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ABSTRACT

Predictive control enables the operation of physical systems along an optimal tra-
jectory based on forecasts and dynamic simulations. However, the complexity
of system dynamics and high computational cost of optimization typically re-
strict the optimization window to short horizons. Thus, any potential benefits
from mid- and long-term rewards are withdrawn. This is particularly relevant for
optimization of district energy systems using various low-environmental-impact
sources. To address this, we present an end-to-end methodological framework
for learning state-space representations of such systems that significantly reduce
computational load. The proposed approach leverages the implicit graph structure
of such systems to develop and train a physics-informed spatio-temporal graph
neural network. This methodology is evaluated on a real-world district heating
system incorporating thermal solar panels, storage, biomass and natural gas boil-
ers. Through historical time-series data augmentation and hyperparameter opti-
mization, the learned model demonstrates strong generalization ability and high
accuracy in predicting system dynamics. Our method reduces simulation time by
four orders of magnitude, cutting optimization time from several days to mere
minutes, while also lowering operational costs by up to 25%.

1 INTRODUCTION

Mitigating climate change requires substantial reduction in greenhouse gas (GHG) emissions (Port-
ner et al., 2022). To do so, the international energy agency (IEA) outlines the need to deploy large
energy networks with multiple low-carbon-footprint energy sources to reach net-zero emissions by
2050 (IEA, 2023). District heating networks are an example of such large energy networks infras-
tructure (Angelidis et al., 2023). They can use simultaneously various renewable energy sources
such as biomass, geothermal, solar thermal, heat pumps in addition to thermal energy storage. In-
corporating an increasing number of energy sources requires rethinking smart control strategies to
ensure efficient system deployment and achieve sustainable objectives. Nevertheless, the different
underlying dynamics (non-linearities, response time, intermittence, discharge rate etc.) brings new
complexity to numerical simulation which then makes the optimization of such systems prohibitively
time-consuming (Dorotić et al., 2019; Delubac et al., 2021). To tackle this and to reduce the compu-
tational load, several approaches have been adopted in literature such as linearization technics (Rojer
et al., 2024; Wirtz et al., 2021) and reduced order models (Falay et al., 2020). These approaches of-
ten lead to a simplification of the system dynamics and require considerable engineering efforts for
each new input variable to the system.

The acceleration of complex and traditional simulations is one of the fields where deep learning
models offer an appealing alternative, technically called surrogate models (SM). Neural networks
are in general the backbone of these data-based models, thanks to their capacity to capture complex
patterns and to handle various data structures (grids, graphs etc.) (Bronstein et al., 2021). This
technic was applied to diverse type of dynamical systems such as climate forecasting (Verma et al.,
2024), thermal and electrical load forecasting (Wang et al., 2023; Chitalia et al., 2020) and chemical
reactors (Ren et al., 2022), among others. More recent theoretical works consider either refining
predictions’ accuracy (Hua et al., 2023; Beintema et al., 2023) or propose enhanced training proce-
dures to reduce computational resources (Meyer et al., 2023; Fan et al., 2023). Finally, some studies

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Optimized 
Control 

variables

System

Forecasts

Surrogate

Optimizer

Constraints Obj. 
function(s)

Initial state

Observations

Update

Noise

Historical time-
series data

Reference input 
parameters

Time-series 
augmentation

Numerical 
Simulation

Patterns retrieval

New patterns

Model conception & 
Hyperparameters 

optimization

Training/Val/Test                  

Evaluation on 
unseen patterns

sections 3.2 and 3.3

Ready to use?

Figure 1: The proposed methodological framework for application-agnostic predictive control of
multi-sources district energy systems. The left block indicates the neural model predictive control
scheme in which a validated surrogate model is used along with an evolutionary optimizer. The right
figure shows the surrogate model (PI-STGCN) conception, training and validation pipeline.

implemented control strategies where the surrogate model provided fast and accurate prediction of
the system response (Jiang et al., 2022; de Jongh et al., 2021)

However, the application of deep learning to physical systems comes with some limitations. In
several cases, they are applied on benchmark datasets where data is sampled on small time steps
(for example 1ms or 4s) and where the system dynamics relies on few state variables or initial
states: a unique inlet velocity value, static motor power for example (Weigand et al., 2023; Pfaff
et al., 2020; Schoukens & Noël, 2017). Real-world physical systems are rarely monitored at such
time steps and depend on numerous state variables and external inputs (e.g. weather perturbations).
Moreover, replacing physical and high-fidelity model with black box neural networks remains an
open limitation even with physics-informed models (Cuomo et al., 2022). Furthermore, even though
real-world applications are available, no systematic methodology and conception framework have
been drawn, specially for district energy networks (Cox et al., 2019; Sun et al., 2022; Yu et al.,
2024).

In this work, we propose an end-to-end predictive control methodology for large real-world district
energy systems. The proposed approach, schematized in Figure 1, takes advantage of the graph
representation of such systems to develop an appropriate physics-informed spatio-temporal graph
neural network (PI-STGCN). In contrast to previous works, our proposition is system-agnostic and
enables handling various energy sources at different locations along with multiple consumer nodes to
learn a state-space representation between these entities. The surrogate model development pipeline,
shown in the right block of Figure 1, relies on hyperparameters optimization and historical time-
series augmentation used in the learning phase. We demonstrate that, in addition to expanding the
dataset size, the latter technique enables the incorporation of physically plausible scenarios into the
training set. Our methodology extends beyond the train-validation-test paradigm by further assess-
ing the learned model on unseen data patterns. This extension serves as an additional validation
step before using the model with an evolutionary optimization algorithm. The effectiveness of our
proposal is demonstrated through its application to a real-world system combining a slow inertial
energy source (biomass) with an intermittent source (solar panels).

The primary contributions are summarized as follows:

• We introduce PI-STGCN, a system-agnostic state-space surrogate model for multi-source
district energy networks. It enables the modeling of diverse producer and consumer types,
accelerating the simulation of these networks. It effectively captures both the fast and slow
dynamics of such multi-source systems.

• We propose an adaptation of Gaussian jittering to augment time-series data, exposing the
model to plausible training scenarios. The incorporation of first-principle conservation
equations allows for more confident predictions. In addition, systematic hyperparameters’
optimization is carried out to further enhance the model performance.

• The proposed end-to-end framework bridges the gap between forecasting tasks and pre-
dictive control optimization using a state-space surrogate model. This approach aims to
accelerate the deployment and management of multi-source energy networks utilizing re-
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newable and low-carbon energy sources, contributing to emissions reductions and climate
change mitigation.

• We demonstrate the effectiveness of our methodology through its application on a real-
world system that uses several energy sources. The choice of this example is based on the
heavy constraints involved such as power ramps, minimum time-on/time-off, and minimum
technical power. The results show a reduction of operational costs of this system by up to
25% while the computational time was drastically reduced by four orders of magnitude.

2 RELATED WORK

Model predictive control as schematized in Figure 1 requires an accurate system model to perform
predictive simulations. The control algorithm must accurately model and predict the system’s be-
havior under various control scenarios. In control theory, this dynamical model is often expressed
in a state-space where the dynamics follow an ordinary differential equation (ODE) in terms of state
variables (Blaud et al., 2023). An optimal control problem is mathematically formulated for time
t ∈ [0, tf ] as follows:

dx (t)

dt
= f (x(t), u(t), d(t)) , and x(0) = x0,

C (tf , u) =

∫ tf

0

g (t, xu(t), u(t)) dt+ h(tf , xu(tf )).

(1)

where f represents the non-linear system dynamics, x ∈ Rnx is the vector of state variables, u ∈
Rnu and d ∈ Rnd are the vectors of control variables and external disturbances respectively. The
cost function C is composed of a running cost g and a terminal cost h evaluated at t = tf , the end of
the optimization horizon Hopt. State-space models can be learned in two distinct ways, discrete-time
(DT) or continuous-time (CT) models (Beintema et al., 2023). The latter requires solving an ODE
and usually involves initial state estimation (Ayed et al., 2019; Beintema et al., 2023). In contrast,
DT models are more common and easier to construct as data is represented via discrete elements
(matrices, vectors, etc.).

In the field of district energy systems, a number of studies proposed surrogate DT models (Ow-
erko et al., 2020; de Jongh et al., 2021; Saloux et al., 2023; Boussaid et al., 2024; de Giuli et al.,
2024). For example, de Giuli et al. (2024) proposed to associate a recurrent neural network (RNN)
to each consumer node in a district heating network (DHN). However, they only considered a sin-
gle producer network, and the surrogate model conception relies on creating and connecting RNN
cells, meaning that GNN could have been used instead. The use of GNN allows encoding topo-
logical features of data as inductive bias in the model as in Boussaid et al. (2024). The authors
employed a spatio-temporal graph convolution network (GCN) in addition to graph attention (GAT)
and proposed a surrogate model to accelerate dynamic simulations by one to two orders of mag-
nitude. However, no physical constraints were incorporated, and similarly, only a single producer
networks were presented. Finally, other studies (Huang et al., 2023; Saloux et al., 2023) have pro-
posed control strategies for district energy systems in which heat load forecasts (represented by the
blue rectangle in the left block of Figure 1) are generated by data-driven models, while the physical
system still used a numerical simulation. Another approach for control of energy systems employs
deep reinforcement learning and showcased interesting results (Yeh et al., 2023), but such methods
need considerable training times (ranging from several hours to days). The frugality of training our
surrogate model is a key advantage and a surrogate model is a highly modular tool, meaning that it
can be used either as a predictive model and/or for optimal control. Our work completes the related
studies by employing a versatile neural network architecture that is application-agnostic, making it
suitable for district energy systems. The model is based on a spatio-temporal graph neural network
(Ji et al., 2023) and benefits from recent demonstrations showing that ’time-then-space’ models have
an expressivity advantage over ’time-and-space’ representations (Gao & Ribeiro, 2022). To further
enhance generalizability, a physics-informed approach is used in training (Raissi et al., 2019), where
a first-principles mass balance constraint, applicable to all district energy systems, is incorporated
into the loss function (Guelpa et al., 2019). Finally, the learned model is combined with a genetic
algorithm (Deb, 2001) for optimal control of district energy systems.
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Figure 2: District energy topology studied in this work. The dark blue rectangles represent produc-
ers: biomass (Pbio), natural gas (Pgas), solar (Psol) and storage (TES). The small blue circles are
control valves (Steiner nodes), while the clear blue circles represent two consumer clusters. The
variable under each node corresponds to its associated state variable (node feature).

3 METHODOLOGY

3.1 PHYSICAL SYSTEM DESCRIPTION

District heating networks consist of several producers delivering heat to consumers via a network
of pipes and control valves (equivalent to Steiner points). Therefore, such systems can be suitably
represented as a graph G = (V, E), where V is the set of nodes (producer, consumer or valve), and
E the set of edges (i.e., pipes). Section 3.2 will later show that each graph entity holds multiple in-
terconnected physical features. Recent generation of these systems are characterized by employing
different producer types at different locations of the network (Pakere et al., 2023). Various types of
heat generators can be integrated into district heating networks, including biomass boilers, geother-
mal sources, natural gas boilers, solar panels, and heat pumps. Thermal energy storage plays a
critical role by enabling asynchronous production and peak load shaving. In this work, we consider
a real-world DHN featuring three producers: a biomass boiler, a natural gas boiler, and a solar ther-
mal panel field connected to thermal storage. Numerous valves can be seen in Figure 2 between the
solar field (Psol) and the storage (TES), they allow different cycles: Charging or discharging the
storage, or direct injection from the solar field to the network. A graph representation of the sys-
tem is schematized in Figure 2. The considered network incorporates different type of constraints
making it a well representative case that requires complex control strategies (Veyron et al., 2022):

• When the biomass boiler is turned on, it must remain so for a minimum time-on τmin,on and
similarly when it is shut down for a minimum time-off τmin,off. Besides, power variations’
are limited with ramp constraints.

• Solar energy must be used when available to avoid overheating and to increase the contri-
bution of renewables in the production portfolio. Simultaneously charging and discharging
the TES is prohibited.

• Finally, the producers must provide enough heat energy to meet the heat demand of the two
clusters while temperature levels must remain above a fixed threshold.

Additional constraints and a detailed mathematical formulation of the physical system are given in
appendix A.1. Besides these constraints, network operators depend on external disturbances: solar
irradiance Girr and external temperature Text, both impact the production of solar energy, and finally
the heat demand of the two clusters, Q̇n (north) and Q̇s (south). The aim of the predictive control is
to optimize the usage of the energy sources (when to switch a source on or off, the power levels of
each source, the flow rates, etc.). To do so, network operators dispose of control variables which are
the mass flow rates sent to each of the clusters. This updates equation 1 as follows:

u(t) = [ṁn(t), ṁs(t)] , and d(t) =
[
Girr(t), Text(t), Q̇n(t), Q̇s(t)

]
. (2)

In such networks, the energy flows at the speed of the fluid in the pipes (≈ 1− 2 m/s), and thermal
transients are known to be slow (network time constant τnetwork ≈ few hours) (Guelpa et al., 2019).
This outlines an important characteristic called ‘thermal inertia’ or ‘distribution phasing’. It means
that production at time t arrives to the consumer hours later (t+τnetwork), depending on the network
size (i.e, pipes lengths) and emphasize the importance of predictive control. The objective of the
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predictive control is usually set to minimize the running operating costs (fuel costs), while respecting
all the constraints at each time step:

C (tf , u) =

∫ tf

0

cbio(t) · Q̇bio(t) + cgas(t) · Q̇gas(t)dt,

Q̇i(t) = ṁi(t) · cp ·
[
Tsupp(t)−

ṁn(t)Tn(t) + ṁs(t)Ts(t)

ṁn(t) + ṁs(t)

]
.

(3)

Where cbio and cgas are the specific costs (i.e., in C/kWh) of biomass and gas respectively, cp is the
specific heat capacity of the fluid and Tsupp the supply temperature provided by the producers. The
previous equations (2-3) justify the choice of the state variables (i.e., node features) in Figure 2. The
mass flow rates (ṁ) are the node features for the producers and the control valves. The temperature
of the fluid in the pipes (T ) are the node features for the consumers. The temperature exiting the
solar field Tout was chosen for the solar field as it is a good representative of the heat absorbed by
the fluid. Similarly, the top layer temperature in the storage tank Th is a good representative of the
thermal energy stored in it.

3.2 NEURAL PREDICTIVE CONTROL

The finite horizon optimal control expressed in equation 1 aims at providing future trajectory of the
system dynamics to optimize given objectives and respect specific constraints. The control problem
is solved by minimizing the cost function C over the control variables u for a time horizon H. A time
horizon is a predefined period of time, which is a set of consecutive time steps for discrete models.
In this work, the system dynamics (f in equation 1) are replaced by a deep learning model fθ
where θ are the model weights. As stated in section 3.1, district energy networks are characterized
by a significant inertia and producers might have constraints with large temporal durations. In
addition to future control signals and forecasted disturbances, the learned model requires access to
past observations or measurements of state variables as inputs to accurately predict future system
behavior. Equations 1 and 3 translate to a neural predictive control as follows:

xHsm

+ = fθ

(
xHsm

− , uHsm

+ , dH
sm

+

)
C
(
Hopt, uHopt

+

)
=

t+Hopt∑
t

(cbio,t · Q̇bio,t + cgas,t · Q̇gas,t)×∆t.
(4)

Two time horizons are defined: Hsm, the predictive range of the surrogate model, and Hopt, the
typically longer optimization horizon, requiring autoregressive use of the surrogate model. The
subscript + indicate predicted variables, meaning values from the current time t to tf = t + H.
Subscript − indicates past observations or measurement of state variables. This can be rewritten
as xHsm

+ = [xt, xt+1 . . . , xt+Hsm ] and xHsm

− = [xt−Hsm , . . . , xt−2, xt−1]. The learned state-space
model fθ is trained to predict the future states of the system given past observations, future control
variables and expected disturbances. The surrogate model weights θ are optimized with supervised
learning from a dataset where the system response (i.e., state variables) to different control variables
and disturbances are given. The dataset can either consist of real-world historical data or from a
high fidelity numerical simulation.

The model architecture, shown in Figure 3a and developed using torch-spatiotemporal li-
brary (Cini & Marisca, 2022), is an encoder-processor-decoder configuration where gated recurrent
units (GRU) are used for encoding and graph convolution for message passing (Gao & Ribeiro,
2022). State variables x are locally defined, meaning that one state variable is associated to each
node. Control variables u and disturbances d are diffused to each node so that the contained in-
formation is available to all network components. The figure introduces three hyperparameters that
will be optimized: number of GRU layers, the hidden size (HS) and the number of GCN layers.
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The model, named PI-STGCN, is trained as the following optimization problem:

minimize
θ

1

BS

∑
b

1

Hsm

t+Hsm∑
t

[
1

V
∑
n

∥x̂b,n,t − xb,n,t∥22 + λ · F2
m (u, x̂)

]
,

s.t. Fm (u, x̂) =
∑

producers

x̂b,n,t −
∑

consumers

ub,n,t,

x̂Hsm

+ = fθ

(
xHsm

− , uHsm

+ , dH
sm

+

)
.

(5)

In equation 5, the loss term is weighted (via λ) with a physical constraint term represented by Fm.
This term is the mass flow rates conservation over the network, where the sum of the flow rates
sent to the consumer clusters (i.e., control variables) must be equal to the sum of mass flow rates
generated by the producers. The loss is averaged and calculated over a batch of size BS and across
all the nodes in the network V . More details about the training pipeline are provided in section 3.3.

Once the surrogate model is trained and considered valid, it is used as the predictive model inside the
control loop (Figure 1). The optimization horizon, Hopt, is selected based on multiple constraints.
First, it is well-established that forecast accuracy for disturbances, such as weather and heat demand,
decreases over extended prediction periods. Conversely, setting a shorter optimization horizon may
result in the loss of long- and medium-term rewards. In the literature, many related studies have
limited their optimization horizons to short periods (ranging from a few hours to a single day) due to
the aforementioned reasons, as well as the rising computational costs (Jansen et al., 2024; de Giuli
et al., 2024; Jäkle et al., 2023; Wirtz et al., 2021; Quaggiotto et al., 2021). In this work a compromise
between these constraints was chosen, we set Hopt = 1 week. A genetic algorithm (GA) is then
used to generate a population of control signals that will be evaluated using the predictive model.
Iteratively, a new population is generated based on the best individuals and genetic combinations of
the previous population until convergence to optimal control variables. A detailed presentation of
the genetic algorithm implementation using pymoo library is provided in appendix A.2 after (Blank
& Deb, 2020).
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Figure 3: Figure (a) illustrates the surrogate model (PI-STGCN) architecture, which integrates past
state variables, future control signals, and forecasted disturbances. The number of layers, a key
hyperparameter, is optimized (superscript ‘sm’ is omitted for clarity). Figure (b) depicts the dataset
construction process using a sliding window, the impact of the ‘Stride’ parameter is discussed later.
The blue cards are the inputs of the surrogate model and the gray-blue ones are the outputs.

3.3 TRAINING PIPELINE

The training and validation pipeline explained in this section is schematized in Figure 1 right
block. To construct the dataset, historical measurements are in general available for such sys-
tems, specially weather, heat demand and control variables. Therefore, data samples (i.e.,{
xHsm

+ , xHsm

− , uHsm

+ , dH
sm

+

}
) are constructed by sliding over the historical data as shown in Figure

3b by a number of time steps called ‘stride’. The smallest value for the stride will correspond to the
historical data measurement time step. However, this might affect the granularity of the dynamics
we want the surrogate model to learn and will be assessed in section 4.2. In general, deep learning
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Table 1: Hyperparameters and corresponding search space implemented in ASHA optimizer.

Hyperparameter Search space

Batch size (BS) & Hidden size (HS) {64, 128, 256}
GRU layers & GCN layers {1, 2, 4, 6, 8}
Learning rate (lr) & Physical weight (λ)

[
10−4, 10−1

]
Predictive horizon (Hsm) {12h, 24h, 48h}

models are known to require a significant amount of data to effectively learn the desired dynamics. In
our case, only one year of historical data was available, to overcome this limitation we propose using
time-series augmentation (Nikitin et al., 2023). We implement Gaussian jittering (weak augmenta-
tion T 1), where new control and disturbances are generated by using random multipliers ω and then
simulate the system using a high fidelity numerical model. A set of times-series ω with values in
r = [0.9, 1.1] is generated via the normal distribution N (1, σaug) where σaug = (rmax− rmin)/6.
The range r is chosen because the control variables, representing mass flow rates, are constrained
by the limited range of hydraulic pumps. However, while Gaussian jittering is commonly used to
increase the number of noisy samples, here it is used to generate plausible scenarios. To do so, the
sampling frequency (∆taug) of random multipliers ω must be greater than historical data sampling
time step ∆ts. In other words, the data is ‘disturbed’ every ∆ = (∆taug/∆ts) steps. Let’s denote
n the number of intervals with ∆taug length in the historical dataset, the Gaussian jittering can be
formulated as:

ω
(i,k)
i|i+∆ ∼ N (i) (1, σaug) , for i ∈ [[0, n]] and k ∈ {u, d},

uaug = Concat
(
ω
(i,u)
i|i+∆ ⊙ ui|i+∆

)
, for i ∈ [[0, n]],

daug = Concat
(
ω
(i,d)
i|i+∆ ⊙ di|i+∆

)
, for i ∈ [[0, n]],

xaug = Simulate (uaug, uaug) .

(6)

An example of this procedure applied to solar irradiance (Girr) is presented in Figure 4a. Two
augmented data samples are depicted, illustrating plausible scenarios. The first example represents
a sunny day with a brief midday cloud cover, while the second depicts a similar sunny day with
slightly higher solar irradiance compared to the original data. An additional illustration is given for
one of the control variables (ṁs) and shows the different flow rates generated. The impact of the
dataset size (i.e., with and without augmentation) is discussed in the results section.

The dataset is then scaled using min-max normalization and split to three distinct sets, training
(70%), validation (10%) and test (20%). The PI-STGCN model is trained using the AdamW (decou-
pled weight decay regularization) optimizer with a learning rate lr and a batch size BS (Loshchilov,
2017). To increase model performance, a hyperparameters’ optimization is performed using the
Asynchronous Successive Halving Algorithm (ASHA) from Li et al. (2018), implemented in Ray
and pytorch-lightning libraries (Liaw et al., 2018; Falcon & team, 2019). The considered
hyperparameters and their corresponding range are given in Table 1. The best model is then trained
to reach the best optimized results using a 32 GB NVIDIA Tesla V100 GPU. The best model is
further evaluated on an additional test dataset of unseen patterns (shown in Figure 4c). The aim
of this additional evaluation is to assess the model generalizability to different time-series shapes,
potentially resembling those generated by the genetic algorithm.

4 EXPERIMENTS

In the following, results are shown for the best model configuration found through hyperparameters’
optimization (the five best configurations are given in table 4). The ASHA samples 150 different
configuration from the search space specified in Table 1. Unless pruned earlier by the optimizer,
each configuration was trained for a maximum of 30 epochs. The averaged mean squared error
(MSE) over all the nodes is used as the selection metric (i.e., best model choice is based on it).
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Figure 4: Figures (a) and (b) shows two examples of solar irradiance and control variable time-series
augmentation respectively. Figure (c) gives two examples of new control variable patterns used to
assess the generalizability of the model.

Besides, back-scaled root mean squared error (RMSE in SI units) is used to measure the model error
for variables of interest and particularly the state variables used in the cost function C in equation
3. Finally, the coefficient of determination R2 is used to reflect the model robustness and accuracy.
The best model architecture configuration studied here is: BS = 64, HS = 256, GRU layers = 1,
GCN layers = 2, lr = 10−3, λ = 2.5 ·10−4 and Hsm = 12h. The stride hyperparameter is set to the
smallest possible value, stride = 10 min. The impact of choosing bigger strides is discussed later in
this section. In the following subsection, model performance is analyzed through error analysis and
the effect of Gaussian jittering is discussed.

4.1 MODEL PERFORMANCE

The model predictions are compared to outputs from the numerical simulation to be substituted. The
latter comes from a high fidelity and previously validated numerical model implemented in Dymola
software. An example of PI-STGCN predictions on a test set batch are shown in Figure 5.
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Figure 5: Normalized time-series results and comparison between PI-STGCN predictions (red dot-
ted curve) and simulation (black curve). The different dynamics are well captured and the predic-
tions errors are in an acceptable range for network operators. Only variables used in the cost function
are shown here, additional state variables predictions are illustrated in appendix A.3.

It can be seen that different dynamic patterns are well captured, both fast (5b) and relatively slow
(5d) evolutions are learned. Moreover, the on/off behavior of control valves (5g, 5h) is precisely
learned, this makes the model remarkably accurate. The minimum time-off constraint (τmin,off) re-
mains respected for the biomass boiler as shown in Figure 5a. These results are obtained using a
dataset of three years simulation, two of which are generated by the historical data augmentation
presented previously. Table 2 presents error values, performance metrics, and evaluates the impact
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Table 2: The best model configuration performance assessment through various metrics.

Metrics MSE R2 Fm ṁbio ṁgas Tsupp Tn Ts Error
reduc.

Training
time- - - (kg/s) (kg/s) (K) (K) (K)

Data augmentation assessment

1RY 0.024 0.77 0.042 3.7 4.2 1.2 2.6 2.4 Ref 33 min
1RY+1AY 0.006 0.96 0.031 3.2 3.5 1.2 4.3 1.9 75% 1h 25 min
1RY+2AY 0.004 0.99 0.019 2.7 3.2 0.8 1.4 1.4 83% 1h 56 min

Evaluation on new patterns in Figure 4c

Pattern 1 0.001 0.98 0.002 1.3 1.6 0.4 0.9 1.1 - -
Pattern 2 0.002 0.98 0.016 2.5 2.9 0.5 2.4 1.7 - -

Impact of stride hyperparameter mentioned in Figure 3b

S = 1 h 0.007 0.94 0.017 3.5 4.1 1.2 2.2 2.3 Ref 19 min
S = 30 min 0.006 0.97 0.016 3.3 3.9 1.1 2.0 2.1 14% 40 min
S = 10 min 0.004 0.99 0.019 2.7 3.2 0.8 1.4 1.4 42% 1h 56 min

of data augmentation. The acronyms RY and AY stand for ‘Real Year’ and ‘Augmented Year’, re-
spectively. The optimal model configuration was trained on three datasets (1RY, 1RY+1AY, and
1RY+2AY) to achieve peak performance. All models were tested on the same dataset, covering 7
months of data (late summer, autumn, and early winter). The best performance was observed when
the model was trained using a combination of one real year and two augmented years (1RY+2AY).
The performance enhancement is significant as the normalized MSE is reduced by over 83% com-
pared to the model trained with 1RY dataset. The R2 value is also improved, indicating a better
fit of the model. Besides, the RMSE of state variables used for calculating the cost function C in
equation 3 are given, and are in acceptable range for network operators. Finally, such high accu-
racy comes also with a drastic decrease of four orders of magnitude (reduction factor = 1.9 · 104) in
computational time.

4.2 DYNAMIC EFFECTS

In this section two aspects of the model performance are analyzed. First, the generalizability of the
surrogate model is assessed by measuring its accuracy for two weeks of simulation where control
variables follow different patterns from the one in the training dataset (shown in Figure 4c). The
results are reported in Table 2. MSE values indicate that the model predictions are notably accurate
and confirm that the model effectively learned the underlying dynamics of the studied system. In
terms of comparison, the accuracy is slightly lower for ‘Pattern 2’ as expected. In fact, this signal
is made up of successive long-term trays, a feature completely unavailable in the training dataset.
Therefore, the model effective and accurate performance (i.e., no significant degradation) is con-
firmed and make it now available for using it in a control loop.

The final aspect addresses the influence of the ‘stride’ hyperparameter during dataset construction,
shown in Figure 3b. Three stride values were tested using the optimal model configuration and the
1RY+2AY dataset. The smallest stride corresponds to the real sampling frequency (weather data
is available every 10 minutes), the same as the frequency used in numerical simulations. Results
indicate that model performance improves as the stride decreases, the error is 42% lower when using
s = 10 min instead of s = 1 h. A smaller stride increases the number of samples in the training set for
a given dataset size, but more crucially, it enhances the model’s ability to capture rapid dynamics,
particularly mass flow rates.

4.3 APPLICATION TO OPTIMAL CONTROL

After validating the learned state-space model, we provide a demonstration of how it can be used
in predictive optimal control of district energy systems. The methodology as illustrated in Figure 1
relies on using the surrogate model to provide objective function estimates for the different control
variable scenarios generated by the optimizer (genetic algorithm in this case).
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Table 3: Optimization results using the surrogate model (NPC) compared to actual costs, with
computational time comparison if the numerical model (MPC) is used.

Real costs
(kC)

Optimized
costs (kC)

Cost
reduction

MPC comp.
time

NPC comp.
time

Time
reduction

Week 1 49.7 45.7 8% ∼ 6 days ∼ 8 min ∼ 1.1 · 103
Week 2 30.6 26.5 13% ∼ 8 days ∼ 9 min ∼ 1.3 · 103
Week 3 19.4 14.5 25% ∼ 13 days ∼ 10 min ∼ 2 · 103

As a proof of concept, we consider an optimization horizon of 1 week and retrieve three representa-
tive weeks from historical data where real costs are available:

• Week 1: week with the highest total heat load, it occurs during winter (8th to 15th of
December), with cold weather conditions, low irradiance and high flow rates required.

• Week 2: week with the median total heat load, it occurs during spring (12th to 19th of
May), with variable irradiance and a highly fluctuating load.

• Week 3: week with the lowest total heat load, it occurs during summer (28th of July to 4th
of August), with high irradiance during the day, the thermal storage will be heavily used.

The objective function corresponds to the running cost C defined in equation 3. Interestingly, by
learning a state-space constrained model, the optimal control problem becomes an unconstrained
problem. In fact, the numerical simulation model already incorporates the different constraints
presented in section 3.1, meaning that the outputs of the surrogate model are implicitly constrained.
Once the genetic algorithm reaches convergence, the optimal solution found by the surrogate model
is sent to the system, i.e. the high fidelity numerical model to confirm its feasibility and optimal
cost. The GA algorithm is executed with a population of 100 individuals (one-week time series for
each control variable) evolving over 200 generations. The results, summarized in Table 3, indicate
significant cost reductions compared to real system operations. The highest reduction, 25%, occurs
in week 3, where optimal use of solar power and storage minimizes costs. In contrast, for week 1,
which falls in winter with the highest heat demand, operational costs are reduced by 8%. Due to low
solar availability and demand constraints, high mass flow rates are necessary, resulting in biomass
and gad boilers operating at high load. An intermediate cost reduction of 13% is observed for the
median week.

One of the most notable results is the significant reduction in computation time. Using the GA op-
timizer with the Dymola software requires several days of calculation, rendering it infeasible for
weeks 2 and 3, where the optimization calculation time exceeds its predictive horizon. By contrast,
the inference model reduces the computational time to just a few minutes. The variation in computa-
tion times across weeks is attributed to the complexity of the system’s dynamics. Week 3, in summer,
requires more time due to the involvement of thermal storage, with multiple cycles (charging, direct
injection, discharging, etc.). This drastic improvement enables real-time use of the optimal control
framework and highlights the clear advantages of deep learning models in promoting, optimizing
and deploying district energy systems effectively.

5 CONCLUSION

In this work, we presented a streamlined methodology for deep learning-based optimal control
for computationally intensive multi-source district energy networks simulations. A comprehensive
framework for training and validating the physically-informed surrogate model is provided. It re-
lies on historical data augmentation through Gaussian jittering and hyperparameters optimization.
The learned model is then used by a genetic algorithm optimizer to provide accurate estimates to
optimize a given objective function. The results demonstrate the effectiveness of our approach in
optimizing costs (up to 25%) and reducing computational time (from several days to few minutes).
This work opens up new perspectives for the optimized deployment and control of multi-source
district energy systems, thus contributing to the decarbonization of energy systems to meet environ-
mental objectives.
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Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning
dynamical systems from partial observations. arXiv preprint arXiv:1902.11136, 2019.

Gerben I. Beintema, Maarten Schoukens, and Roland Tóth. Continuous-time identification of dy-
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Hrvoje Dorotić, Tomislav Pukšec, and Neven Duić. Multi-objective optimization of district heating
and cooling systems for a one-year time horizon. Energy, 169:319–328, 2019.

11

https://github.com/TorchSpatiotemporal/tsl
https://github.com/TorchSpatiotemporal/tsl


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Basak Falay, Gerald Schweiger, Keith O’Donovan, and Ingo Leusbrock. Enabling large-scale dy-
namic simulations and reducing model complexity of district heating and cooling systems by
aggregation. Energy, 209:118410, 2020.

William Falcon and PL team. PyTorch Lightning, 2019. URL https://github.com/
Lightning-AI/lightning.

Xuhui Fan, Edwin V Bonilla, Terence O’Kane, and Scott A Sisson. Free-form variational inference
for gaussian process state-space models. In International Conference on Machine Learning, pp.
9603–9622. PMLR, 2023.

Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static graph representa-
tions for observational predictions. In International Conference on Machine Learning. PMLR,
2022.

Elisa Guelpa, Adriano Sciacovelli, and Vittorio Verda. Thermo-fluid dynamic model of large district
heating networks for the analysis of primary energy savings. Energy, 184:34–44, 2019.

Chuanbo Hua, Federico Berto, Michael Poli, Stefano Massaroli, and Jinkyoo Park. Learning ef-
ficient surrogate dynamic models with graph spline networks. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Yaohui Huang, Yuan Zhao, Zhijin Wang, Xiufeng Liu, Hanjing Liu, and Yonggang Fu. Explainable
district heat load forecasting with active deep learning. Applied Energy, 350:121753, 2023.

IEA. Net zero roadmap: A global pathway to keep the 1.5 °c goal in reach, 2023. Licence: CC BY
4.0.
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A APPENDIX

A.1 PHYSICAL CONSTRAINTS

As stated in section 3.1, the study case incorporates three energy sources: biomass, natural gas and
solar thermal panels. The latter is also connected to a thermal energy storage system (TES). The first
physical constraint that must be met by the system is the energy balance that ensures the consumers’
heat demand is satisfied at every time step t:

Q̇nw
sol,t + xbio,tQ̇

min
bio + Q̇bio,t + Q̇gas,t + Q̇TES,t = Q̇n,t + Q̇s,t. (7)

Where xbio is a binary variable that controls the On/Off status of the biomass boiler. In addition, the
latter can provide energy to the network only from a minimum technical power Q̇min

bio . Concerning
the solar power, it can be seen that the corresponding term has a superscript nw, referring to direct
injection. In fact, the solar power can be either stored (superscript st) or used directly to heat the
network via the following energy balance:

Q̇nw
sol,t + Q̇st

sol,t

Asol
= η0Girr,t − a1 (Tfluid,t − Text,t)− a2 (Tfluid,t − Text,t)

2 − ceff
dTfluid

dt
(8)

Where Asol is the total surface of the solar thermal panels. The parameters η0, a1, a2 and ceff
are generally taken from the constructor technical sheets. This equation is non-linear given the
temperature difference term associated with coefficient a2.
The biomass boiler has significant inertial constraints such as minimum time-on and time-off and
ramp constraints. Such constraints are mathematically formulated as:

xbio,t − xbio,t−1 ≥ −1 +

min(t+τmin,off,H)∑
k=t

xbio,k

τmin,off
, (9)

xbio,t−1 − xbio,t ≤
i∑

k=max(0,t−τmin,on)

xbio,k

τmin,on
. (10)

Q̇bio,t − Q̇bio,t−1 ≤ rupQ̇
max
bio , (11)

Q̇bio,t − Q̇bio,t−1 ≥ −rdownQ̇
max
bio , (12)

Q̇bio,t ≤ xbio,t

(
Q̇max

bio − Q̇min
bio

)
. (13)

Equations (9, 10) ensure the minimum time-on and time-off constraints are respected. The following
two equations (11, 12) control power variations as stiff variations could damage the boiler. The last
equation ensures that the biomass boiler is only available when it is turned on. The thermal energy
storage physical model is a stratified layers model similar to the one developed in Untrau et al.
(2023). Finally, the charged (from solar) and discharged (to the network) quantities must respect the
maximum capacity of the storage, and simultaneous charging and discharging are prohibited.

Q̇st
sol,t ≤ xc

st,t

Cmax
st − Cst,t−1

∆t
, (14)

Q̇TES,t ≤ xd
st,t

Cst,t−1

∆t
, (15)

xc
st,t + xd

st,t ≤ 1. (16)

Equation 16 prevents the storage from charging and discharging simultaneously. The remaining
inequalities (14, 15) define the capacity limits for charging and discharging, respectively. Finally,
the supply temperature delivered by the boilers follows a ‘water-law’.

Tsupp =


95 °C if Text < 0,

−0.73 · Text + 95 if Text ∈ [0; 15],

84 if Text > 15.

(17)
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A.2 GENETIC ALGORITHM

We implement a genetic algorithm using pymoo library (Blank & Deb, 2020). It offers several
evolutionary algorithms that can handle a single or multi-objectives optimization problems. In this
work, we only considered the economic cost as the optimization objective, which is technically
called the ‘fitness function’ in the field of evolutionary algorithms. The genetic algorithm optimizer

Initial 
population

Fitness 
function

Parent 
selection Crossover Mutation Child 

population

Done

Generation + 1

ሶ𝑚n,1
(t) …… ሶ𝑚n,1

(t+ℋopt)ሶ𝑚n,1
(t+1)

ሶ𝑚s,1
(t) …… ሶ𝑚s,1

(t+ℋopt)ሶ𝑚s,1
(t+1)

𝑢n,1
𝑡|𝑡+ℋ𝑜𝑝𝑡

𝑢s,1
𝑡|𝑡+ℋ𝑜𝑝𝑡

Individual 1

… … …

ሶ𝑚n,𝑁
(t)

ሶ𝑚n,𝑁
(t+ℋopt)ሶ𝑚n,𝑁

(t+1)
ሶ𝑚s,𝑁
(t)

ሶ𝑚s,𝑁
(t+ℋopt)ሶ𝑚s,𝑁

(t+1) Individual N

Population 
of size N

Figure 6: Genetic algorithm optimizer framework. The color of the boxes is relative to the optimizer
color shown in Figure 1.

framework is shown in Figure 6. In this work, an individual, i.e., a possible solution to the optimiza-
tion problem, consists of two time-series with equal length each, which is the optimization predictive
horizon Hopt. The first is the mass flow rates sent to the north cluster and the second to the south
cluster. The crossover operation generates a new individual by combining segments from two parent
individuals. In this study, we employ a four-point crossover, where the offspring is formed by select-
ing two segments from each parent. The arrangement of these segments is randomly determined for
each new individual. A polynomial mutation is used to randomly change the position of two time
step values in each individual. More theoretical details along with software implementation can be
found in Deb et al. (2007). This iterative process is run iteratively until a predefined exit criteria is
met. In our case, each optimization was run for 200 generations with a population size of 100. These
are empirical values found to be enough for the optimizer to converge to an optimal cost value.

A.3 MODEL PERFORMANCE

In figure 7, we show three additional state-variables: ṁv6 and ṁv2 which are two control valves
associated with the solar field. The latter is activated similarly to ṁv1 in Figure 5g, while ṁv6

remain inactive. The fluid temperature in the storage 7b remains constant, meaning the storage is
not used.
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Figure 7: Additional state variables predictions. The model is able to predict zero and non-zeros
constant variables.
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Table 4: Top five best models hyperparameters configurations, found by the ASHA optimizer.

Model
rank

MSE Fm GRU
layers

GCN
layers

lr λ Hsm BS HS

1 7.78 10−3 4.7 10−2 1 2 1.0 10−3 2.5 10−4 12 h 64 256

2 7.99 10−3 5.6 10−2 8 2 1.1 10−3 5.2 10−4 12 h 128 256

3 8.07 10−3 3.8 10−2 6 4 9.0 10−4 4.4 10−3 12 h 64 128

4 8.15 10−3 3.2 10−2 6 1 6.9 10−4 4.2 10−3 12 h 64 256

5 8.17 10−3 3.5 10−2 6 4 3.9 10−4 5.5 10−3 12 h 64 256
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