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ABSTRACT

Magnetic resonance imaging (MRI) is a powerful noninvasive diagnostic imaging tool
that provides unparalleled soft tissue contrast and anatomical detail. Noise contamination,
especially in accelerated and/or low-field acquisitions, can significantly degrade image
quality and diagnostic accuracy. Supervised learning based denoising approaches have
achieved impressive performance but require high signal-to-noise ratio (SNR) labels, which
are often unavailable. Self-supervised learning holds promise to address the label scarcity
issue, but existing self-supervised denoising methods tend to oversmooth fine spatial
features and often yield inferior performance than supervised methods. We introduce
Corruption2Self (C2S), a novel score-based self-supervised framework for MRI denoising.
At the core of C2S is a generalized ambient denoising score matching (GADSM) loss, which
extends denoising score matching to the ambient noise setting by modeling the conditional
expectation of higher-SNR images given further corrupted observations. This allows
the model to effectively learn denoising across multiple noise levels directly from noisy
data. Additionally, we incorporate a reparameterization of noise levels to stabilize training
and enhance convergence, and introduce a detail refinement extension to balance noise
reduction with the preservation of fine spatial features. Moreover, C2S can be extended to
multi-contrast denoising by leveraging complementary information across different MRI
contrasts. We demonstrate that our method achieves state-of-the-art performance among
self-supervised methods and competitive results compared to supervised counterparts across
varying noise conditions and MRI contrasts on the M4Raw and fastMRI dataset.

1 INTRODUCTION

Magnetic resonance imaging (MRI) is an invaluable noninvasive imaging modality that provides exceptional
soft tissue contrast and anatomical detail, playing a crucial role in clinical diagnosis and research. However,
the inherent sensitivity of MRI to noise, particularly in accelerated acquisitions and/or low-field settings, can
impair diagnostic accuracy and subsequent computational analysis. Unlike natural images, MRI data often
contains Rician or non-central chi-distributed noise in magnitude images. Denoising has become an important
processing step in the MRI data analysis pipeline. Higher signal-to-noise ratios (SNR) enable better trade-offs
for reduced scanning times or increased spatial resolution, both of which can improve patient experience
and diagnostic accuracy. Traditional denoising methods, such as Non-Local Means (NLM) Froment (2014)
and BM3D Mäkinen et al. (2020), often rely on handcrafted priors such as Gaussianity, self-similarity,
or low-rankness. The performance of these methods is limited by the accuracy of their assumptions and
often requires prior knowledge specific to the acquisition methods used. With the advent of deep learning,
supervised learning based denoising methods Zhang et al. (2017); Liang et al. (2021); Zamir et al. (2022)
have demonstrated impressive performance by learning complex mappings from noisy inputs to clean targets.
However, they rely heavily on the availability of high-quality, high-SNR “ground truth” data for training—a
resource that is not always readily available or feasible to acquire in MRI. Acquiring such clean labels
necessitates longer scan times, leading to increased costs and patient discomfort. This limitation underscores
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the need for self-supervised denoising algorithms, which remove or reduce the dependency on annotated
datasets by leveraging self-generated pseudo-labels as supervisory signals. Moreover, supervised approaches
often face generalization issues due to distribution shifts caused by differences in imaging instruments,
protocols, and noise levels Xiang et al. (2023), limiting their utility in real-world clinical settings. Techniques
such as Noise2Noise Lehtinen et al. (2018), Noise2Void Krull et al. (2019), Noise2Self Batson & Royer
(2019), and their extensions Xie et al. (2020); Huang et al. (2021); Pang et al. (2021); Jang et al. (2024); Wang
et al. (2023) have demonstrated the potential to learn effective denoising models without explicit clean targets.
Recent innovations tailored for MRI, like Patch2Self Fadnavis et al. (2020) and Coil2Coil Park et al. (2022),
further exploit domain-specific characteristics to enhance performance. However, these self-supervised
methods often have limitations. For example, Noise2Noise requires repeated noisy measurements, which
may not be practical. Methods like Noise2Void and Noise2Self rely on masking strategies that can limit the
receptive field or introduce artifacts, potentially leading to oversmoothing and loss of fine details. Approaches
such as Pfaff et al. (2023) and Park et al. (2022) require additional data processing steps, restricting their
applicability. In this paper, we introduce Corruption2Self, a score-based self-supervised framework for MRI
denoising. Building upon the principles of denoising score matching (DSM) Vincent (2011), we extend
DSM to the ambient noise setting, where only noisy observations are available, enabling effective learning in
practical MRI settings where high-SNR data are scarce or impractical to obtain. An overview of the C2S
workflow is illustrated in Figure 1. Additionally, we incorporate a reparameterization of noise levels for
a consistent coverage of the noise level range during training, leading to enhanced training stability and
convergence. In medical imaging, the visual quality of the output and the preservation of diagnostically
relevant features are often more critical than achieving high scores on standard metrics. To address this
priority, a detail refinement extension is introduced to balance noise reduction with the preservation of fine
spatial feature. Furthermore, we extend C2S to multi-contrast denoising by integrating data from multiple
MRI contrasts. This approach leverages complementary information across contrasts, indicating the potential
of C2S to better exploit the rich information available in multi-contrast MRI acquisitions.

Figure 1: Overview of the Corruption2Self (C2S) workflow for MRI denoising. Starting from a noisy MRI
image Xtdata , the forward corruption process adds additional Gaussian noise to create progressively noisier
versions Xt. During training, the model learns to reverse this process by estimating the clean image X0

from these corrupted observations, despite having access only to noisy data. The denoising function hθ

approximates the conditional expectation E[X0 | Xt], effectively learning to denoise without clean targets. A
reparameterized function Dθ(Xt, t), which shares parameters with hθ, is used to compute the loss.

We conduct extensive experiments on publicly available datasets, including a low-field MRI dataset, to
evaluate the performance of C2S. Our results demonstrate that C2S achieves state-of-the-art performance
among self-supervised methods and, after extending to multi-contrast on the M4Raw dataset, shows state-of-
the-art performance among both self-supervised and supervised methods. Notably, we are among the first to
comprehensively analyze and compare self-supervised and supervised learning approaches in MRI denoising.
Our findings reveal that C2S not only bridges the performance gap but also offers robust performance under
varying noise conditions and MRI contrasts. This indicates the potential of self-supervised learning to achieve
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competitive performance with supervised approaches when the latter are trained on practically obtainable
higher-SNR labels, particularly in scenarios where perfectly clean ground truth is unavailable, offering a
practical and robust solution adaptable to broader clinical settings.

2 BACKGROUND

2.1 LEARNING-BASED DENOISING WITHOUT CLEAN TARGETS

A central concept in many of the self-supervised denoising methods is J-invariance Batson & Royer (2019),
where the denoising function is designed to be invariant to certain subsets of pixel values. Techniques like
Noise2Void Krull et al. (2019) and Noise2Self Batson & Royer (2019) utilize this property by masking pixels
and predicting their values based on their surroundings, approximating supervised learning objectives without
the need for clean data. Noise2Same Xie et al. (2020) extends these concepts by implicitly enforcing J -
invariance via optimizing a self-supervised upper bound. Approaches such as Neighbor2Neighbor Huang et al.
(2021), Noisier2Noise Moran et al. (2020), and Recorrupted2Recorrupted Pang et al. (2021) create pairs of
images from a single noisy observation to mimic the effect of supervised training objectives with independent
noisy pairs. Noise2Score Kim & Ye (2021) exploits the assumption that noise follows an exponential family
distribution and utilizes Tweedie’s formula to obtain the posterior expectation of clean images using the
estimated score function via the AR-DAE Lim et al. (2020) approach. This approach highlights a connection
between Stein’s Unbiased Risk Estimator (SURE)-based denoising methods Soltanayev & Chun (2018); Kim
et al. (2020) and score matching objectives Hyvärinen & Dayan (2005). Specifically, under additive Gaussian
noise, the SURE cost function can be reformulated as an implicit score matching objective, differing only
by a scaling factor and a constant term Kim & Ye (2021). In the context of MRI, recent innovations have
capitalized on the intrinsic properties of data within a self-supervised framework Moreno López et al. (2021)
to enhance denoising performance without clean labels. Pfaff et al. (2023) utilizes SUREKim et al. (2020)
and spatially resolved noise maps, acquired via an additional pipeline, to enhance denoising performance in
MRI applications. Coil2Coil Park et al. (2022) leverages coil sensitivity to exploit multi-coil information
effectively, enhancing the denoising process. In the realm of diffusion MRI, Patch2Self Fadnavis et al. (2020)
uses a J -invariant approach to preserve critical anatomical details by selectively excluding target volume
data from its training inputs. Additionally, DDM2 Xiang et al. (2023) employs a three-stage process with
generative models to achieve efficient denoising across various 4D sequences.

2.2 DENOISING SCORE MATCHING

Denoising Score Matching (DSM) Vincent (2011) is a framework for learning the score function (i.e., the
gradient of the log-density) of the data distribution by training a model to reverse the corruption process
of adding Gaussian noise. In DSM, given a clean data sample X0 ∈ Rd and a noise level σt > 0, a noisy
observation Xt is generated by adding Gaussian noise:Xt = X0 + σtZ, Z ∼ N (0, Id). The objective
is to train a denoising function hθ : Rd × R → Rd, parameterized by θ, that estimates the clean image
X0 from its noisy counterpart Xt. This is achieved by minimizing the expected mean squared error (MSE)
loss EX0,Xt

[
∥hθ(Xt, t)−X0∥2

]
. Vincent (2011) demonstrated that optimizing the denoising function hθ

using the MSE loss is equivalent to learning the score function of the noisy data distribution pt(xt) up to a
scaling factor. Specifically, using Tweedie’s formula, the relationship between the denoising function and
the score function is given by: ∇xt log pt(xt) =

1
σ2
t
(hθ(xt, t)− xt) . By learning hθ, we implicitly learn

∇xt
log pt(xt), which forms the foundation of score-based generative models Song & Ermon (2019); Ho et al.

(2020). However, DSM relies on access to clean data during training, limiting its applicability in situations
where only noisy observations are available. Ambient Denoising Score Matching (ADSM) Daras et al. (2024)
leverages a double application of Tweedie’s formula to relate noisy and clean distributions, enabling score-
based learning from noisy observations. While ADSM was originally designed to mitigate memorization in
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large diffusion models by treating noisy data as a form of regularization Daras et al. (2024), its potential for
self-supervised denoising remains underexplored. In our work, we adapt and generalize ADSM to develop a
self-supervised framework for MRI denoising, where clean ”ground truth” labels are typically unavailable,
bridging the gap of score-based self-supervised denoising in practical imaging applications.

3 METHODOLOGY

In the context of MRI denoising, we consider a clean image X0 ∈ Rd and its corresponding noisy observation
Xtdata ∈ Rd. We formulate the self-supervised denoising problem as estimating the conditional mean
E[X0 | Xtdata ], which is the optimal estimator of X0 in the minimum mean square error (MMSE) sense.
While estimating this typically requires clean or high-SNR labels in a supervised learning setting, we adopt an
ambient score-matching perspective inspired by Daras et al. (2024), circumventing the need for clean labels.

The noisy image can be modeled as: Xtdata = X0 + σtdataN, where σtdata > 0 denotes the noise level at the
data noise level tdata, and N ∼ N (0, Id) represents the noise component. In MRI, the noise N is typically
assumed to be additive, ergodic, stationary, uncorrelated, and white in k-space Liang & Lauterbur (2000).
When the signal-to-noise ratio (SNR) exceeds two, the noise in the image domain can be approximated
as Gaussian distributed Gudbjartsson & Patz (1995). But note that while this is needed for our theoretical
justification, it does not appear necessary for empirical performance. The noise level σtdata scales the noise to
match the observed noise level in the MRI data.

To facilitate self-supervised learning, we introduce a forward corruption process that adds additional Gaussian
noise to Xtdata , defining a series of increasingly noisy versions of the data:

Xt = Xtdata +
√

σ2
t − σ2

tdata
Z, Z ∼ N (0, Id), t ≥ tdata, (1)

where σt is a strictly increasing noise schedule function for t ∈ (tdata, T ], with T being the maximum noise
level. This process allows us to model the distribution of the noisy data at different noise levels and forms the
basis for our generalized ambient denoising score matching approach. In scenarios where the noise does not
perfectly adhere to a Gaussian distribution (e.g., Rician noise in low-SNR regions), pre-processing techniques
such as the Variance Stabilizing Transform (VST) Foi (2011) can be applied to better approximate Gaussianity
in the noise distribution. Our goal is to train a denoising function hθ : Rd × R → Rd, parameterized by θ,
which maps a noisy input Xt at noise level t to an estimate of the clean image X0 or a less noisy version
corresponding to a target noise level σttarget ≤ σtdata , where Xttarget = X0 + σttargetN0, with N0 ∼ N (0, Id).

3.1 GENERALIZED AMBIENT DENOISING SCORE MATCHING

We introduce the Generalized Ambient Denoising Score Matching (GADSM) loss, which enables learning a
denoising function directly from noisy observations by modeling the conditional expectation of a higher-SNR
image given a further corrupted version of the noisy data (proof provided in Appendix 4).

Theorem 1 (Generalized Ambient Denoising Score Matching). Let X0 ∈ Rd represent clean data, distributed
as p0(x0). The noisy observation Xtdata is given by: Xtdata = X0 + σtdataN, N ∼ N (0, Id). For t ≥ tdata,
Xt follows the process in Equation equation 1. Let hθ : Rd × (tdata, T ] → Rd be a denoising function
parameterized by θ, and let σttarget ≤ σtdata be the target noise level. Define the loss function:

J(θ) = EXtdata ,t,Xt

[∥∥γ(t, σttarget)hθ(Xt, t) + δ(t, σttarget)Xt −Xtdata

∥∥2] , (2)

where t is uniformly sampled from (tdata, T ] and γ(t, σttarget) =
σ2
t−σ2

tdata
σ2
t−σ2

ttarget
, δ(t, σttarget) =

σ2
tdata

−σ2
ttarget

σ2
t−σ2

ttarget
.
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Then, the minimizer θ∗ of J(θ) satisfies hθ∗(Xt, t) = E
[
Xttarget | Xt

]
.

Relation to Existing Methods: GADSM generalizes several existing denoising frameworks. When σttarget =
σtdata , GADSM reduces to DSM Vincent (2011), and when σttarget = 0, it generalizes ADSM Daras et al.
(2024). GADSM also subsumes Noisier2Noise Moran et al. (2020) as a special case when σttarget = 0 with a
fixed noise level σ2

t = (1 + α2)σ2
tdata

, where the coefficients reduce to γ(t, 0) = α2

1+α2 and δ(t, 0) = 1
1+α2

(detailed analysis in Section B.2), generalizing Noisier2Noise with a continuous range of noise levels.

To enhance training stability and improve convergence, we introduce a reparameterization of the noise levels.

Let τ ∈ (0, T ′] be a new variable defined by σ2
τ = σ2

t − σ2
tdata

, T ′ =
√
σ2
T − σ2

tdata
. The original t can be

recovered via the inverse of σt, as: t = σ−1
t

(√
σ2
τ + σ2

tdata

)
. Since σt is strictly increasing, σ−1

t is well-
defined. In practice, as T ′ ≫ tdata, we approximate T ′ ≈ T to allow uniform sampling over τ and consistent
coverage of the noise level range during training, leading to smoother and faster convergence as shown in 2.
To further improve training stability, we combine our reparameterization strategy with Exponential Moving
Average (EMA) of model parameters. Under this reparameterization, we have Xt = Xtdata + στZ, with
Z ∼ N (0, Id), and the loss function in Equation equation 5 becomes:

J ′(θ) = EXtdata ,τ,Xt

[∥∥γ′(τ, σttarget)hθ(Xt, t) + δ′(τ, σttarget)Xt −Xtdata

∥∥2] , (3)

where the coefficients are: γ′(τ, σttarget) =
σ2
τ

σ2
τ+σ2

tdata
−σ2

ttarget
, δ′(τ, σttarget) =

σ2
tdata

−σ2
ttarget

σ2
τ+σ2

tdata
−σ2

ttarget
.

Corollary 2 (Reparameterized Generalized Ambient Denoising Score Matching). With our reparameteriza-
tion strategy, the minimizer θ∗ of the objective J ′(θ) satisfies (proof provided in Appendix 5):

hθ∗(Xt, t) = E
[
Xttarget | Xt

]
, ∀Xt ∈ Rd, t ≥ tdata.

Figure 2: Effectiveness of Reparameterization in Noise Level Adjustment on M4Raw FLAIR Dataset. Com-
parison of PSNR and SSIM metrics on the validation set between different model configurations for the first
125 training epochs (T = 5, σtarget = 0). The combination of reparameterization and EMA (0.999) provides
the most stable training dynamics, with reparameterization enabling improved convergence.

3.2 CORRUPTION2SELF: A SCORE-BASED SELF-SUPERVISED MRI DENOISING FRAMEWORK

Building upon the Reparameterized Generalized Ambient Denoising Score Matching introduced earlier,
we propose Corruption2Self (C2S) where the objective is to train a denoising function hθ that approx-
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imates the conditional expectation E
[
Xttarget | Xt

]
, where Xttarget is a less noisy version of Xtdata with

noise level σttarget ≤ σtdata . To facilitate optimization, we introduce a reparameterized function Dθ(Xτ , τ),
which shares parameters with hθ and combines the network output with the input through weighted
skip connections. The reparameterized function is defined as: Dθ(Xτ , τ) = λout(τ, σttarget)hθ(Xt, t) +
λskip(τ, σttarget)Xt, where Xt = Xtdata + στZ, with Z ∼ N (0, Id), and the coefficients are: λout(τ, σttarget) =

σ2
τ

σ2
τ+σ2

tdata
−σ2

ttarget
, λskip(τ, σttarget) =

σ2
tdata

−σ2
ttarget

σ2
τ+σ2

tdata
−σ2

ttarget
. In the primary case for C2S, where σttarget = 0, the goal

is to predict E[X0 | Xt] and the coefficients simplify to: λout(τ, 0) =
σ2
τ

σ2
τ+σ2

tdata
, λskip(τ, 0) =

σ2
tdata

σ2
τ+σ2

tdata
.

Our loss function is then expressed as:

LC2S(θ) =
1

2
EXtdata∼ptdata (x)

τ∼U(0,T ]
Z∼N (0,Id)

[
w(τ) ∥Dθ(Xτ , τ)−Xtdata∥

2
2

]
, (4)

where w(τ) is a weighting function designed to balance the contributions from different noise levels. Follow-
ing practices from prior works Song et al. (2020); Kingma et al. (2021); Karras et al. (2022), w(τ) can be set
to

(
σ2
τ + σ2

tdata

)α
, with α being a hyperparameter controlling the weighting.

During inference, given a noisy observation Xtdata , the denoised output is obtained by: X̂ = hθ∗(Xtdata , tdata),
where the trained model hθ∗ approximates E [X0 | Xtdata ], providing a clean estimate of the image.

While the C2S training procedure effectively approximates E[X0 | Xt] in the primary case, it can lead to
oversmoothing and loss of fine details. To maintain a balance between noise reduction and feature preservation,
we introduce a detail refinement extension where the network is trained to predict E[Xttarget | Xt] with
a non-zero target noise level σttarget > 0, allowing the network to retain a controlled amount of noise for
preserving finer image textures (details are provided in Appendix G). As shown in Table 1, incorporating
the detail refinement extension leads to a statistically significant improvement in image quality across
contrasts. Our denoising model builds upon the U-Net architecture employed in DDPM Ho et al. (2020),
enhanced with time conditioning and the Noise Variance Conditioned Multi-Head Self-Attention (NVC-MSA)
module Hatamizadeh et al. (2023), which enables the self-attention layers to dynamically adapt to varying
noise scales. Empirically, we found that setting the noise schedule function στ equal to the noise level τ yields
good performance. More details regarding the architecture and implementation are provided in Appendix C.

4 RESULTS AND DISCUSSION

We first evaluate C2S on the M4Raw dataset, which includes in-vivo MRI data with real noise. The training
and validation data use three-repetition-averaged images, while the test data comprises higher-SNR labels,
created by averaging six repetitions for T1 and T2, and four for FLAIR. This setup allows us to assess how well
denoising methods perform when evaluated on cleaner test data. Table 2 compares the performance of C2S
against classical methods (NLM, BM3D), supervised learning (SwinIR, Restormer, Noise2Noise), and self-
supervised approaches (Noise2Void, Noise2Self, PUCA, LG-BPN, Noisier2Noise, Recorrupted2Recorrupted).
C2S consistently outperforms other self-supervised methods, achieving the highest PSNR and SSIM across
all contrasts. Our base C2S model significantly outperforms existing self-supervised methods across all
contrasts, achieving PSNRs of 32.59dB, 32.28dB, and 32.43dB for T1, T2, and FLAIR respectively. With
our detail refinement extension, C2S further improves performance to 32.77dB/0.919, 32.33dB/0.890, and
32.92dB/0.876 for T1, T2, and FLAIR contrasts respectively. Notably, recent self-supervised methods like
PUCA and LG-BPN, demonstrate lower performance on MRI data. This performance gap can be attributed
to their blind-spot architecture design, which inevitably leads to information loss and produces oversmoothed
results in the medical imaging context.
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Algorithm 1 Corruption2Self Training Procedure

Require: Noisy dataset Xtdata
N
i=1, hθ , max noise level

T , batch size m, total iterations K, noise schedule
function στ

1: for k = 1 to K do
2: Sample minibatch Xtdata

m
i=1, τ ∼ U(0, T ], Z ∼

N (0, Id)

3: Compute λout(τ, 0) =
σ2
τ

σ2
τ+σ2

tdata

, λskip(τ, 0) =

σ2
tdata

σ2
τ+σ2

tdata

4: Recover t = σ−1
t (

√
σ2
τ + σ2

tdata
)

5: Compute Xt ← Xtdata + στZ
6: Compute loss: LC2S(θ) =

1
2m

∑m
i=1 w(τ)∥ · ∥

7: Update θ using Adam optimizer Kingma (2014)

Table 1: Effectiveness of detail refinement module
on the M4Raw validation dataset. Improvements are
statistically significant (∗p < 0.05) using paired t-tests.
Additional details are provided in Appendix G.

Contrast PSNR p-value
T1 34.56±0.062 → 34.89±0.038 0.001∗

T2 33.84±0.090 → 34.07±0.121 0.001∗

FLAIR 32.44±0.073 → 32.58±0.089 0.016∗

SSIM p-value
T1 0.885±0.002 → 0.892±0.003 0.007∗

T2 0.860±0.003 → 0.867±0.002 0.003∗

FLAIR 0.812±0.004 → 0.818±0.001 0.005∗

Methods T1 T2 FLAIR
PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Classical Non-Learning-Based Methods
NLM Froment (2014) 31.90 / 0.898 31.17 / 0.876 32.01 / 0.870
BM3D Mäkinen et al. (2020) 32.07 / 0.903 31.20 / 0.877 32.14 / 0.873

Supervised Learning Methods
SwinIR Liang et al. (2021) 32.53 / 0.913 31.90 / 0.891 32.15 / 0.885
Restormer Zamir et al. (2022) 32.35 / 0.912 31.79 / 0.890 32.31 / 0.886
Noise2Noise Lehtinen et al. (2018) 32.59 / 0.911 32.37 / 0.886 32.70 / 0.871

Self-Supervised Single-Contrast Methods
Noise2Void Krull et al. (2019) 31.46 / 0.870 30.93 / 0.857 31.17 / 0.851
Noise2Self Batson & Royer (2019) 31.72 / 0.887 31.18 / 0.873 31.72 / 0.870
PUCA Jang et al. (2024) 30.52 / 0.870 29.11 / 0.827 29.57 / 0.807
LG-BPN Wang et al. (2023) 31.15 / 0.890 30.66 / 0.868 30.82 / 0.862
Noisier2Noise Moran et al. (2020) 31.60 / 0.876 31.45 / 0.871 31.59 / 0.861
Recorrupted2Recorrupted Pang et al. (2021) 31.67 / 0.876 31.33 / 0.870 31.57 / 0.863
C2S 32.59 / 0.915 32.28 / 0.888 32.43 / 0.872
C2S (w/ Detail Refinement) 32.77 / 0.919 32.33 / 0.890 32.92 / 0.876

Table 2: Quantitative results on the M4Raw dataset evaluated on test dataset.

An important observation is that supervised methods such as SwinIR and Restormer, trained on three-
repetition-averaged labels, do not significantly outperform self-supervised methods on higher-SNR test data.
Supervised models typically learn E[Xttarget | Xtdata ], where tdata > ttarget > 0 when multi-repetition averaged
samples are used as labels. This makes supervised methods less effective at handling shifts to higher-SNR test
data. In contrast, C2S approximates E[X0 | Xt], allowing it to achieve competitive performance on test data.
Empirical results on test labels (three-repetition-average) matching the SNR of the training data (presented
in Appendix F) show that supervised methods like SwinIR and Restormer perform better when the noise
characteristics of the training and test data are similar.
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Figure 3: Comparison of different denoising methods for T1 contrast from the M4Raw dataset.

Methods PD, σ = 13/255 PD, σ = 25/255 PDFS, σ = 13/255 PDFS, σ = 25/255
PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Classical Non-Learning-Based Methods
NLM 30.40 / 0.772 21.63 / 0.327 28.82 / 0.726 21.12 / 0.350
BM3D 33.16 / 0.829 30.58 / 0.755 30.64 / 0.705 28.49 / 0.592

Supervised Learning Methods
Noise2True (SwinIR) 34.44 / 0.868 32.39 / 0.820 31.35 / 0.774 29.55 / 0.665
Noise2True (U-Net) 34.54 / 0.870 32.61 / 0.825 31.39 / 0.775 29.62 / 0.669
Noise2Noise Lehtinen et al. (2018) 34.06 / 0.854 30.83 / 0.769 31.33 / 0.773 29.12 / 0.654

Self-Supervised Methods
Noise2Void Krull et al. (2019) 32.19 / 0.804 29.79 / 0.706 29.50 / 0.629 27.99 / 0.558
Noise2Self Batson & Royer (2019) 32.47 / 0.808 30.60 / 0.757 29.32 / 0.613 28.31 / 0.563
PUCA Jang et al. (2024) 31.03 / 0.771 29.88 / 0.740 28.65 / 0.594 27.54 / 0.527
LG-BPN Wang et al. (2023) 31.15 / 0.776 30.32 / 0.751 29.14 / 0.603 27.77 / 0.535
Noisier2Noise Moran et al. (2020) 33.18 / 0.807 30.35 / 0.741 30.39 / 0.683 27.83 / 0.559
Recorrupted2Recorrupted Pang et al. (2021) 33.29 / 0.810 30.52 / 0.745 30.95 / 0.752 28.32 / 0.561
C2S 33.36 / 0.831 30.62 / 0.753 30.72 / 0.750 28.69 / 0.602
C2S (w/ Detail Refinement) 33.48 / 0.832 30.67 / 0.761 30.91 / 0.756 28.72 / 0.610

Table 3: Quantitative results on the fastMRI dataset with different contrasts and noise levels.

Figure 4: Comparison of denoising methods for the PD contrast (σ = 13/255) from the fastMRI dataset.

To further evaluate the robustness of C2S under different noise levels, we conducted experiments on the
fastMRI dataset Zbontar et al. (2018), simulating Gaussian noise with σ = 13/255 and σ = 25/255.
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As shown in Table 3, the same baseline methods are analyzed and C2S consistently achieves the best or
comparable results among self-supervised methods. On PDFS with σ = 13/255, Recorrupted2Recorrupted
achieves a slightly higher PSNR (30.95 dB vs. 30.91 dB); however, C2S records the highest SSIM (0.756),
indicating better detail preservation. It is worth noting that although the labels in this simulated dataset do not
have added synthetic noise, they still contain inherent noise typical in MRI, albeit with higher SNR. Figure 4
demonstrates that our method balances feature preservation and noise removal, resulting in much cleaner
visual representations compared to other methods. For additional results on fastMRI, refer to Appendix E.

We assessed the effect of reparameterization on training stability and performance by mapping the noise
levels τ ∈ (0, T ] to a new scale for more uniform sampling. As shown in Table 4a, reparameterization
improves PSNR and SSIM across all contrasts. The training dynamics, illustrated in Figure 2, confirm the
stabilizing effect of reparameterization. The model with reparameterization (blue) shows smoother and faster
convergence than the model without it (orange), which fluctuates more and converges slower.

Method T1 T2 FLAIR
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Without Reparam. 31.14 0.837 30.53 0.807 30.43 0.771
With Reparam. 34.43 0.882 33.82 0.860 32.56 0.814

(a) Impact of reparameterization of noise levels on the M4Raw dataset.
Results are validation results obtained after training for 200 epochs.

Architecture M4Raw fastMRI
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

U-Net 33.11 0.865 32.32 0.807
DDPM 34.82 0.886 33.48 0.835
Ours 34.91 0.890 33.63 0.837

(b) Influence of model architecture on the
M4Raw dataset (T1) and fastMRI dataset (PD).

Table 4: Ablation studies on the impact of reparameterization and model architecture.

We also analyzed the impact of the maximum corruption level T . All models were trained for 300 epochs
with the same hyperparameters. As shown in Table 5, performance generally improves with higher T , peaking
at T = 10 for the M4Raw dataset (T1 contrast). For the fastMRI dataset (PD contrast, 25/255 noise level),
the best performance occurs at T = 5. These results indicate that while increasing T generally benefits
performance, excessively high corruption levels may not lead to further improvements within the given
training budget and could require longer training times to converge.

T
M4Raw T1 fastMRI PD25

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
3 33.30 0.869 30.58 0.740
5 33.91 0.879 31.01 0.765
10 34.91 0.890 30.41 0.751
15 34.35 0.882 30.42 0.743
20 34.43 0.882 30.52 0.755

Table 5: Influence of maximum corruption level T .

We evaluated the impact of different architectural
choices on the performance of our denoising model.
As shown in Table 4b, incorporating time condition-
ing significantly improves both PSNR and SSIM
across the M4Raw (T1 contrast) and fastMRI (PD
contrast, noise level 13/255) datasets. The best per-
formance is achieved by further incorporating the
NVC-MSA module in our model (Appendix C),
which allows the model to dynamically adapt to
varying noise levels by integrating noise variance
into the self-attention mechanism.

Our approach demonstrates strong robustness to noise level estimation errors, making it suitable for prac-
tical applications where exact noise levels may be unknown. Through extensive experiments detailed in
Appendix H, we show that C2S maintains stable performance even with significant estimation errors (±50%
of the true noise level). This robustness, combined with the incorporation of standard noise estimation
techniques (e.g., from the skimage package Van der Walt et al. (2014)), enables our method to effectively
function as a blind denoising model. In practice, we find such noise estimation tools provide sufficiently
accurate estimates for optimal model performance, alleviating the need for precise noise level knowledge.
More quantitative results and analysis of the effect of noise estimation error are provided in Appendix H.
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Extending C2S to Multi-Contrast Settings MRI typically involves acquiring multiple contrasts to provide
comprehensive diagnostic information. By leveraging complementary information from different contrasts,
denoising performance can be significantly enhanced. To capitalize on this, we extend the C2S framework to
multi-contrast settings by incorporating additional MRI contrasts as inputs. Figure 5 demonstrates the visual
comparison of different denoising methods for the T1 contrast on the M4Raw dataset. It is evident that using
multi-contrast inputs (T1 & T2, T1 & FLAIR) allows for better structural preservation and more detailed
reconstructions compared to single-contrast denoising techniques. Quantitatively, Table 6 shows that multi-
contrast C2S consistently outperforms classical BM3D, supervised Noise2Noise, and single-contrast C2S in
terms of PSNR and SSIM. More results and multi-contrast processing details can be found in Appendix D.

Target Contrast Best Classical Best Supervised Best Self-Supervised Multi-Contrast C2S
PSNR / SSIM ↑ BM3D Noise2Noise C2S T1 & T2 FLAIR & T1 T2 & FLAIR

T1 32.07 / 0.903 32.59 / 0.911 32.77 / 0.919 33.57 / 0.925 34.11 / 0.926 N/A
T2 31.20 / 0.877 32.37 / 0.886 32.33 / 0.890 33.11 / 0.901 N/A 33.44 / 0.903
FLAIR 32.14 / 0.873 32.70 / 0.871 32.92 / 0.876 N/A 32.98 / 0.901 33.02 / 0.899

Table 6: Multi-contrast denoising results on the M4Raw dataset. For the multi-contrast C2S results, entries
such as ”T1 & T2” indicate that T1 and T2 contrasts were used as inputs for denoising the target contrast.

Figure 5: Comparison of different denoising methods for T1 contrast in the M4Raw dataset. The figure
showcases Noisy, BM3D, Noise2Noise, and C2S, along with multi-contrast C2S variants (T1 & T2, T1 &
FLAIR). Multi-contrast C2S preserves more structural details and produces sharper reconstructions.

5 CONCLUSION

We have introduced Corruption2Self (C2S), a score-based self-supervised denoising framework tailored
for MRI applications. By extending denoising score matching to the ambient noise setting through our
Generalized Ambient Denoising Score Matching (GADSM) approach, C2S enables effective learning directly
from noisy observations without the need for clean labels. Our method incorporates a reparameterization of
noise levels to stabilize training and enhance convergence, as well as a detail refinement extension to balance
noise reduction with the preservation of fine spatial features. By extending C2S to multi-contrast settings, we
further leverage complementary information across different MRI contrasts, leading to enhanced denoising
performance. Notably, C2S exhibits superior robustness across varying noise conditions and MRI contrasts,
highlighting its potential for broader applicability in clinical settings.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 DATASETS

For the empirical evaluation of our Corruption2Self (C2S) method, we utilized two datasets:

In-vivo Dataset (M4Raw): The M4Raw dataset Lyu et al. (2023) comprises multi-channel k-space images
across T1-weighted, T2-weighted, and FLAIR contrasts from 183 participants. Each participant has three-
repetition volumes for T1-weighted and T2-weighted contrasts and two-repetition volumes for the FLAIR
contrast. The dataset was split into 128 individuals (6,912 slices) for training, 30 individuals (1,620 slices) for
validation, and 25 individuals (1,350 slices) for testing. The training and validation data utilize three-repetition-
averaged images, while the test data comprises higher-SNR labels, created by averaging six repetitions for the
T1-weighted and T2-weighted contrasts and four repetitions for the FLAIR contrast. This setup allows for
evaluating how well denoising methods generalize to cleaner test data. Pseudo-ground truth labels for the
T1-weighted and T2-weighted contrasts were generated by averaging the three-repetition images, while for
the FLAIR contrast, pseudo-ground truth labels were generated by averaging the two-repetition images in the
training and validation phases. The total storage cost of the dataset is 20.7GB, and its re-usage is regulated by
the CC-BY-4.0 license.

Simulated Dataset (fastMRI): The fastMRI dataset Zbontar et al. (2018) consists of MRI images from various
regions and contrasts. For simplicity and training efficiency, we utilized only single-coil knee data. To ensure
pair-wise correspondence of the contrasts, we retrieved patient entry files used in MINet Feng et al. (2021) to
match the slices. The dataset originally comprised 227 training pairs (8,332 slices) and 45 testing pairs (1,665
slices), with the 227 training pairs further partitioned into 180 training pairs (6,648 slices) and 47 validation
pairs (1,684 slices) for hyper-parameter tuning. White Gaussian noise with σ ∈ [13, 25] was injected to
closely resemble the noise pattern found in real-world MRI data. The total storage cost of the dataset is
31.5GB, and its re-usage is regulated by the MIT license.

A.2 TRAINING PARAMETERS

All models were trained on NVIDIA A6000 GPUs. For the M4Raw dataset, we employed the Adam optimizer
with a learning rate of 1×10−4 and a weight decay of 1×10−4. For the fastMRI dataset, the Adam optimizer
was configured with a learning rate of 1× 10−4 and a weight decay of 5× 10−2. Hyperparameters, including
learning rate, weight decay, batch size, and the maximum noise level T , were tuned based on performance on
the validation sets. We employed early stopping based on the validation loss to prevent overfitting. The final
models were selected based on the best validation performance and then evaluated on the test sets.

A.3 EVALUATION PROTOCOL & COMPARATIVE METHODS

To assess the efficacy and robustness of the Corruption2Self (C2S) framework, we employed the following
evaluation protocol:

Pseudo-Ground Truth Generation: For the in-vivo dataset (M4Raw), pseudo-ground truth labels were
generated by averaging the multi-repetition images.

Image Quality Metrics: The quality of the denoised images was quantified using two metrics:

• Peak Signal-to-Noise Ratio (PSNR): This metric measures the ratio between the maximum possible
power of a signal and the power of corrupting noise, assessing the quality of the denoised image
against the reference label.

• Structural Similarity Index Measure (SSIM): This metric evaluates the structural similarity
between the denoised image and the reference, focusing on luminance, contrast, and structure.
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Error Bars: Variability arises primarily from initialization randomness. We calculated error bars by
performing five repetitions of each experiment, each with a different random seed. We computed the mean
and standard deviation of the PSNR and SSIM values across these runs. We assume that the errors are
normally distributed, and the error bars in the plots represent the standard deviation (1-sigma error bars).

B THEORETICAL RESULTS

Lemma 3. Given the objective function J(θ):

J(θ) = EXtdata

[
Et

[
EXt|Xtdata

[
∥gθ(Xt, t)−Xtdata∥

2
]]]

,

where Xt ∼ N (Xtdata , σ
2(t)I), the function gθ∗(Xt, t) that minimizes J(θ) is the conditional expectation:

gθ∗(Xt, t) = E [Xtdata | Xt] .

Proof. Our goal is to find gθ∗(Xt, t) that minimizes the objective function J(θ). Since the outer expectations
over Xtdata and t do not affect the minimization with respect to θ, we focus on minimizing the inner expectation:

EXt|Xtdata

[
∥gθ(Xt, t)−Xtdata∥

2
]
.

For fixed Xt and t, the optimal function gθ∗(Xt, t) minimizes the expected squared error:

min
gθ

EXtdata |Xt

[
∥gθ(Xt, t)−Xtdata∥

2
]
.

According to estimation theory, the function that minimizes this expected squared error is the conditional
expectation of Xtdata given Xt:

gθ∗(Xt, t) = E [Xtdata | Xt] .

Therefore, the function gθ∗(Xt, t) = E [Xtdata | Xt] minimizes the objective function J(θ).

Theorem 4 (Generalized Ambient Denoising Score Matching (Detailed Version)). This theorem corresponds
to Theorem 1 in the main paper. For completeness, we restate it here with additional details and proof.

Let the following assumptions hold:

1. Data Distribution: The clean data vector X0 ∈ Rd is distributed according to p0(x0).

2. Noise Level Functions: The noise level or schedule functions σt are strictly positive, scalar-valued
functions of time t, and are monotonically increasing with respect to t.

3. Noisy Observations at Data Noise Level tdata: The observed data Xtdata is given by Xtdata =
X0 + σtdataZtdata , where Ztdata ∼ N (0, Id).

4. Target Noise Level ttarget ≤ tdata: The target noisy data Xttarget is defined as Xttarget = X0 +
σttargetZttarget , where Zttarget ∼ N (0, Id).

5. Higher Noise Levels t ≥ tdata: For any t ≥ tdata, the noisy data Xt is given by Xt = X0 + σtZt,
where Zt ∼ N (0, Id).

6. Function Class Expressiveness: The neural network class {hθ} is sufficiently expressive, satisfying
the universal approximation property.
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Define the objective function:

J(θ) = EXtdata ,t,Xt

[∥∥γ(t, σttarget)hθ(Xt, t) + δ(t, σttarget)Xt −Xtdata

∥∥2] , (5)

where t is uniformly sampled from (tdata, T ] and

γ(t, σttarget) =
σ2
t − σ2

tdata

σ2
t − σ2

ttarget

, δ(t, σttarget) =
σ2
tdata

− σ2
ttarget

σ2
t − σ2

ttarget

.

Given Xtdata and t ≥ tdata, Xt is sampled as:

Xt = Xtdata +
√
σ2
t − σ2

tdata
Z, where Z ∼ N (0, Id). (6)

Then, the minimizer θ∗ of J(θ) satisfies:

hθ∗(Xt, t) = E[Xttarget | Xt], ∀Xt ∈ Rd, t ≥ tdata. (7)

Proof. Our goal is to find θ∗ that minimizes J(θ). Note that Xt can be expressed in terms of both Xtdata and
Xttarget :

Xt = Xtdata +
√
σ2
t − σ2

tdata
Z1, Z1 ∼ N (0, Id),

Xt = Xttarget +
√
σ2
t − σ2

ttarget
Z2, Z2 ∼ N (0, Id).

Using properties of Gaussian distributions, the score function ∇Xt
log pt(Xt) can be written in two ways:

∇Xt
log pt(Xt) =

E [Xtdata | Xt]−Xt

σ2
t − σ2

tdata

=
E
[
Xttarget | Xt

]
−Xt

σ2
t − σ2

ttarget

.

Equating these expressions and rearranging terms:

E [Xtdata | Xt] =
σ2
t − σ2

tdata

σ2
t − σ2

ttarget

E
[
Xttarget | Xt

]
+

σ2
tdata

− σ2
ttarget

σ2
t − σ2

ttarget

Xt.

Recognizing the coefficients as γ(t, σttarget) and δ(t, σttarget), respectively:

E [Xtdata | Xt] = γ(t, σttarget)E
[
Xttarget | Xt

]
+ δ(t, σttarget)Xt.

Define the auxiliary function:

gθ(Xt, t) = γ(t, σttarget)hθ(Xt, t) + δ(t, σttarget)Xt.

Substituting into the loss function J(θ), we have:

J(θ) = E
[
∥gθ(Xt, t)−Xtdata∥

2
]
.

This is a mean squared error (MSE) objective between gθ(Xt, t) and Xtdata .

The objective function becomes:

J(θ) = EXtdata
EtEXt|Xtdata

[
∥gθ(Xt, t)−Xtdata∥

2
]
.
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By the property of MSE minimization (Lemma 3), the function gθ∗(Xt, t) that minimizes J(θ) satisfies:

gθ∗(Xt, t) = E [Xtdata | Xt] .

Substituting the earlier expression for E [Xtdata | Xt]:

γ(t, σttarget)hθ∗(Xt, t) + δ(t, σttarget)Xt = γ(t, σttarget)E
[
Xttarget | Xt

]
+ δ(t, σttarget)Xt.

Subtracting δ(t, σttarget)Xt from both sides:

γ(t, σttarget)hθ∗(Xt, t) = γ(t, σttarget)E
[
Xttarget | Xt

]
.

Since γ(t, σttarget) > 0 (due to σt being strictly increasing and t ≥ tdata), we can divide both sides by
γ(t, σttarget):

hθ∗(Xt, t) = E
[
Xttarget | Xt

]
.

This completes the proof.

Corollary 5 (Reparameterized Generalized Ambient Denoising Score Matching (Detailed Version)). This
corollary corresponds to Corollary 2 in the main paper. For completeness, we restate it here with additional
details and proof.

Let the assumptions of the Generalized Ambient Denoising Score Matching theorem 4 hold. Additionally,
define:

1. Reparameterization: For t ≥ tdata, define τ such that

σ2
τ = σ2

t − σ2
tdata

, (8)

where τ ∈ (0, T ′] and T ′ is determined by σ2
T ′ = σ2

T − σ2
tdata

. Note that given τ and tdata, we can
recover t using the inverse function of σt, denoted as σ−1

t :

t = σ−1
t (

√
σ2
τ + σ2

tdata
). (9)

This inverse function exists and is well-defined due to the strictly monotonically increasing property
of σt.

Define the new objective function:

J ′(θ) = EXtdata ,τ,Xt

[∥∥γ′(τ, σttarget)hθ(Xt, t) + δ′(τ, σttarget)Xt −Xtdata

∥∥2] , (10)

where τ is uniformly sampled from [0, T ′], and the coefficients are defined as:

γ′(τ, σttarget) =
σ2
τ

σ2
τ + σ2

tdata
− σ2

ttarget

, δ′(τ, σttarget) =
σ2
tdata

− σ2
ttarget

σ2
τ + σ2

tdata
− σ2

ttarget

.

Given Xtdata and τ , Xt is sampled as:

Xt = Xtdata + στZ
′, where Z′ ∼ N (0, Id). (11)

Then, the minimizer θ∗ of J ′(θ) satisfies:

hθ∗(Xt, t) = E[Xttarget | Xt], ∀Xt ∈ Rd, t ≥ tdata. (12)
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Proof. Substituting σ2
t into γ(t, σttarget) and δ(t, σttarget) from Theorem 1, we obtain:

γ′(τ, σttarget) = γ(t, σttarget) =
σ2
τ

σ2
τ + σ2

tdata
− σ2

ttarget

, δ′(τ, σttarget) = δ(t, σttarget) =
σ2
tdata

− σ2
ttarget

σ2
τ + σ2

tdata
− σ2

ttarget

.

Define gθ(Xt, t) = γ′(τ, σttarget)hθ(Xt, t) + δ′(τ, σttarget)Xt. The objective function becomes:

J ′(θ) = EXtdata
EτEXt|Xtdata

[
∥gθ(Xt, t)−Xtdata∥

2
]
.

By Lemma 3, the function minimizing J ′(θ) is:

gθ∗(Xt, t) = E [Xtdata | Xt] .

From proof of Theorem 1, we have:

E [Xtdata | Xt] = γ′(τ, σttarget)E
[
Xttarget | Xt

]
+ δ′(τ, σttarget)Xt.

Therefore,

gθ∗(Xt, t) = γ′(τ, σttarget)hθ∗(Xt, t) + δ′(τ, σttarget)Xt = γ′(τ, σttarget)E
[
Xttarget | Xt

]
+ δ′(τ, σttarget)Xt.

Comparing both expressions, we conclude:

γ′(τ, σttarget)hθ∗(Xt, t) = γ′(τ, σttarget)E
[
Xttarget | Xt

]
.

Since γ′(τ, σttarget) > 0, we divide both sides by γ′(τ, σttarget):

hθ∗(Xt, t) = E
[
Xttarget | Xt

]
.

This completes the proof.

B.1 EXTENSION TO VARIANCE PRESERVING CASE

Our GADSM framework can be naturally extended to the variance preserving (VP) Song et al. (2020); Ho
et al. (2020) case. For example, when σttarget = 0, which corresponds to the VP formulation in ADSM Daras
et al. (2024). In this case, the data model follows:

Xtdata =
√

1− σ2
tdata

X0 + σtdataZ, 0 < σtdata < 1 (13)

Let X0 ∈ Rd represent clean data, and for any σtdata < σt < 1, the forward corrupted Xt is given by:

Xt =
√
1− σ2

tX0 + σtZt, Zt ∼ N (0, Id) (14)

Define the objective function:

LVP(θ) = EXtdata ,t,Xt

∥∥∥∥∥ σ2
t

σ2
t − σ2

tdata

√
1− σ2

tdata
hθ(Xt, t)− σ2

tdata

√
1− σ2

t

σ2
t − σ2

tdata

Xt −Xtdata

∥∥∥∥∥
2
 (15)

Then, the minimizer θ∗ of JVP(θ) satisfies:

hθ∗(Xt, t) = E[X0 | Xt], ∀Xt ∈ Rd, t ≥ tdata. (16)
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B.2 CONNECTION TO NOISIER2NOISE

We demonstrate that Noisier2Noise Moran et al. (2020) emerges as a special case of our Generalized
Ambient Denoising Score Matching (GADSM) framework under specific conditions. Let us establish the
correspondence between notations: in Noisier2Noise, X represents the clean image, Y = X +N represents
the noisy observation with noise N , and Z = Y +M represents the doubly-noisy image with additional
synthetic noise M . These correspond to our formulation where X is X0, Y is Xtdata , and Z is Xt.

From proof of Theorem 1, when setting σttarget = 0, we obtain:

E[Xtdata | Xt] =
σ2
t − σ2

tdata

σ2
t

E[X0 | Xt] +
σ2
tdata

σ2
t

Xt (17)

In the improved variant of Noisier2Noise, a parameter α controls the magnitude of synthetic noise M relative
to the original noise N . We can establish that this parameter corresponds to our noise schedule through:

α2 =
σ2
t − σ2

tdata

σ2
tdata

(18)

Under this relationship, Equation equation 17 becomes equivalent to the Noisier2Noise formulation:

E[Y |Z] =
α2

1 + α2
E[X|Z] +

1

1 + α2
Z (19)

This equivalence leads to the characteristic Noisier2Noise correction formula:

E[X|Z] =
(1 + α2)E[Y |Z]− Z

α2
(20)

In the standard case where α = 1, this reduces to E[X|Z] = 2E[Y |Z] − Z, which corresponds to our
framework with σ2

t = 2σ2
tdata

.

Our GADSM framework offers several advances over Noisier2Noise. First, it provides a continuous noise
schedule through σt, allowing the model to learn from a spectrum of noise levels rather than a fixed ratio
determined by α. Second, it introduces explicit time conditioning in the network architecture, enabling better
adaptation to different noise magnitudes. Third, and perhaps most importantly, it eliminates the need to tune
the α parameter, which according to Moran et al. (2020) is ”difficult or impossible to derive in the absence of
clean validation data.” Instead, our approach automatically learns to handle different noise levels through
the continuous schedule and time conditioning. Furthermore, GADSM extends beyond the clean image
prediction task by supporting arbitrary target noise levels through σttarget , providing a unified framework for
various denoising objectives.

C MODEL ARCHITECTURE

In this appendix, we provide a comprehensive description of the architectures employed for both single-
contrast and multi-contrast MRI denoising. Our designs build upon the U-Net structure utilized in Denoising
Diffusion Probabilistic Models (DDPM) Ho et al. (2020), incorporating advanced conditioning and attention
mechanisms to enhance performance. For detailed implementation of the Noise Variance Conditioned
Multi-Head Self-Attention (NVC-MSA) module, please refer to Appendix C.2.
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C.1 SINGLE-CONTRAST MODEL ARCHITECTURE

Our single-contrast denoising model employs a U-Net backbone augmented with time conditioning and the
NVC-MSA module Hatamizadeh et al. (2023).

Time Conditioning: The model adapts its processing based on the noise level t by integrating time em-
beddings into the convolutional layers. This is achieved through adaptive normalization (e.g., instance
normalization followed by an affine transformation conditioned on the time embedding), as introduced in
DDPM.

NVC-MSA Module: To enable the network to adjust to varying noise levels, we incorporate the NVC-MSA
module into the self-attention mechanisms of the U-Net. The module conditions the attention on the current
noise variance, allowing the network to effectively capture long-range dependencies and adapt to different
noise scales. Mathematically, the queries, keys, and values are computed as:

Q = WQ(X) + bQ(t), (21)
K = WK(X) + bK(t), (22)
V = WV (X) + bV (t), (23)

where bQ(t), bK(t), and bV (t) are learned affine transformations of the time embedding. This NVC-MSA
mechanism allows the attention modules to be aware of the noise level and adjust their focus accordingly,
effectively capturing long-range dependencies. The implementation details and pseudo-code for the NVC-
MSA module are provided in Appendix C.2.

C.2 NOISE VARIANCE CONDITIONED MULTI-HEAD SELF-ATTENTION (NVC-MSA) PSEUDO CODE

Below is the code snippet of the NVC-MSA module, which is integral to both single-contrast and multi-
contrast model architectures. This module conditions the self-attention mechanism on the noise variance
level, enabling the model to adapt its attention based on the current noise level.

The code snippet encapsulates the core functionality of the NVC-MSA module. The module first normalizes
the input tensor and generates queries, keys, and values for spatial tokens. It then reshapes and projects the
noise variance embeddings using 1x1 convolutions. These noise-conditioned components are added to the
queries, keys, and values before applying the attention mechanism. Finally, the output is rearranged and
projected to produce the final feature map.
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def forward(self, x, noise_emb):

# Get shape of input tensor
b, c, h, w = x.shape
n = h * w

# Normalize the input tensor
x = self.norm(x)

# Generate queries, keys, and values for spatial tokens
qkv = self.to_qkv(x).chunk(3, dim=1)
q, k, v = map(lambda t: rearrange(t, ’b (h d) x y -> b (x y) h d’, h=self.

heads), qkv)

# Reshape and project noise variance embeddings using 1x1 convolutions
noise_emb = noise_emb.view(b, -1, 1, 1)
noise_q = self.noise_query_conv(noise_emb)
noise_k = self.noise_key_conv(noise_emb)
noise_v = self.noise_value_conv(noise_emb)

# Rearrange the projected noise variance embeddings
noise_q = rearrange(noise_q, ’b (h d) x y -> b (x y) h d’, h=self.heads)
noise_k = rearrange(noise_k, ’b (h d) x y -> b (x y) h d’, h=self.heads)
noise_v = rearrange(noise_v, ’b (h d) x y -> b (x y) h d’, h=self.heads)

# Add noise variance-dependent components to queries, keys, and values
q = q + noise_q
k = k + noise_k
v = v + noise_v

# Apply attention mechanism
out = self.attend(q, k, v)

# Rearrange and project the output
out = rearrange(out, ’b (x y) h d -> b (h d) x y’, x=h, y=w)

return self.to_out(out)

Listing 1: Code snippet for NVC-MSA implementation

D MULTI-CONTRAST C2S

D.1 MULTI-CONTRAST MODEL ARCHITECTURE

The multi-contrast denoising model extends the single-contrast architecture to handle multiple input contrasts,
thereby enhancing denoising performance by leveraging complementary information.

Multicontrast Fusion: The model accepts multiple contrast inputs by concatenating the primary and
complementary contrast images (e.g., (T1, T2)). An initial convolution layer extracts feature embeddings
from the fused contrasts, which are then processed through the U-Net architecture.

NVC-MSA Module: Similar to the single-contrast model, the multi-contrast model integrates the NVC-MSA
module into its self-attention mechanisms. By conditioning the attention on the noise variance level σ, the
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model can adaptively adjust its focus based on the current noise level, as detailed in the pseudo-code provided
in Appendix C.2.

Output Head: Following the U-Net processing, the output head generates a single-channel image representing
the denoised primary contrast image.

Flexibility and Extensions: The architecture can dynamically adjust to accommodate any number of input
contrasts by modifying the input layer accordingly. Although our current implementation is based on U-Net,
the NVC-MSA mechanism is compatible with other architectures, such as Vision Transformers Dosovitskiy
et al. (2020); Liu et al. (2021), where it can replace standard multi-head self-attention modules to enhance
model complexity and performance. This extension remains an avenue for future research.

Methods T1 T2 FLAIR
PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Non-learning-based (with Noise Model)
NLM Froment (2014) 31.90 / 0.898 31.17 / 0.876 32.01 / 0.870
BM3D Mäkinen et al. (2020) 32.07 / 0.903 31.20 / 0.877 32.14 / 0.873

Supervised Baselines
SwinIR Liang et al. (2021) 32.53 / 0.913 31.90 / 0.891 32.15 / 0.885
Restormer Zamir et al. (2022) 32.35 / 0.912 31.79 / 0.890 32.31 / 0.886
Noise2Noise Lehtinen et al. (2018) 32.59 / 0.911 32.37 / 0.886 32.70 / 0.871

Single-Contrast Self-Supervised Methods
Noise2Void Krull et al. (2019) 31.46 / 0.870 30.93 / 0.857 31.17 / 0.851
Noise2Self Batson & Royer (2019) 31.72 / 0.887 31.18 / 0.873 31.72 / 0.870
Recorrupted2Recorrupted Pang et al. (2021) 31.67 / 0.876 31.33 / 0.870 31.57 / 0.863
C2S 32.59 / 0.915 32.28 / 0.888 32.43 / 0.872

Multi-Contrast Self-Supervised Methods
C2S (T1, T2) 33.57 / 0.925 33.11 / 0.901 N/A
C2S (FLAIR, T1) 34.11 / 0.926 N/A 32.98 / 0.901
C2S (T2, FLAIR) N/A 33.44 / 0.903 33.02 / 0.899
C2S (T1, T2, FLAIR) 34.18 / 0.928 33.63 / 0.905 33.07 / 0.902

Table 7: Multi-contrast quantitative results on the M4Raw dataset for highest-snr labels (six-repetition
averaged for T1, T2, and four-repetition-averaged for FLAIR). The table presents the mean PSNR and SSIM
metrics for each method. The best results among all methods are in bold.

D.2 MULTI-CONTRAST C2S ALGORITHM

The multi-contrast C2S framework extends the single-contrast algorithm to leverage complementary informa-
tion from auxiliary contrast images. Given a collection of noisy multi-contrast training images

{(Xtdata,i,Ci)}Ni=1,

where Xtdata,i ∈ Rd is the noisy target contrast image and Ci ∈ Rd×c represents c auxiliary noisy contrast
images, our goal is to estimate the clean target contrast image X0 using both Xtdata and C. In the multi-
contrast setting, we focus on the case where ttarget = 0 (i.e., σttarget = 0), aiming to directly estimate the
MMSE estimator E[X0 | Xtdata ,C]. While the single-contrast C2S incorporates a detail refinement extension
with a non-zero target noise level, we leave the exploration of such extensions and more advanced contrast
fusion architectures for multi-contrast C2S as future work. For the implementation of the denoising function
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Dθ(Xτ , τ | C), the conditioning on auxiliary contrasts C is achieved through a CNN encoder architecture
that extracts features from each auxiliary contrast image. These extracted features are then concatenated
with the features from the target contrast image in the feature space, allowing the model to effectively
integrate complementary information from all available contrasts. The concatenated features are subsequently
processed through the U-Net backbone with NVC-MSA modules, as in the single-contrast case. Following the
reparameterization strategy introduced in Section 3.1, we define a reparameterized function Dθ(Xτ , τ | C)
as:

Dθ(Xτ , τ | C) = λout(τ, σttarget)hθ(Xt, t | C) + λskip(τ, σttarget)Xt, (24)

where Xt = Xtdata + στZ, with Z ∼ N (0, Id), and the coefficients remain consistent with the single-contrast
case:

λout(τ, σttarget) =
σ2
τ

σ2
τ + σ2

tdata
− σ2

ttarget

, λskip(τ, σttarget) =
σ2
tdata

− σ2
ttarget

σ2
τ + σ2

tdata
− σ2

ttarget

(25)

The multi-contrast C2S loss function is then formulated as:

LMC-C2S(θ) =
1

2
EXtdata∼ptdata (x)

C∼p(c)
τ∼U [0,T ]
Z∼N (0,Id)

[
w(τ) ∥Dθ(Xτ , τ | C)−Xtdata∥

2
2

]
(26)

The complete training procedure for multi-contrast C2S is outlined in Algorithm 2.

Algorithm 2 Multi-Contrast Corruption2Self Training Procedure

Require: Noisy multi-contrast dataset {(Xi
tdata ,C

i)}Ni=1, hθ , max noise level T , batch size m, total iterations K, noise
schedule function στ

1: for k = 1 to K do
2: Sample minibatch {(Xi

tdata ,C
i)}mi=1, τ ∼ U(0, T ], Z ∼ N (0, Id)

3: Compute λout(τ, 0) =
σ2
τ

σ2
τ+σ2

tdata
, λskip(τ, 0) =

σ2
tdata

σ2
τ+σ2

tdata

4: Recover t = σ−1
t

(√
σ2
τ + σ2

tdata

)
5: Compute Xt ← Xtdata + στZ

6: Compute loss: L = 1
2m

∑m
i=1 w(τ)

∥∥λout(τ, 0)hθ(X
i
t, t | Ci) + λskip(τ, 0)X

i
t −Xi

tdata

∥∥2

7: Update θ using Adam optimizer to minimize L

During inference, given a noisy target contrast observation Xtdata and auxiliary contrasts C, the denoised
output is obtained by:

X̂ = hθ∗(Xtdata , tdata | C) (27)

where the trained model hθ∗ approximates E[X0 | Xtdata ,C], providing a clean estimate of the target contrast
image that benefits from the complementary information in the auxiliary contrasts.
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Figure 6: Visual comparison of FLAIR contrast denoising results on the M4Raw dataset. From left to right:
noisy input, multi-repetition averaged label (ground truth), BM3D, SwinIR, Noise2Noise, Noise2Self, R2R
(Recorrupted2Recorrupted), and our multi-contrast C2S variants using (FLAIR, T1), (FLAIR, T2), and (T1,
T2, FLAIR) contrasts. The zoomed regions (second and third rows) highlight the superior detail preservation
and noise reduction achieved by our multi-contrast approaches.

D.3 MULTI-CONTRAST RESULTS

Table 7 presents a comprehensive comparison of denoising methods on the M4Raw dataset across T1, T2, and
FLAIR contrasts. Our multi-contrast Corruption2Self (C2S) methods consistently outperform non-learning-
based approaches (NLM and BM3D), supervised baselines (SwinIR, Restormer, and Noise2Noise), and
single-contrast self-supervised methods (Noise2Void, Noise2Self, Recorrupted2Recorrupted, and single-
contrast C2S). Specifically, for the T1 target, while the dual-contrast C2S variants show strong performance
with C2S (T1, T2) achieving 33.57/0.925 and C2S (FLAIR, T1) reaching 34.11/0.926 PSNR/SSIM, the
tri-contrast C2S (T1, T2, FLAIR) achieves the highest performance with 34.18/0.928. For the T2 target, the
C2S method using T2 and FLAIR contrasts yields 33.44/0.903, but again the tri-contrast approach performs
best with 33.63/0.905. Similarly, for the FLAIR contrast, while the dual-contrast methods C2S (FLAIR,
T1) and C2S (T2, FLAIR) achieve 32.98/0.901 and 33.02/0.899 respectively, the tri-contrast C2S attains the
highest PSNR/SSIM of 33.07/0.902.

Figure 6 provides a visual comparison of FLAIR contrast denoising results on representative M4Raw test
samples. The noisy input shows significant degradation compared to the multi-repetition averaged label.
While traditional methods like BM3D and supervised approaches (SwinIR, Noise2Noise) reduce noise to some
extent, they tend to blur fine structural details. Single-contrast self-supervised methods (Noise2Self, R2R)
preserve more structure but leave residual noise. In contrast, our multi-contrast C2S methods, particularly the
variants using FLAIR with T1 and FLAIR with T2, demonstrate superior noise reduction while preserving
anatomical details. The tri-contrast approach (T1, T2, FLAIR) achieves the best visual quality, showing
clearer tissue boundaries and improved contrast, which aligns with the quantitative improvements seen in
Table 7. These results empirically demonstrate that leveraging complementary information from multiple
MRI contrasts significantly enhances denoising performance, with the tri-contrast approach consistently
achieving the best results across all contrast targets. This validates the effectiveness of the multi-contrast C2S
framework.

D.4 EXTENDED COMPARISON ON TWO-CONTRAST SELF-SUPERVISED DENOISING

In this section, we present an extended evaluation of our two-contrast self-supervised approach (C2S) against
adaptations of Noise2Self (N2S) and Recorrupted2Recorrupted (R2R) methods for two-contrast denoising.
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Similar to our approach, we enhanced these baselines by conditioning their models on additional contrast
information through input concatenation.

Contrast Configuration (T1, T2 → T1) (FLAIR, T1 → T1) (T1, T2 → T2)
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
N2S 29.99 0.805 31.76 0.871 29.44 0.835
R2R 32.16 0.833 32.19 0.838 32.27 0.861
Ours 33.57 0.925 34.11 0.926 33.11 0.901
Contrast Configuration (T2, FLAIR → T2) (FLAIR, T1 → FLAIR) (T2, FLAIR → FLAIR)
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
N2S 29.73 0.839 30.90 0.839 29.28 0.817
R2R 32.28 0.870 31.77 0.840 31.66 0.833
Ours 33.44 0.903 32.98 0.901 33.02 0.899

Table 8: Quantitative comparison of two-contrast self-supervised denoising methods on the M4Raw dataset.
PSNR (dB) and SSIM metrics are reported for each method and contrast configuration. The best results are
highlighted in bold.

Analysis: The results in Table 8 demonstrate that our method consistently outperforms both N2S and
R2R across all two-contrast configurations. The direct concatenation approach in N2S leads to overfitting,
particularly evident in its degraded performance for most contrasts. While R2R shows moderate improvements
over N2S, it struggles to fully leverage the complementary information from additional contrasts.

E ADDITIONAL RESULTS ON FASTMRI

In this section, we present additional results on the fastMRI dataset, evaluating the performance of various
denoising methods across different noise levels and contrasts.

Table 9 summarizes the performance comparison between the baseline method (Without Reparameterization)
and our proposed Corruption2Self (C2S) approach, under four configurations: PD with σ = 13/255, PDFS
with σ = 13/255, PD with σ = 25/255, and PDFS with σ = 25/255.

Method PD, σ = 13/255 PDFS, σ = 13/255 PD, σ = 25/255 PDFS, σ = 25/255
PSNR ↑ / SSIM ↑ PSNR ↑ / SSIM ↑ PSNR ↑ / SSIM ↑ PSNR ↑ / SSIM ↑

Without Reparam. 32.65 / 0.821 30.08 / 0.676 30.16 / 0.747 28.24 / 0.570
With Reparam. 33.48 / 0.832 30.67 / 0.761 30.91 / 0.756 28.72 / 0.610

Table 9: Impact of reparameterization of noise levels on the fastMRI dataset. The ”Without Reparam.”
row contains estimated baseline results, while ”With Reparam.” represents the proposed method with
reparameterization.
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Figure 7: Comparison of different denoising methods for PD contrast (noise level 13/255) in fastMRI.

Figure 8: Comparison of different denoising methods for PDFS contrast (noise level 25/255) in fastMRI.
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F ADDITIONAL RESULTS ON M4RAW

F.1 VISUAL COMPARISON OF DENOISING METHODS

In this section, we provide a visual comparison of several denoising methods applied to T1, T2, and FLAIR
contrast images in the M4Raw dataset. The denoising methods evaluated include Noise2Noise, BM3D,
SwinIR, R2R, Noise2Self, and C2S, with Multi-repetition Averaged Label serving as the ground truth
reference for comparison.

Figure 9: Comparison of different denoising methods for T1 contrast in M4Raw. The top row shows the
original noisy image and results from Noise2Noise, BM3D, and SwinIR. The bottom row includes the
multi-repetition averaged label, R2R, Noise2Self, and C2S methods. A zoomed-in section of each image is
presented below each corresponding brain image for detailed comparison.

F.2 EVALUATION ON MATCHING-SNR TEST LABELS

When evaluated on test data matching the SNR of the training data, supervised methods like SwinIR and
Restormer achieve the best performance, with PSNR improvements over self-supervised methods. This
indicates that supervised approaches excel when the training and testing conditions are similar. However, the
performance gap narrows when considering C2S, which attains PSNR and SSIM values comparable to those
of the supervised methods.

These observations highlight a limitation of supervised methods: they may not generalize well to scenarios
where the test data has different noise characteristics or higher SNR than the training data. In contrast,
C2S demonstrates robust performance across different SNR levels, achieving competitive results on both
matching-SNR and higher-SNR test labels. This suggests that our self-supervised approach is more resilient
to variations in noise levels and better generalizes to cleaner images without relying on clean ground truth
during training.
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Figure 10: Top: Comparison of different denoising methods for T1 contrast in M4Raw. Bottom: Comparison
of different denoising methods for T2 contrast in M4Raw.

Figure 11: Comparison of different denoising methods for FLAIR contrast in M4Raw.
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Figure 12: Comparison of different denoising methods for FLAIR contrast in M4Raw.

Methods T1 T2 FLAIR
PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Classical Non-Learning-Based Methods
NLM Froment (2014) 34.65 / 0.897 33.72 / 0.873 32.83 / 0.830
BM3D Mäkinen et al. (2020) 35.27 / 0.900 34.01 / 0.875 33.22 / 0.841

Supervised Learning Methods
SwinIR Liang et al. (2021) 36.09 / 0.926 34.57 / 0.902 34.34 / 0.909
Restormer Zamir et al. (2022) 35.96 / 0.926 34.13 / 0.898 34.21 / 0.908
Noise2Noise Lehtinen et al. (2018) 34.82 / 0.892 33.92 / 0.861 33.73 / 0.879

Self-Supervised Single-Contrast Methods
Noise2Void Krull et al. (2019) 32.83 / 0.870 31.73 / 0.857 30.90 / 0.821
Noise2Self Batson & Royer (2019) 34.17 / 0.883 32.64 / 0.847 31.96 / 0.823
Recorrupted2Recorrupted Pang et al. (2021) 33.60 / 0.801 32.93 / 0.820 32.42 / 0.794
C2S (Ours) 36.11 / 0.925 34.87 / 0.904 34.15 / 0.898

Table 10: Quantitative results on the M4Raw dataset evaluated on three-repetition-averaged test labels
(matching training and validation SNR). Mean PSNR and SSIM metrics are reported. The best results among
self-supervised methods are in bold.

G DETAIL REFINEMENT ALGORITHM

In this appendix, we present the Detail Refinement algorithm as an extension to the primary Corruption2Self
(C2S) training procedure. While the primary stage focuses on learning the conditional expectation E[X0 | Xt]
for maximum denoising, this aggressive approach may lead to the loss of fine details and important features.
The Detail Refinement stage addresses this issue by training the network to predict E[Xttarget | Xt] with a non-
zero target noise level σttarget > 0, allowing the preservation of intricate structures and textures. Empirically,
we discovered that uniformly sampling ttarget from the interval [0, tdata] during training already yields good
results and leave more advanced tuning process to future work. This sampling strategy provides a good
balance between noise reduction and detail preservation, allowing the network to learn a range of refinement
levels adaptively.
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G.1 LOSS FUNCTION FOR DETAIL REFINEMENT

The loss function for the Detail Refinement stage is similar to the primary C2S stage but introduces a target
noise level σttarget . The denoised output Dθ(Xτ , τ, σttarget) is defined as:

Dθ(Xτ , τ, σttarget) = λout(τ, σttarget)hθ(Xt, t) + λskip(τ, σttarget)Xt,

where hθ(Xt, t) is the denoising network parameterized by θ, with input Xt and noise level t, and
λout(τ, σttarget) and λskip(τ, σttarget) are blending factors between the network output and the noisy input.

The loss function is given by:

Lrefine(θ) =
1

2
E Xtdata∼ptdata (x)

τ∼U [0,T ]
σttarget∼U(0,σtdata ]

Z∼N (0,Id)

[
w(τ)

∥∥Dθ(Xτ , τ, σttarget)−Xtdata

∥∥2
2

]
, (28)

where:

• Xtdata ∼ ptdata(x) is the noisy observed data.
• τ ∼ U [0, T ] is the reparameterized noise level uniformly sampled from [0, T ], where T is the

maximum noise level.
• σttarget ∼ U(0, σtdata ] is the target noise level, sampled uniformly from the interval (0, σtdata ].

• Xt = Xtdata + στZ, where Z ∼ N (0, Id) is Gaussian noise.
• λout(τ, σttarget) and λskip(τ, σttarget) are defined as:

λout(τ, σttarget) =
σ2
τ

σ2
τ + σ2

tdata
− σ2

ttarget

, λskip(τ, σttarget) =
σ2
tdata

− σ2
ttarget

σ2
τ + σ2

tdata
− σ2

ttarget

. (29)

The goal of this refinement stage is to retain a controlled amount of noise, preventing the loss of fine details
and features while still performing denoising.

G.2 ALGORITHM IMPLEMENTATION

The Detail Refinement training procedure minimizes the loss function Lrefine(θ) over the network parameters
θ. The steps are as follows:

Algorithm 3 Detail Refinement Training Procedure

Require: Noisy dataset {Xi
tdata}

N
i=1, denoising network hθ , max noise level T , batch size m, total iterations Krefine,

noise schedule function στ

1: for k = 1 to Krefine do
2: Sample minibatch {Xi

tdata}
m
i=1, τ ∼ U(0, T ], Z ∼ N (0, Id)

3: Sample σttarget ∼ U(0, σtdata ]

4: Compute λout(τ, σttarget) =
σ2
τ

σ2
τ+σ2

tdata
−σ2

ttarget

5: Compute λskip(τ, σttarget) =
σ2
tdata

−σ2
ttarget

σ2
τ+σ2

tdata
−σ2

ttarget

6: Recover t = σ−1
t

(√
σ2
τ + σ2

tdata

)
7: Compute Xt ← Xtdata + στZ

8: Compute loss: L = 1
2m

∑m
i=1 w(τ)

∥∥Dθ(Xτ , τ, σttarget)−Xi
tdata

∥∥2

9: Update θ using Adam optimizer Kingma (2014) to minimize L

30



1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2025

Figure 13: Visual comparison of reconstruction results with and without detail refinement. Top row: Results
on the fastMRI dataset showing enhanced tissue contrast and structural definition. Bottom two rows: Results
on the M4Raw dataset demonstrating improved preservation of fine anatomical details and better delineation
of brain structures. The detail refinement module effectively recovers subtle features while maintaining noise
suppression.

The visual results in Figure 13 demonstrate the effectiveness of our detail refinement approach. In the
fastMRI examples (top row), the refinement module notably enhances the contrast between different tissue
types and preserves structural boundaries that are crucial for clinical interpretation. The M4Raw dataset
examples (bottom two rows) further illustrate the module’s capability in preserving fine anatomical details
while effectively suppressing noise artifacts. Particularly noteworthy is the improved delineation of brain
structures and the preservation of subtle intensity variations that could be clinically relevant. These visual
improvements align with our quantitative findings presented in Table 1, where we observed statistically
significant improvements in both PSNR and SSIM metrics across different sequence types.

H ROBUSTNESS TO NOISE LEVEL ESTIMATION ERROR

In practical applications, precise noise level estimation can be challenging, making robustness to estimation
errors a crucial property for denoising models. This section provides a comprehensive analysis of our model’s
performance under various degrees of noise level misestimation, demonstrating its capability to function
effectively as a blind denoising model.

H.1 EXPERIMENTAL SETUP AND RESULTS

We evaluate our pretrained model’s robustness by systematically varying the input noise level estimation
tdata from -50% (underestimation) to +50% (overestimation) of the true noise level. Table 11 presents the
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quantitative results across T1, T2, and FLAIR contrasts on the M4Raw test set, while Figure 14 visualizes
these trends.

Noise Level M4Raw Dataset (PSNR / SSIM ↑)
Estimation T1 T2 FLAIR

-50% 32.6004 / 0.9154 32.3210 / 0.8890 32.9496 / 0.8757
-40% 32.5958 / 0.9153 32.3125 / 0.8888 32.9498 / 0.8759
-30% 32.5910 / 0.9151 32.3044 / 0.8886 32.9478 / 0.8761
-20% 32.5861 / 0.9150 32.2964 / 0.8884 32.9436 / 0.8762
-10% 32.5810 / 0.9149 32.2882 / 0.8881 32.9373 / 0.8763
0% 32.5758 / 0.9148 32.2812 / 0.8879 32.9297 / 0.8764
+10% 32.5704 / 0.9147 32.2700 / 0.8876 32.9192 / 0.8763
+20% 32.5649 / 0.9146 32.2593 / 0.8873 32.9076 / 0.8763
+30% 32.5592 / 0.9145 32.2468 / 0.8870 32.8947 / 0.8762
+40% 32.5535 / 0.9143 32.2322 / 0.8866 32.8805 / 0.8760
+50% 32.5475 / 0.9142 32.2151 / 0.8862 32.8655 / 0.8759

Table 11: Performance analysis under varying noise level estimations on the M4Raw dataset. The model
demonstrates remarkable stability across all contrasts, with particularly strong performance under slight
underestimation. The ’-’ and ’+’ indicate underestimation and overestimation of the noise level, respectively.

Figure 14: Visualization of model performance under varying noise level estimations. The plots demonstrate
consistent stability across all contrasts, with minimal performance degradation even under significant estima-
tion errors (±50%).

H.2 ANALYSIS AND DISCUSSION

Our experiments reveal several key findings: Overall Stability: The model maintains remarkably stable
performance across all tested estimation errors, with maximum PSNR variations of only 0.053 dB, 0.106 dB,
and 0.084 dB for T1, T2, and FLAIR contrasts, respectively. Asymmetric Response: Interestingly, the
model shows slightly better performance under noise level underestimation compared to overestimation. For
instance, with T1 contrast, a 50% underestimation achieves a PSNR of 32.6004 dB, outperforming both
the true noise level (32.5758 dB) and 50% overestimation (32.5475 dB). While all contrasts exhibit robust
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performance, the degree of stability varies. T1 shows the most stable response, while T2 demonstrates slightly
higher sensitivity to estimation errors.

H.3 PRACTICAL IMPLEMENTATION

In our implementation, we utilize the skimage package Van der Walt et al. (2014) for noise level estimation,
which proves sufficient for optimal performance. The model’s demonstrated robustness suggests that even
relatively simple estimation techniques can provide adequate noise level approximations for effective denois-
ing. Our findings reveal significant practical advantages: the model readily adapts to real-world scenarios
where exact noise levels are unknown, while standard noise estimation tools consistently deliver near-optimal
performance. Furthermore, the observed slight preference for underestimation indicates that conservative
noise level estimates may be advantageous in practice.

While future work could explore more sophisticated noise estimation techniques, particularly for extreme
cases, our current results demonstrate that the model’s inherent robustness already makes it highly practical
for real-world applications. This robustness, combined with the effectiveness of standard noise estimation
tools, enables our approach to function reliably as a blind denoising model, requiring minimal assumptions
about the underlying noise characteristics.

I GUIDELINES FOR SELECTING AND USING MAXIMUM CORRUPTION LEVEL

I.1 THEORETICAL BOUNDS FOR MAXIMUM CORRUPTION LEVEL

Following insights from score-based generative models Song et al. (2020), the maximum corruption level T
can be theoretically chosen as large as the maximum Euclidean distance between all pairs of training data
points to ensure sufficient coverage for accurate score estimation. Our analysis of MRI datasets reveals the
following maximum pairwise distances:

• M4Raw Dataset:
– T1 contrast: 56.72
– T2 contrast: 47.99
– FLAIR contrast: 65.20

• FastMRI Dataset:
– PD (σ = 13/255): 114.23
– PDFS (σ = 13/255): 102.59
– PD (σ = 25/255): 115.53
– PDFS (σ = 25/255): 102.94

I.2 PRACTICAL CONSIDERATIONS AND TRAINING DYNAMICS

While theoretical bounds provide upper limits, our empirical studies show that significantly smaller values of
T can achieve optimal performance while maintaining computational efficiency. Table 12 demonstrates the
relationship between T and training convergence:

I.3 ALTERNATIVE: VARIANCE PRESERVING (VP) FORMULATION

An alternative to the variance exploding (VE) formulation is the variance preserving (VP) formulation
(Appendix B.1). Here, σt is sampled uniformly from (σtdata , 1), eliminating the need to estimate T . This
approach avoids explicit selection of T , as the maximum corruption level is bounded by 1.
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Max Corruption Level (T ) Epochs to Converge
20 204
15 183
10 125
5 79
3 42

Table 12: Relationship between maximum corruption level and training convergence on M4Raw dataset (T1).

The corruption process in this formulation is given by:

Xtdata =
√
1− σ2

tdata
X0 + σtdataZ, 0 < σtdata < 1, (30)

with additional noise levels sampled such that σtdata < σt < 1. This principled approach maintains theoretical
guarantees and achieves comparable performance to VE in our experiments.

I.4 PRACTICAL GUIDELINES

Based on our analysis, we recommend starting with T = 5 for datasets exhibiting moderate noise levels, as
this provides an effective baseline for most applications. For datasets with higher noise levels or more complex
noise patterns, gradually increasing T up to 20 may yield improved results, though practitioners should
note that training time increases approximately linearly with T . Throughout the training process, careful
monitoring of validation metrics is essential to determine optimal stopping points and assess the effectiveness
of the chosen corruption level. In cases where dataset characteristics make the selection of T particularly
challenging, the VP formulation offers a principled alternative that maintains theoretical guarantees while
eliminating the need for explicit T selection.
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