
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING DATA-EFFICIENT AND GENERALIZABLE
NEURAL OPERATORS VIA FUNDAMENTAL PHYSICS
KNOWLEDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in scientific machine learning (SciML) have enabled neural
operators (NOs) to serve as powerful surrogates for modeling the dynamic evolution
of physical systems governed by partial differential equations (PDEs). While
existing approaches focus primarily on learning simulations from the target PDE,
they often overlook more fundamental physical principles underlying these
equations. Inspired by how numerical solvers are compatible with simulations
of different settings of PDEs, we propose a multiphysics training framework that
jointly learns from both the original PDEs and their simplified basic forms. Our
framework enhances data efficiency, reduces predictive errors, and improves out-
of-distribution (OOD) generalization, particularly in scenarios involving shifts of
physical parameters and synthetic-to-real transfer. Our method is architecture-
agnostic and demonstrates consistent improvements in normalized root mean
square error (nRMSE) across a wide range of 1D/2D/3D PDE problems. Through
extensive experiments, we show that explicit incorporation of fundamental physics
knowledge significantly strengthens the generalization ability of neural operators.
We promise to release models and data upon acceptance.

1 INTRODUCTION

Scientific
Machine
Learning

Fundamental
Physics Knowledge

Diffusion Reaction
Navier Stokes

Kuramoto-Sivashinsky
Real-World Flow

Diffusion
Advection

Figure 1: Can SciML models (e.g. neural
operators trained on advanced PDEs) also
understand fundamental physics knowledge
(basic terms like diffusion, advection)?

Recent advances in scientific machine learning (SciML)
have broadened traditional machine learning (ML) for mod-
eling physical systems, using deep neural networks (DNNs)
especially neural operators (NOs) (Li et al., 2021a; Pathak
et al., 2022; Lam et al., 2023; Bi et al., 2023) as fast, ac-
curate surrogates for solving partial differential equations
(PDEs) (Raissi et al., 2019; Edwards, 2022; Kochkov et al.,
2021; Pathak et al., 2022). However, compared to numer-
ical methods, a key disadvantage of recent data-driven
SciML models is their limited integration of fundamental
physical knowledge.

Numerical solvers, though tailored to specific PDEs or discretizations, inherently preserve physical
laws (e.g., conservation, symmetry), ensuring consistent and plausible simulations across diverse
conditions (physical parameters, boundaries, geometries, etc.) (Ketcheson et al., 2012; Hansen et al.,
2023; Mouli et al., 2024; Holl & Thuerey, 2024). In contrast, data-driven models, despite learning
across PDE types (e.g., via multiphysics pretraining in SciML foundation models (McCabe et al.,
2023; Hao et al., 2024)), remain sensitive to training distributions, degrading under distribution
shifts (Subramanian et al., 2023; Benitez et al., 2024) and requiring large, diverse datasets. This
fragility is worsened by the absence of rigorous verification: unlike classical solvers, SciML models
are rarely evaluated against decomposed PDE components. This gap introduces three major
challenges: 1) High data demands: Without physics priors, neural operators require large, diverse
datasets for high precision, as seen in recent SciML foundation models(Hao et al., 2024; McCabe
et al., 2023) which focus on generalization without addressing training data efficiency. 2) Physical
inconsistency: Lacking inductive biases, these models may violate conservation laws or produce

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

unphysical outputs, particularly in long-term rollout predictions. 3) Poor generalization: Neural
PDE solvers often struggle with unseen simulation settings and requires retraining.

Motivated by the above challenges, we ask two scientific questions:

Q1: Can neural operators understand both original PDEs and fundamental physics knowledge?
Q2: Can neural operators benefit from explicit learning of fundamental physics knowledge?

In this paper, we highlight the importance of enforcing the learning of fundamental physical knowl-
edge in neural operators. The key idea is to identify physically plausible basic terms that can be
decomposed from original PDEs, and incorporate their simulations during training. Although often
overlooked in SciML, our experiments demonstrate that these fundamental physical terms encode
rich physical knowledge. Not only can they be utilized without incurring additional computational
costs, but they also widely offer substantial and multifaceted benefits. This opens up a new door to
improve the comprehensive generalization of neural operators with data efficiency.

We summarize our contributions below:

1. Through comprehensive evaluations of public SciML models, we observe a strong correlation
between performance on original PDEs and basic PDE terms, highlighting the importance of
fundamental physical knowledge in neural operators (Section 2.2).

2. We propose to explicitly incorporate fundamental physical knowledge into neural operators.
Specifically, we design a simple and principled multiphysics strategy to train neural operators on
simulations of both the original PDE and its basic form. (Section 3).

3. Our method exhibits three major benefits: 1) data efficiency (Section 4.2), 2) long-term physical
consistency (Section 4.3), 3) strong generalization in OOD (Section 4.4) and real-world
(Section 4.5) scenarios. We evaluate our method on a wide range of 1D/2D/3D PDEs, achieving
consistent improvement in nRMSE (Section 4.2).

2 BACKGROUND

2.1 DEFINITION OF PDE LEARNING IN SCIML

For time-dependent PDEs, the solution is a vector-valued mapping v : T × S × Θ → Rd, de-
fined on temporal domain T , spatial domain S, and parameter space Θ, with d the number of
dependent variables. Numerical solvers compute vθ(t, ·) from ℓ ≥ 1 past steps, enabling finite-
difference approximations: Nθ = [vθ(t − ℓ · ∆t, ·), . . . ,vθ(t − ∆t, ·)] 7→ vθ(t, ·), where ∆t is
the temporal resolution. SciML aims to learn a surrogate operator N̂θ,ϕ, parameterized by physi-
cal parameters θ and learnable weights ϕ, that approximates this mapping. Given N simulations,
D :=

{
v(i)([0 : tmax], ·) | i = 1, . . . , N

}
, the model is trained by minimizing a loss L, often the

normalized root mean squared error: nRMSE =
∥vpred−v∥2

∥v∥2
, where vpred is the model prediction.

2.2 MOTIVATION: NEURAL OPERATORS EXHIBIT CORRELATED YET WORSE PERFORMANCE
ON FUNDAMENTAL PHYSICS

0.10 0.15 0.20 0.25 0.30
Decomposed Convection Term of

 2D Navier Stokes (nRMSE)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

2D
 N

av
ie

r S
to

ke
s (

nR
M

SE
)

MPP-L
MPP-b

MPP-S
MPP-Ti

DPOT-L
DPOT-M

DPOT-S

DPOT-Ti

Hyena

Figure 2: Neural operators and SciML foundation mod-
els (MPP (McCabe et al., 2023), DPOT (Hao et al., 2024),
Hyena (Patil et al., 2023)) exhibit correlated yet worse
performance on fundamental physics (2D incompressible
Navier Stokes).

We begin with a motivating example to high-
light the importance of incorporating fun-
damental physical knowledge into neural
operators. Specifically, we gather publicly
released pretrained neural operators, with
a focus on SciML foundation models that
are jointly pretrained across multiple PDEs
(“multiphysics”) (McCabe et al., 2023; Hao
et al., 2024). We evaluate these models on
their ability to capture fundamental physical
knowledge (formally defined in Section 3.1),
which none of them were explicitly trained
on, and compare their performance against
the original PDE simulations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

From Figure 2, we observe a strong Spearman correlation (0.967) between errors on original PDEs and
their basic terms. This suggests that stronger SciML models implicitly learn basic PDE components
more effectively. However, because these terms are not explicitly included in their training data, their
absolute errors (0.133–0.308 on the x-axis) remain much larger than those for the original PDEs
(0.008–0.056 on the y-axis). This gap reveals a key limitation: while the models demonstrate transfer
across multiple physics, they still fail to reliably capture the fundamental PDE components
that underpin complex equations. This motivates us to explicitly enforce an understanding of
fundamental physical knowledge within neural operators.

3 METHODS

Motivated by our observation in Section 2.2, we incorporate fundamental physics knowledge into
learning neural operators via: 1) Defining and decomposing basic forms from the original PDE
(Section 3.1); 2) Jointly training neural operators on simulations from both basic forms and the
original PDE (Section 3.2). We provide an overview of our method in Figure 3.

Basic Forms
(Sec. 3.1)

PDE

Cheap Simulations
(Table 1)

Heavy Simulations

Neural Operator
Joint Training

(mixed simulations)
Sec. 3.2

D
ecom

pose

Data Efficiency

Long-term Consistency
Generalization
(OOD, Synthetic-to-Real)

Benefits (Sec. 4.2~4.5)

Figure 3: Overview of our method. Decomposed PDEs encode rich fundamental physical knowledge and
introduce cheaper simulations. By jointly training on both the full PDE and its decomposed basic form, we bring
multiple benefits to neural operators.

3.1 FUNDAMENTAL PHYSICAL KNOWLEDGE VIA DECOMPOSED BASIC PDE FORMS

3.1.1 DEFINING FUNDAMENTAL PHYSICAL KNOWLEDGE OF PDES

Let us consider the second-order PDE as a general example:

n∑
i,j=1

aij(x,u,∇u)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x,u,∇u)
∂u

∂xi
+ c(x,u,∇u) = f(x), (1)

where u is the target solution, with x ∈ Rn the physical space (e.g., n = 3 for 2D time-dependent
PDEs). The coefficients aij , bi, c (“physical parameters”) govern the dynamics; mismatches between
training and testing values cause domain shifts, leading to out-of-distribution (OOD) simulations.
Finally, f denotes an external forcing function (Nandakumaran & Datti, 2020).

We establish a systematic process to define the fundamental physical knowledge of PDEs, namely
basic PDE terms: 1) retain terms that govern the essential and dominant physical dynamics; 2)
remove terms that induce solver stiffness, increase computational cost, or contribute little to the pattern
formation of interest. This procedure typically yields a simplified PDE form that can be simulated
far more efficiently, while still capturing the key physical dynamics of the original system. From a
machine learning perspective, decomposing a PDE into its basic form acts as a data augmentation
strategy that reduces data collection costs.

Importantly, our approach of discovering and incorporating basic PDE forms differs fundamentally
from the multiphysics training in recent SciML foundation models (McCabe et al., 2023; Hao et al.,
2024), which simply aggregate diverse or even weakly related PDE systems. In contrast, we stress
that neural operators must support basic PDE terms as a foundation while learning complex PDEs.
Figure 4 illustrates the PDEs studied alongside their corresponding decomposed basic forms. An
ablation study on different choices of terms is also provided in Appendix D.6.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

PD
E

Navier-Stokes (2D)Diffusion-Reaction

Ba
si

c
Fo

rm

Navier-Stokes (3D)

O
O

D
 S

et
tin

gs

𝜈 = 0.001

ScalarFlow

𝐷!
𝐷"" = 5

𝐷!
𝐷"" = 1

𝐷!
𝐷"" = 100

𝜈 = 0.01

𝜈 = 0.05

Kuramoto-Sivashinsky

(a1)

(a2)

(a3)

(a4)

(b1)

(b2)

(b4)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

Sy
nt
he

tic
-t
o-
Re

al

(d4)

𝑎, 𝑏 = 1~10, 𝑘!, 𝑘" 	= 	64~128	

𝑎, 𝑏 = 0.05~2, 𝑘!, 𝑘" 	= 1~32	

𝑎, 𝑏 = 1~10, 𝑘!, 𝑘" 	= 1~32	
Figure 4: Visualizations of simulations of PDEs and their decomposed basic forms (Section 3.1). From left to
right: Diffusion-Reaction (activator concentration), 2D Navier-Stokes (fluid velocity), 3D Navier-Stokes (smoke
density), and Kuramoto-Sivashinsky (perturbation amplitude). Basic PDE forms are used for training neural
operators with fundamental physics knowledge (Section 3.2), and the OOD settings are used for evaluating
the generalization of neural operators (Section 4.4). Dv, Du: diffusion coefficients (Equation 2). ν: viscosity
(Equation 4). a, b, k1, k2: magnitudes and wavenumbers (Equation 7).

3.1.2 DIFFUSION-REACTION

The Diffusion-Reaction equation models an activator-inhibitor system, which typically happens
in the dynamics of chemistry, biology, and ecology. The Diffusion-Reaction equation describes
spatiotemporal dynamics where chemical species or biological agents diffuse through a medium and
simultaneously undergo local reactions. These systems are often used to model pattern formation,
such as Turing patterns, in domains ranging from chemistry to developmental biology.

∂tu = Du∂xxu+Du∂yyu+Ru, ∂tv = Dv∂xxv +Dv∂yyv +Rv. (2)

In Equation 2, u and v represent the concentrations of activator and inhibitor, respectively, and Du, Dv

are diffusion coefficients. The nonlinear reaction terms Ru, Rv model biochemical interactions. In
our experiments, we adopt the FitzHugh–Nagumo variant with Ru(u, v) = u − u3 − k − v and
Rv(u, v) = u− v, where k = 5× 10−3, consistent with values used in models of excitable media
such as neurons or cardiac tissue.

Decomposed Basic Form. To isolate the fundamental transport behavior and reduce simulation
cost, we consider a simplified form of Equation 2 by omitting the nonlinear reaction terms Ru and
Rv , yielding pure diffusion equations:

∂tu = Du∂xxu+Du∂yyu, ∂tv = Dv∂xxv +Dv∂yyv. (3)

• Why Drop Reaction Terms? This form retains the essential dispersal dynamics but eliminates
the feedback coupling between u and v. Nonlinear reaction terms can vary rapidly, introducing
stiffness into the PDE. This stiffness necessitates smaller time steps for stable numerical integration,
increasing computational cost. By omitting these nonlinear terms, the system becomes linear and
more amenable to efficient numerical solutions.

• Why Prioritize the Diffusion Term? Pure diffusion, though simpler, encodes key properties such as
isotropic spreading and mass conservation, providing inductive bias for learning. Unlike reaction
terms, which act locally to update activator and inhibitor concentrations, the diffusion term governs
spatial coupling, as the primary source of pattern formation and spatial dynamics, facilitating
transport and stabilization, which explains the visually similar patterns in Figure 4 a1 and a2.

Physical Scenarios. The emergence of spatial patterns in reaction-diffusion systems is governed
by the ratio Dv

Du
, which affects the relative spreading rates of inhibitor and activator (Page et al.,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2005; Asgari et al., 2011; Gambino et al., 2024). Classical turing instability arises when Dv ≫ Du,
leading to diffusion-driven pattern formation, and the inhibitor spreads out while the activator stays
localized. Following previous works (Menou et al., 2023), we set Du = 1 × 10−3, and focus on
learning simulations when Dv

Du
= 5, and possible OOD scenarios when Dv

Du
∈ {1, 100}.

3.1.3 INCOMPRESSIBLE NAVIER-STOKES

The Navier–Stokes equations govern the dynamics of fluid flow and serve as fundamentals for fluid
simulations. It considers both the mass conservation and the momentum of fluid parcels.

∂u

∂t
= −(u · ∇)u+ ν∇2u− 1

ρ
∇p+ f , (4)

where u is the velocity field, ν is the dynamic viscosity, ρ is the fluid density, p is the fluid pressure,
and f is the external force field.

Decomposed Basic Form. To isolate fundamental nonlinear transport mechanisms and reduce
computational complexity, we simplify Equation 4 by omitting the pressure term (incompressibility
via projection) 1

ρ∇p and diffusion term ν∇2u:

∂u

∂t
= −(u · ∇)u+ f , (5)

This form captures inertial advection with external forcing and approximates high Reynolds number
flows, where viscous effects are negligible. Such simplifications are analytically meaningful and are
often used in turbulence modeling (e.g., inviscid Euler equations). Learning this reduced dynamics
can help models internalize convection-dominant regimes.

• Why Drop Pressure and Diffusion Terms? The pressure term, which enforces fluid incompressibility,
requires solving large linear systems and is difficult to parallelize and computationally expensive.
Omitting it significantly accelerates the simulation. Similarly, the diffusion term in Navier-Stokes
often uses explicit Euler integration with substeps, adding complexity. Removing it simplifies the
simulation further. Moreover, for many visual effects like smoke or fire, viscosity is minimal, so the
diffusion term has little visual impact and can often be omitted without noticeable loss in realism.

• Why Prioritize the Convection Term? Computationally, the convection term is cheap as it describes
the local transport of fluid and no need to iterate across the spatial domain. Meanwhile, convection
is the main driver of motion in most fluid flows, as it transports vorticity and mass. Without it, the
fluid would just sit still or respond passively to forces. It captures nonlinear self-interaction, which
is critical for dynamic, complex-looking behavior.

Physical Scenarios. In Navier-Stokes, the dynamic viscosity ν in Equation 4 (or the Reynolds
number Re = ρuL

ν where ρ is the density of the fluid, u is the flow speed, L is the characteristic
linear dimension) controls the fluid dynamics. It measures the balance between inertial forces (pushes
the fluid particles in different directions, leading to chaotic flow patterns) and viscous forces (resists
motion and smoothes out differences in velocity, promoting an orderly flow) of a fluid. Following
previous works (Schlichting & Gersten, 2016; Kochkov et al., 2021; Page et al., 2024), we will mainly
focus on learning simulations when ν = 0.01, and possible OOD scenarios when ν ∈ {0.05, 0.001},
A smaller ν will lead to more turbulent flows.

3D Extension. In real-world scenarios such as atmospheric or smoke dynamics, buoyancy-driven
flows provide additional complexity (Eckert et al., 2019). We extend our setting to simulate 3D
incompressible Navier–Stokes in a rising plume scenario (see Figure 4 c1 and c3). We simulate how
a plume of smoke rises and spreads in a 3D box-shaped environment. Smoke is introduced from a
small circular inflow region located at the bottom center of the domain, at a steady inflow rate of 0.2
units per timestep. The smoke is carried upward due to buoyancy. This setting tests the method’s
robustness on complex spatiotemporal dynamics in three dimensions.

3.1.4 KURAMOTO-SIVASHINSKY

The Kuramoto-Sivashinsky equation is a nonlinear PDE that models the interplay of instability,
nonlinearity, and dissipation, making it a prototype for studying spatiotemporal chaos. It is used to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

simulate phenomena such as wrinkled flame fronts, thin fluid film instabilities, and chaotic pattern
formation. We consider the following one-dimensional Kuramoto-Sivashinsky equation:

∂u

∂t
= −u∂xu− ∂xxu− ∂xxxxu, on [0, L]× [0, T] (6)

The solution u generally represents the perturbation amplitude of a chaotic system. The spatial
domain [0, L] is equipped with periodic boundary conditions. We impose the initial condition on
x ∈ [0, L] as

u0(x) = a cos

(
k1πx

L

)
+ b cos

(
k2πx

L

)
+ σϵ(x). (7)

where u0 is the superposition of two cosine modes and small mean-zero Gaussian perturbations.
This initialization, common in KS studies (Papageorgiou & Smyrlis, 1991; Gudorf & Cvitanovic,
2019), combines deterministic cosine modes that inject controlled perturbations with small random
noise. a, b, k1, k2 are tunable physical parameters controlling the strength and decay of the initial
perturbation. Here, ϵ(x) are i.i.d. standard normal samples, and we set σ = 0.05. Spatial derivatives
are evaluated spectrally via discrete Fourier transforms, and time integration is performed with a
fourth–order Runge–Kutta method.

Decomposed Basic Form. To isolate the linear stabilizing and destabilizing mechanisms and
reduce computational complexity, we simplify the Kuramoto–Sivashinsky equation by omitting the
nonlinear advection term −u∂xu. The reduced equation is

∂u

∂t
= −∂xxu− ∂xxxxu, on [0, L]× [0, T], (8)

which captures the competition between the destabilizing anti-diffusion term (−∂xxu) and the
stabilizing diffusion term (−∂xxxxu).

• Why Drop the Nonlinear Advection Term? For small amplitudes or short times, −u∂xu is higher
order in u, so the linearized dynamics govern the instabilities and pattern formation. Removing
this term also eliminates costly Fourier transforms, yielding a significant speedup in simulation.

• Why Prioritize High-Order Stabilizing/Destabilizing Terms? The balance between destabilizing
−∂xxu and stabilizing −∂xxxxu determines how fast the chaotic model grows or decays. The
fourth-order dissipation is particularly important for controlling stiffness and ensuring smoothness
of solutions, making it critical for stable numerical integration. Finally, in practice, many inter-
face/turbulence models reduce to precisely this “anti-diffusion + diffusion” structure, so analyzing
these terms provides broadly transferable insights.

Physical Scenarios. In the initial condition (Equation 7), the amplitudes a, b control the strength
of nonlinearity, while wavenumbers k1, k2 control the growth or decay of chaos, yielding regimes
(Trefethen et al., 2001; Dawes, 2006): 1) For large a, b and high k1, k2, the dynamics are predomi-
nantly linear, and chaos decays over time. 2) For small a, b and small k1, k2, the system develops
weakly nonlinear chaos, with instabilities growing slowly. 3) For large a, b and small k1, k2, the
system exhibits strongly nonlinear chaotic growth. In our experiments, we focus on learning in
the linear regime with a, b ∈ [1, 10] and k1, k2 ∈ [64, 128], and evaluate on two out-of-distribution
(OOD) regimes: weak nonlinearity (a, b ∈ [0.05, 0.2], k1, k2 ∈ [1, 32]) and strong nonlinearity
(a, b ∈ [1, 10], k1, k2 ∈ [1, 32]).

3.2 JOINT LEARNING WITH FUNDAMENTAL PHYSICAL KNOWLEDGE

After defining our fundamental physics knowledge, we now explain how to integrate it into learning
neural operators in principle from two perspectives data composition and neural architecture.

1) Data Composition. We jointly train neural operators on simulations of both our PDE and the
decomposed basic form as a multiphysics training with a composite dataset. We summarize our
simulations in Table 1. Since the simulation costs of decomposed basic forms are much cheaper than
the original PDE, we can “trade-in” simulations of the original PDE for more simulations of basic
forms under the same simulation costs. We define the ”Sample Mixture Ratio” as the rate derived

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Summary of simulations of PDEs and their decomposed basic forms. GPU: NVIDIA RTX 6000 Ada.

PDE Spatial
Resolution

Temporal
Steps Target Variables Simulation Costs

(sec. per step)
Sample Mixture Ratio
(PDE : Basic Form)

Diffusion-Reaction (Eq. 2)
128× 128 100 Activator u, Inhibitor v 1.864× 10−2

1:3Basic Form (Eq. 3) 6.610× 10−3

Navier-Stokes (2D) (Eq. 4)
256× 256 1000 Velocity u, Density s

2.775 1:24Basic Form (2D) (Eq. 5) 0.113

Navier-Stokes (3D) (Eq. 4)
50× 50× 89 150 Velocity u, Density s

1.047 1:3Basic Form (3D) (Eq. 5) 0.300

Kuramoto-Sivashinsky (Eq. 6) 512 200 Perturbation Amplitude u
1.176× 10−4

1:12Basic Form (Eq. 8) 9.135× 10−6

from the rate of simulation costs of original PDE with its decomposed basic form while making
sure that ”exchange” one primary data with the those number of basic form data will maintain a
comparable or reduced simulation budget when training baseline and our proposed model .

We apply a multi-task formulation, where the model learns from both the original PDE and its
simplified basic form. The idea is inspired from curriculum learning (Bengio et al., 2009; Pentina
et al., 2014) and auxiliary task learning (Liu et al., 2019). In our method, the basic forms act as a
simpler, physically motivated auxiliary task that can facilitate more efficient representation learning
and accelerate the convergence on the primary task.

2) Neural Architecture. We mainly consider Fourier Neural Operator (FNO) (Li et al., 2021a)
as our neural architecture. However, we make our method agnostic to specific architectures of
neural operators: We generally share the backbone of the neural operator for learning both the
main PDE and its basic terms, while employing separate final prediction layers for the two tasks.
We will discuss the details on model structure in Appendix B, and will include more results using
transformer (Dosovitskiy et al., 2020; Tong et al., 2022; McCabe et al., 2023; Chen et al., 2024) in
Appendix D.

4 EXPERIMENTS

4.1 SETTINGS

Our baseline is learning the original PDE problem. In general, our method reallocates half of the
baseline’s simulation budget to simulate the basic PDE terms, with the sample mixture ratio defined in
Table 1. To fairly compare with the baseline, we adopt the same hyperparameters and optimization
costs (number of gradient descent steps). Since our goal is to evaluate performance on the original
PDE, we use data from the basic PDE term only during training. All testing is conducted exclusively
on the original PDE data with 100 samples (Takamoto et al., 2022). We use Adam optimizer, cosine
annealing learning rate scheduler, and nRMSE defined in Section 2.1. We summarize our training
details in Appendix C.

4.2 DATA EFFICIENCY

101 102

Simulation Costs (Seconds)

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d
RM

SE

2D Diffusion-Reaction
 (FNO)

Baseline
Ours

104 105

Simulation Costs (Seconds)

0.05

0.10

0.15

No
rm

al
ize

d
RM

SE

2D Incompressible Navier Stokes
 (FNO)

Baseline
Ours

103 104

Simulation Costs (Seconds)

0.1

0.2

0.3

No
rm

al
ize

d
RM

SE

3D Incompressible Navier Stokes
 (FNO)

Baseline
Ours

10230 40 60 200
Simulation Costs (Seconds)

0.0035

0.0040

0.0045

0.0050

No
rm

al
ize

d
RM

SE

1D Kuramoto Sivashinsky
(FNO)

Baseline
Ours

Figure 5: Joint training neural operators on data of the original PDE
and the basic form improves performance and data efficiency. Y-axis:
normalized RMSE. X-axis: simulation costs (seconds).

We first study our method with dif-
ferent numbers of training samples,
and demonstrate that neural operators
trained with our method can achieve
stronger performance with less train-
ing data. We consider the following
methods:

• “Baseline”: Neural operators that
are only trained on simulations of
the original PDE.

• Ours: As described in Section 3.2,
we can replace simulations of the
original PDE with its decomposed
basic form, allowing the total sim-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ulation cost of the training data can be comparable or even reduced. See Table 1 for the sample
mixture rate for fair comparison.

In Figure 5, we study prediction errors of neural operators trained with different numbers of simula-
tions (measured in their simulation costs). We can see that, across PDEs and neural architectures, our
method (orange square) is to the lower left of the baseline (blue circle), which means that we can
achieve improved prediction errors with reduced simulation costs.

4.3 LONG-TERM PHYSICAL CONSISTENCY

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rollout

0.03
0.04
0.05
0.06
0.07

No
rm

al
ize

d
RM

SE

2D Reaction-Diffusion
 (FNO)

Baseline
Ours

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rollout

0.02

0.04

0.06

0.08

0.10

No
rm

al
ize

d
RM

SE

2D Incompressible Navier Stokes
 (FNO)

Baseline
Ours

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rollout

0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225

No
rm

al
ize

d
RM

SE
3D Incompressible Navier Stokes

 (FNO)
Baseline
Ours

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rollout

0.005
0.010
0.015
0.020
0.025
0.030

No
rm

al
ize

d
RM

SE

1D Kuramoto-Sivashinsky
 (FNO)

Baseline
Ours

Figure 6: Joint training neural operators on data of the original
PDE and the basic form improves performance with autoregressive
inference at different unrolled steps. Models are evaluated using the
best-performing checkpoints from training shown in Figure 5.

Next-frame prediction (Takamoto
et al., 2022; McCabe et al., 2023;
Hao et al., 2024) is a widely adopted
evaluation, where input frames are
always ground truth. Meanwhile, au-
toregressive inference, where model
keeps rolling out to further tempo-
ral steps with its own output as in-
puts, is a meaningful and more chal-
lenging stress test. In autoregressive
inference, a model forecasts futures
with its own (noisy) output as inputs,
and thus prediction error will accu-
mulate along rollout steps. In our Fig-
ure 6, losses will be aggregated for
five consecutive time steps. We can
see that our improvements in Figure 5
further persist across autoregressive
steps, leading to improved long-term consistency.

4.4 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION

We next show the benefits of our method towards the generalization of neural operators in out-of-
distribution (OOD) settings, where the physical parameters used during simulation are significantly
shifted. We consider physical scenarios described in Sectin 3.1, and show results in Table 2. We can
see that our method not only improves in-distribution errors, but also generalizes better on unseen
physical dynamics (simulations by unseen parameters), leading to more robust neural operators.
Table 2: Comparisons of OOD generalization for different training methods. Models are evaluated using the
best-performing checkpoints from training, as shown in Figure 5, under comparable simulation cost settings.

PDE Model Source Target 1 Target 2

Setting nRMSE Setting nRMSE Setting nRMSE

Diffusion-Reaction (2D) Baseline Dv

Du
= 5

0.0289 Dv

Du
= 1

0.0413 Dv

Du
= 100

0.0770

Ours 0.0231 0.0331 0.0538

Navier-Stokes (2D) Baseline
ν = 0.01

0.0487
ν = 0.05

0.0825
ν = 0.0001

0.0369

Ours 0.0175 0.0222 0.0125

Navier-Stokes (3D) Baseline
ν = 0.01

0.0675
ν = 0.1

0.0393
ν = 0.0001

0.0836

Ours 0.0481 0.0329 0.0602

Kuramoto-Sivashinsky (1D) Baseline a, b = 1 ∼ 10
k1, k2 = 64 ∼ 128

0.0037 a, b = 0.05 ∼ 2
k1, k2 = 1 ∼ 32

0.0021 a, b = 1 ∼ 10
k1, k2 = 1 ∼ 32

0.0200

Ours 0.0034 0.0018 0.0197

4.5 SYNTHETIC-TO-REAL GENERALIZATION

Finally, we test neural operators trained on simulations of 3D Navier-Stokes in real-world scenarios.
Essentially, transfering models trained on simulations to real observations is a synthetic-to-real
generalization problem (Chen et al., 2020; 2021), as domain gaps between numerical simulations
and real-world measurements always persist. We study the ScalarFlow dataset (Eckert et al., 2019),
which is a reconstruction of real-world smoke plumes and assembles the first large-scale dataset of
realistic turbulent flows. We provide visualizations of synthetic and ScalarFlow data in Figure 4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Scalarflow Baseline Ours
nRMSE: 0.250 nRMSE: 0.213

Figure 7: Visualizations of the last time step in the
ScalarFlow and its predictions derived by baseline and our
model.

We show the results and visualize the ground
truth as well as the model predictions on
smoke plumes from ScalarFlow in Figure
7. We can see that our method outperforms
the baseline model and presents a qualita-
tive comparison of scalar flow predictions on
real data, illustrating that our jointly trained
model exhibits improved synthetic-to-real
generalization performance. Please read our
Appendix D.2 for more results on 3D Navier
Stokes.

5 RELATED WORKS

Machine Learning for Scientific Modeling Learning-based methods have long been used to model
physical phenomena (Lagaris et al., 1998; 2000; Chen & Chen, 1995b;a). Physics-informed neural
networks (PINNs) (Raissi et al., 2019; Zhu et al., 2019; Geneva & Zabaras, 2020; Gao et al., 2021;
Ren et al., 2022) incorporate PDEs into loss functions to enforce physical laws, but often struggle
with generalization and optimization issues (Krishnapriyan et al., 2021; Edwards, 2022). Operator
learning methods like Fourier Neural Operators (FNO) (Li et al., 2021a; 2020; Kovachki et al., 2023)
and DeepONet (Lu et al., 2019) offer greater flexibility by learning mappings between function spaces
but require extensive labeled data (Raissi et al., 2019; Brandstetter et al., 2022; Zhang et al., 2023).
We adopt a unique approach by evaluating and enhancing SciML through the lens of its compatibility
with fundamental physical principles.

Data-Driven Neural PDE Solvers Machine learning has increasingly been used to approximate
PDE solutions, with neural PDE solvers trained on diverse scenarios to mimic traditional simulators.
Early models used CNNs (Guo et al., 2016; Zhu & Zabaras, 2018; Bhatnagar et al., 2019), while
DeepONet (Lu et al., 2019) introduced a neural operator (NO) framework separating input and query
encodings, inspiring many extensions (Wang et al., 2021; Hadorn, 2022; Wang et al., 2022; Lin et al.,
2023; Venturi & Casey, 2023; Xu et al., 2023; McCabe et al., 2023; Hao et al., 2024). Advances like
FNO (Li et al., 2021a), LNO (Cao et al., 2023), CNO (Raonic et al., 2024), and KNO (Xiong et al.,
2024) have expanded the field, with FNO particularly impactful across applications (Li et al., 2021b;
Guibas et al., 2021; Yang et al., 2021; Rahman et al., 2022b;a; Pathak et al., 2022; Liu et al., 2022).
Compared with previous neural operator works, instead of naively swapping in cheaper simulations
of simplified PDEs, the core merit of our work is to emphasize the multifaceted benefits of explicit
learning of fundamental physics knowledge during operator learning.

Out-of-Distribution Generalization in SciML Interest in out-of-distribution (OOD) generalization
for scientific machine learning (SciML) has grown recently. Subramanian et al. (2023) showed that
fine-tuning neural operators (NOs) on OOD PDEs often requires many OOD simulations, which
may be impractical. Benitez et al. (2024) proposed a Helmholtz-specific FNO with strong OOD
performance, supported by Rademacher complexity and a novel risk bound. Other work includes
ensemble methods leveraging uncertainty (Hansen et al., 2023; Mouli et al., 2024), loss functions
informed by numerical schemes (Kim & Kang, 2024), and meta-learning for varied geometries (Liu
et al., 2023). However, varying PDE types and setups across studies hinder unified insights into
OOD generalization for NOs. Our work demonstrates that neural operators explicitly trained with
fundamental physics knowledge exhibit improved OOD and synthetic-to-real generalization.

6 CONCLUSION

We present a principle and architecture-agnostic approach to enhance neural operators by explicitly
incorporating fundamental physical knowledge into their training. By decomposing complex PDEs
into simpler, physically meaningful basic forms and using them as auxiliary training signals, our
proposed method significantly improves data efficiency, long-term predictive consistency, and outha
ha h-of-distribution generalization. These improvements are demonstrated across a variety of PDE
systems and neural operator architectures. Our finding highlights the untapped potential of funda-
mental physics as an inductive bias in scientific machine learning, offering a robust and cost-effective
pathway to more reliable and generalizable surrogate models in real-world physical simulations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in either the research ideation or the writing of this paper. Their
use was limited to correcting minor grammatical issues and typographical errors.

REFERENCES

Yazdan Asgari, Mehrdad Ghaemi, and Mohammad Ghasem Mahjani. Pattern formation of the
fitzhugh-nagumo model: cellular automata approach. 2011.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp.
41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161.
doi: 10.1145/1553374.1553380. URL https://doi.org/10.1145/1553374.1553380.

Jose Antonio Lara Benitez, Takashi Furuya, Florian Faucher, Anastasis Kratsios, Xavier Tricoche,
and Maarten V de Hoop. Out-of-distributional risk bounds for neural operators with applications
to the helmholtz equation. Journal of Computational Physics, pp. 113168, 2024.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64:525–545, 2019.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nature, 619(7970):533–538, 2023.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural pde solvers. In International Conference on Machine Learning, pp. 2241–2256. PMLR,
2022.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Lno: Laplace neural operator for
solving differential equations. arXiv preprint arXiv:2303.10528, 2023.

Tianping Chen and Hong Chen. Approximation capability to functions of several variables, nonlinear
functionals, and operators by radial basis function neural networks. IEEE Transactions on Neural
Networks, 6(4):904–910, 1995a.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE transactions on
neural networks, 6(4):911–917, 1995b.

Wuyang Chen, Zhiding Yu, Zhangyang Wang, and Animashree Anandkumar. Automated synthetic-
to-real generalization. In International conference on machine learning, pp. 1746–1756. PMLR,
2020.

Wuyang Chen, Zhiding Yu, Shalini De Mello, Sifei Liu, Jose M Alvarez, Zhangyang Wang, and
Anima Anandkumar. Contrastive syn-to-real generalization. arXiv preprint arXiv:2104.02290,
2021.

Wuyang Chen, Jialin Song, Pu Ren, Shashank Subramanian, Dmitriy Morozov, and Michael W
Mahoney. Data-efficient operator learning via unsupervised pretraining and in-context learning.
arXiv preprint arXiv:2402.15734, 2024.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey, 2020. URL https:
//arxiv.org/abs/2009.09796.

J. H. P. Dawes. Bifurcations and instabilities in dissipative systems: The kuramoto–sivashinsky
equation (lecture notes). https://people.bath.ac.uk/jhpd20/lecturenotes/ks.
pdf, 2006. Lecture note, March 21, 2006.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

https://doi.org/10.1145/1553374.1553380
https://arxiv.org/abs/2009.09796
https://arxiv.org/abs/2009.09796
https://people.bath.ac.uk/jhpd20/lecturenotes/ks.pdf
https://people.bath.ac.uk/jhpd20/lecturenotes/ks.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Marie-Lena Eckert, Kiwon Um, and Nils Thuerey. Scalarflow: a large-scale volumetric data set of
real-world scalar transport flows for computer animation and machine learning. ACM Transactions
on Graphics (TOG), 38(6):1–16, 2019.

C. Edwards. Neural networks learn to speed up simulations. Communications of the ACM, 65(5):
27–29, 2022.

G Gambino, MC Lombardo, R Rizzo, and M Sammartino. Excitable fitzhugh-nagumo model with
cross-diffusion: close and far-from-equilibrium coherent structures. Ricerche di Matematica, 73
(Suppl 1):137–156, 2024.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive
convolutional neural networks for solving parameterized steady-state pdes on irregular domain.
Journal of Computational Physics, 428:110079, 2021.

Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of pde systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics, 403:109056, 2020.

Matthew Gudorf and Predrag Cvitanovic. Spatiotemporal tiling of the kuramoto-sivashinsky equation.
In APS March Meeting Abstracts, volume 2019, pp. L70–263, 2019.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Patrik Simon Hadorn. Shift-deeponet: Extending deep operator networks for discontinuous output
functions. ETH Zurich, Seminar for Applied Mathematics, 2022.

Derek Hansen, Danielle C Maddix, Shima Alizadeh, Gaurav Gupta, and Michael W Mahoney.
Learning physical models that can respect conservation laws. In International Conference on
Machine Learning, pp. 12469–12510. PMLR, 2023.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandku-
mar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-scale
pde pre-training. arXiv preprint arXiv:2403.03542, 2024.

Philipp Holl and Nils Thuerey. Differentiable simulations for pytorch, tensorflow and jax. In
Forty-first International Conference on Machine Learning, 2024.

David I Ketcheson, Kyle Mandli, Aron J Ahmadia, Amal Alghamdi, Manuel Quezada De Luna,
Matteo Parsani, Matthew G Knepley, and Matthew Emmett. Pyclaw: Accessible, extensible,
scalable tools for wave propagation problems. SIAM Journal on Scientific Computing, 34(4):
C210–C231, 2012.

Taeyoung Kim and Myungjoo Kang. Approximating numerical fluxes using fourier neural operators
for hyperbolic conservation laws. CoRR, 2024.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118(21):e2101784118, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to PDEs. Journal of Machine Learning Research, 24(89):1–97, 2023.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548–26560, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Isaac E Lagaris, Aristidis C Likas, and Dimitris G Papageorgiou. Neural-network methods for
boundary value problems with irregular boundaries. IEEE Transactions on Neural Networks, 11
(5):1041–1049, 2000.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran
Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
medium-range global weather forecasting. Science, 382(6677):1416–1421, 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021a.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021b.

Guang Lin, Christian Moya, and Zecheng Zhang. B-deeponet: An enhanced bayesian deeponet for
solving noisy parametric pdes using accelerated replica exchange sgld. Journal of Computational
Physics, 473:111713, 2023.

Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, An-
drew M Stuart, and Kaushik Bhattacharya. A learning-based multiscale method and its application
to inelastic impact problems. Journal of the Mechanics and Physics of Solids, 158:104668, 2022.

Wenzhuo Liu, Mouadh Yagoubi, and Marc Schoenauer. Meta-learning for airflow simulations with
graph neural networks. arXiv preprint arXiv:2306.10624, 2023.

Yifan Liu, Bohan Zhuang, Chunhua Shen, Hao Chen, and Wei Yin. Auxiliary learning for deep
multi-task learning, 2019. URL https://arxiv.org/abs/1909.02214.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
Multiple physics pretraining for physical surrogate models. arXiv preprint arXiv:2310.02994,
2023.

Lucas Menou, Chengjie Luo, and David Zwicker. Physical interactions promote turing patterns.
arXiv preprint arXiv:2302.12521, 2023.

Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, and Bobak T
Kiani. Self-supervised learning with lie symmetries for partial differential equations. arXiv preprint
arXiv:2307.05432, 2023.

S Chandra Mouli, Danielle C Maddix, Shima Alizadeh, Gaurav Gupta, Andrew Stuart, Michael W
Mahoney, and Yuyang Wang. Using uncertainty quantification to characterize and improve out-of-
domain learning for pdes. arXiv preprint arXiv:2403.10642, 2024.

AK Nandakumaran and PS Datti. Partial differential equations: classical theory with a modern touch.
Cambridge University Press, 2020.

Jacob Page, Peter Norgaard, Michael P Brenner, and Rich R Kerswell. Recurrent flow patterns as
a basis for two-dimensional turbulence: Predicting statistics from structures. Proceedings of the
National Academy of Sciences, 121(23):e2320007121, 2024.

12

https://arxiv.org/abs/1909.02214

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Karen M Page, Philip K Maini, and Nicholas AM Monk. Complex pattern formation in reaction–
diffusion systems with spatially varying parameters. Physica D: Nonlinear Phenomena, 202(1-2):
95–115, 2005.

Demetrios T Papageorgiou and Yiorgos S Smyrlis. The route to chaos for the kuramoto-sivashinsky
equation. Theoretical and Computational Fluid Dynamics, 3(1):15–42, 1991.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv preprint arXiv:2202.11214, 2022.

Saurabh Patil, Zijie Li, and Amir Barati Farimani. Hyena neural operator for partial differential
equations, 2023. URL https://arxiv.org/abs/2306.16524.

Anastasia Pentina, Viktoriia Sharmanska, and Christoph H. Lampert. Curriculum learning of multiple
tasks, 2014. URL https://arxiv.org/abs/1412.1353.

Md Ashiqur Rahman, Manuel A Florez, Anima Anandkumar, Zachary E Ross, and Kamyar Aziz-
zadenesheli. Generative adversarial neural operators. arXiv preprint arXiv:2205.03017, 2022a.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. arXiv preprint arXiv:2204.11127, 2022b.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of pdes. Advances in Neural Information Processing Systems, 36, 2024.

Pu Ren, Chengping Rao, Yang Liu, Jian-Xun Wang, and Hao Sun. Phycrnet: Physics-informed
convolutional-recurrent network for solving spatiotemporal pdes. Computer Methods in Applied
Mechanics and Engineering, 389:114399, 2022.

Sebastian Ruder. An overview of multi-task learning in deep neural networks, 2017. URL https:
//arxiv.org/abs/1706.05098.

Hermann Schlichting and Klaus Gersten. Boundary-layer theory. springer, 2016.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael W
Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Charac-
terizing scaling and transfer behavior. arXiv preprint arXiv:2306.00258, 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. Advances in neural information processing
systems, 35:10078–10093, 2022.

Lloyd N. Trefethen, Kristine Embree, and contributors. The (Unfinished) PDE Coffee Table Book,
2001. URL https://people.maths.ox.ac.uk/trefethen/pdectb.html. Unpub-
lished manuscript, freely available online.

Simone Venturi and Tiernan Casey. Svd perspectives for augmenting deeponet flexibility and
interpretability. Computer Methods in Applied Mechanics and Engineering, 403:115718, 2023.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605, 2021.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Improved architectures and training algorithms for
deep operator networks. Journal of Scientific Computing, 92(2):35, 2022.

13

https://arxiv.org/abs/2306.16524
https://arxiv.org/abs/1412.1353
https://arxiv.org/abs/1706.05098
https://arxiv.org/abs/1706.05098
https://people.maths.ox.ac.uk/trefethen/pdectb.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wei Xiong, Xiaomeng Huang, Ziyang Zhang, Ruixuan Deng, Pei Sun, and Yang Tian. Koopman
neural operator as a mesh-free solver of non-linear partial differential equations. Journal of
Computational Physics, pp. 113194, 2024.

Wuzhe Xu, Yulong Lu, and Li Wang. Transfer learning enhanced deeponet for long-time prediction of
evolution equations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 10629–10636, 2023.

Yan Yang, Angela F Gao, Jorge C Castellanos, Zachary E Ross, Kamyar Azizzadenesheli, and
Robert W Clayton. Seismic wave propagation and inversion with neural operators. The Seismic
Record, 1(3):126–134, 2021.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. arXiv preprint arXiv:2307.08423, 2023.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics, 366:415–
447, 2018.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56–81, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A SIMULATION SETTINGS

In this section, we detail the simulation settings for the 2D Diffusion-Reaction, 2D and 3D Incom-
pressible Navier-Stokes and 1D Kuramoto–Sivashinsky (see Table 1 for the summary). We will also
explain how we prepare simulations for the “Spatiotemporal Downsampling” in Section D.1.

To ensure a fair comparison under equivalent simulation costs with the basic form of each PDE,
we downsample the original PDE simulations both spatially and temporally. We also introduce the
settings for the corresponding reduced spatiotemporal resolution simulations. Note that the simulation
cost of these downsampled settings is matched to that of the basic form, which implies that their
sample mixture ratios in joint training remain equivalent.

To further explore the benefits of our multiphysics joint training approach with this reduced spa-
tiotemporal resolution simulation strategies (refer to Ours@Spatiotemporal in Figure 9), we addition-
ally introduce the simulation settings for the spatiotemporally downsampled basic form of the 2D
Diffusion-Reaction equation. As what we will discuess in Section D.1, our framework is orthogonal
to standard downsampling techniques, and combining the two can lead to further reductions in
simulation cost. This reduction allows for an increased proportion of basic form samples in the
training mixture under a fixed computational budget (see Table 3 for details).

A.1 DIFFUSION-REACTION

Our simulation setting for Diffusion-Reaction follows (Takamoto et al., 2022). Our solver is Py-
Claw (Ketcheson et al., 2012) that uses the finite volume method. We set the initial condition as
standard normal random noise u(t = 0, x, y) ∼ N (0, 1.0). We use the homogeneous Neumann
boundary condition. We simulate in a spatial domain of Ω = [−1, 1]2, with resolution 128 × 128.
We simulate 5 seconds and save into 100 temporal steps.

Reduced Spatiotemporal Resolution. When simulating the original Diffusion-Reaction equation
at low spatiotemporal grids (yellow curves in Figure 9), we reduce the spatial resolution from
128× 128 to 96× 96, and reduce the number of temporal steps from 100 to 50. We then upsample
to 128× 128× 100 (steps) via bilinear interpolation to match the resolution of simulations of the
original PDE. The total simulation interval is maintained at 5 seconds, preserving the underlying
physical dynamics.

Similarly, we can further simulate our decomposed basic form of Diffusion-Reaction at low spa-
tiotemporal resolution (green curve in Figure 9). Table 3 shows the simulation cost of decomposed
basic forms with reduced spatiotemporal resolution and the sample mixture ratio.

Table 3: Summary of 2D Diffusion-Reaction simulations and its decomposed basic forms with reduced spa-
tiotemporal resolution. “Sample Mixture Rate”: We replace simulations of the original PDE with its decomposed
basic form with reduced spatiotemporal resolution and make sure the total simulation cost of the training data
can be comparable. GPU: NVIDIA RTX 6000 Ada.

PDE Spatial
Resolution

Temporal
Steps Target Variables Simulation Costs

(sec. per step)
Sample Mixture Ratio
(PDE : Basic Form)

Diffusion-Reaction (Eq. 2) 128× 128 100
Activator u, Inhibitor v

1.864× 10−2

1:8Basic Form (Eq. 3) with
96× 96 50 2.390× 10−3

Reduced Spatiotemporal Resolution

A.2 2D INCOMPRESSIBLE NAVIER-STOKES

Our simulation setting for incompressible Navier-Stokes follows (Takamoto et al., 2022). Our solver
is PhiFlow (Holl & Thuerey, 2024). We simulate in a spatial domain of Ω = [0, 1]2, with resolution
256× 256. We simulate 5 seconds with a dt = 5× 10−5, and periodically save into 1000 temporal
steps. Our initial conditions u0 and forcing term f are drawn from isotropic Gaussian random fields,
where the low-frequency components of the spectral density is scaled with scale and high-frequency
components are suppressed with power-law decay by smoothness. For u0, scale is 0.15 and
smoothness is 3.0. For f , scale is 0.4 and smoothness is 1.0. Boundary conditions are
Dirichlet.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Reduced Spatiotemporal Resolution. When simulating the original 2D incompressible Navier-
Stokes equation at low spatiotemporal grids (yellow curves in Figure 9), we reduce the spatial
resolution from 256 × 256 to 100 × 100. We then spatially upsample to 256 × 256 via bilinear
interpolation to match the resolution of simulations of the original PDE. To reduce the temporal
resolution while maintaining the same total simulation time and number of recorded frames, we
increase the time-step size and proportionally reduce the number of integration steps and output
interval. Specifically, we change the time-step from dt = 5× 10−5 to dt = 5× 10−4, and reduce
the total number of time steps from nsteps = 100,000 to nsteps = 10,000. To preserve the temporal
spacing between output frames, we decrease the frame interval from 100 to 10. This ensures the
same total simulation duration of 5 seconds and the same number of output frames (1,000). This
modification reduces computational cost by roughly 10 times.

A.3 3D INCOMPRESSIBLE NAVIER-STOKES

Our solver is PhiFlow (Holl & Thuerey, 2024). We simulate in a spatial domain of Ω = [0, 1]3, with
resolution 50× 50× 89. We simulate 150 steps with a dt = 2× 10−4. We set the initial u0 as zero
and upward buoyancy forcing term fz = 5 × 10−4. Unlike the 2D Navier-Stokes, we introduce
randomness of the buoyancy forcing term on horizontal directions by uniformly drawing fx fx from
[−1, 1]× 10−4. We set Dirichlet zero boundary conditions.

A.4 1D KURAMOTO–SIVASHINSKY

Our simulation setting for the one-dimensional Kuramoto–Sivashinsky equation follows (Papageor-
giou & Smyrlis, 1991; Gudorf & Cvitanovic, 2019). Our solver is a pseudospectral exponential
time-differencing fourth-order Runge–Kutta scheme, implemented with 64 contour points. We use
periodic boundary conditions on the spatial domain Ω = [0, L] with L = 64π, discretized with
equispaced s = 512 grid points. Spatial derivatives are evaluated spectrally via FFT (fast fourier
transform), and nonlinear terms are treated in physical space through pseudospectral squaring and
differentiation. We simulate up to the final time T = 30, using an internal time step dt = 0.1, and
record nsteps = 200 snapshots uniformly in time.

B MODEL STRUCTURE

Input
(PDE)

Linear

Fourier Layer
FFT

Linear
IFFT

Linear

GeLU

4✕

Linear
GeLU
Linear

Output
(PDE)

FFT: Fourier Transform
IFFT: Inverse Fourier Transform

FNO

+

Conv3D

Positional Embedding

Tokens

Encoder Transformer Block
(width=768, #heads = 12)

Linear

Decoder Transformer Block
(width=512, #heads = 8)

12✕

8✕

Output
(PDE)

Input
(PDE)

VideoMAE

Output
(Basic Form)

Output
(Basic Form)

Input
(Basic Form)

Input
(Basic Form)

Shared

Linear

Shared

Figure 8: Our method is agnostic to specific architectures of neural
operators: we always share the backbone of the model between
learning of original PDE and its basic form, and decouple their
predictions in the last layer.

We mainly consider Fourier Neu-
ral Operator and transformer in this
study. The model structures are
shown in Figure 8. The basic form
and the original PDE share all layers
but the last prediction layer, which is
agnostic to specific architectures of
neural operators. This task-specific
output layer is a very well-known
and widely adopted configuration in
multi-task learning. It has been high-
lighted in survey papers that hard pa-
rameter sharing (one input, shared
hidden layers, multiple outputs) is the
standard setup for multi-task learning
due to its efficiency and representa-
tional benefits (Ruder, 2017; Craw-
shaw, 2020).

C MORE IMPLEMENTATION DETAILS

We summarize our training details in Table 4. We conducted our experiments on NVIDIA RTX 6000
Ada GPUs, each with 48 GB of memory.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Training details. “DR”: Diffusion-Reaction.“NS”: Navier Stokes.

2D DR
(FNO)

2D DR
(Transformer)

2D NS
(FNO)

2D NS
(Transformer)

3D NS
(FNO)

3D NS
(Transformer)

1D KS
(FNO)

Input Shape Format H × W × T × C (C = 2) H × W × T × C (C = 3) X × Y × Z × T × C (C = 4) T × S
Number of Training Samples (PDE Simulations) 2, 4, 8, 16, 32, 64, 128 2, 4, 8, 16, 32, 48, 64 2, 4, 8, 16, 32, 48, 64 1024 ∼ 8192
Input Time Steps (ℓ in Section 2.1) 10 10 10 10 10 10 10
Sample Mixture Ratio 1:3 1:3 1:24 1:6 1:3 1:3 1:12
Learning Rate 0.001 0.0003 0.001 0.001 0.001 0.00015 0.001
Batch Size for Primary Data 4 8 16 16 8 8 64
Epochs 100 60 20 30 20 80 50
Auxiliary Task Loss Weight 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Training Hours 0.08∼1.83 0.6hr∼7hr 1∼29 1.5∼45 0.5∼6.5 16∼120 2 ∼ 18
Gradient Descent Steps Per Epoch 46 ∼ 2912 23 ∼ 1456 124 ∼ 3960 124 ∼ 3960 70 ∼ 2240 70 ∼ 2240 3040 ∼ 24320(Baseline and Ours)

D MORE RESULTS

Beyond the main comparison between the baseline and our proposed model using FNO showed in
Section 4, we further conducted additional experiments to assess our approach. In this section, we
will show the results from both FNO and Transformer.

D.1 COMPARISON OF DATA EFFICIENCY AND OUT-OF-DISTRIBUTION GENERALIZATION
WITH SPATIOTEMPORAL DOWNSAMPLING

To demonstrate the effectiveness of our method, we conducted an ablation study comparing it with
Spatiotemporal Downsampling on both 2D Diffusion–Reaction (DR) and 2D Navier–Stokes (NS).
We defined the Spatiotemporal Downsampling method as follows: Neural operators that are trained
with a mixture of simulations of the original PDE and simulations at low spatial and temporal
resolutions (then linearly interpolated to the original resolution). Similar to our method, we can
also save simulation costs with reduced spatiotemporal resolutions. See Appendix A for rates of
downsampling and more details). Meanwhile, as our decomposed basic form is orthogonal to
spatiotemporal downsampling during simulations, our method can serve as a complementary data
augmentation. On 2D Diffusion-Reaction, we can simulate our decomposed basic forms at lower
spatiotemporal resolution, leading to further reduced simulation costs and improved data efficiency
(green triangle), outperforming the baseline at the lower spatiotemporal resolution (yellow diamond).
For 2D Navier–Stokes with the Transformer, we adopt a 1:6 mixture ratio (vs. 1:24 for FNO) due to
GPU memory limits; despite this disadvantage, our method still outperforms both the baseline and
spatiotemporal downsampling at comparable cost.

101 102

Simulation Costs (Seconds)

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d
RM

SE

2D Diffusion-Reaction
 (FNO)

Baseline
Baseline@Spatiotemporal
Ours
Ours@Spatiotemporal

104 105

Simulation Costs (Seconds)

0.05

0.10

0.15

No
rm

al
ize

d
RM

SE

2D Incompressible Navier Stokes
 (FNO)

Baseline
Baseline@Spatiotemporal
Ours

101 102

Simulation Costs (Seconds)

0.2

0.4

0.6

0.8

No
rm

al
ize

d
RM

SE

2D Diffusion-Reaction
 (Transformer)

Baseline
Baseline@Spatiotemporal
Ours
Ours@Spatiotemporal

104 105

Simulation Costs (Seconds)

0.04

0.06

0.08

0.10

No
rm

al
ize

d
RM

SE

2D Incompressible Navier Stokes
 (Transformer)

Baseline
Baseline@Spatiotemporal
Ours

Figure 9: Joint training neural operators on data of the original PDE and the basic form improves performance
and data efficiency. Rows: (top) FNO, (bottom) transformer. Columns: (left) 2D Diffusion-Reaction, (right)
2D Navier Stokes. “Spatiotemporal”: short for “Spatiotemporal Downsampling”. Y-axis: normalized RMSE.
X-axis: simulation costs (seconds).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5 reports the out-of-distribution (OOD) generalization results across both the 2D Diffusion-
Reaction and Navier-Stokes equations. Similar to the results in Table 2, here we can see that our
approach not only improves in-distribution errors but also consistently enhances generalization to
simulations of unseen physical parameters. This robustness holds across both FNO and Transformer
architectures, leading to more reliable and consistent neural operators under varying conditions.

Table 5: Comparisons of OOD generalization for different training methods with Transformer. Models are
evaluated using the best checkpoints from training in Figure 5, under comparable simulation cost settings.
“Spatiotemporal“: short for “Spatiotemporal Downsampling”.

PDE Model Source Target 1 Target 2

Setting nRMSE Setting nRMSE Setting nRMSE

Diffusion-Reaction
(2D, FNO)

Baseline

Dv

Du
= 5

0.0289

Dv

Du
= 1

0.0413

Dv

Du
= 100

0.0770

Baseline@Spatiotemporal 0.0234 0.0303 0.0663

Ours 0.0231 0.0331 0.0538
Ours@Spatiotemporal 0.0218 0.0298 0.0596

Diffusion-Reaction
(2D, Transformer)

Baseline

Dv

Du
= 5

0.1056

Dv

Du
= 1

0.1249

Dv

Du
= 100

0.1976

Baseline@Spatiotemporal 0.0542 0.0698 0.0812

Ours 0.0602 0.0782 0.0853

Ours@Spatiotemporal 0.0469 0.0489 0.0671

Navier-Stokes
(2D, FNO)

Baseline

ν = 0.01

0.0487

ν = 0.05

0.0825

ν = 0.0001

0.0369

Baseline@Spatiotemporal 0.0442 0.0743 0.0269

Ours 0.0175 0.0222 0.0125

Navier-Stokes
(2D, Transformer)

Baseline

ν = 0.01

0.0479

ν = 0.05

0.0853

ν = 0.0001

0.0685

Baseline@Spatiotemporal 0.0496 0.0568 0.0402

Ours 0.0265 0.0397 0.0256

D.2 DATA EFFICIENCY AND OUT-OF-DISTRIBUTION GENERALIZATION OF TRANSFORMER
FOR 3D NAVIER STOKES

Similar as what we have studied in Section 4, we aim to also demonstrate three key benefits:
data efficient, long-term physical consistency, and strong generalization in OOD simulations using
Transformer, for 3D Navier-Stokes as well.

In Figure 10, we can see that joint training (orange square) on both the original and basic forms of
the 3D Navier-Stokes equation consistently reduces normalized RMSE from baseline (blue circle)
across varying simulation budgets. This improvement is observed for Transformer architectures,
highlighting enhanced data efficiency and generalization, which aligns with the results in Section 4.2.

103 104

Simulation Costs (Seconds)

0.0

0.1

0.2

0.3

0.4

No
rm

al
ize

d
RM

SE

3D Incompressible Navier Stokes
 (Transformer)

Baseline
Ours

Figure 10: Joint training neural operators on data of the
original 3D Navier-Stokes equation and the basic form
improves performance and data efficiency.

In Table 6, we show that our joint train-
ing approach significantly improves out-of-
distribution generalization on 3D Navier-Stokes
across all test settings, outperforming the base-
line for both FNO and Transformer models. To-
gether with the results in Table 2 and 5, the con-
sistent gains observed across all OOD setting
results underscore the effectiveness and robust-
ness of our method in generalizing to previously
unseen physical regimes, particularly under sig-
nificant shifts in simulation parameters.

Table 6: Comparisons of OOD generalization on 3D NS for different training methods using Transformer.
Models are evaluated using the best checkpoints from training in Figure 10.

PDE Model Source Target 1 Target 2

Setting nRMSE Setting nRMSE Setting nRMSE

3D Navier-Stokes
Baseline

ν = 0.01
0.0114

ν = 0.1
0.0327

ν = 0.0001
0.0816

Ours 0.0064 0.0124 0.0322

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.3 MORE LONG-TERM CONSISTENCY
RESULTS OF TRANSFORMER

In our Figure 11, we show the rollout performance of transformer on the 2D Diffusion-Reaction and
2D incompressible Navier-Stokes equation. Here, we run the experiments with the best checkpoints
from training in Figure 9. Losses will be aggregated for five consecutive time steps. We can see
that our improvements in Figure 9 further persist across autoregressive steps, leading to improved
long-term consistency, aligning with our results in Figure 6.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rollout

0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13

No
rm

al
ize

d
RM

SE

2D Diffusion-Reaction
 (Transformer)

Baseline
Ours

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rollout

0.04
0.06
0.08
0.10
0.12
0.14

No
rm

al
ize

d
RM

SE

2D Incompressible Navier Stokes
 (Transformer)

Baseline
Ours

Figure 11: Joint training neural operators on data of the original PDE and the basic form improves performance
with autoregressive inference at different unrolled steps using Transformer. Models are evaluated using the
best-performing checkpoints from training shown in Figure 9.

D.4 MORE RANDOM SEEDS

To ensure the statistical robustness of our findings, we now run FNO using three different random
seeds during initialization and training. For each configuration, we report the average performance
across the three runs, and include standard deviation as error bars in all plots in Figure 12. This enables
a more rigorous evaluation of model performance, capturing the inherent variance and mitigating
the risk of overinterpretation from single-seed outcomes. We can see that the results demonstrate
that joint training of neural operators on data from both the original PDE and its decomposed basic
form yields consistent improvements in predictive performance and data efficiency, highlighting the
effectiveness of this multiphysics learning strategy.

101 102

Simulation Costs (Seconds)

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d
RM

SE

2D Diffusion-Reaction
 (FNO)

Baseline
Baseline@Spatiotemporal
Ours
Ours@Spatiotemporal

104 105

Simulation Costs (Seconds)

0.05

0.10

0.15

No
rm

al
ize

d
RM

SE

2D Incompressible Navier Stokes
 (FNO)

Baseline
Baseline@Spatiotemporal
Ours

Figure 12: Model performance averaged over three random seeds. Joint training neural operators on data of the
original PDE and the basic form consistently improves performance and data efficiency. Dash lines indicate
the mean performance, with error bars representing standard deviation. Legends align with the descriptions
in Section 4.2. Columns: (left) 2D Diffusion-Reaction, (right) 2D Navier Stokes. Y-axis: nRMSE. X-axis:
Simulation Costs (seconds).

D.5 LOSS REWEIGHTING

In Section 3.2, we define our total loss for joint learning of the original PDE (LossFull) and its
fundamental physical knowledge (decomposed basic form LossBasic) as

Loss = LossFull + 0.7× LossBasic

To address the concern regarding the fixed auxiliary loss weight, we conducted an ablation study
on the effect of auxiliary loss weighting in joint training using FNO for the 2D Diffusion-Reaction
system. We evaluate model performance across three auxiliary weight settings, 0.5, 0.7, and 1.0,
by averaging accuracy over the range of training sample sizes (Figure 5) used in the data efficiency

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

experiments. In Table 7, we show the model averaged nRMSE, which is largely consistent with only
minor variations in normalized RMSE. This result demonstrates that the model is largely insensitive
to the specific choice of auxiliary weight and suggests that the improvements achieved through joint
training are robust with respect to this hyperparameter. Based on this analysis, we fix the auxiliary
weight to 0.7 for all the experiments.

Table 7: Ablation study on the auxiliary loss weight in joint training using FNO for the 2D Diffusion-Reaction
across three settings Results of averaged nRMSE demonstrate consistent performance

Auxiliary Weights 0.5 0.7 1

Averaged nRMSE 0.0508 0.0491 0.0472

D.6 CHOICE OF FUNDAMENTAL TERM

101 102

Simulation Costs (Seconds)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

No
rm

al
ize

d
RM

SE

2D Diffusion-Reaction
 (FNO)

Baseline
Ours@Diffusion
Ours@Reaction

Figure 13: Ablation study of joint training neural operators on
data of 2D Diffusion-Reaction equation with two different de-
composed terms: the fundamental term - Diffusion, and Reaction
shows the importance of choice on fundamental term from PDE
equation. Y-axis: nRMSE. X-axis: Simulation Costs (Seconds).

To demonstrate the importance of the
choice of dropping terms, we conduct an
ablation study on 2D Diffusion-Reaction,
where we simulate reaction term instead
of the fundamental diffusion term. The
simulation cost for reaction-only term is
2.048 × 10−3 seconds per step, corre-
sponding to a 1:9 sample mixture ratio
when compared to the simulation cost of
the original PDE data, making sure the
comparable results.

From Figure 13, we can find that keep-
ing the reaction term and removing the
fundamental diffusion term will damage
the accuracy with up to 64% increase of
nRMSE, while applying the fundamental
diffusion term keep boosting the model
performance with 11% to 24% decrease
of nRMSE. This ablation study confirms
that the correct fundamental basic term can improve the data-efficiency when joint training with
the original data, and proved that the source of improvement in Figure 5 is clearly from training with
the fundamental term itself.

D.7 LIE TRANSFORM ARGUMENT ON 2D IMCOMPRESSIBLE NAVIER STOKES

Lie symmetries offer a way to generate new, physically valid training examples by exploiting the
analytic group transformations that map one PDE solution to another. This enables the model to learn
representations that are inherently equivariant to fundamental symmetries such as translation, rotation,
and scaling. To further prove the strength of our model, we leverage the implementation of Lie point
symmetry augmentation from Brandstetter et al. (2022); Mialon et al. (2023), which is orthogonal to
our multiphysics joint training approach, to 2D incompressible Navier Strokes equation.

We incorporate the augmentation process into our model. We only apply Lie-transform augmentations
exclusively to the velocity (u) of the original 2D incompressible Navier-Stokes, leaving the remaining
density and all target variables from the decomposed basic forms unchanged. Following (Mialon
et al., 2023), the Lie transformation is implemented with a second-order Lie–Trotter splitting scheme
with two steps, where the five fields (x, y, t,ux,uy) were transformed in accordance with the
sampled generator strengths as follows: a maximum time shift (g1) strength of 0.1, maximum spatial
translations (g2, g3) strength of 0.1 in x and y respectively, a maximum scaling (g4) strength of
0.05, a maximum rotation (g5) strength of 10◦, corresponding to π/18 radians, a maximum x-linear
boost (g6) and y-linear boost (g7) strength of 0.2 and a maximum x- and y-quadratic boosts (g8, g9)
strength of 0.05.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

104 105

Simulation Costs (Seconds)

0.05

0.10

0.15

No
rm

al
ize

d
RM

SE

2D Incompressible Navier Stokes
 (FNO, Lie Transform Augmentation)

Baseline
Baseline@LieTransformAug
Ours
Ours@LieTransformAug

Figure 14: Joint training neural operators on data of the
original PDE and the basic form, as a complementary data
augmentation orthogonal to Lie-transform augumentation,
can further improve performance and data efficiency. Y-axis:
normalized RMSE. X-axis: simulation costs (seconds).

As our decomposed basic form is orthog-
onal to the Lie point symmetry augmenta-
tion, our method can serve as a complemen-
tary data augmentation. In Figure 14, we
study prediction errors (nRMSE) of neural
operators trained with different numbers of
training samples (simulations). As we have
already seen (Figure 5), our approach (or-
ange square) significantly outperforms the
baseline (blue circle). In contrast, the Lie-
transform augmentation alone (yellow dia-
mond) only marginally improves the base-
line. As a result, combining our approach
with Lie transformations (green triangle)
yields strong performance, but is compara-
ble with our approach alone, underscoring the orthogonal and complementary benefits of these two
techniques.

D.8 VISUALIZATION OF PREDICTIONS

To show the predicted PDE solution from our jointly training neural operators on original PDE
equation and its basic form aligns with the ground truth, we present qualitative visualizations of
model predictions across three PDEs, 2D Diffusion-Reaction, 2D and 3D Incompressible Navier-
Stokes, and 1D Kuramoto–Sivashinsky, in Figure 15. For each PDE solution, we show the initial
condition and predicted states at intermediate and final rollout times. The predictions are generated
using the FNO model trained with our joint training framework. Across all systems and time points,
the predictions closely align with the expected dynamics, accurately capturing both spatial patterns
and temporal evolution. These visualizations highlight the model’s capacity to generalize across
scales and exhibit physically coherent behavior.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D
iff

us
io

n-
Re

ac
tio

n

Initial t = 2.5 t = 5

Prediction (FNO)

Initial t = 2.5 t = 5

Prediction (FNO)N
av

ie
r-S

to
ke

s
(2

D
)

Initial t = 1.5 t = 3

Prediction (FNO)

N
av

ie
r-S

to
ke

s
(3

D
)

Ku
ra

m
ot

o-
Si

va
sh

in
sk

y
(1

D
)

Prediction (FNO)

Ground Truth

Figure 15: Qualitative visualization of model predictions for 2D Diffusion-Reaction, 2D Incompressible Navier-
Stokes, 3D Incompressible Navier-Stokes systems and 1D Kuramoto–Sivashinsky using FNO trained with our
joint framework. For the first three case, the initial state and predicted states at intermediate and final rollout
times are shown. For 1D Kuramoto–Sivashinsky, we show the whole predicted trajectory here. The results
demonstrate accurate temporal evolution and spatial coherence.

22

	Introduction
	Background
	Definition of PDE Learning in SciML
	Motivation: Neural Operators exhibit correlated yet worse performance on Fundamental Physics

	Methods
	Fundamental Physical Knowledge via Decomposed Basic PDE Forms
	Defining Fundamental Physical Knowledge of PDEs
	Diffusion-Reaction
	Incompressible Navier-Stokes
	Kuramoto-Sivashinsky

	Joint Learning with Fundamental Physical Knowledge

	Experiments
	Settings
	Data Efficiency
	Long-term Physical Consistency
	Out-of-Distribution (OOD) Generalization
	Synthetic-to-Real Generalization

	Related Works
	Conclusion
	Simulation Settings
	Diffusion-Reaction
	2D Incompressible Navier-Stokes
	3D Incompressible Navier-Stokes
	1D Kuramoto–Sivashinsky

	Model Structure
	More Implementation Details
	More Results
	Comparison of Data Efficiency and Out-of-Distribution Generalization with Spatiotemporal Downsampling
	Data Efficiency and Out-of-Distribution Generalization of Transformer for 3D Navier Stokes
	More Long-Term Consistency Results of Transformer
	More Random Seeds
	Loss Reweighting
	Choice of Fundamental term
	Lie Transform Argument on 2D Imcompressible Navier Stokes
	Visualization of Predictions

