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ABSTRACT

Recent advances in scientific machine learning (SciML) have enabled neural
operators (NOs) to serve as powerful surrogates for modeling the dynamic evolution
of physical systems governed by partial differential equations (PDEs). While
existing approaches focus primarily on learning simulations from the target PDE,
they often overlook more fundamental physical principles underlying these
equations. Inspired by how numerical solvers are compatible with simulations
of different settings of PDEs, we propose a multiphysics training framework that
jointly learns from both the original PDEs and their simplified basic forms. Our
framework enhances data efficiency, reduces predictive errors, and improves out-
of-distribution (OOD) generalization, particularly in scenarios involving shifts of
physical parameters and synthetic-to-real transfer. Our method is architecture-
agnostic and demonstrates consistent improvements in normalized root mean
square error (nRMSE) across a wide range of 1D/2D/3D PDE problems. Through
extensive experiments, we show that explicit incorporation of fundamental physics
knowledge significantly strengthens the generalization ability of neural operators.
We promise to release models and data upon acceptance.

1 INTRODUCTION

Diffusion Reaction
Navier Stokes
Kuramoto-Sivashinsky

Real-World Flow

Recent advances in scientific machine learning (SciML)
have broadened traditional machine learning (ML) for mod-
eling physical systems, using deep neural networks (DNNs)
especially neural operators (NOs) (Li et al., 2021a; |Pathak ;
et al| 2022; [Lam et al} 2023} [Bi et al; [2023) as fast, ac- i Advection
curate surrogates for solving partial differential equations
(PDEs) (Raissi et al.|[2019; Edwards), 2022} [Kochkov et al.| Figure 1: Can SciML models (e.g. neural
2021} |Pathak et al., 2022). However, compared to numer-  onerators trained on advanced PDEs) also
ical methods, a key disadvantage of recent data-driven  ynderstand fundamental physics knowledge
SciML models is their limited integration of fundamental (basic terms like diffusion, advection)?
physical knowledge.

Diffusion

Numerical solvers, though tailored to specific PDEs or discretizations, inherently preserve physical
laws (e.g., conservation, symmetry), ensuring consistent and plausible simulations across diverse
conditions (physical parameters, boundaries, geometries, etc.) (Ketcheson et al.,|2012; [Hansen et al.,
2023; Mouli et al., |2024; |Holl & Thuerey, |2024). In contrast, data-driven models, despite learning
across PDE types (e.g., via multiphysics pretraining in SciML foundation models (McCabe et al.,
2023; Hao et al.| [2024))), remain sensitive to training distributions, degrading under distribution
shifts (Subramanian et al., 2023} Benitez et al., |2024) and requiring large, diverse datasets. This
fragility is worsened by the absence of rigorous verification: unlike classical solvers, SciML models
are rarely evaluated against decomposed PDE components. This gap introduces three major
challenges: 1) High data demands: Without physics priors, neural operators require large, diverse
datasets for high precision, as seen in recent SciML foundation models(Hao et al., [2024} McCabe
et al., [2023)) which focus on generalization without addressing training data efficiency. 2) Physical
inconsistency: Lacking inductive biases, these models may violate conservation laws or produce
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unphysical outputs, particularly in long-term rollout predictions. 3) Poor generalization: Neural
PDE solvers often struggle with unseen simulation settings and requires retraining.

Motivated by the above challenges, we ask two scientific questions:

Q1: Can neural operators understand both original PDEs and fundamental physics knowledge?
Q2: Can neural operators benefit from explicit learning of fundamental physics knowledge?

In this paper, we highlight the importance of enforcing the learning of fundamental physical knowl-
edge in neural operators. The key idea is to identify physically plausible basic terms that can be
decomposed from original PDEs, and incorporate their simulations during training. Although often
overlooked in SciML, our experiments demonstrate that these fundamental physical terms encode
rich physical knowledge. Not only can they be utilized without incurring additional computational
costs, but they also widely offer substantial and multifaceted benefits. This opens up a new door to
improve the comprehensive generalization of neural operators with data efficiency.

‘We summarize our contributions below:

1. Through comprehensive evaluations of public SciML models, we observe a strong correlation
between performance on original PDEs and basic PDE terms, highlighting the importance of
fundamental physical knowledge in neural operators (Section [2.2).

2. We propose to explicitly incorporate fundamental physical knowledge into neural operators.
Specifically, we design a simple and principled multiphysics strategy to train neural operators on
simulations of both the original PDE and its basic form. (Section 3)).

3. Our method exhibits three major benefits: 1) data efficiency (Section[4.2), 2) long-term physical
consistency (Section [4.3), 3) strong generalization in OOD (Section 4.4) and real-world
(Section [4.5) scenarios. We evaluate our method on a wide range of 1D/2D/3D PDEs, achieving
consistent improvement in nRMSE (Section 4.2)).

2 BACKGROUND

2.1 DEFINITION OF PDE LEARNING IN SCIML

For time-dependent PDEs, the solution is a vector-valued mapping v : 7 x S x © — R, de-
fined on temporal domain 7, spatial domain S, and parameter space ©, with d the number of
dependent variables. Numerical solvers compute vy(t,-) from ¢ > 1 past steps, enabling finite-
difference approximations: Ny = [vg(t — £ - At,-),...,ve(t — At,-)] — wvp(t,-), where At is
the temporal resolution. SciML aims to learn a surrogate operator J\A/(W, parameterized by physi-
cal parameters 6 and learnable weights ¢, that approximates this mapping. Given N simulations,
D = {v(i)([O Stmax)y ) |1 =1,... ,N}, the model is trained by minimizing a loss L, often the
||”pred*")“2

normalized root mean squared error: nRMSE = ol

, Where vpreq is the model prediction.

2.2 MOTIVATION: NEURAL OPERATORS EXHIBIT CORRELATED YET WORSE PERFORMANCE
ON FUNDAMENTAL PHYSICS
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released pretrained neural operators, with 5 wepT

a focus on SciML foundation models that §°‘°2 MPP-b

are jointly pretrained across multiple PDEs Qo001 o MPP-L

(“multiphysics”) (McCabe et al., 2023 |[Hao 0.00

et al.l, 2024). We evaluate these models on 010 015 020 025  0.30
their ability to capture fundamental physical D e oot e ©f

knowledge (formally defined in Section[3.1), Figure 2: Neural operators and SciML foundation mod-

which none of them were explicitly trained els (MPP (McCabe et al.}[2023), DPOT (Hao et al} 2024),

on, and compare their performance against Hyena (Patil et al, 2023)) exhibit correlated yet worse

the original PDE simulations. performance on fundamental physics (2D incompressible
Navier Stokes).

2
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From Figure[2] we observe a strong Spearman correlation (0.967) between errors on original PDEs and
their basic terms. This suggests that stronger SciML models implicitly learn basic PDE components
more effectively. However, because these terms are not explicitly included in their training data, their
absolute errors (0.133-0.308 on the x-axis) remain much larger than those for the original PDEs
(0.008-0.056 on the y-axis). This gap reveals a key limitation: while the models demonstrate transfer
across multiple physics, they still fail to reliably capture the fundamental PDE components
that underpin complex equations. This motivates us to explicitly enforce an understanding of
fundamental physical knowledge within neural operators.

3 METHODS

Motivated by our observation in Section[2.2] we incorporate fundamental physics knowledge into
learning neural operators via: 1) Defining and decomposing basic forms from the original PDE
(Section [3.1)); 2) Jointly training neural operators on simulations from both basic forms and the
original PDE (Section[3.2). We provide an overview of our method in Figure[3]

Basic Forms Cheap Simulations Benefits (Sec. 4.2~4.5)
(Sec.3.1) (Table 1)
o Data Efficiency
3 Joint Training .
S e Long-term Consistency
§ Sec. 3.2 Generalization
@ (OOD, Synthetic-to-Real)
PDE Heavy Simulations

Figure 3: Overview of our method. Decomposed PDEs encode rich fundamental physical knowledge and
introduce cheaper simulations. By jointly training on both the full PDE and its decomposed basic form, we bring
multiple benefits to neural operators.

3.1 FUNDAMENTAL PHYSICAL KNOWLEDGE VIA DECOMPOSED BASIC PDE FORMS

3.1.1 DEFINING FUNDAMENTAL PHYSICAL KNOWLEDGE OF PDES

Let us consider the second-order PDE as a general example:

n n
8%u du

3 iy u, Vu) ot e, Va5

i,j=1

+ c(x,u,Vu) = f(x), (D

where wu is the target solution, with € R" the physical space (e.g., n = 3 for 2D time-dependent
PDEs). The coefficients a;;, b;, c (“physical parameters”) govern the dynamics; mismatches between
training and testing values cause domain shifts, leading to out-of-distribution (OOD) simulations.
Finally, f denotes an external forcing function (Nandakumaran & Dattil 2020)).

We establish a systematic process to define the fundamental physical knowledge of PDEs, namely
basic PDE terms: 1) retain terms that govern the essential and dominant physical dynamics; 2)
remove terms that induce solver stiffness, increase computational cost, or contribute little to the pattern
formation of interest. This procedure typically yields a simplified PDE form that can be simulated
far more efficiently, while still capturing the key physical dynamics of the original system. From a
machine learning perspective, decomposing a PDE into its basic form acts as a data augmentation
strategy that reduces data collection costs.

Importantly, our approach of discovering and incorporating basic PDE forms differs fundamentally
from the multiphysics training in recent SciML foundation models (McCabe et al., 2023} |Hao et al.,
2024), which simply aggregate diverse or even weakly related PDE systems. In contrast, we stress
that neural operators must support basic PDE terms as a foundation while learning complex PDE:s.
Figure []illustrates the PDEs studied alongside their corresponding decomposed basic forms. An
ablation study on different choices of terms is also provided in Appendix
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Figure 4: Visualizations of simulations of PDEs and their decomposed basic forms (Sectlon . From left to
right: Diffusion-Reaction (activator concentration), 2D Navier-Stokes (fluid velocity), 3D NaVler-Stokes (smoke
density), and Kuramoto-Sivashinsky (perturbation amplitude). Basic PDE forms are used for training neural
operators with fundamental physics knowledge (Section[3.2), and the OOD settings are used for evaluating
the generalization of neural operators (Section[-4). D.,, D.,: diffusion coefficients (Equation[2). v: viscosity
(EquatlonEI) a, b, k1, k2: magnitudes and wavenumbers (Equatlon.

3.1.2 DIFFUSION-REACTION

The Diffusion-Reaction equation models an activator-inhibitor system, which typically happens
in the dynamics of chemistry, biology, and ecology. The Diffusion-Reaction equation describes
spatiotemporal dynamics where chemical species or biological agents diffuse through a medium and
simultaneously undergo local reactions. These systems are often used to model pattern formation,
such as Turing patterns, in domains ranging from chemistry to developmental biology.

0w = DyO0raut + DyOyyu + Ry, 040 = DyOrev + DyOyyv + R, )

In Equation[2} u and v represent the concentrations of activator and inhibitor, respectively, and D,,, D,
are diffusion coefficients. The nonlinear reaction terms R,,, R, model biochemical interactions. In
our experiments, we adopt the FitzHugh-Nagumo variant with R, (u,v) = v — u® — k — v and
R,(u,v) = u — v, where k = 5 x 1073, consistent with values used in models of excitable media
such as neurons or cardiac tissue.

Decomposed Basic Form. To isolate the fundamental transport behavior and reduce simulation
cost, we consider a simplified form of Equation 2|by omitting the nonlinear reaction terms R,, and
R,, yielding pure diffusion equations:

O = Dy0rptt + DyOyytt, 040 = Dyy0rev + Dy Oyyv. 3)

* Why Drop Reaction Terms? This form retains the essential dispersal dynamics but eliminates
the feedback coupling between v and v. Nonlinear reaction terms can vary rapidly, introducing
stiffness into the PDE. This stiffness necessitates smaller time steps for stable numerical integration,
increasing computational cost. By omitting these nonlinear terms, the system becomes linear and
more amenable to efficient numerical solutions.

» Why Prioritize the Diffusion Term? Pure diffusion, though simpler, encodes key properties such as
isotropic spreading and mass conservation, providing inductive bias for learning. Unlike reaction
terms, which act locally to update activator and inhibitor concentrations, the diffusion term governs
spatial coupling, as the primary source of pattern formation and spatial dynamics, facilitating
transport and stabilization, which explains the visually similar patterns in Figure[dal and a2.

Physical Scenarios. The emergence of spatial patterns in reaction-diffusion systems is governed
(Page et al.,
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2005} [Asgari et al.l 2011; |Gambino et al.|[2024)). Classical turing instability arises when D,, > D,,,
leading to diffusion-driven pattern formation, and the inhibitor spreads out while the activator stays
localized. Following previous works (Menou et al., [2023), we set D,, = 1 X 1073, and focus on
learning simulations when % = 5, and possible OOD scenarios when %Z € {1, 100}.

u

3.1.3 INCOMPRESSIBLE NAVIER-STOKES

The Navier—Stokes equations govern the dynamics of fluid flow and serve as fundamentals for fluid
simulations. It considers both the mass conservation and the momentum of fluid parcels.

ou

ot
where wu is the velocity field, v is the dynamic viscosity, p is the fluid density, p is the fluid pressure,
and f is the external force field.

1
= —(u-V)u+vViu— ;Vp+ f, 4)

Decomposed Basic Form. To isolate fundamental nonlinear transport mechanisms and reduce
computational complexity, we simplify Equation ] by omitting the pressure term (incompressibility
via projection) %Vp and diffusion term vV?u:

Jdu

EZ—(U'V)U‘FJ:’ )
This form captures inertial advection with external forcing and approximates high Reynolds number
flows, where viscous effects are negligible. Such simplifications are analytically meaningful and are
often used in turbulence modeling (e.g., inviscid Euler equations). Learning this reduced dynamics
can help models internalize convection-dominant regimes.

* Why Drop Pressure and Diffusion Terms? The pressure term, which enforces fluid incompressibility,
requires solving large linear systems and is difficult to parallelize and computationally expensive.
Omitting it significantly accelerates the simulation. Similarly, the diffusion term in Navier-Stokes
often uses explicit Euler integration with substeps, adding complexity. Removing it simplifies the
simulation further. Moreover, for many visual effects like smoke or fire, viscosity is minimal, so the
diffusion term has little visual impact and can often be omitted without noticeable loss in realism.

* Why Prioritize the Convection Term? Computationally, the convection term is cheap as it describes
the local transport of fluid and no need to iterate across the spatial domain. Meanwhile, convection
is the main driver of motion in most fluid flows, as it transports vorticity and mass. Without it, the
fluid would just sit still or respond passively to forces. It captures nonlinear self-interaction, which
is critical for dynamic, complex-looking behavior.

Physical Scenarios. In Navier-Stokes, the dynamic viscosity v in Equation ] (or the Reynolds
number Re = % where p is the density of the fluid, v is the flow speed, L is the characteristic
linear dimension) controls the fluid dynamics. It measures the balance between inertial forces (pushes
the fluid particles in different directions, leading to chaotic flow patterns) and viscous forces (resists
motion and smoothes out differences in velocity, promoting an orderly flow) of a fluid. Following
previous works (Schlichting & Gersten| 2016; |[Kochkov et al., 2021} |Page et al.,|2024)), we will mainly
focus on learning simulations when v = 0.01, and possible OOD scenarios when v € {0.05,0.001},
A smaller v will lead to more turbulent flows.

3D Extension. In real-world scenarios such as atmospheric or smoke dynamics, buoyancy-driven
flows provide additional complexity (Eckert et al., 2019). We extend our setting to simulate 3D
incompressible Navier—Stokes in a rising plume scenario (see Figure[d|c1 and c3). We simulate how
a plume of smoke rises and spreads in a 3D box-shaped environment. Smoke is introduced from a
small circular inflow region located at the bottom center of the domain, at a steady inflow rate of 0.2
units per timestep. The smoke is carried upward due to buoyancy. This setting tests the method’s
robustness on complex spatiotemporal dynamics in three dimensions.

3.1.4 KURAMOTO-SIVASHINSKY

The Kuramoto-Sivashinsky equation is a nonlinear PDE that models the interplay of instability,
nonlinearity, and dissipation, making it a prototype for studying spatiotemporal chaos. It is used to
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simulate phenomena such as wrinkled flame fronts, thin fluid film instabilities, and chaotic pattern
formation. We consider the following one-dimensional Kuramoto-Sivashinsky equation:

ou
ot
The solution w generally represents the perturbation amplitude of a chaotic system. The spatial
domain [0, L] is equipped with periodic boundary conditions. We impose the initial condition on

x €[0,L] as
uo(z) = acos <k1[7jx> + beos <k22m> + oe(x). (7

where u is the superposition of two cosine modes and small mean-zero Gaussian perturbations.
This initialization, common in KS studies (Papageorgiou & Smyrlis| (1991} |Gudorf & Cvitanovic
2019), combines deterministic cosine modes that inject controlled perturbations with small random
noise. a, b, k1, ko are tunable physical parameters controlling the strength and decay of the initial
perturbation. Here, e(x) are i.i.d. standard normal samples, and we set o = 0.05. Spatial derivatives
are evaluated spectrally via discrete Fourier transforms, and time integration is performed with a
fourth—order Runge—Kutta method.

= —u0,u — Oz — Opgzpw, onl0,L] x [0,T] 6)

Decomposed Basic Form. To isolate the linear stabilizing and destabilizing mechanisms and
reduce computational complexity, we simplify the Kuramoto—Sivashinsky equation by omitting the
nonlinear advection term —ud, u. The reduced equation is

0

Sf = ~0uatt = duaet, on[0,L] x 0,7, ®)
which captures the competition between the destabilizing anti-diffusion term (—3J,,u) and the
stabilizing diffusion term (—0 gz, W).

» Why Drop the Nonlinear Advection Term? For small amplitudes or short times, —ud,u is higher
order in w, so the linearized dynamics govern the instabilities and pattern formation. Removing
this term also eliminates costly Fourier transforms, yielding a significant speedup in simulation.

» Why Prioritize High-Order Stabilizing/Destabilizing Terms? The balance between destabilizing
—0,zu and stabilizing —0,.,.,u determines how fast the chaotic model grows or decays. The
fourth-order dissipation is particularly important for controlling stiffness and ensuring smoothness
of solutions, making it critical for stable numerical integration. Finally, in practice, many inter-
face/turbulence models reduce to precisely this “anti-diffusion + diffusion” structure, so analyzing
these terms provides broadly transferable insights.

Physical Scenarios. In the initial condition (Equation[7), the amplitudes a, b control the strength
of nonlinearity, while wavenumbers k1, k2 control the growth or decay of chaos, yielding regimes
(Trefethen et al.,[2001} |Dawes|, 2006)): 1) For large a, b and high k1, ko, the dynamics are predomi-
nantly linear, and chaos decays over time. 2) For small a, b and small k1, ks, the system develops
weakly nonlinear chaos, with instabilities growing slowly. 3) For large a, b and small k;, ks, the
system exhibits strongly nonlinear chaotic growth. In our experiments, we focus on learning in
the linear regime with a, b € [1, 10] and k1, ko € [64,128], and evaluate on two out-of-distribution
(OOD) regimes: weak nonlinearity (a,b € [0.05,0.2], k1,k2 € [1,32]) and strong nonlinearity
(a,b € [1, 10}, ki, ko € [1, 32})

3.2 JOINT LEARNING WITH FUNDAMENTAL PHYSICAL KNOWLEDGE

After defining our fundamental physics knowledge, we now explain how to integrate it into learning
neural operators in principle from two perspectives data composition and neural architecture.

1) Data Composition. We jointly train neural operators on simulations of both our PDE and the
decomposed basic form as a multiphysics training with a composite dataset. We summarize our
simulations in Table[T] Since the simulation costs of decomposed basic forms are much cheaper than
the original PDE, we can “trade-in” simulations of the original PDE for more simulations of basic
forms under the same simulation costs. We define the ”Sample Mixture Ratio” as the rate derived
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Table 1: Summary of simulations of PDEs and their decomposed basic forms. GPU: NVIDIA RTX 6000 Ada.

S TR v S o St
Diffgzisz_gi?gti%:(' 128 x 128 100 Activator u, Inhibitor v (1,2?3 i ig:j 1:3
N;:lf;gg‘;‘;“a%?ié?‘[gl 256 x 256 1000 Velocity u, Density s o 124
Ngzgggfrfs(%?)(éﬁqg] 50 x50 x 89 150 Velocity u, Density s oo 13

K“ra“];‘:s‘;;sézf;ﬁ(“é?Eq' 3 512 200 Perturbation Amplitude w égg < 18:2 112

from the rate of simulation costs of original PDE with its decomposed basic form while making
sure that “exchange” one primary data with the those number of basic form data will maintain a
comparable or reduced simulation budget when training baseline and our proposed model .

We apply a multi-task formulation, where the model learns from both the original PDE and its
simplified basic form. The idea is inspired from curriculum learning (Bengio et al.,|2009; Pentina
et al.,[2014) and auxiliary task learning (Liu et al., |2019). In our method, the basic forms act as a
simpler, physically motivated auxiliary task that can facilitate more efficient representation learning
and accelerate the convergence on the primary task.

2) Neural Architecture. We mainly consider Fourier Neural Operator (FNO) (Li et al., 2021a)
as our neural architecture. However, we make our method agnostic to specific architectures of
neural operators: We generally share the backbone of the neural operator for learning both the
main PDE and its basic terms, while employing separate final prediction layers for the two tasks.
We will discuss the details on model structure in Appendix [B] and will include more results using
transformer (Dosovitskiy et al.,2020; [Tong et al., [2022; McCabe et al., 2023 |Chen et al., | 2024) in

Appendix

4 EXPERIMENTS

4.1 SETTINGS

Our baseline is learning the original PDE problem. In general, our method reallocates half of the
baseline’s simulation budget to simulate the basic PDE terms, with the sample mixture ratio defined in
Table[T] To fairly compare with the baseline, we adopt the same hyperparameters and optimization
costs (number of gradient descent steps). Since our goal is to evaluate performance on the original
PDE, we use data from the basic PDE term only during training. All testing is conducted exclusively
on the original PDE data with 100 samples (Takamoto et al.,[2022)). We use Adam optimizer, cosine
annealing learning rate scheduler, and nRMSE defined in Section We summarize our training
details in Appendix|[C]

2D Diffusion-Reaction 2D Incompressible Navier-Stokes
4.2 DATA EFFICIENCY Lol o Bwselne |, 015] & “+ Baseline
g 0.10 ‘\\‘ Ours ‘g ! Ours
We first study our method with dif-  goos; 0. 3o -
ferent numbers of training samples, §°* . B e,
and demonstrate that neural operators ~ £°* e ) I
trained Wlth our methOd can aChleVC Si}s;lation Costs (Seconld();) 1gi“mulation Costs (Secundls?5
Stronger performance Wlth leSS train- 3D Incompressible Navier-Stokes 1D Kuramoto-Sivashinsky
ing data. We consider the following (FNO) _ (FNO)
methods: 303 o™ | Booso| I e
-4 -4 \
* “Baseline”: Neural operators that ~ g°2 Y goooe A
are only trained on simulations of £ | s E oonao L
the original PDE. = Ttemmperl | Zooos
102 104 30 40 60 102 200
° Ours: AS described in SCC'[IOII Simulation Costs (Seconds) Simulation Costs (Seconds)

we can replace simulations of the Figure 5: Joint training neural operators on data of the original PDE
original PDE with its decomposed and the basic form improves performance and data efficiency. Y-axis:
basic form, allowing the total sim- normalized RMSE. X-axis: simulation costs (seconds).
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ulation cost of the training data can be comparable or even reduced. See Table [I|for the sample
mixture rate for fair comparison.

In Figure[5] we study prediction errors of neural operators trained with different numbers of simula-
tions (measured in their simulation costs). We can see that, across PDEs and neural architectures, our
method (orange square) is to the lower left of the baseline (blue circle), which means that we can

achieve improved prediction errors with reduced simulation costs.

4.3 LONG-TERM PHYSICAL CONSISTENCY

Next-frame prediction (Takamoto

2D Reaction-Diffusion
(FNO)

2D Incompressible Navier-Stokes
(FNO)

. s .
et al} 2022, McCabe et al}, 2023, Zool - oo | BN o
Hao et al,[2024)) is a widely adopted ~ Foos e Boos -
evaluation, where input frames are ~ £0%% " Booa] T

always ground truth. Meanwhile, au- 2% 2002

toregressive inference, where model
keeps rolling out to further tempo-
ral steps with its own output as in-

1.0 1.5 2.0 25 3.0 3.5 4.0 45 5.0
Rollout

3D Incompressible Navier-Stokes

1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0

Rollout

1D Kuramoto-Sivashinsky

(FNO)

0.225 ry N
puts, is a meaningful and more chal- 90200y~ Baseline pe £ 0030 - Baseline
) . x 0.175 Ours e 0.025 Ours o
lenging stress test. In autoregressive g oaso a6 T 0.020 ’
. No0.125 N p
inference, a model forecasts futures Bowo| 7 gggiz L
with its own (noisy) output as inputs, ~ £%%%] - 2 0.005] ot

1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0
Rollout

1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0

and thus prediction error will accu- > 30
u

mulate along rollout steps. In our Fig-
ure [6] losses will be aggregated for
five consecutive time steps. We can
see that our improvements in Figure[5]
further persist across autoregressive
steps, leading to improved long-term consistency.

Figure 6: Joint training neural operators on data of the original
PDE and the basic form improves performance with autoregressive
inference at different unrolled steps. Models are evaluated using the
best-performing checkpoints from training shown in FigureE}

4.4 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION

We next show the benefits of our method towards the generalization of neural operators in out-of-
distribution (OOD) settings, where the physical parameters used during simulation are significantly
shifted. We consider physical scenarios described in Sectin[3.1} and show results in Table[2} We can
see that our method not only improves in-distribution errors, but also generalizes better on unseen
physical dynamics (simulations by unseen parameters), leading to more robust neural operators.

Table 2: Comparisons of OOD generalization for different training methods. Models are evaluated using the
best-performing checkpoints from training, as shown in Figure@ under comparable simulation cost settings.

PDE Model Source Target 1 Target 2
Setting nRMSE Setting nRMSE Setting nRMSE
Diffusion-Reaction (2p) _Baseline b s 0.0289 po_y M3 p g, 00770
Ours - 0.0231 E 0.0331 - 0.0538
Navier-Stokes 2D) _B®eline g1 00487 o5 0085 g 00399
Ours 0.0175 0.0222 0.0125
Navier-Stokes 3D) ~_Baseline 1 00675 ) _gy 0033 _gpoor 00836
Ours 0.0481 0.0329 0.0602
Kuramoto-Sivashinsky (1D) PRSI ab=1~10 ° 00037 wb=005~2 0002 ab=1~10 00200
Ours  Fiha= 0.0034 Fk2= 0.0018 F1k2= 0.0197

4.5 SYNTHETIC-TO-REAL GENERALIZATION

Finally, we test neural operators trained on simulations of 3D Navier-Stokes in real-world scenarios.
Essentially, transfering models trained on simulations to real observations is a synthetic-to-real
generalization problem (Chen et al.| 2020; 2021), as domain gaps between numerical simulations
and real-world measurements always persist. We study the ScalarFlow dataset (Eckert et al.,|2019),
which is a reconstruction of real-world smoke plumes and assembles the first large-scale dataset of
realistic turbulent flows. We provide visualizations of synthetic and ScalarFlow data in Figure ]
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We show the results and visualize the ground
truth as well as the model predictions on
smoke plumes from ScalarFlow in Figure
We can see that our method outperforms
the baseline model and presents a qualita-
tive comparison of scalar flow predictions on l
real data, illustrating that our jointly trained

model exhibits improved synthetic-to-real Scalarflow Baseline Ours
generalization performance. Please read our ARMSE: 0250 ARMSE: 0.213
Appendix [D.2]for more results on 3D Navier Figure 7: Visualizations of the last time step in the
Stokes. ScalarFlow and its predictions derived by baseline and our

model.

28.5 29.92

0.0 0.00

5 RELATED WORKS

Machine Learning for Scientific Modeling Learning-based methods have long been used to model
physical phenomena (Lagaris et al., 1998 |2000; (Chen & Chenl [1995bza). Physics-informed neural
networks (PINNs) (Raissi et al.,[2019; Zhu et al., 2019} |Geneva & Zabaras, [2020; |Gao et al., 2021}
Ren et al., 2022) incorporate PDEs into loss functions to enforce physical laws, but often struggle
with generalization and optimization issues (Krishnapriyan et al.l 2021; |[Edwards|, |2022). Operator
learning methods like Fourier Neural Operators (FNO) (L1 et al.,[2021a; 2020; |Kovachki et al.| [2023)
and DeepONet (Lu et al.|[2019) offer greater flexibility by learning mappings between function spaces
but require extensive labeled data (Raissi et al.,[2019; Brandstetter et al., 2022} [Zhang et al.| 2023]).
We adopt a unique approach by evaluating and enhancing SciML through the lens of its compatibility
with fundamental physical principles.

Data-Driven Neural PDE Solvers Machine learning has increasingly been used to approximate
PDE solutions, with neural PDE solvers trained on diverse scenarios to mimic traditional simulators.
Early models used CNNs (Guo et al.l 20165 [Zhu & Zabaras|, [2018}; Bhatnagar et al., [2019), while
DeepONet (Lu et al.l 2019) introduced a neural operator (NO) framework separating input and query
encodings, inspiring many extensions (Wang et al.l 2021; |Hadorn, 2022; Wang et al., 2022} [Lin et al.|
2023}, |Venturi & Caseyl, 20235 Xu et al.} [2023; McCabe et al., 2023 |Hao et al.,|2024). Advances like
FNO (Li et al.} 2021a), LNO (Cao et al.,[2023)), CNO (Raonic et al.| 2024), and KNO (Xiong et al.,
2024) have expanded the field, with FNO particularly impactful across applications (Li et al.,2021b;
Guibas et al., [2021; [Yang et al.| [2021; Rahman et al.| 2022bga; [Pathak et al., [2022} [Liu et al., [2022).
Compared with previous neural operator works, instead of naively swapping in cheaper simulations
of simplified PDEs, the core merit of our work is to emphasize the multifaceted benefits of explicit
learning of fundamental physics knowledge during operator learning.

Out-of-Distribution Generalization in SciIML Interest in out-of-distribution (OOD) generalization
for scientific machine learning (SciML) has grown recently. [Subramanian et al.[(2023)) showed that
fine-tuning neural operators (NOs) on OOD PDEs often requires many OOD simulations, which
may be impractical. |Benitez et al.| (2024) proposed a Helmholtz-specific FNO with strong OOD
performance, supported by Rademacher complexity and a novel risk bound. Other work includes
ensemble methods leveraging uncertainty (Hansen et al., 2023} Mouli et al., 2024), loss functions
informed by numerical schemes (Kim & Kangl 2024), and meta-learning for varied geometries (Liu
et al.| [2023). However, varying PDE types and setups across studies hinder unified insights into
OOD generalization for NOs. Our work demonstrates that neural operators explicitly trained with
fundamental physics knowledge exhibit improved OOD and synthetic-to-real generalization.

6 CONCLUSION

We present a principle and architecture-agnostic approach to enhance neural operators by explicitly
incorporating fundamental physical knowledge into their training. By decomposing complex PDEs
into simpler, physically meaningful basic forms and using them as auxiliary training signals, our
proposed method significantly improves data efficiency, long-term predictive consistency, and outha
ha h-of-distribution generalization. These improvements are demonstrated across a variety of PDE
systems and neural operator architectures. Our finding highlights the untapped potential of funda-
mental physics as an inductive bias in scientific machine learning, offering a robust and cost-effective
pathway to more reliable and generalizable surrogate models in real-world physical simulations.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in either the research ideation or the writing of this paper. Their
use was limited to correcting minor grammatical issues and typographical errors.
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A SIMULATION SETTINGS

In this section, we detail the simulation settings for the 2D Diffusion-Reaction, 2D and 3D Incom-
pressible Navier-Stokes and 1D Kuramoto—Sivashinsky (see Table [I|for the summary). We will also
explain how we prepare simulations for the “Spatiotemporal Downsampling” in Section[D.1]

To ensure a fair comparison under equivalent simulation costs with the basic form of each PDE,
we downsample the original PDE simulations both spatially and temporally. We also introduce the
settings for the corresponding reduced spatiotemporal resolution simulations. Note that the simulation
cost of these downsampled settings is matched to that of the basic form, which implies that their
sample mixture ratios in joint training remain equivalent.

To further explore the benefits of our multiphysics joint training approach with this reduced spa-
tiotemporal resolution simulation strategies (refer to Ours @ Spatiotemporal in Figure[9), we addition-
ally introduce the simulation settings for the spatiotemporally downsampled basic form of the 2D
Diffusion-Reaction equation. As what we will discuess in Section[D.1] our framework is orthogonal
to standard downsampling techniques, and combining the two can lead to further reductions in
simulation cost. This reduction allows for an increased proportion of basic form samples in the
training mixture under a fixed computational budget (see Table [3|for details).

A.1 DIFFUSION-REACTION

Our simulation setting for Diffusion-Reaction follows (Takamoto et al., 2022). Our solver is Py-
Claw (Ketcheson et al.l [2012) that uses the finite volume method. We set the initial condition as
standard normal random noise u(t = 0,x,y) ~ N(0,1.0). We use the homogeneous Neumann
boundary condition. We simulate in a spatial domain of Q = [—1, 1], with resolution 128 x 128.
We simulate 5 seconds and save into 100 temporal steps.

Reduced Spatiotemporal Resolution. When simulating the original Diffusion-Reaction equation
at low spatiotemporal grids (yellow curves in Figure [9), we reduce the spatial resolution from
128 x 128 to 96 x 96, and reduce the number of temporal steps from 100 to 50. We then upsample
to 128 x 128 x 100 (steps) via bilinear interpolation to match the resolution of simulations of the
original PDE. The total simulation interval is maintained at 5 seconds, preserving the underlying
physical dynamics.

Similarly, we can further simulate our decomposed basic form of Diffusion-Reaction at low spa-
tiotemporal resolution (green curve in Figure [0). Table [3|shows the simulation cost of decomposed
basic forms with reduced spatiotemporal resolution and the sample mixture ratio.

Table 3: Summary of 2D Diffusion-Reaction simulations and its decomposed basic forms with reduced spa-
tiotemporal resolution. “Sample Mixture Rate”: We replace simulations of the original PDE with its decomposed
basic form with reduced spatiotemporal resolution and make sure the total simulation cost of the training data
can be comparable. GPU: NVIDIA RTX 6000 Ada.

Spatial Temporal Tareet Variables Simulation Costs ~ Sample Mixture Ratio
Resolution Steps g ! b (sec. per step) (PDE : Basic Form)

Diffusion-Reaction (Eq. 128 x 128 100 1.864 x 1072
Basic Form (Eq.|3) wit Activator u, Inhibitor v . _3
Reduced Spatiotemporal Resolution 96 x 96 >0 2390 % 10

PDE

1:8

A.2 2D INCOMPRESSIBLE NAVIER-STOKES

Our simulation setting for incompressible Navier-Stokes follows (Takamoto et al.,|2022). Our solver
is PhiFlow (Holl & Thuerey, [2024). We simulate in a spatial domain of 2 = [0, 1], with resolution
256 x 256. We simulate 5 seconds with a dt = 5 x 10~°, and periodically save into 1000 temporal
steps. Our initial conditions ug and forcing term f are drawn from isotropic Gaussian random fields,
where the low-frequency components of the spectral density is scaled with scale and high-frequency
components are suppressed with power-law decay by smoothness. For ug, scale is 0.15 and
smoothness is 3.0. For f, scale is 0.4 and smoothness is 1.0. Boundary conditions are
Dirichlet.
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Reduced Spatiotemporal Resolution. When simulating the original 2D incompressible Navier-
Stokes equation at low spatiotemporal grids (yellow curves in Figure [J), we reduce the spatial
resolution from 256 x 256 to 100 x 100. We then spatially upsample to 256 x 256 via bilinear
interpolation to match the resolution of simulations of the original PDE. To reduce the temporal
resolution while maintaining the same total simulation time and number of recorded frames, we
increase the time-step size and proportionally reduce the number of integration steps and output
interval. Specifically, we change the time-step from dt = 5 x 107° to dt = 5 x 10~*, and reduce
the total number of time steps from 7eps = 100,000 to ngeps = 10,000. To preserve the temporal
spacing between output frames, we decrease the frame interval from 100 to 10. This ensures the
same total simulation duration of 5 seconds and the same number of output frames (1,000). This
modification reduces computational cost by roughly 10 times.

A.3 3D INCOMPRESSIBLE NAVIER-STOKES

Our solver is PhiFlow (Holl & Thuerey, 2024). We simulate in a spatial domain of 2 = [0, 1]3, with
resolution 50 x 50 x 89. We simulate 150 steps with a dt = 2 x 10~*. We set the initial ug as zero
and upward buoyancy forcing term f. = 5 x 10~%. Unlike the 2D Navier-Stokes, we introduce
randomness of the buoyancy forcing term on horizontal directions by uniformly drawing f, f, from
[~1,1] x 10~%. We set Dirichlet zero boundary conditions.

A.4 1D KURAMOTO-SIVASHINSKY

Our simulation setting for the one-dimensional Kuramoto—Sivashinsky equation follows (Papageor-
giou & Smyrlis, [1991; (Gudorf & Cvitanovic, 2019). Our solver is a pseudospectral exponential
time-differencing fourth-order Runge—Kutta scheme, implemented with 64 contour points. We use
periodic boundary conditions on the spatial domain @ = [0, L] with L = 64, discretized with
equispaced s = 512 grid points. Spatial derivatives are evaluated spectrally via FFT (fast fourier
transform), and nonlinear terms are treated in physical space through pseudospectral squaring and
differentiation. We simulate up to the final time 7" = 30, using an internal time step dt = 0.1, and
record ngeps = 200 snapshots uniformly in time.

B MODEL STRUCTURE VideoMAE
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neural operators. This task-specific SoE—— o e Fouer Tansiom Decoder Transformer Block
. utpu utpu * Inverse Fourier Transform idth=512, #heads = 8
output layer is a very well-known (Basic Form) || (pogy | e e oo (L (WAneST2 heads 29)

and widely adopted configuration in
multi-task learning. It has been high-

. . Output

lighted in survey papers that hard pa- (Basic Form)

rameter sharing (one input, shared

hidden layers, multiple outputs) is the  Figure 8: Our method is agnostic to specific architectures of neural
standard setup for multi-task learning  operators: we always share the backbone of the model between
due to its efficiency and representa- learning of original PDE and its basic form, and decouple their
tional benefits (Ruder, 2017} [Craw! predictions in the last layer.

shawl, 2020).

C MORE IMPLEMENTATION DETAILS

We summarize our training details in Table ] We conducted our experiments on NVIDIA RTX 6000
Ada GPUs, each with 48 GB of memory.
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Table 4: Training details. “DR”: Diffusion-Reaction.“NS”: Navier Stokes.

2D DR 2D DR 2D NS 2D NS 3DNS 3DNS ID KS

(FNO) (Transformer) (FNO) (Transformer) (FNO) (Transformer) (FNO)
Input Shape Format HxWxTxC(C=2) HxWxTxC(C=3) XxYXxZxTxC(C=4) TxS
Number of Training Samples (PDE Simulations) 2,4,8,16,32,64,128 2,4,8,16,32,48,64 2,4,8,16,32,48,64 1024 ~ 8192
Input Time Steps (£ in Section 10 10 10 10 10 10 10
Sample Mixture Ratio 1:3 1:3 1:24 1:6 1:3 1:3 1:12
Learning Rate 0.001 0.0003 0.001 0.001 0.001 0.00015 0.001
Batch Size for Primary Data 4 8 16 16 8 8 64
Epochs 100 60 20 30 20 80 50
Auxiliary Task Loss Weight 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Training Hours 0.08~1.83 0.6hr~7hr 1~29 1.5~45 0.5~6.5 16~120 2~18
Gradient Descent Steps Per Epoch 46~2912 23~ 1456 124~3060 124~3960 70~ 2240 70~ 2240 3040 ~ 24320

(Baseline and Ours)

D MORE RESULTS

Beyond the main comparison between the baseline and our proposed model using FNO showed in
Section[d} we further conducted additional experiments to assess our approach. In this section, we
will show the results from both FNO and Transformer.

D.1 COMPARISON OF DATA EFFICIENCY AND OUT-OF-DISTRIBUTION GENERALIZATION

WITH SPATIOTEMPORAL DOWNSAMPLING

To demonstrate the effectiveness of our method, we conducted an ablation study comparing it with
Spatiotemporal Downsampling on both 2D Diffusion—Reaction (DR) and 2D Navier—Stokes (NS).
We defined the Spatiotemporal Downsampling method as follows: Neural operators that are trained
with a mixture of simulations of the original PDE and simulations at low spatial and temporal
resolutions (then linearly interpolated to the original resolution). Similar to our method, we can
also save simulation costs with reduced spatiotemporal resolutions. See Appendix [A]for rates of
downsampling and more details). Meanwhile, as our decomposed basic form is orthogonal to
spatiotemporal downsampling during simulations, our method can serve as a complementary data
augmentation. On 2D Diffusion-Reaction, we can simulate our decomposed basic forms at lower
spatiotemporal resolution, leading to further reduced simulation costs and improved data efficiency
(green triangle), outperforming the baseline at the lower spatiotemporal resolution (yellow diamond).
For 2D Navier—Stokes with the Transformer, we adopt a 1:6 mixture ratio (vs. 1:24 for FNO) due to
GPU memory limits; despite this disadvantage, our method still outperforms both the baseline and
spatiotemporal downsampling at comparable cost.

2D Diffusion-Reaction 2D Incompressible Navier-Stokes

w 0.12 .\\ -e-- Baseline w0157 & -e-- Baseline
%) 0.10 \\ Baseline@Spatiotemporal %) \\\ Baseline@Spatiotemporal
E . N\ Ours E NS Ours
ANN -4+ Ours@Spatiotemporal T
§ 0.08 SR § 0.10 L
g 0.06 E e
. .
S 0.04 5 005 ey
= =
0.02
10t 102 104 10°
Simulation Costs (Seconds) Simulation Costs (Seconds)
2D Diffusion-Reaction 2D Incompressible Navier-Stokes
(Transformer) (Transformer)
- - 0.10
w 0.8 RN -e-- Baseline W --e-- Baseline
) Ta Baseline@Spatiotemporal ] Baseline@Spatiotemporal
= hN ours = 0.08-
x 0.6 AN o . Ours
- S -4-- Ours@Spatiotemporal ° e
Noa4 Py S 0.061 S
© AT =~ © T g
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Figure 9: Joint training neural operators on data of the original PDE and the basic form improves performance
and data efficiency. Rows: (top) FNO, (bottom) transformer. Columns: (left) 2D Diffusion-Reaction, (right)
2D Navier Stokes. “Spatiotemporal”: short for “Spatiotemporal Downsampling”. Y-axis: normalized RMSE.
X-axis: simulation costs (seconds).
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Table 5| reports the out-of-distribution (OOD) generalization results across both the 2D Diffusion-
Reaction and Navier-Stokes equations. Similar to the results in Table [2] here we can see that our
approach not only improves in-distribution errors but also consistently enhances generalization to
simulations of unseen physical parameters. This robustness holds across both FNO and Transformer
architectures, leading to more reliable and consistent neural operators under varying conditions.

Table 5: Comparisons of OOD generalization for different training methods with Transformer. Models are
evaluated using the best checkpoints from training in Figure [5] under comparable simulation cost settings.
“Spatiotemporal‘: short for “Spatiotemporal Downsampling”.

PDE Model Source Target 1 Target 2
Setting nRMSE  Setting nRMSE Setting nRMSE
Baseline 0.0289 0.0413 0.0770
Diffusion-Reaction ~ Baseline@Spatiotemporal p, . 0.0234  p 0.0303 p, 0.0663
(2D, FNO) pr=5 ————— pr=1 = =100
’ Ours 0.0231 0.0331 0.0538
Ours @ Spatiotemporal 0.0218 0.0298 0.0596
Baseline 0.1056 0.1249 0.1976
Diffusion-Reaction  Baseline@Spatiotemporal — p 0.0542 D, 0.0698 D 0.0812
(2D, Transformer) D, = 5 D, = 1 D, = 100
’ Ours 0.0602 ' 0.0782 0.0853
Ours @ Spatiotemporal 0.0469 0.0489 0.0671
Baseline 0.0487 0.0825 0.0369
N(azvll)eri:sl\%‘)es Baseline@Spatiotemporal v — 0.01  0.0442 1 —0.05 00743 v —0.0001 0.0269
’ Ours 0.0175 0.0222 0.0125
Baseline 0.0479 0.0853 0.0685
Navier-Stokes g, (line@Spatiotemporal 1 — 0.01  0.0496 1 —0.05 0.0568 1 —0.0001 0.0402
(2D, Transformer) - o 0
Ours 0.0265 0.0397 0.0256

D.2 DATA EFFICIENCY AND OUT-OF-DISTRIBUTION GENERALIZATION OF TRANSFORMER

FOR 3D NAVIER STOKES

Similar as what we have studied in Section ] we aim to also demonstrate three key benefits:
data efficient, long-term physical consistency, and strong generalization in OOD simulations using
Transformer, for 3D Navier-Stokes as well.

In Figure[I0] we can see that joint training (orange square) on both the original and basic forms of
the 3D Navier-Stokes equation consistently reduces normalized RMSE from baseline (blue circle)
across varying simulation budgets. This improvement is observed for Transformer architectures,
highlighting enhanced data efficiency and generalization, which aligns with the results in Section[4.2]

3D Incompressible Navier-Stokes

In Table [f we show that our joint train- (Transformer)

ing approach significantly improves out-of-
distribution generalization on 3D Navier-Stokes
across all test settings, outperforming the base-
line for both FNO and Transformer models. To-
gether with the results in Table[2]and[5] the con-
sistent gains observed across all OOD setting
results underscore the effectiveness and robust-

Normalized RMSE

o
o
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o
o
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Figure 10: Joint training neural operators on data of the

original 3D Navier-Stokes equation and the basic form
improves performance and data efficiency.

ness of our method in generalizing to previously
unseen physical regimes, particularly under sig-
nificant shifts in simulation parameters.

Table 6: Comparisons of OOD generalization on 3D NS for different training methods using Transformer.
Models are evaluated using the best checkpoints from training in Figure [10}

PDE Model Source Target 1 Target 2
Setting nRMSE  Setting nRMSE Setting nRMSE
Baseline 0.0114 0.0327 0.0816
3D Navier-Stokes Ours v =0.01 00064 V= 0.1 00124 V= 0.0001 0.0322
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D.3 MORE LONG-TERM CONSISTENCY
RESULTS OF TRANSFORMER

In our Figure[TT] we show the rollout performance of transformer on the 2D Diffusion-Reaction and
2D incompressible Navier-Stokes equation. Here, we run the experiments with the best checkpoints
from training in Figure[9] Losses will be aggregated for five consecutive time steps. We can see
that our improvements in Figure 9] further persist across autoregressive steps, leading to improved
long-term consistency, aligning with our results in Figure [6]

2D Diffusion-Reaction 2D Incompressible Navier-Stokes

(Transformer) (Transformer)

0.13 - ; -2
% 012 R S G 0.141 --e-- Baseline P
Z 011 DU e Z 012 Ours o

. P S P

g o0.10 20.10 =
= 0.00 N .08 et
© . © P -
£ 0.08 --e-- Baseline £ 0.06 T
— — -
S 0.07 Ours § 0.041 7

0.06

1.0 15 2.0 25 3.0 3.5 4.0 45 5.0

Rollout

1.0 1.5 2.0 25 3.0 3.5 4.0 45 5.0

Rollout

Figure 11: Joint training neural operators on data of the original PDE and the basic form improves performance
with autoregressive inference at different unrolled steps using Transformer. Models are evaluated using the
best-performing checkpoints from training shown in FigureE}

D.4 MORE RANDOM SEEDS

To ensure the statistical robustness of our findings, we now run FNO using three different random
seeds during initialization and training. For each configuration, we report the average performance
across the three runs, and include standard deviation as error bars in all plots in Figure[T2] This enables
a more rigorous evaluation of model performance, capturing the inherent variance and mitigating
the risk of overinterpretation from single-seed outcomes. We can see that the results demonstrate
that joint training of neural operators on data from both the original PDE and its decomposed basic
form yields consistent improvements in predictive performance and data efficiency, highlighting the
effectiveness of this multiphysics learning strategy.

2D Diffusion-Reaction 2D Incompressible Navier-Stokes

(FNO) (FNO)
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Figure 12: Model performance averaged over three random seeds. Joint training neural operators on data of the
original PDE and the basic form consistently improves performance and data efficiency. Dash lines indicate
the mean performance, with error bars representing standard deviation. Legends align with the descriptions

in Section[4.2] Columns: (left) 2D Diffusion-Reaction, (right) 2D Navier Stokes. Y-axis: nRMSE. X-axis:
Simulation Costs (seconds).

D.5 LossS REWEIGHTING

In Section @ we define our total loss for joint learning of the original PDE (Lossgy;) and its
fundamental physical knowledge (decomposed basic form Losspsic) as

Loss = Lossgu + 0.7 X LosSgasic
To address the concern regarding the fixed auxiliary loss weight, we conducted an ablation study
on the effect of auxiliary loss weighting in joint training using FNO for the 2D Diffusion-Reaction

system. We evaluate model performance across three auxiliary weight settings, 0.5, 0.7, and 1.0,
by averaging accuracy over the range of training sample sizes (Figure[5) used in the data efficiency
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experiments. In Table[/] we show the model averaged nRMSE, which is largely consistent with only
minor variations in normalized RMSE. This result demonstrates that the model is largely insensitive
to the specific choice of auxiliary weight and suggests that the improvements achieved through joint
training are robust with respect to this hyperparameter. Based on this analysis, we fix the auxiliary
weight to 0.7 for all the experiments.

Table 7: Ablation study on the auxiliary loss weight in joint training using FNO for the 2D Diffusion-Reaction
across three settings Results of averaged nRMSE demonstrate consistent performance

Auxiliary Weights 0.5 0.7 1
Averaged nRMSE  0.0508 0.0491 0.0472

D.6 CHOICE OF FUNDAMENTAL TERM
2D Diffusion-Reaction

To demonstrate the importance of the (FNO)

choice of dropping terms, we conduct an 0.2004 4 - Baseline

ablation study on 2D Diffusion-Reaction, 01751 ‘\\ Ours@Diffusion

where we simulate reaction term instead w --=- Ours@Reaction

of the fundamental diffusion term. The = 01501 \

simulation cost for reaction-only term is o125 e

2.048 x 1072 seconds per step, corre- = g100{ =

sponding to a 1:9 sample mixture ratio € 0.0751 :

when compared to the simulation cost of 2 RN

the original PDE data, making sure the 00501 R

comparable results. 0.0251 N S st |
1 2

From Figure [I3] we can find that keep- ls(i)mmation Costs (Second;)o

ing the reaction term and removing the

fundamental diffusion term will damage Figure 13: Ablation study of joint training neural operators on

the accuracy with up to 64% increase of data of 2D Diffusion-Reaction equation with two different de-
nRMSE, while applying th.e fundamental = omposed terms: the fundamental term - Diffusion, and Reaction
diffusion term keep boosting the model  ghows the importance of choice on fundamental term from PDE
performance with 11% to 24% decrease equation. Y-axis: nRMSE. X-axis: Simulation Costs (Seconds).
of nRMSE. This ablation study confirms

that the correct fundamental basic term can improve the data-efficiency when joint training with
the original data, and proved that the source of improvement in Figure[3]is clearly from training with
the fundamental term itself.

D.7 LIE TRANSFORM ARGUMENT ON 2D IMCOMPRESSIBLE NAVIER STOKES

Lie symmetries offer a way to generate new, physically valid training examples by exploiting the
analytic group transformations that map one PDE solution to another. This enables the model to learn
representations that are inherently equivariant to fundamental symmetries such as translation, rotation,
and scaling. To further prove the strength of our model, we leverage the implementation of Lie point
symmetry augmentation from Brandstetter et al.| (2022); Mialon et al.| (2023, which is orthogonal to
our multiphysics joint training approach, to 2D incompressible Navier Strokes equation.

We incorporate the augmentation process into our model. We only apply Lie-transform augmentations
exclusively to the velocity (u) of the original 2D incompressible Navier-Stokes, leaving the remaining
density and all target variables from the decomposed basic forms unchanged. Following (Mialon
et al.,[2023)), the Lie transformation is implemented with a second-order Lie-Trotter splitting scheme
with two steps, where the five fields (z,v,t, u,, u,) were transformed in accordance with the
sampled generator strengths as follows: a maximum time shift (g;) strength of 0.1, maximum spatial
translations (go, g3) strength of 0.1 in x and y respectively, a maximum scaling (g4) strength of
0.05, a maximum rotation (gs) strength of 10°, corresponding to 7/18 radians, a maximum z-linear
boost (gg) and y-linear boost (g7) strength of 0.2 and a maximum 2- and y-quadratic boosts (gs, gg)
strength of 0.05.
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2D Incompressible Navier-Stokes
(FNO, Lie Transform Augmentation)

As our decomposed basic form is orthog- " e -« Baseline
onal to the Lie point symmetry augmenta- Qoi1s Baseline@LieTransformAug
tion, our method can serve as a complemen- o« Ours

) : - S -4-- Ours@LieTransformAug
tary data augmentation. In Figure [I4] we So1oq, ‘.
study prediction errors (nRMSE) of neural © TSreel
operators trained with different numbers of 5 0.051 — ~o==0
training samples (simulations). As we have = R -—neew
already seen (Elgpre B), our approach (or- 100 105
ange square) significantly outperforms the Simulation Costs (Seconds)

baseline (blue Clrde),‘ In contrast, the L¥e_ Figure 14: Joint training neural operators on data of the
transform augmel'ltatlon'alone (yellow dia- original PDE and the basic form, as a complementary data
mond) only marginally improves the base- augmentation orthogonal to Lie-transform augumentation,
line. As a result, combining our approach can further improve performance and data efficiency. Y-axis:
with Lie transformations (green triangle) normalized RMSE. X-axis: simulation costs (seconds).
yields strong performance, but is compara-

ble with our approach alone, underscoring the orthogonal and complementary benefits of these two
techniques.

D.8 VISUALIZATION OF PREDICTIONS

To show the predicted PDE solution from our jointly training neural operators on original PDE
equation and its basic form aligns with the ground truth, we present qualitative visualizations of
model predictions across three PDEs, 2D Diffusion-Reaction, 2D and 3D Incompressible Navier-
Stokes, and 1D Kuramoto—Sivashinsky, in Figure @ For each PDE solution, we show the initial
condition and predicted states at intermediate and final rollout times. The predictions are generated
using the FNO model trained with our joint training framework. Across all systems and time points,
the predictions closely align with the expected dynamics, accurately capturing both spatial patterns
and temporal evolution. These visualizations highlight the model’s capacity to generalize across
scales and exhibit physically coherent behavior.
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Figure 15: Qualitative visualization of model predictions for 2D Diffusion-Reaction, 2D Incompressible Navier-
Stokes, 3D Incompressible Navier-Stokes systems and 1D Kuramoto—Sivashinsky using FNO trained with our
joint framework. For the first three case, the initial state and predicted states at intermediate and final rollout
times are shown. For 1D Kuramoto—Sivashinsky, we show the whole predicted trajectory here. The results
demonstrate accurate temporal evolution and spatial coherence.
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