Extension to graph classification problems

Since we aim to make a comparison with GCN, which focuses more on node classification tasks, our work also mainly
studies node classification. However, our analysis is extendable to graph classification tasks. Consider a supervised-learning
binary classification problem on a set of graphs {G, } ;. Denote the feature matrix of the graph G; by X;. Following (Ying
et al., 2021; Kreuzer et al., 2021), we apply “Mean” or “Sum” as the READOUT function. Hence, we have

F(X;)=K Z aZRelu(WO Z anzssoftmax,,,(mSTWI—(rWQm,L + u(zn)b)) (238)
neTt SET?

where K = 1 if READOUT is“Sum”, and K = 1/|7;| if READOUT is “Mean”. When we compute the gradients, the only
difference is that we sum up or average over all nodes in each graph.

Data Model The data model follows from Section 4.2. The difference is that the core neighborhood is defined based on
the graph label, i.e., we assume the ground truth graph label is determined by the summation/mean of the majority vote
of w1, po nodes in the core neighborhood for some nodes in each graph. This is motivated by graph classification on
social networks, where the connections between the central person and other people in the graph decide the graph label.
For example, if z,, = 2 and the distance-z,, neighborhood of nodes in R determines the label, then for the ground truth
graph label g; = 1, |D} N (Ujer: N7 )| is larger than |Dj N (Ujer:N? )|, where Dj and D} are the set of p£; nodes and

n
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po nodes in G;. Such a data model ensures that the graph label comes from the graph structure. Meanwhile, it prevents
us from assuming a more trivial model where the number of p; nodes and po nodes in each graph indicates the label
and no graph information is used, which is almost the same as that in the ViT work (Li et al., 2023a). Hence, when we
compute the graph-level output, the distance-z,,, neighborhood of nodes in R? still plays a vital role. Then, we can apply the
generalization analysis of node classification based on the core neighborhood to the graph classification problem.

E.5. Extension to multi-classification

Consider the classification problem with four classes. We use the label y € {+1,—1}? to denote the corresponding
class. Similarly to the previous setup, there are four orthogonal discriminative patterns. We have a = (a1, as), Wp =
(Wo,,Wo,), Wy = (Wy,,Wy,), Wi = (Wk,, Wk,), Wg = (Wgy,, Wq,), and b = (b1, b2). Hence, we define

F(z,) = (Fi(zn), Fa(xn)), (239)
Fi(xn) = af Relu(Wo, > Wy, zsoftmax, (@, Wi, Wo, @, + uf, ,)b1)), (240)
567’171,
Fy(x,) = aq Relu(Wp, Z WVQ:vssoftmaxn(.'ABSTWI—(F2 Wao,xn + “E;,n)b2))' (241)
seTy

The dataset D can be divided into four groups as

A ={(X", yn)lyn = (1, 1)},
Ay ={(X" yn)lyn = (1, -1)}, 00)
-'43 :{(Xnayn)‘yn = (713 1)}3
Ay ={(X", yn)|yn = (-1, -1}
The hinge loss function for data (X, y,,) will be
Loss(Z, Yn) = max{l —y, ' F(zx,),0}. (243)

Therefore, when computing the gradient, the problem becomes a binary classification. One can make derivations following
the binary case. One notable difference is that we can assume two core neighborhoods for this four-classification problem.

E.6. Comparision with other frameworks of analysis
In this section, we provide a comparison with other frameworks of analysis.

First, we focus on five other frameworks: Rademacher complexity, algorithmic stability, PAC-Bayesian, model recovery,
and neural tangent kernel (NTK). Rademacher complexity (Tolstikhin et al., 2014; Garg et al., 2020; Esser et al., 2021),
algorithmic stability (Verma & Zhang, 2019), and PAC-Bayesian (Liao et al., 2021) only focus on the generalization
gap, which is the difference between the empirical risk and the population risk function, for a given GCN model with
arbitrary parameters and the number of layers (Liao et al., 2021). When analyzing the training, these works usually consider
impractical infinitely wide Graph neural networks, and a performance gap exists between theory and practice. In contrast,
our framework involves the convergence analysis of GCN/Graph Transformers using SGD on a class of target functions and
the generalization gap with the trained model. The zero generalization we achieve is zero population risk, which means the
learned model from the training is guaranteed to have the desired generalization on the testing data. The model recovery
framework (Zhang et al., 2020b) requires a tensor initialization to locate the initial parameter close to the ground truth
weight. For the NTK (Du et al., 2019) framework, they need an impractical condition of an infinitely wide network to
linearize the model around the random initialization.

Then, we compare existing works on Transformers. As far as we know, the state-of-the-art generalization analysis on other
Transformers (Li et al., 2023a; Tarzanagh et al., 2023; Oymak et al., 2023; Tian et al., 2023) did not consider any graph-based
labelling function and trainable positional encoding, which are crucial and necessary for node classification tasks. However,
we cover these in the formulation and provide the training dynamics and generalization analysis accordingly.

46



