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Abstract

What are the events involved in a pandemic001
outbreak? What steps should be taken when002
planning a wedding? The answers to these003
questions can be found by collecting many004
documents on the complex event of interest,005
extracting relevant information, and analyzing006
it. We present a new approach1 in which007
large language models are utilized to gener-008
ate source documents that allow predicting,009
given a high-level event definition, the specific010
events, arguments, and relations between them011
to construct a schema that describes the com-012
plex event in its entirety. Using our model,013
complete schemas on any topic can be gen-014
erated on-the-fly without any data collection015
needed, i.e., in a zero-shot manner. More-016
over, we develop efficient methods to extract017
pertinent information from texts and demon-018
strate, in a series of experiments, that these019
schemas are considered to be more complete020
than human-curated ones in the majority of ex-021
amined scenarios. Finally, we show that this022
framework is comparable in performance with023
previous supervised schema induction meth-024
ods that rely on collecting real texts, while be-025
ing more general and flexible by avoiding the026
need to use a predefined ontology.027

1 Introduction028

Event processing refers to tracking, analyzing, and029

drawing conclusions from streams of information030

about events. This event analysis aims at identi-031

fying meaningful events (such as opportunities or032

threats) in real-time situations and responding ap-033

propriately. Event processing can also be utilized034

to gain a deep understanding of the specific steps,035

arguments, and relations between them that are in-036

volved in a complex event. The information above037

can be consolidated into a graphical representation038

called an event schema (Li et al., 2021).039

1Our code and data will be made publicly available upon
acceptance.

Consider the example schema of kidnapping pre- 040

sented in Fig. 1. This representation of events and 041

participants assists in gaining an understanding of 042

the complex event of kidnapping and could help 043

composing a reaction plan if needed. 044

The NLP community has devoted much effort to 045

understanding events that are described in a docu- 046

ment or in a collection of documents for this pur- 047

pose. These efforts include identifying event trig- 048

gers (Lu and Roth, 2012; Huang et al., 2018; Wad- 049

den et al., 2019; Han et al., 2019), extracting event 050

arguments (Punyakanok et al., 2008; Peng et al., 051

2016; Lin et al., 2020; Zhang et al., 2021a), and pre- 052

dicting the relations between events, e.g., temporal, 053

coreference, causal or hierarchical relations (Do 054

et al., 2012; Lee et al., 2012; Glavaš et al., 2014; 055

Caselli and Vossen, 2017; Ning et al., 2018; Wang 056

et al., 2020; Zhang et al., 2020a). 057

Previous works on event schema induction re- 058

lied on the information extracted from collected 059

documents to build the schema graph. For instance, 060

Li et al. (2020) learn an auto-regressive language 061

model (LM) over paths in the instance graphs de- 062

picting events, arguments and relations of instances 063

of the complex events, and later on construct a 064

schema graph by merging the top k ranked paths. 065

However, their approach requires access to many 066

documents on each topic of interest, which can be 067

extremely laborious and time consuming to obtain. 068

Our goal, on the other hand, is to allow cre- 069

ating schemas on-the-fly by taking as input only 070

the name of the complex event of interest (like a 071

“pandemic outbreak” or an “armed robbery”). To 072

avoid collecting many documents on the topic of 073

the schema, we utilize pre-trained auto-regressive 074

text generation models, specifically GPT-3 (Brown 075

et al., 2020), to generate texts on the desired topic 076

(examples presented in Fig. 2). These documents 077

are then processed to extract pertinent informa- 078

tion, from which a schema is constructed. The fact 079

that we do not collect any data makes our learning 080
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Figure 1: An example schema for the event of “Kidnapping”. The gray arrows present temporal relations and the
checkered arrows present hierarchical relations (PARENT-CHILD).

framework zero-shot since we do not rely on any081

human-collected articles or example schemas.082

In addition to making the induction faster by083

eliminating the need to collect data, we also made084

the information extraction process faster by imple-085

menting new and efficient methods for identifying086

temporal and hierarchical relations between events087

mentioned in the text. These two steps are the most088

time consuming in the process of schema induc-089

tion and could take up to 2 hours each. Accepting090

the whole text as input instead of two sentences at091

each time, the proposed model shortens the infer-092

ence time significantly to several minutes without093

enduring a major loss in performance.094

The process of generating texts is explained095

in Section §3, and the process of extracting rele-096

vant and salient information is described in Sec-097

tion §4, then we introduce the construction of098

the schema graph in Section §5. To evaluate our099

zero-shot schema generator we conduct experi-100

ments on a benchmark dataset for schema induc-101

tion (LDC2020E25) and provide a new dataset for102

further evaluation called Schema-11. Addition-103

ally, we design a subject-matter expert Turing test,104

a.k.a. Feigenbaum test (Feigenbaum, 2003), to105

determine whether our algorithm could mimic ex-106

perts’ response towards several common complex107

event scenarios. The experiments and results are108

presented in Section §6.109

The contributions of our work include:110

1. Predicting an entire schema given the name111

of a complex event without collecting data.112

2. Implementing a novel and efficient One-Pass113

approach for identifying temporal and hierar-114

chical relations between events. 115

3. Presenting a method for automatically induc- 116

ing logical relations between events based on 117

temporal relations. 118

4. Offering a Feigenbaum test for evaluation on 119

a new schema dataset, Schema-11. 120

2 Related Work 121

Schema induction: Early schema induction ef- 122

forts focused on identifying the triggers and partic- 123

ipants of atomic events without considering rela- 124

tions between atomic events that comprise com- 125

plex schemas (Chambers, 2013; Cheung et al., 126

2013; Nguyen et al., 2015; Sha et al., 2016; Yuan 127

et al., 2018). More recent work focuses on induc- 128

ing schemas for pairs of events (Li et al., 2020) 129

and multiple events (Zhang et al., 2021b; Li et al., 130

2021), but they require access to large corpora for 131

the induction process. In this work, we induce 132

schemas on-the-fly in a zero-shot manner. As is 133

standard in state-of-the-art (SOTA) works (Li et al., 134

2020, 2021; Wen et al., 2021), we output all the in- 135

formation about relations between events and argu- 136

ments extracted from the text, in addition to logical 137

and hierarchical relations not studied previously. 138

Script learning: Early script learning works con- 139

centrated on chains of events with a single pro- 140

tagonist (Chambers and Jurafsky, 2008, 2009; 141

Jans et al., 2012; Rudinger et al., 2015; Granroth- 142

Wilding and Clark, 2016) and later extended to 143

multiple protagonists (Pichotta and Mooney, 2014; 144

Peng and Roth, 2016; Pichotta and Mooney, 2016; 145

Modi, 2016; Weber et al., 2018, 2020; Zhang et al., 146
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2020b). All of these works assume there exists a147

single line of events that describes all occurrences148

within a complex event. This work does not limit it-149

self to generating single-chained schemas. We also150

consider more complex graphs as schema outputs.151

In addition, none of these works deals with zero-152

shot scenarios that do not require training data.153

Pre-trained generation models: Large-scale154

pre-trained text generation models such as GPT-155

3 (Brown et al., 2020), BART (Lewis et al., 2020),156

T5 (Raffel et al., 2020), i.a. have been used in NLP157

to solve many tasks. These models are often seen158

as few-shot learners (Brown et al., 2020) and there-159

fore used as inference methods. However, these160

text generation models are not explicitly trained to161

perform inference, rather they are trained to pro-162

duce the most likely sequence of words to proceed a163

certain prompt, similar to language models (which164

is also how researchers refer to them).165

In a recently published paper, Wang et al.166

(2021b) used GPT-3 to generate training data in a167

few-shot inference paradigm by querying the model168

with a prompt and a few examples in order to cre-169

ate additional examples with a desired label. Later170

they used the generated data to fine-tune standard171

pre-trained models to perform inference. Our work,172

however, uses these large pre-trained LMs only as173

text generators. We generate documents on a par-174

ticular topic and use it as a corpus for extracting175

the topic’s schema. We rely on the intuition that the176

generated text will include salient and stereotypical177

information that is expected to be mentioned in the178

context of the topic (e.g., for a topic of “planning a179

wedding,” we assume most documents will include180

the event “order catering”).181

3 Data Generation182

The schema induction process begins with generat-183

ing texts using large LMs as text generation models.184

These texts are joined to form a knowledge base185

for the schema, including all of the potential infor-186

mation that the schema may present. One could,187

of course, create this knowledge base by crawling188

the web for real news articles or Wikipedia entries189

related to a certain topic.190

We argue, however, that in addition to the obvi-191

ous advantages of not having to rely on the avail-192

ability of data online and not having to crawl the193

entire web for relevant documents on each topic,194

the generated data from these large generative mod-195

els is more efficient in reporting salient events than196

Generated Text Real Text
# events / # tokens 0.1252 0.0631
# arguments / # tokens 0.0545 0.0301

Table 1: The ratio of relevant events and relevant argu-
ment roles identified in generated text and real text for
the scenario of IED attack.

random events described in the news, i.e., gener- 197

ated texts are more likely to mention important 198

information than real documents do. 199

Our analysis shows that the generated stories 200

contain a higher percentage of relevant tokens than 201

existing real news articles that are used for schema 202

induction. To demonstrate this phenomenon, we 203

compare manually gathered documents with those 204

that are automatically generated for the event of Im- 205

provised Explosive Device (IED) attack (Li et al., 206

2021). To identify salient events and arguments 207

concerning IED attacks, we adopt the DARPA 208

KAIROS Phase 1 (v3.0) ontology2, a fine-grained 209

ontology for schema learning, with 24 entity types, 210

67 event types, and 85 argument roles. 211

We calculated the number of relevant event trig- 212

gers and arguments identified in the text, where a 213

relevant mention is one whose type appears in the 214

ontology. The results shown in Table 1 demonstrate 215

that the quality of the generated texts in terms of 216

conciseness and appearance of important details is 217

higher than that of real texts. For example, the ratio 218

of relevant events per token is more than twice as 219

high in generated texts as it is in real texts. Hence 220

we are able to not only generate a schema for every 221

given topic without putting any effort in searching 222

the web, but the information we generate is also 223

better suited for our end task of depicting all of the 224

important aspects of a complex event. 225

Given a topic for which we want to create a 226

schema, we generate multiple texts that discuss the 227

topic event using the OpenAI GPT-3 API3 with 228

the Davinci-instruct-beta-v3 model. We use three 229

prompting methods to generate documents of di- 230

verse genres as follows: 231

News articles: We begin by generating a headline 232

using the prompt: “Write a news headline about 233

topic.” The output from this prompt, which appears 234

between quotation marks, is then used in the follow- 235

ing prompt: “Write a news story titled headline.” 236

2The full ontology definition can be accessed at this link:
https://bit.ly/3mIWJoN.

3https://openai.com/blog/openai-api/.
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Prompt: What are the steps involved in holding a summit
meeting?
1.
Output:

1. Plan the agenda and objectives of the meeting.

2. Select a venue that is appropriate for the meeting’s
purpose and size.

3. Send out invitations and ensure all participants have
the appropriate information.

4. Prepare for the meeting by creating materials and brief-
ing the participants.

5. Hold the meeting and follow up on any action items
that are generated.

(a) Example of generation of steps involved in the event of
holding a summit meeting.

First prompt: Write a news headline about filing a patent.
Output: New Patent Filing Could Speed Up Drug Develop-
ment.
Second prompt: Write a news story titled "New Patent
Filing Could Speed Up Drug Development".
Output: The United States Patent and Trademark Office has
just published a new patent that could speed up the drug de-
velopment process. The patent, filed by a team of researchers
from the DPharm Institute, covers a new drug screening pro-
cess that could help identify potential new drugs much more
quickly. The new process, which is based on a computer
algorithm, is said to be up to 10 times faster than traditional
methods. It can identify potential new drugs by screening
through large databases of existing drugs and drug candi-
dates. The DPharm Institute is already in the process of
licensing the patent to several pharmaceutical companies,
and is planning to commercialize the technology over the
next few years.

(b) Example of generation of news-like text for the event of
filing a patent.

Prompt: Describe how to 3D print an object?
Output: To 3D print an object, you need to first design the object in a 3D modeling program. Once the object is designed, you
need to export it as a 3D printable file format. Next, you need to choose a 3D printer and print settings. Finally, you need to print
the object.

(c) Example of generation of how-to text for the event of 3D printing.

Figure 2: Examples of generated texts using different prompting methods. The highlighted text is relevant events
that will be extracted in the information extraction step.

The output from the second prompt is added to the237

pool of generated texts. The process is repeated 30238

times. See example in Fig. 2b.239

How-to articles: For this genre type, we use the240

prompt: “Describe how to topic.” The process is241

repeated 30 times and all the generated texts are242

added to the pool. See example in Fig. 2c.243

Direct step-by-step schema: Here we use the244

prompt: “What are the steps involved in topic?245

1.”4 to allow GPT-3 to generate a schema directly.246

We run this process once. See example in Fig. 2a.247

Generating documents in various genres enables248

our model to induce comprehensive schemas on249

any given topic. Considering that some events are250

more likely to be in the news (e.g., elections, pan-251

demic outbreaks) while others are more technical252

in nature and are hence less newsworthy (such as253

earning a Ph.D. degree or planning a wedding),254

we generate diverse texts and then use a ranking255

model to choose the most relevant documents. The256

ranking process includes embedding the texts and257

the topic with the model of Reimers and Gurevych258

(2019), then cosine similarity is calculated between259

each text and the topic embeddings, and only the 30260

4The “1.” in the prompt is for GPT-3 to automatically
complete the steps.

texts closest to the topic are selected together with 261

the output from the direct step-by-step schema. 262

The following section describes the next step 263

in generating a schema: extracting all the relevant 264

information from the selected texts. 265

4 Information Extraction 266

For each document, we extract event triggers, ar- 267

guments and relations between the events that are 268

important and relevant to the schema topic. We do 269

not work with a predefined ontology that defines in 270

advance what events and arguments are essential, 271

so we extract all the information and later filter it 272

down to include just the most frequent items. Here 273

are the steps involved in extracting the information: 274

1. Semantic Role Labeling (SRL): We use the 275

SOTA SRL system5 trained on CoNLL12 276

(Pradhan et al., 2012) and Nombank dataset 277

(Meyers et al., 2004) to extract both verb and 278

nominal event triggers and arguments. 279

2. Named Entity Recognition (NER): We em- 280

ploy the SOTA NER model to extract and 281

map entities (potential arguments of events) 282

5Details for the SRL and NER systems were removed for
anonymity and will be published upon acceptance.

4



into entity types defined in the CoNLL 2002283

dataset (Tjong Kim Sang, 2002) and the284

LORELEI project (Strassel and Tracey, 2016).285

3. Constituency Parsing: Since the arguments286

extracted by SRL can be clauses and long287

phrasal nouns, we employ the constituency288

parsing model from AllenNLP6 for argument289

head word extraction. For example, in this290

sentence “The first passengers rescued from291

a helicopter that ditched in the North Sea292

have arrived at hospital,” the ARGM-LOC293

for “ditched” is “in the North Sea.” However,294

the NER model can only extract “North Sea”295

instead of “in the North Sea,” and thus we use296

the parser to match the argument to its type.297

4. Coreference Resolution: We use the SOTA298

model (Yu et al., 2020) for event and en-299

tity coreference resolution to identify within-300

document coreferential relations.301

5. Temporal Relation Extraction: We first try302

to use SOTA models (Ning et al., 2019; Zhou303

et al., 2021) to predict the temporal relations7304

between all possible pairs of extracted events305

but since the SOTA models accept two sen-306

tences containing events as input, the infer-307

ence time8 for an n-event document is O(n2),308

making the schema induction process several309

hours long. We develop a One-Pass model9310

that takes the document as input and uses the311

contextual representation of events to predict312

relations between them. As shown in Table 2,313

the inference time is shortened 63-186 times314

on average, while the performance of the One-315

Pass model is comparable to SOTA models.316

6. Hierarchical Relation Extraction: The ex-317

tremely long inference time of SOTA models318

for predicting hierarchical relations (PARENT-319

CHILD, CHILD-PARENT, COREF, NOREL)320

(Zhou et al., 2020; Wang et al., 2021a) also321

impairs the efficiency of our schema induc-322

tion system. Thus we use the same One-Pass323

methodology to extract hierarchical relations.324

6https://demo.allennlp.org/
constituency-parsing.

7The possible temporal relations (start-time comparison)
are: BEFORE, AFTER, EQUAL and VAGUE.

8The inference time is mostly spent on obtaining the con-
textual representation of events using large fine-tuned LMs.

9We take advantage of the recently developed BigBird
(Zaheer et al., 2020) that handles long sequences with sparse
attention mechanism.

Metrics
Corpus Model F1 score Speed GPU Memory

HiEve
Zhou et al. (2020) 0.489 - -
Wang et al. (2021a) 0.522 41.68s 4515MiB
One-Pass model 0.472 0.65s 2941MiB

MATRES
Ning et al. (2019) 0.767 30.12s 4187MiB
Zhou et al. (2021) 0.821 89.36s 9311MiB
One-Pass model 0.768 0.48s 2419MiB

Table 2: Performance comparison between our One-
Pass model and SOTA models for event temporal and
hierarchical relation extraction. We report F1 scores on
benchmark datasets (HiEve for hierarchical relations,
MATRES for temporal relations), speed (average infer-
ence time for 100 relations), and required GPU mem-
ory during inference. The One-Pass models are 63-186
times faster than SOTA models and take up only 26%-
65% of the GPU memory required by SOTA models,
while being comparable in performance.

We observe that the inference time is greatly 325

shortened, and the One-Pass model achieves 326

comparable results to previous models, and it 327

takes up less GPU memory (see Table 2). 328

After processing the data using the procedure 329

described above, we get a list of events, their ar- 330

guments, and relations between the events. We 331

concentrate on events and relations that frequently 332

appear in the generated texts since we assume those 333

are the most important to add to the schema (with- 334

out having any other source of information that 335

could identify what is salient). The next section 336

describes the process of building a schema. 337

5 Schema Induction 338

To consolidate the information extracted from the 339

previous step, we build a schema as follows: 340

Make a list of events and relations: To compare 341

similar event mentions in different texts, we com- 342

pare the event trigger itself (whether they are the 343

same verb or coreferential verbs10) and the NER 344

types of its arguments. For example, the trigger 345

“(take) precautions” appeared in 5 documents gen- 346

erated for the topic of Pandemic Outbreak. In two 347

documents the subject of the verb phrase “take pre- 348

cautions” was “residents”, in another two it was 349

“people” and in the last one, it was “public”. Nev- 350

ertheless, the NER type is identical in all cases 351

(PER), and thus we set the frequency of “(take) 352

precautions” to 5. Similarly, we calculate the fre- 353

quency of the temporal and hierarchical relations. 354

10We only consider coreferential relations if they appeared
in more than 2 documents.
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Figure 3: Example of amending a timeline in the
schema of “Sports Games”. The timeline at the top in-
cludes events of two different levels (“warm up” is the
parent of “stretch”), hence it is rectified to include only
events of the same level like the timeline at the bottom.
Gray arrows mark temporal relations, and checkered ar-
rows denote PARENT-CHILD.

We consider only the top-30 most frequent events355

and relations for the schema and continue to the356

next step.357

Construct timelines: We construct the longest358

timelines from the list of temporal relations. This359

list is a list of tuples (A,B), indicating that event A360

happened before event B. To construct a timeline,361

we search recursively for the longest chains of the362

following form (A,B), (B,C), (A,C) and so on.363

Fix timelines according to hierarchical rela-364

tions: We build a hierarchy of the events using the365

hierarchical relation list11 and change the timelines366

so that they will only include events that appear in367

the same level of hierarchy (see example in Fig. 3).368

Add logical relations: The final step is to combine369

the timelines and hierarchies into a single graph370

using logical relations (AND/OR). When observ-371

ing two timelines with discrepancies between the372

order of events, we place a logical AND between373

them since we interpret this discrepancy as both374

events occurring at the same time or there is no375

significance to the order of those two events. For376

example, in Fig. 4, the events “call demands” and377

“clash officers” appear in different orders in differ-378

ent documents, hence we conclude that they occur379

simultaneously or interleaved. We use a logical380

OR to mark different outcomes or events that can381

happen simultaneously but not necessarily. For ex-382

ample, in Fig. 4, the events “police disperse crowd”383

and “government urge to exercise restraint” may384

both occur or either one of them occurs.385

The final output is a schema graph that contains386

11We only consider PARENT-CHILD and CHILD-PARENT
relations that appear in more than 2 documents.

all the events, arguments, and the temporal, hier- 387

archical and logical relations between the events. 388

This schema generating model can also be used 389

to extend the scope of existing schemas by further 390

querying the model on more specific topics. For 391

example, the schema in Fig. 1 does not cover the 392

consequences of kidnapping, probably because the 393

LM did not attend to this aspect. Hence an analyst 394

can input another topic (e.g, consequences of kid- 395

napping) to further develop the schema. Similarly, 396

analysts can generate schemas for very specific 397

events (e.g., kidnapping in a political setting). 398

Next, we provide an in-depth experimentation 399

for the proposed schema induction framework. 400

6 Experiments 401

6.1 Data 402

We conduct experiments on a dataset for general 403

schema learning released by LDC (LDC2020E25). 404

The corpus includes 84 types of complex events, 405

such as Cyber Attack, Farming and Recycling. This 406

dataset includes ground-truth schemas created by 407

LDC annotators. 408

In addition to the LDC dataset, we also collected 409

human generated schemas for 11 complex events 410

(denoted henceforth as the Schema-11 dataset)12. 411

These schemas were generated by four human ex- 412

perts13 that were instructed to write a schema on 413

each topic based on their commonsense knowledge 414

that includes a list of events, relations14, arguments 415

and their NER types15. 416

6.2 Evaluation 417

We follow Li et al. (2021) to use instance coverage 418

and last event prediction to evaluate our method 419

on the LDC dataset; for the Schema-11 dataset, 420

we ask human testers to assess the completeness 421

and soundness of both human- and automatically- 422

generated schemas. 423

Coverage and Prediction A common evaluation 424

method in schema induction and script prediction 425

is to calculate the recall of events and relations 426

12The topics are: Bombing Attack, Business Change, Civil
Unrest, Disaster and Rescue, Elections, International Con-
flict, Kidnapping, Mass Shooting, Pandemic Outbreak, Sports
Games, and Terrorism Attack.

13Graduate students who are familiar with the research topic
of schema induction and are not the authors of this paper.

14No restrictions were placed for the annotators. For exam-
ple, in one case, an annotator mentioned causal relations that
are not covered in our framework.

15The annotators are familiar with SRL annotations (e.g.,
ARG0, ARG1, etc.) and NER types (e.g., PER, ORG, etc.).
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Figure 4: An example of integrating timelines and logical relations in the schema of Civil Unrest. The four upper
timelines are the ones extracted from the generated texts and the lower one is their merger into a single timeline
with logical relations.

predicted by the model, assuming the human an-427

notators’ results are gold labels (coverage) and to428

calculate the accuracy in predicting the final out-429

come of a scenario (prediction). Li et al. (2021),430

for example, calculated the accuracy of predict-431

ing the last event type of the LDC schemas. Here432

we present the results of predicting the last events433

using event triggers, instead of event types.434

Feigenbaum Test We show human testers two435

schemas on each topic in the Schema-11 dataset436

(see example in §A). One schema was automati-437

cally generated by our model, and the other was438

randomly sampled from the Schema-11 corpus16.439

We ask the testers to determine which events440

and relations are valid to appear in the schema441

(soundness) and the following questions: which442

schema is more complete in the sense of including443

all the events needed to describe the topic, and444

which schema, in their opinion, was generated by a445

human expert (as opposed to a machine).446

6.3 Results447

Coverage We calculate the intersection between448

events in the generated schemas and the gold449

schemas in two ways: (a) match event triggers,450

and (b) match event triggers and synonyms of the451

events in the gold schemas (synonym coverage)17.452

We believe that calculating synonym coverage is a453

16In some cases we combine two randomly sampled
schemas because the length of the human schemas tend to
be shorter than the automatically generated ones.

17Implemented using the NLTK WordNet Python package.

better evaluation methodology to avoid errors such 454

as considering different verbs describing the same 455

action as different (e.g., “buy” and “acquire”) than 456

using a predefined ontology of event types such 457

as the one used in Li et al. (2021). The reason is 458

twofold: firstly, any predefined ontology is limited 459

to certain scenarios and it may impair the variety 460

of events extracted; and secondly the typing mech- 461

anism may also inflict errors to the schema. 462

From the results in Table 3, we can observe that 463

despite the difficulty of exact matching, our model 464

can cover 23.73% events in the gold annotations, 465

showing that the generated text has a good cover- 466

age of events required in the schemas. And if we 467

use synonym coverage as our metric, we achieve 468

a promising coverage of 36.35% while the state- 469

of-the-art supervised event graph model (Li et al., 470

2021) covers 54.84% using limited event types. 471

Furthermore, with the high quality event represen- 472

tations obtained from the One-Pass model and the 473

proposed logical relation induction algorithm, our 474

method covers 14.09% of all the relations anno- 475

tated in the gold schemas, whereas the best per- 476

formance achieved by the event graph model is 477

44.44%. The high coverage of the SOTA method 478

can be attributed to the joint modeling of multiple 479

relations using graph neural networks, which is 480

impracticable in our zero-shot settings. 481

Prediction In the prediction task, our schemas 482

are able to predict the final outcome in 46.42% of 483

the cases for the LDC schemas (see Tab. 4). This 484
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Ours (Li et al., 2021)
Coverage Coverage (Synonym) Total Coverage

Event Match 23.73 36.35 36.35 54.84
Temporal Relations 1.99 5.80

14.09 44.44Hierarchical Relations 0.14 0.91
Logical Relations 4.56 7.38

Table 3: Coverage results for the LDC dataset. The first row presents the percentage of events that appeared in both
the LDC schemas and the automatically generated schemas (out of events in LDC schemas), and the three bottom
rows calculates the same metric for relations of different types. Total is the sum of all three types of relations.

Model Accuracy
Event Language Model 49.7
Sequential Pattern Mining 47.8
Human Schema 20.5
Event Graph Model 52.0
Zero-Shot Schema 28.5
Zero-Shot Schema Synonym 46.4

Table 4: Experimental results for last event prediction
in the LDC dataset. The top 4 results are from (Li et al.,
2021), and the metric is HITS@1 where the events are
typed based on a predefined ontology.

result is extremely impressive when it is compared485

with Li et al. (2021) since they predict event types486

instead of verbs, which is a much easier task due to487

the fact that the set of possible answers is limited.488

Feigenbaum test In the soundness experiments,489

where the testers are asked to decide which events490

and relations are valid to appear in the schema, it491

turns out that human generated schemas contain492

7.14% invalid events and 15.4% invalid relations on493

average. For the automatically generated schemas,494

6.06% of the events and 22.9% of the relations are495

considered to be invalid on average. We observe496

that the average percentage of valid events is higher497

in the automated schemas, yet the soundness of498

induced relations is relative inferior.499

For the completeness results, in 4 cases the500

testers agreed that the automatically generated501

schemas are more complete; in 3 cases they502

claimed that the human schemas are more com-503

plete; and the result is a tie in the remaining 4504

cases. The distribution of votes for completeness is505

presented in Tab. 5. Hence our automatically gener-506

ated schemas are of comparable quality to human507

generated ones in the sense of completeness.508

Finally, in the Feigenbaum test, where testers509

are asked to decide whether a schema is generated510

by a human or a machine, 8 out of 11 times they511

correctly identify the human-generated schema, 1512

incorrectly, and 2 ties. Some of the testers who513

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Human 4 0 1 1 1 2 1 1 0 3 1
Automatic 2 3 4 2 1 1 1 1 4 0 1

Table 5: Distribution of votes for which is the more
complete schema for Schema-11 dataset.

succeeded in their guesses mentioned that it was 514

easy to determine which schema was automatically 515

generated since it tends to be longer and more com- 516

plete. Although in the test, the machine-generated 517

schemas fail to deceive the testers into misidentify- 518

ing them as human generated ones, the experiments 519

shed light on future directions, e.g., keeping the 520

most salient events in the schema, improving the 521

accuracy of temporal and hierarchical relation ex- 522

traction, developing reliable approaches for causal 523

relation extraction, and so forth. The full results 524

from the Feigenbaum test appear in §B. 525

7 Conclusion 526

We propose a method to generate schemas given 527

the sole input of a topic. We use GPT-3 to generate 528

texts of diverse genres and a pipeline of informa- 529

tion extraction tools to obtain relevant information 530

before inducing logical relations and integrating the 531

events and relations into a schema graph. To im- 532

prove the efficiency of the pipeline, we implement 533

One-Pass models for event temporal and hierarchi- 534

cal relations that achieve comparable performances 535

with SOTA models but require far less inference 536

time and GPU memory space. To evaluate our 537

framework, we conduct experiments on the bench- 538

mark LDC dataset to show that our schemas cover a 539

decent amount of pertinent information and display 540

comparable ability for event prediction with super- 541

vised approaches. Although our proposed method 542

fails the Feigenbaum test on Schema-11, we ob- 543

serve a very high percentage of valid events and 544

relations and the testers endorsed the completeness 545

of our machine-generated schemas. 546
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8 Ethical Consideration547

The proposed schema induction method does not548

present any direct societal implications. As is ob-549

served in Abid et al. (2021), the text generated by550

GPT-3 might include undesired social bias. Ex-551

tracting events and relations from text with such552

social bias might potentially propagate the bias to553

the induced schemas. Besides, there are risks of554

malicious or unintended harmful uses of the gen-555

erated schemas, for instance, the system might be556

used to inquire about making a bomb or contriving557

a terrorist attacks. Yet we believe that the proposed558

method can benefit various downstream NLP/NLU559

tasks like event prediction, task-oriented dialogue560

agents (Andreas et al., 2020) and risk detection561

(Pohl et al., 2012).562
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A Feigenbaum Test Details 941

The experiment took place online through filling 942

a Google Form and involved 11 annotators. Each 943

annotator got 3-4 scenarios to annotate. The in- 944

structions for the survey appear in Figure 5. An 945

example scenario and the questions of the survey 946

are presented in Figures 6, 7, 8, and 9. 947

B Feigenbaum Test Results 948

In this section we present all the results from the ex- 949

periments on the dataset Schema-11. Table 6 shows 950

the distribution of answers for the question “which 951

schema is more complete?” (same as depicted in 952

Table 5), Table 7 presents the distribution of an- 953

swers for the question "which schema was gener- 954

ated by a human?" together with the correct answer 955

written in the bottom row, and Table 8 presents 956

the percentage of invalid events and relations deter- 957

mined by the majority vote of the annotators in the 958

automatic schema and the human schema. 959
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Figure 5: Instructions for the Feigenbaum test.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Human 4 0 1 1 1 2 1 1 0 3 1
Automatic 2 3 4 2 1 1 1 1 4 0 1

Table 6: Completeness results. The table presents the number of votes that were recorded for which schema is more
complete - the human generated schema or the automatically generated schema. The majority vote is highlighted
in yellow.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
A 1 1 3 0 0 2 0 2 2 1 1
B 5 2 2 3 2 1 2 0 2 2 1
Correct Answer B B B B B A B A A B B

Table 7: Feigenbaum test results. The annotators guesses which schema (A or B) was generated by humans. The
number of votes for each option appear along with the correct answer in the bottom row. The correct majority
guesses are marked with green and incorrect with red.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Invalid Events (Auto.) 0 0 0 0 0 8.33 0 7.69 0 14.28 0
Invalid Relations (Auto.) 46.15 16.66 25 25 0 23.52 0.4 11.76 12.5 22.22 46.15
Invalid Events (Human) 0 0 14.28 14.28 0 0 0 0 0 0 0
Invalid Relations (Human) 7.69 50 15.38 15.38 0 6.25 0 11.11 0 10 7.69

Table 8: Invalidity results. The table presents the percentage of invalid events and relations determined by the
human annotators for each schema and scenario.
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Figure 6: An example schema in the topic of Terrorism Attack. This schema was generated automatically (infor-
mation that was unknown to the annotators).
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Figure 7: An example schema in the topic of Terrorism Attack. This schema was generated by a human (informa-
tion that was unknown to the annotators).
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Figure 8: Questions that were asked about the completeness of the schemas and the generator of the schema.

Figure 9: Questions about the validity of the events appearing in one of the schemas. This question was asked on
both schemas and on the relations appearing in the schemas too.
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