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Abstract

Regime changes planning in financial markets is well known
to be hard to explain and interpret. Can an asset manager ex-
plain clearly the intuition of his regime changes prediction on
equity market ? To answer this question, we consider a gradi-
ent boosting decision trees (GBDT) approach to plan regime
changes on S&P 500 from a set of 150 technical, fundamen-
tal and macroeconomic features. We report an improved ac-
curacy of GBDT over other machine learning (ML) methods
on the S&P 500 futures prices. We show that retaining fewer
and carefully selected features provides improvements across
all ML approaches. Shapley values have recently been intro-
duced from game theory to the field of ML. This approach
allows a robust identification of the most important variables
planning stock market crises, and of a local explanation of the
crisis probability at each date, through a consistent features
attribution. We apply this methodology to analyse in detail
the March 2020 financial meltdown, for which the model of-
fered a timely out of sample prediction. This analysis unveils
in particular the contrarian predictive role of the tech equity
sector before and after the crash.

Introduction
From an external point of view, the asset management in-
dustry is a well-suited industry to apply machine learning
(Benhamou et al. 2020b) as large amount of data are avail-
able thanks to the revolution of electronic trading and the
methodical collection of data by asset managers or their ac-
quisition from data providers. In addition, machine based
decision can help reducing emotional bias and taking ra-
tional and systematic investment choices (Benhamou et al.
2020c). A recent major breakthrough has been the capac-
ity to explain the outcome of the machine learning decisions
and build an intuition on it.
Indeed, regime changes planning in financial markets (Ben-
hamou et al. 2020a) is well known to be hard to forecast and
explain. The planning of equity crashes, although particu-
larly challenging due to their infrequent nature and the non-
stationary features of financial markets, has been the focus
of several important works in the past decades. For instance,
(Sornette and Johansen 2001) have proposed a deterministic
log-periodic model with finite-time explosion to represent
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equity prices bubbles and crashes. In more recent works,
(Chatzis et al. 2018) and (Samitas, Kampouris, and Kenour-
gios 2020) have introduced machine-learning approaches to
the planning of global equity crises, emphasizing the im-
portance of cross-market contagion effects. Our goal in this
work is to use an AI model that is accurate and explainable to
solve the multi-agent system environment of financial mar-
kets. Hence, we introduce a gradient boosting decision tree
(GBDT) approach to predict large falls in the S& P500 eq-
uity index, using a large set of technical, fundamental and
macroeconomic features as predictors. Besides illustrating
the value of carefully selecting the features and the supe-
rior accuracy of GBDT over other ML approaches in some
types of small/imbalanced data sets classification problems,
our main contribution lies in the explanation of the model
predictions at any date. Indeed, from a practitioner view-
point, understanding why a model provides certain planning
is at least as important as its accuracy. Although the com-
plexity of AI models is often presented as a barrier to a
practitioner understanding of their local planning, the use
of SHAP (SHapley Additive exPlanation) values, introduced
for the first time by (Lundberg and Lee 2017) in machine-
learning applications, makes AI models more explainable
and transparent. Shapley values are the contributions of each
individual feature to the overall crash logit probability. They
represent the only set of attributions presenting certain prop-
erties of consistency and additivity, as defined by Lundberg.
In particular, the most commonly used variable importance
measurement methodologies fail to pass the consistency test,
which makes it difficult to compare their outputs across dif-
ferent models. Shapley values enlighten both the global un-
derstanding and the local explanations of machine learning
prediction models, as they may be computed at each point in
time.

In our context, this approach first allows us to determine
which features most efficiently predict equity crashes (and in
which global direction). We infer from a features importance
analysis that the S&P500 crash probability is driven by a mix
of pro-cyclical and counter-cyclical features. Pro-cyclical
features consist either of positive economic/equity market
developments that remove the prospect of large equity price
drops, or alternatively of negative economic/equity market
shocks that portend deadly equity downward spirals. Among
these pro-cyclical features, we find the 120-day S&P500



Price/Earnings ratio percent change, the global risk aver-
sion level, the 20-day S&P500 sales percent change, the six-
months to one-year US 2 Yrs and 10 Yrs rates evolution,
economic surprises indices, and the medium-term industrial
metals, European equity indices and emerging currencies
price trends. Conversely, counter-cyclical features can either
be positive economic/equity market anticipations predating
large equity price corrections, or negative shocks involving
a reduced risk of equity downside moves. Important contrar-
ian indicators are the put/call ratio, the six-months S&P500
sales percent change, the 100-day Nasdaq 100 Sharpe ratio
and the U.S. 100-day 10 Yrs real interest change. A sec-
ond crucial contribution of Shapley values is to help uncover
how different features locally contribute to the logit proba-
bility at each point in time. We apply this methodology to
analyse in detail the unfolding of the events surrounding the
March 2020 equity meltdown, for which the model offered
a timely prediction out of sample. On January 1, 2020, the
crash probability was fairly low, standing at 9.4%. On Febru-
ary 3, we observe a first neat increase in the crash probability
(to 27 %), driven by the 100-day Nasdaq Sharpe Ratio con-
trarian indicator. At the onset of the Covid crash, on March
2, 2020, most pro-cyclical indicators concurred to steeply in-
crease the crash probability (to 61%) , as given by figure 5,
in a way that proved prescient. Interestingly, the Nasdaq 100
index had already started its correction by this date, prompt-
ing the tech sector contrarian indicators to switch back in fa-
vor of a decreased crash probability. On April 1st, the crash
probability plummeted back to 29 %, as the Nasdaq 100 ap-
peared oversold while the Put/Call ratio reflected extremely
cautious market anticipations. Overall, the analysis unveils
the role of the tech sector as a powerful contrarian predictor
before and after the March 2020 crash.

Related works
Our work can be related to the ever growing field of ma-
chine learning applications to financial markets forecasting.
Indeed, robust forecasting methods have recently garnered a
lot of interest, both from finance scholars and practitioners.
This interest can be traced back as early as the late 2000’s
where machine learning started to pick up. Instead of listing
the large amount of works, we will refer readers to various
works that reviewed the existing literature in chronological
order.

In 2009, (Atsalakis and Valavanis 2009) surveyed already
more than 100 related published articles using neural and
neuro-fuzzy techniques derived and applied to forecasting
stock markets, or discussing classifications of financial mar-
ket data and forecasting methods. In 2010, (Li and Ma 2010)
gave a survey on the application of artificial neural networks
in forecasting financial market prices, including exchange
rates, stock prices, and financial crisis prediction as well as
option pricing. And the stream of machine learning was not
only based on neural network but also genetic and evolution-
ary algorithms as reviewed in (Aguilar-Rivera, Valenzuela-
Rendón, and Rodrı́guez-Ortiz 2015).

More recently, (Xing, Cambria, and Welsch 2018) re-
viewed the application of cutting-edge NLP techniques for
financial forecasting, using text from financial news or

tweets. (Rundo et al. 2019) covered the wider topic of ma-
chine learning, including deep learning, applications to fi-
nancial portfolio allocation and optimization systems. (Nti,
Adekoya, and Weyori 2019) focused on the use of support
vector machine and artificial neural networks to forecast
prices and regimes based on fundamental and technical anal-
ysis. Later on, (Shah, Isah, and Zulkernine 2019) discussed
some of the challenges and research opportunities, includ-
ing issues for algorithmic trading, back testing and live test-
ing on single stocks and more generally prediction in finan-
cial market. Finally, (Sezer, Gudelek, and Ozbayoglu 2019)
reviewed deep learning as well as other machine learning
methods to forecast financial time series. As the hype has
been recently mostly on deep learning, it comes as no sur-
prise that most reviewed works relate to this field. One of the
only works, to our knowledge, that refers to gradient boosted
decision tree applications is (Krauss, Do, and Huck 2017)

Interestingly, Gradient boosting decision trees (GBDT)
are almost non-existent in the financial market forecasting
literature. As is well-knwon, GBDT are prone to over-fitting
in regression applications. However, they are the method of
choice for classification problems as reported by the ML
platform Kaggle. In finance, the only space where GBDT
have become popular is the credit scoring and retail bank-
ing literature. For instance, (Brown and Mues 2012) or
(Marceau et al. 2019) reported that GBDT are the best ML
method for this specific task as they can cope with limited
amount of data and very imbalanced classes.

When classifying stock markets into two regimes (a ’nor-
mal’ one and a ’crisis’ one), we are precisely facing very im-
balanced classes and a binary classification challenge. In ad-
dition, when working with daily observations, we are faced
with a ML problem with a limited number of data. These
two points can seriously hinder the performance of deep
learning algorithms that are well known to be data greedy.
Hence, our work investigates whether GBDT can provide a
suitable method to identify stock market regimes. In addi-
tion, as a byproduct, GBDT provide explicit decision rules
(as opposed to deep learning), making it an ideal candidate
to investigate regime qualification for stock markets. In this
work, we apply our methodology to the US S&P 500 fu-
tures prices. In unreported works, we have shown that our
approach may easily and successfully be transposed to other
leading stock indices like the Nasdaq, the Eurostoxx, the
FTSE, the Nikkei or the MSCI Emerging futures prices.

Concerning explainable AI (XAI), there has been plenty
of research on transparent and interpretable machine learn-
ing models, with comprehensive surveys like (Adadi and
Berrada 2018) or (Choo and Liu 2018). (Rosenfeld and
Richardson 2019) discusses at length XAI motivations, and
methods. Furthermore, (Liu et al. 2017) regroup XAI into
three main categories for understanding, diagnosing and
refining. It also presents applicable examples relating to
the prevailing state-of-the-art with upcoming future possi-
bilities. Indeed, explainable systems for machine learning
have has applied in multiple fields like plant stress pheno-
typing (Ghosal et al. 2018), heat recycling, fault detection
(Madhikermi, Malhi, and Främling 2019), capsule Gastroen-
terology (Malhi et al. 2019-12) and loan attribtion (Malhi,



Knapic, and Framling 2020).Furthermore, (Malhi, Knapic,
and Framling 2020) use a combination of LIME and Shap-
ley for understanding and explaining models outputs. Our
application is about financial markets which is a more com-
plex multi-agent environment where global explainability is
more needed, hence the usage of Shapley to provide intu-
ition and insights to explain and understand model outputs.

Contribution
Our contributions are threefold:

• We specify a valid GBDT methodology to identify stock
market regimes, based on a combination of more than 150
features including financial, macro, risk aversion, price
and technical indicators.

• We compare this methodology with other machine learn-
ing (ML) methods and report an improved accuracy of
GBDT over other ML methods on the S& P 500 futures
prices.

• Last but not least, we use Shapley values to provide a
global understanding and local explanations of the model
at each date, which allows us to analyze in detail the
model predictions before and after the March 2020 equity
crash.

Why GBDT?
The motivations for Gradient boosting decision trees
(GBDT) are multiple:

• GBDT are the most suitable ML methods for small data
sets classification problems. In particular, they are known
to perform better than their state-of-the-art cousins, Deep
Learning methods, for small data sets. As a matter of fact,
GBDT methods have been Kagglers’ preferred ones and
have won multiple challenges.

• GBDT methods are less sensitive to data re-scaling, com-
pared to logistic regression or penalized methods.

• They can cope with imbalanced data sets.

• They allow for very fast training when using the leaf-wise
tree growth (compared to level-wise tree growth).

Methodology
In a normal regime, equity markets are rising as investors
get rewarded for their risk-taking. This has been referred to
as the ’equity risk premium’ in the financial economics lit-
erature (Mehra and Prescott 1985). However, there are sub-
sequent downturns when financial markets switch to panic
mode and start falling sharply. Hence, we can simply assume
that there are two equity market regimes:

• a normal regime where an asset manager should be pos-
itively exposed to benefit from the upward bias in equity
markets.

• and a crisis regime, where an asset manager should ei-
ther reduce its equity exposure or even possibly short-sell
when permitted.

We define a crisis regime as an occurrence of index return
below the historical 5% percentile, computed on the training
data set. The 5% is not taken randomly but has been vali-
dated historically to provide meaningful levels, indicative of
real panic and more importantly forecastable. For instance,
in the S&P 500 market, typical levels are returns of -6 to
-5 % over a 15-day horizon. To predict whether the com-
ing 15-day return will be below the 5% percentile (hence
being classified as in crisis regime), we use more than 150
features described later on. Simply speaking, these 150 fea-
tures are variables ranging from risk aversion measures to
financial metrics indicators like 12-month-forward sales es-
timates, earning per share, Price/Earnings ratio, economic
surprise indices (like the aggregated Citigroup index that
compiles major figures like ISM numbers, non farm pay-
rolls, unemployment rates, etc).

We only consider two regimes with a specific focus on
left-tail events on the returns distribution because we found
it easier to characterize extreme returns than to plan outright
returns using our set of financial features. In the ML lan-
guage, our regime detection problem is a pure supervised
learning exercise, with a two-regimes classification. Hence
the probability of being in the normal regime and the one of
being in the crisis regime sum to one.

Daily price data are denoted by Pt. The return over a pe-
riod of d trading days is simply given by the corresponding
percentage change over the period: Rd

t = Pt/Pt−d− 1. The
crisis regime is determined by the subset of events where
returns are lower or equal to the historical 5% percentile de-
noted by C. Returns that are below this threshold are labeled
”1” while the label value for the normal regime is set to ”0”.
Using traditional binary classification formalism, we denote
the training data X = {xi}Ni=1 with xi ∈ RD and their cor-
responding labels Y = {yi}Ni=1 with yi ∈ 0, 1. The goal is to
find the best classification function f∗(x) according to the
temporal sum of some specific loss function L(yi, f(xi)) as
follows:

f∗ = arg min
f

N∑
i=1

L(yi, f(xi))

Gradient boosting assumes the function f to take an additive
form :

f(x) =

T∑
m=1

fm(x) (1)

where T is the number of iterations. The set of weak
learners fm(x) is designed in an incremental fashion. At the
m-th stage, the newly added function, fm is chosen to opti-
mize the aggregated loss while keeping the previously found
weak learners {fj}m−1

j=1 fixed. Each function fm belongs to
a set of parameterized base learners that are modeled as de-
cision trees. Hence, in GBDT, there is an obvious design
trade-off between taking a large number of boosted rounds
and very simple based decision trees or a limited number of
base learners but of larger size. From our experience, it is
better to take small decision trees to avoid over-fitting and
an important number of boosted rounds. In this work, we
use 500 boosted rounds. The intuition between this choice



is to prefer a large crowd of experts that difficultly memo-
rize data and should hence avoid over-fitting compared to a
small number of strong experts that are represented by large
decision trees. Indeed, if these trees go wrong, their failure
is not averaged out, as opposed to the first alternative. Typi-
cal implementations of GBDT are XGBoost, as presented in
(Chen and Guestrin 2016), LightGBM as presented (Ke et al.
2017), or Catboost as presented (Prokhorenkova et al. 2018).
We tested both XGBoost and LightGBM and found three-
fold speed for LighGBM compared to XGBoost for similar
learning performances. Hence, in the rest of the paper, we
will focus on LightGBM.

For our experiments, we use daily observations of the
S&P 500 merged back-adjusted (rolled) futures prices us-
ing Homa internal market data. Our daily observations are
from 01Jan2003 to 15Jan2021. We split our data into three
subsets: a training sample from 01Jan2003 to 31Dec2018, a
validation sample used to find best hyper-parameters from
01Jan2019 to 31Dec2019 and a test sample from 01Jan2020
to 15 Jan2021.

GBDT hyperparamers
The GBDT model contains a high number of hyper-
parameters to be specified. From our experience, the follow-
ing hyper-parameters are very relevant for imbalanced data
sets and need to be fine-tuned using evolutionary optimisa-
tions as presented in (Benhamou et al. 2019): min sum hes-
sian in leaf, min gain to split, feature fraction, bagging frac-
tion and lambda l2. The max depth parameter plays a central
role in the use of GBDT. On the S&P 500 futures, we found
that very small trees with a max depth of one performs bet-
ter over time than larger trees. The 5 parameters mentioned
above are determined as the best hyper parameters on the
validation set.

Features used
The model is fed by more than 150 features to derive a daily
’crash’ probability. These data can be grouped into 6 fami-
lies:

• Risk aversion metrics such as equities’, currencies’ or
commodities’ implied volatilities, credit spreads and VIC
forward curves.

• Price indicators such as returns, sharpe ratio of major
stock markets, distance from long term moving average
and equity-bond correlation.

• Financial metrics such as sales growth or Price/Earnings
ratios forecast 12 month forward.

• Macroeconomic indicators such as economic surprises
indices by region and globally as given by Citigroup sur-
prise index.

• Technical indicators such as market breath or put-call
ratio.

• Rates such as 10 Yrs and 2 Yrs U.S. rates, or break-even
inflation information.

Process of features selection
Using all raw features would add too much noise in our
model and would lead to biased decisions. We thus need to
select or extract only the most meaningful features. As we
can see in figure 1, we do so by removing the features in 2
steps:

• Based on gradient boosting trees, we rank the features by
importance or contribution.

• We then pay attention to the severity of multicollinearity
in an ordinary least squares regression analysis by com-
puting the variance inflation factor (VIF) to remove co-
linear features. Considering a linear model Y = β0 +
β1X1 +β2X2 + ..+βnXn + ε, the VIF is equal to 1

1−R2
j

,

R2
j being the multipleR2 for the regression ofXj on other

covariates. The VIF reflects the presence of collinear fac-
tors that increase the variance in the coefficient estimates.

At the end of this 2-part process, we only keep 33% of the
initial features.

Figure 1: Probabilities of crash

In the next section, we will investigate whether removing
correlated features improves the out-of-sample precision of
the model.

Results
Model presentation
Although our work is mostly focused on the GBDT model,
we compare it against common ML models, namely:

• a support vector model with a radial basis function kernel,
a γ parameter of 2 and a C parameter of 1 (RBF SVM).
We use the sklearn implementation. The two hyper pa-
rameters γ and C are found on the validation set.

• a Random Forest (RF) model, whose max depth is set to 1
and boosted rounds are set to 500. We purposely tune the
RF model similarly to our GBDT model in order to bene-
fit from the above mentioned error averaging feature. We
found this parameter combination to perform well for an-
nual validation data sets ranging from year 2015 onward
on the S&P 500 market. We note that a max depth of 1
does not allow for interaction effects between features.



• a first deep learning model, referred to in our experiment
as Deep FC (for fully connected layers), which is naively
built with three fully connected layers (64, 32 and one for
the final layer) with a drop out in of 5 % between and Relu
activation, whose implementation details rely on tensor-
flow keras 2.0.

• a second more advanced deep learning model consisting
of two layers referred to in our experiment as deep LSTM:
a 64 nodes LSTM layer followed by a 5% dropout fol-
lowed by a 32 nodes dense layer followed by a dense layer
with a single node and a sigmoı̈d activation.

For both deep learning models, we use a standard Adam op-
timizer whose benefit is to combine adaptive gradient de-
scent with root mean square propagation (Kingma and Ba
2014).

We train each model using either the full set of features
or only the filtered ones, as described in 1. Hence, for each
model, we add a suffix ’ raw’ or ’ FS’ to specify if the model
is trained on the full set of features or after features selec-
tions. We provide the performance of these models accord-
ing to different metrics, namely accuracy, precision, recall,
f1-score, AUC and AUC-pr in tables 1 and 2. The GBDT
with features selection is superior according to all metrics
and outperforms in particular the deep learning model based
on LSTM, confirming the consensus reached in the ML
community as regards classification problems in small and
imbalanced data sets.

Table 1: Model comparison

Model accuracy precision recall

GBDT FS 0.89 0.55 0.55
Deep LSTM FS 0.87 0.06 0.02
RBF SVM FS 0.87 0.03 0.07
Random Forest FS 0.87 0.03 0.07
Deep FC FS 0.87 0.01 0.02
Deep LSTM Raw 0.84 0.37 0.33
RBF SVM Raw 0.87 0.02 0.01
Random Forest Raw 0.86 0.30 0.09
GBDT Raw 0.86 0.20 0.03
Deep FC Raw 0.85 0.07 0.05

Table 2: Model comparison

Model f1-score auc auc-pr

GBDT FS 0.55 0.83 0.58
Deep LSTM FS 0.05 0.74 0.56
RBF SVM FS 0.06 0.50 0.56
Random Forest FS 0.04 0.54 0.56
Deep FC FS 0.04 0.50 0.56
Deep LSTM Raw 0.35 0.63 0.39
RBF SVM Raw 0.05 0.50 0.36
Random Forest Raw 0.14 0.53 0.25
GBDT Raw 0.05 0.51 0.18
Deep FC Raw 0.02 0.49 0.06

AUC performance
Figure 2 provides the ROC Curve for the two best perform-
ing models, the GBDT and the Deep learning LSTM model
with features selection. ROC curves enables to visualize and
analyse the relationship between precision and recall and to
investigate whether the model makes more type I or type II
errors when identifying market regimes. The receiver oper-
ating characteristic (ROC) curve plots the true positive rate
(sensitivity) on the vertical axis against the false positive
rate (1 - specificity, fall-out) on the horizontal axis for all
possible threshold values. The two curves are well above
the blind guess benchmark that is represented by the dotted
red line. This effectively demonstrates that these two mod-
els have some predictability power, although being far from
a perfect score that would be represented by a half square.
Furthermore, the area under the GBDT curve with features
selection is 0.83, to be compared with 0.74, the one of the
second best model (deep LSTM), also with Features selec-
tion. Its curve, in blue, is mostly over the one of the sec-
ond best model (deep LSTM), in red, which indicates that in
most situations, GBDT model performs better than the deep
LSTM model.

Figure 2: ROC Curve of the two best models

Understanding the model
Shapley values
Building on the work of (Lundberg and Lee 2017), we use
Shapley values to represent the contribution of each fea-
ture to the crisis probability. SHAP (SHapley Additive ex-
Planation) values explain the output of a function f as a
sum of the effects of each feature. It assigns an impor-
tance value to each feature that represents the effect on the
model planning of including that feature. To compute this
effect, a model fS∪{i} is trained with that feature present,
and another model fS is trained with the feature withheld.
This method hence requires retraining the model on all fea-
ture subsets S ⊆ M \ {i}, where M is the set of all fea-
tures. Then, predictions from the two models are compared
through the difference fS∪{i}(xS∪{i}) - fS(xS), where xS



represents the values of the input features in the set S. Since
the effect of withholding a feature depends on other features
in the model, the preceding differences are computed on all
possible differences fS∪{i}(xS∪{i}) - fS(xS), for all possi-
ble subsets S ⊆M\{i}. Shapley values are then constructed
as a weighted average of all these differences, as follows:
The Shapley value Φi attributed to feature i is defined as:

Φi =
∑

S⊆M\{i}

|S|! (|M | − |S| − 1)!

|M |!
(
fS∪{i}(xS∪{i})− fS(xS)

)

where |A| refers to the cardinal of the setA,M is the com-
plete set of features, S is the subset of features used, and
xS represents the values of the input features in the set S.
Proofs from game theory shows that Shapley values are the
only possible consistent approach such that the sum of the
feature attributions is equal to the output of the function we
are to explain. Compared to LIME as presented in (Ribeiro,
Singh, and Guestrin 2016), Shap has the advantage of con-
sistency, and focus at global interpretability versus local for
LIME.

The exact computation of SHAP values is challenging. In
practice, assuming features’ independence, we approximate
fS(xS) by the Shapley ’sampling value’, i.e. the conditional
mean of the global model prediction f̂(X) (calibrated on the
complete set of features), marginalizing over the values xC
of features that are not included in set S:

fS(xS) = E[f̂(X)|xS ] ≈
∫
f̂(xS , xC)p(xC)dxC

In our application, with max depth of 1, interaction effects
between features are discarded, which allows to compute
Shapley values trivially from equation (1).

Shapley interpretation
We can rank the Shapley values by order of magnitude im-
portance, defined as the average absolute Shapley value over
the training set of the model: this is essentially the average
impact on model output when a feature becomes “hidden”
from the model. Furthermore, the correlation of a feature
to its Shapley value provides insight into the effect of this
feature on the probability of a stock market crash. Figure 3
represents the joint behavior of Shapley and features values
to better grasp their non-linear dependencies.

Concerning figure 3, we observe that the most significant
feature is the 250 days percent change in S&P 500 Price
Earnings ratio (using the forward 1 Yr Earnings of the in-
dex as provided by Bloomberg). This reflects the presence of
persistent cycles during which market participants’ bullish
anticipations regarding future earnings growths and market
valuations translate into reduced downside risk for equity
prices.

By the same token, a positive (resp. negative) 250-day
change in the US 2 Yrs yield characterizes a regime of
growth (resp. recession) in equities. A positive change in
the Bloomberg Base Metals index is associated to a re-
duced crash probability. The same reasoning applies to the
FX Emerging Basket, the S&P Sales evolution, the Euro
Stoxx distance to its 200-day moving average and the EU
Economic Surprise Index. Similarly, a higher (resp. lower)

Risk Aversion implies a higher (resp. lower) crash proba-
bility and the same relationship is observed for the realized
10-day S&P 500 volatility.

Interestingly, the model identifies the Put/Call ratio as
a powerful contrarian indicator. Indeed, a persistently low
level of the Put/Call ratio (as reflected by a low 20-day mov-
ing average) reflects overoptimistic expectations and there-
fore an under-hedged market. Last but not least, the Nasdaq
100 is identified as a contrarian indicator : the higher the
Nasdaq 20-day percent change and the higher the Nasdaq
100-day and 250-day Sharpe Ratios, the higher the crash
probability. More generally, foreign markets are used pro-
cyclically (Euro Stoxx, BCOM Industrials, FX emerging)
whereas most domestic price indicators are used counter-
cyclically (Nasdaq 100, S&P 500). This is an example where
we can see some strong added value from the machine learn-
ing approach over a human approach, as the former com-
bines contrarian and trend following signals while the latter
is generally biased towards one type of signals.

Joint features and Shapley Values Distribution
Because some of the features have a strongly non-linear re-
lation to the crisis probability, we also display in figure 3 the
joint behavior of features and Shapley values at each point
in time. The y-axis reports the Shapley values, i.e. the fea-
ture contributions to the model output in log-odds (we recall
that the GDBT model has a logistic loss) while the color of
the dot represents the value of that feature at each point in
time. This representation uncovers the non-linearities in the
relationship between the Shapley values and the features.

For instance, a large 250-day increase in the P/E ratio (in
red color) has a negative impact on the crash probability,
everything else equal. The same type of dependency is ob-
served for the change in US 10 Yrs and 2 Yrs yields: the
higher (resp. lower) the change in yield, the lower (resp.
higher) the crash probability.

However, the dependency of the Shapley value to the 120-
day BCOM Industrial Metals Sharpe ratio is non-linear. El-
evated Sharpe ratios portend a lower crash probability while
the relation vanishes for low Sharpe ratios. An ambiguous
dependency is also observed for the 100-day Emerging FX
Sharpe ratio, which explains its muted correlation to the
Shapley value. This observation is all the more striking as
this feature is identified as important in terms of its global
absolute impact on the model output. By the same token,
the 20-day percent change in S&P 500 Sales does not dis-
play a linear relationship to the crash probability. First of all,
mostly elevated values of the change in sales are used by the
model. Second, large increases in S&P 500 sales are most of
the time associated with a drop in the crash probability, but
not in every instance.

The impact of the distance of the Euro Stoxx 50 to its
200-day moving average is mostly unambiguous. Elevated
levels in the feature’s distribution generally (but not system-
atically) involve a decrease in the crash probability, whereas
low levels of this feature portend an increased likelihood of
crisis. The 20-day Moving Average of the Put/Call Ratio in-
tervenes as a linear contrarian predictor of the crash proba-
bility.



The 20-day percent change in the Nasdaq 100 price is
confirmed as a contrarian indicator. As illustrated in Figure
3, the impact of the 20-day Nasqaq 100 returns is non-linear,
as negative returns may predict strongly reduced crash prob-
abilities, while positive returns result in a more moderate in-
crease in the crash probability. Conversely, the 20-day Euro
Stoxx returns have a pro-cyclical linear impact on the crash
probability, as confirmed by figure 3. As previously stated,
the GBDT model uses non-US markets in a pro-cyclical way
and U.S. markets in a contrarian manner.

Local explanation of the Covid March 2020
meltdown
Not only can Shapley values provide a global interpretation
of features’ impacts, as described in section and in figure 3,
but they can also convey local explanations at every single
date.

The figure 4 provides the Shapley values for the model on
February, 2020. At this date, the model was still positive on
the S&P 500 as the crash probability was fairly low, stand-
ing at 9.4%. The 6% 120-day increase in the P/E ratio, the
low risk aversion level, reflecting ample liquidity conditions,
and the positive EU Economic Surprise index all concurred
to produce a low crash probability. However, the decline in
the US LIBOR rate, which conveyed gloomy projections on
the U.S. economy, and the elevated Put/Call ratio, reflecting
excessive speculative behavior, both contributed positively
to the crash probability. On February 3, we observe a first
steep increase in the crash probability, driven by the 100-
day Nasdaq Sharpe Ratio contrarian indicator. At the onset
of the Covid crash, on March 2, 2020, the crash probability
dramatically increased on the back of deteriorating indus-
trial metals dynamics, falling Euro Stoxx and FTSE prices,
negative EU economic surprises and decreasing S&P 500
P/E, which caused the model to identify a downturn in the
equities’ cycle. This prediction eventually proved prescient.
Interestingly, the Nasdaq 100 index had already started its
correction by this date, prompting the tech sector contrar-
ian indicators to switch back in favor of a decreased crash
probability.

We can do the same exercise for April 1, 2020. The crash
probability plummeted as contrarian indicators started to
balance pro-cyclical indicators : the Nasdaq 100 appeared
oversold while the Put/Call ratio reflected extremely cau-
tious market anticipations. During several months, the crash
probability stabilized between 20% and 30% until the start
of July, which showed a noticeable decline of the probabil-
ity to 11.2%. The P/E cycle started improving and the mo-
mentum signals on base metals and other equities started
switching side. Although the crash probability fluctuated, it
remained contained throughout the rest of the year.

Last but not least, if we look at Shapley value at the begin-
ning of December 2020, we can draw further conclusions. At
the turn of the year, most signals were positive on the back
of improving industrial metals, recovering European equity
markets dynamics, and improving liquidity conditions (re-
flected by a falling dollar index and a low Risk Aversion).
Although this positive picture is balanced by falling LI-
BOR rates and various small contributors, the features’ vote

sharply leans in favor of the bullish side.

Conclusion
In this paper, we have shown how the GBDT method may
classify financial markets into normal and crisis regimes, us-
ing 150 technical and fundamental features. When applied
to the S&P 500, the method yields a high out-of-sample
AUC score, which suggests that the machine is able to ef-
ficiently learn from previous crises. Our approach also dis-
plays an improved accuracy compared to other ML meth-
ods, confirming the relevance of GBDT in solving highly
imbalanced classification problems with a limited number
of observations. AI models complexity are often a barrier to
a practitioner understanding of their local predictions. Yet,
from the practitioner viewpoint, understanding why a model
provides a certain prediction as at least as important as the
accuracy of this prediction. Shapley values allow for a global
understanding of the model behavior and for a local expla-
nation of each feature’s contribution to the crash probabil-
ity at each observation date. This framework shed light on
the unfolding of the model predictions during the events that
surrounded the March 2020 equity meltdown. In particular,
we unveiled the role of the tech equity sector as a powerful
contrarian predictor during this episode.

A few caveats are in order to conclude this paper. First, the
model is short-term in nature and should be employed with
an agile flexible mindset, rather than to guide strategic in-
vestment decisions. Second, one must be careful not becom-
ing overconfident about the forecasting ability of the model,
even on a short-term horizon as the model only captures a
probability of crash risk, generating false positive and false
negative signals. More importantly, as financial markets ex-
hibit a strongly non stationary behavior, it is subject to large
out of sample prediction errors should new patterns emerge.
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