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Abstract

What are the events involved in a pandemic
outbreak? What steps should be taken when
planning a wedding? The answers to these
questions can be found by collecting many
documents on the complex event of interest,
extracting relevant information, and analyzing
it. We present a new approach! in which
large language models are utilized to gener-
ate source documents that allow predicting,
given a high-level event definition, the specific
events, arguments, and relations between them
to construct a schema that describes the com-
plex event in its entirety. Using our model,
complete schemas on any topic can be gen-
erated on-the-fly without any data collection
needed, i.e., in a zero-shot manner. More-
over, we develop efficient methods to extract
pertinent information from texts and demon-
strate, in a series of experiments, that these
schemas are considered to be more complete
than human-curated ones in the majority of ex-
amined scenarios. Finally, we show that this
framework is comparable in performance with
previous supervised schema induction meth-
ods that rely on collecting real texts, while be-
ing more general and flexible by avoiding the
need to use a predefined ontology.

1 Introduction

Event processing refers to tracking, analyzing, and
drawing conclusions from streams of information
about events. This event analysis aims at identi-
fying meaningful events (such as opportunities or
threats) in real-time situations and responding ap-
propriately. Event processing can also be utilized
to gain a deep understanding of the specific steps,
arguments, and relations between them that are in-
volved in a complex event. The information above
can be consolidated into a graphical representation
called an event schema (Li et al., 2021).

'Our code and data will be made publicly available upon
acceptance.

Consider the example schema of kidnapping pre-
sented in Fig. 1. This representation of events and
participants assists in gaining an understanding of
the complex event of kidnapping and could help
composing a reaction plan if needed.

The NLP community has devoted much effort to
understanding events that are described in a docu-
ment or in a collection of documents for this pur-
pose. These efforts include identifying event trig-
gers (Lu and Roth, 2012; Huang et al., 2018; Wad-
den et al., 2019; Han et al., 2019), extracting event
arguments (Punyakanok et al., 2008; Peng et al.,
2016; Lin et al., 2020; Zhang et al., 2021a), and pre-
dicting the relations between events, e.g., temporal,
coreference, causal or hierarchical relations (Do
et al., 2012; Lee et al., 2012; Glavas et al., 2014,
Caselli and Vossen, 2017; Ning et al., 2018; Wang
et al., 2020; Zhang et al., 2020a).

Previous works on event schema induction re-
lied on the information extracted from collected
documents to build the schema graph. For instance,
Li et al. (2020) learn an auto-regressive language
model (LM) over paths in the instance graphs de-
picting events, arguments and relations of instances
of the complex events, and later on construct a
schema graph by merging the top k ranked paths.
However, their approach requires access to many
documents on each topic of interest, which can be
extremely laborious and time consuming to obtain.

Our goal, on the other hand, is to allow cre-
ating schemas on-the-fly by taking as input only
the name of the complex event of interest (like a
“pandemic outbreak” or an “armed robbery”). To
avoid collecting many documents on the topic of
the schema, we utilize pre-trained auto-regressive
text generation models, specifically GPT-3 (Brown
et al., 2020), to generate texts on the desired topic
(examples presented in Fig. 2). These documents
are then processed to extract pertinent informa-
tion, from which a schema is constructed. The fact
that we do not collect any data makes our learning
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Figure 1: An example schema for the event of “Kidnapping”. The gray arrows present temporal relations and the
checkered arrows present hierarchical relations (PARENT-CHILD).

framework zero-shot since we do not rely on any
human-collected articles or example schemas.

In addition to making the induction faster by
eliminating the need to collect data, we also made
the information extraction process faster by imple-
menting new and efficient methods for identifying
temporal and hierarchical relations between events
mentioned in the text. These two steps are the most
time consuming in the process of schema induc-
tion and could take up to 2 hours each. Accepting
the whole text as input instead of two sentences at
each time, the proposed model shortens the infer-
ence time significantly to several minutes without
enduring a major loss in performance.

The process of generating texts is explained
in Section §3, and the process of extracting rele-
vant and salient information is described in Sec-
tion §4, then we introduce the construction of
the schema graph in Section §5. To evaluate our
zero-shot schema generator we conduct experi-
ments on a benchmark dataset for schema induc-
tion (LDC2020E25) and provide a new dataset for
further evaluation called Schema-11. Addition-
ally, we design a subject-matter expert Turing test,
a.k.a. Feigenbaum test (Feigenbaum, 2003), to
determine whether our algorithm could mimic ex-
perts’ response towards several common complex
event scenarios. The experiments and results are
presented in Section §6.

The contributions of our work include:

1. Predicting an entire schema given the name
of a complex event without collecting data.

2. Implementing a novel and efficient One-Pass
approach for identifying temporal and hierar-

chical relations between events.

3. Presenting a method for automatically induc-
ing logical relations between events based on
temporal relations.

4. Offering a Feigenbaum test for evaluation on
a new schema dataset, Schema-11.

2 Related Work

Schema induction: Early schema induction ef-
forts focused on identifying the triggers and partic-
ipants of atomic events without considering rela-
tions between atomic events that comprise com-
plex schemas (Chambers, 2013; Cheung et al.,
2013; Nguyen et al., 2015; Sha et al., 2016; Yuan
et al., 2018). More recent work focuses on induc-
ing schemas for pairs of events (Li et al., 2020)
and multiple events (Zhang et al., 2021b; Li et al.,
2021), but they require access to large corpora for
the induction process. In this work, we induce
schemas on-the-fly in a zero-shot manner. As is
standard in state-of-the-art (SOTA) works (Li et al.,
2020, 2021; Wen et al., 2021), we output all the in-
formation about relations between events and argu-
ments extracted from the text, in addition to logical
and hierarchical relations not studied previously.

Script learning: Early script learning works con-
centrated on chains of events with a single pro-
tagonist (Chambers and Jurafsky, 2008, 2009;
Jans et al., 2012; Rudinger et al., 2015; Granroth-
Wilding and Clark, 2016) and later extended to
multiple protagonists (Pichotta and Mooney, 2014;
Peng and Roth, 2016; Pichotta and Mooney, 2016;
Modi, 2016; Weber et al., 2018, 2020; Zhang et al.,



2020b). All of these works assume there exists a
single line of events that describes all occurrences
within a complex event. This work does not limit it-
self to generating single-chained schemas. We also
consider more complex graphs as schema outputs.
In addition, none of these works deals with zero-
shot scenarios that do not require training data.

Pre-trained generation models: Large-scale
pre-trained text generation models such as GPT-
3 (Brown et al., 2020), BART (Lewis et al., 2020),
T5 (Raffel et al., 2020), i.a. have been used in NLP
to solve many tasks. These models are often seen
as few-shot learners (Brown et al., 2020) and there-
fore used as inference methods. However, these
text generation models are not explicitly trained to
perform inference, rather they are trained to pro-
duce the most likely sequence of words to proceed a
certain prompt, similar to language models (which
is also how researchers refer to them).

In a recently published paper, Wang et al.
(2021b) used GPT-3 to generate training data in a
few-shot inference paradigm by querying the model
with a prompt and a few examples in order to cre-
ate additional examples with a desired label. Later
they used the generated data to fine-tune standard
pre-trained models to perform inference. Our work,
however, uses these large pre-trained LMs only as
text generators. We generate documents on a par-
ticular topic and use it as a corpus for extracting
the topic’s schema. We rely on the intuition that the
generated text will include salient and stereotypical
information that is expected to be mentioned in the
context of the topic (e.g., for a topic of “planning a
wedding,” we assume most documents will include
the event “order catering”).

3 Data Generation

The schema induction process begins with generat-
ing texts using large LMs as text generation models.
These texts are joined to form a knowledge base
for the schema, including all of the potential infor-
mation that the schema may present. One could,
of course, create this knowledge base by crawling
the web for real news articles or Wikipedia entries
related to a certain topic.

We argue, however, that in addition to the obvi-
ous advantages of not having to rely on the avail-
ability of data online and not having to crawl the
entire web for relevant documents on each topic,
the generated data from these large generative mod-
els is more efficient in reporting salient events than

Generated Text | Real Text
# events / # tokens 0.1252 0.0631
# arguments / # tokens 0.0545 0.0301

Table 1: The ratio of relevant events and relevant argu-
ment roles identified in generated text and real text for
the scenario of IED attack.

random events described in the news, i.e., gener-
ated texts are more likely to mention important
information than real documents do.

Our analysis shows that the generated stories
contain a higher percentage of relevant tokens than
existing real news articles that are used for schema
induction. To demonstrate this phenomenon, we
compare manually gathered documents with those
that are automatically generated for the event of Im-
provised Explosive Device (IED) attack (Li et al.,
2021). To identify salient events and arguments
concerning IED attacks, we adopt the DARPA
KAIROS Phase 1 (v3.0) ontology?, a fine-grained
ontology for schema learning, with 24 entity types,
67 event types, and 85 argument roles.

We calculated the number of relevant event trig-
gers and arguments identified in the text, where a
relevant mention is one whose type appears in the
ontology. The results shown in Table 1 demonstrate
that the quality of the generated texts in terms of
conciseness and appearance of important details is
higher than that of real texts. For example, the ratio
of relevant events per token is more than twice as
high in generated texts as it is in real texts. Hence
we are able to not only generate a schema for every
given topic without putting any effort in searching
the web, but the information we generate is also
better suited for our end task of depicting all of the
important aspects of a complex event.

Given a topic for which we want to create a
schema, we generate multiple texts that discuss the
topic event using the OpenAl GPT-3 API® with
the Davinci-instruct-beta-v3 model. We use three
prompting methods to generate documents of di-
verse genres as follows:

News articles: We begin by generating a headline
using the prompt: “Write a news headline about
topic.” The output from this prompt, which appears
between quotation marks, is then used in the follow-
ing prompt: “Write a news story titled headline.”

The full ontology definition can be accessed at this link:
https://bit.ly/3mIWJoN.
*https://openai.com/blog/openai-api/.
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Prompt: What are the steps involved in holding a summit
meeting?

1.
Output:

1. Plan the agenda and objectives of the meeting.

2. Select a venue that is appropriate for the meeting’s
purpose and size.

3. Send out invitations and ensure all participants have
the appropriate information.

4. Prepare for the meeting by creating materials and brief-
ing the participants.

5. Hold the meeting and follow up on any action items
that are generated.

(a) Example of generation of steps involved in the event of
holding a summit meeting.

First prompt: Write a news headline about filing a patent.
Output: New Patent Filing Could Speed Up Drug Develop-
ment.

Second prompt: Write a news story titled "New Patent
Filing Could Speed Up Drug Development".

Output: The United States Patent and Trademark Office has
just published a new patent that could speed up the drug de-
velopment process. The patent, filed by a team of researchers
from the DPharm Institute, covers a new drug screening pro-
cess that could help identify potential new drugs much more
quickly. The new process, which is based on a computer
algorithm, is said to be up to 10 times faster than traditional
methods. It can identify potential new drugs by screening
through large databases of existing drugs and drug candi-
dates. The DPharm Institute is already in the process of
licensing the patent to several pharmaceutical companies,
and is planning to commercialize the technology over the
next few years.

(b) Example of generation of news-like text for the event of
filing a patent.

Prompt: Describe how to 3D print an object?

the object.

Output: To 3D print an object, you need to first design the object in a 3D modeling program. Once the object is designed, you
need to export it as a 3D printable file format. Next, you need to choose a 3D printer and print settings. Finally, you need to print

(c) Example of generation of how-to text for the event of 3D printing.

Figure 2: Examples of generated texts using different prompting methods. The highlighted text is relevant events

that will be extracted in the information extraction step.

The output from the second prompt is added to the
pool of generated texts. The process is repeated 30
times. See example in Fig. 2b.

How-to articles: For this genre type, we use the
prompt: “Describe how to topic.” The process is
repeated 30 times and all the generated texts are
added to the pool. See example in Fig. 2c.

Direct step-by-step schema: Here we use the
prompt: “What are the steps involved in fopic?
1.4 to allow GPT-3 to generate a schema directly.
We run this process once. See example in Fig. 2a.
Generating documents in various genres enables
our model to induce comprehensive schemas on
any given topic. Considering that some events are
more likely to be in the news (e.g., elections, pan-
demic outbreaks) while others are more technical
in nature and are hence less newsworthy (such as
earning a Ph.D. degree or planning a wedding),
we generate diverse texts and then use a ranking
model to choose the most relevant documents. The
ranking process includes embedding the texts and
the topic with the model of Reimers and Gurevych
(2019), then cosine similarity is calculated between
each text and the topic embeddings, and only the 30

“The “1.” in the prompt is for GPT-3 to automatically
complete the steps.

texts closest to the topic are selected together with
the output from the direct step-by-step schema.

The following section describes the next step
in generating a schema: extracting all the relevant
information from the selected texts.

4 Information Extraction

For each document, we extract event triggers, ar-
guments and relations between the events that are
important and relevant to the schema topic. We do
not work with a predefined ontology that defines in
advance what events and arguments are essential,
so we extract all the information and later filter it
down to include just the most frequent items. Here
are the steps involved in extracting the information:

1. Semantic Role Labeling (SRL): We use the
SOTA SRL system® trained on CoNLL12
(Pradhan et al., 2012) and Nombank dataset
(Meyers et al., 2004) to extract both verb and
nominal event triggers and arguments.

2. Named Entity Recognition (NER): We em-
ploy the SOTA NER model to extract and
map entities (potential arguments of events)

SDetails for the SRL and NER systems were removed for
anonymity and will be published upon acceptance.




into entity types defined in the CoNLL 2002
dataset (Tjong Kim Sang, 2002) and the
LORELEI project (Strassel and Tracey, 2016).

3. Constituency Parsing: Since the arguments
extracted by SRL can be clauses and long
phrasal nouns, we employ the constituency
parsing model from AllenNLP® for argument
head word extraction. For example, in this
sentence “The first passengers rescued from
a helicopter that ditched in the North Sea
have arrived at hospital,” the ARGM-LOC
for “ditched” is “in the North Sea.” However,
the NER model can only extract “North Sea”
instead of “in the North Sea,” and thus we use
the parser to match the argument to its type.

4. Coreference Resolution: We use the SOTA
model (Yu et al., 2020) for event and en-
tity coreference resolution to identify within-
document coreferential relations.

5. Temporal Relation Extraction: We first try
to use SOTA models (Ning et al., 2019; Zhou
et al., 2021) to predict the temporal relations’
between all possible pairs of extracted events
but since the SOTA models accept two sen-
tences containing events as input, the infer-
ence time® for an n-event document is O(n?),
making the schema induction process several
hours long. We develop a One-Pass model’
that takes the document as input and uses the
contextual representation of events to predict
relations between them. As shown in Table 2,
the inference time is shortened 63-186 times
on average, while the performance of the One-
Pass model is comparable to SOTA models.

6. Hierarchical Relation Extraction: The ex-
tremely long inference time of SOTA models
for predicting hierarchical relations (PARENT-
CHILD, CHILD-PARENT, COREF, NOREL)
(Zhou et al., 2020; Wang et al., 2021a) also
impairs the efficiency of our schema induc-
tion system. Thus we use the same One-Pass
methodology to extract hierarchical relations.

®https://demo.allennlp.org/
constituency-parsing.

"The possible temporal relations (start-time comparison)
are: BEFORE, AFTER, EQUAL and VAGUE.

8The inference time is mostly spent on obtaining the con-
textual representation of events using large fine-tuned LMs.

"We take advantage of the recently developed BigBird
(Zaheer et al., 2020) that handles long sequences with sparse
attention mechanism.

Metrics

Corpus Model Fy score  Speed GPU Memory
Zhou et al. (2020) 0.489 - -

HiEve Wang et al. (2021a) 0.522 41.68s 4515MiB
One-Pass model 0.472 0.65s 2941MiB
Ning et al. (2019) 0.767 30.12s 4187MiB

MATRES | Zhou et al. (2021) 0.821 89.36s 9311MiB
One-Pass model 0.768 0.48s 2419MiB

Table 2: Performance comparison between our One-

Pass model and SOTA models for event temporal and
hierarchical relation extraction. We report F} scores on
benchmark datasets (HiEve for hierarchical relations,
MATRES for temporal relations), speed (average infer-
ence time for 100 relations), and required GPU mem-
ory during inference. The One-Pass models are 63-186
times faster than SOTA models and take up only 26%-
65% of the GPU memory required by SOTA models,
while being comparable in performance.

We observe that the inference time is greatly
shortened, and the One-Pass model achieves
comparable results to previous models, and it
takes up less GPU memory (see Table 2).

After processing the data using the procedure
described above, we get a list of events, their ar-
guments, and relations between the events. We
concentrate on events and relations that frequently
appear in the generated texts since we assume those
are the most important to add to the schema (with-
out having any other source of information that
could identify what is salient). The next section
describes the process of building a schema.

5 Schema Induction

To consolidate the information extracted from the
previous step, we build a schema as follows:

Make a list of events and relations: To compare
similar event mentions in different texts, we com-
pare the event trigger itself (whether they are the
same verb or coreferential verbs'?) and the NER
types of its arguments. For example, the trigger
“(take) precautions” appeared in 5 documents gen-
erated for the topic of Pandemic Outbreak. In two
documents the subject of the verb phrase “take pre-
cautions” was “residents”, in another two it was
“people” and in the last one, it was “public”. Nev-
ertheless, the NER type is identical in all cases
(PER), and thus we set the frequency of “(take)
precautions” to 5. Similarly, we calculate the fre-
quency of the temporal and hierarchical relations.

%We only consider coreferential relations if they appeared
in more than 2 documents.
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Figure 3: Example of amending a timeline in the
schema of “Sports Games”. The timeline at the top in-
cludes events of two different levels (“warm up” is the
parent of “stretch”), hence it is rectified to include only
events of the same level like the timeline at the bottom.
Gray arrows mark temporal relations, and checkered ar-
rows denote PARENT-CHILD.

We consider only the top-30 most frequent events
and relations for the schema and continue to the
next step.

Construct timelines: We construct the longest
timelines from the list of temporal relations. This
list is a list of tuples (A, B), indicating that event A
happened before event B. To construct a timeline,
we search recursively for the longest chains of the
following form (A, B), (B, C), (A, C) and so on.

Fix timelines according to hierarchical rela-
tions: We build a hierarchy of the events using the
hierarchical relation list'! and change the timelines
so that they will only include events that appear in
the same level of hierarchy (see example in Fig. 3).

Add logical relations: The final step is to combine
the timelines and hierarchies into a single graph
using logical relations (AND/OR). When observ-
ing two timelines with discrepancies between the
order of events, we place a logical AND between
them since we interpret this discrepancy as both
events occurring at the same time or there is no
significance to the order of those two events. For
example, in Fig. 4, the events “call demands” and
“clash officers” appear in different orders in differ-
ent documents, hence we conclude that they occur
simultaneously or interleaved. We use a logical
OR to mark different outcomes or events that can
happen simultaneously but not necessarily. For ex-
ample, in Fig. 4, the events “police disperse crowd”
and “government urge to exercise restraint” may
both occur or either one of them occurs.

The final output is a schema graph that contains

""We only consider PARENT-CHILD and CHILD-PARENT
relations that appear in more than 2 documents.

all the events, arguments, and the temporal, hier-
archical and logical relations between the events.
This schema generating model can also be used
to extend the scope of existing schemas by further
querying the model on more specific topics. For
example, the schema in Fig. 1 does not cover the
consequences of kidnapping, probably because the
LM did not attend to this aspect. Hence an analyst
can input another topic (e.g, consequences of kid-
napping) to further develop the schema. Similarly,
analysts can generate schemas for very specific
events (e.g., kidnapping in a political setting).

Next, we provide an in-depth experimentation
for the proposed schema induction framework.

6 Experiments

6.1 Data

We conduct experiments on a dataset for general
schema learning released by LDC (LDC2020E25).
The corpus includes 84 types of complex events,
such as Cyber Attack, Farming and Recycling. This
dataset includes ground-truth schemas created by
LDC annotators.

In addition to the LDC dataset, we also collected
human generated schemas for 11 complex events
(denoted henceforth as the Schema-11 dataset)'2.
These schemas were generated by four human ex-
perts'3 that were instructed to write a schema on
each topic based on their commonsense knowledge
that includes a list of events, relations'#, arguments
and their NER types'>.

6.2 Evaluation

We follow Li et al. (2021) to use instance coverage
and last event prediction to evaluate our method
on the LDC dataset; for the Schema-11 dataset,
we ask human testers to assess the completeness
and soundness of both human- and automatically-
generated schemas.

Coverage and Prediction A common evaluation
method in schema induction and script prediction
is to calculate the recall of events and relations

"2The topics are: Bombing Attack, Business Change, Civil
Unrest, Disaster and Rescue, Elections, International Con-
flict, Kidnapping, Mass Shooting, Pandemic Outbreak, Sports
Games, and Terrorism Attack.

13Graduate students who are familiar with the research topic
of schema induction and are not the authors of this paper.

14No restrictions were placed for the annotators. For exam-
ple, in one case, an annotator mentioned causal relations that
are not covered in our framework.

'5The annotators are familiar with SRL annotations (e.g.,
ARGO, ARG, etc.) and NER types (e.g., PER, ORG, etc.).
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Figure 4: An example of integrating timelines and logical relations in the schema of Civil Unrest. The four upper
timelines are the ones extracted from the generated texts and the lower one is their merger into a single timeline

with logical relations.

predicted by the model, assuming the human an-
notators’ results are gold labels (coverage) and to
calculate the accuracy in predicting the final out-
come of a scenario (prediction). Li et al. (2021),
for example, calculated the accuracy of predict-
ing the last event type of the LDC schemas. Here
we present the results of predicting the last events
using event triggers, instead of event types.

Feigenbaum Test We show human testers two
schemas on each topic in the Schema-11 dataset
(see example in §A). One schema was automati-
cally generated by our model, and the other was
randomly sampled from the Schema-11 corpus'®.

We ask the testers to determine which events
and relations are valid to appear in the schema
(soundness) and the following questions: which
schema is more complete in the sense of including
all the events needed to describe the topic, and
which schema, in their opinion, was generated by a
human expert (as opposed to a machine).

6.3 Results

Coverage We calculate the intersection between
events in the generated schemas and the gold
schemas in two ways: (a) match event triggers,
and (b) match event triggers and synonyms of the
events in the gold schemas (synonym coverage)'”.
We believe that calculating synonym coverage is a

In some cases we combine two randomly sampled
schemas because the length of the human schemas tend to
be shorter than the automatically generated ones.

Implemented using the NLTK WordNet Python package.

better evaluation methodology to avoid errors such
as considering different verbs describing the same
action as different (e.g., “buy” and “acquire”) than
using a predefined ontology of event types such
as the one used in Li et al. (2021). The reason is
twofold: firstly, any predefined ontology is limited
to certain scenarios and it may impair the variety
of events extracted; and secondly the typing mech-
anism may also inflict errors to the schema.

From the results in Table 3, we can observe that
despite the difficulty of exact matching, our model
can cover 23.73% events in the gold annotations,
showing that the generated text has a good cover-
age of events required in the schemas. And if we
use synonym coverage as our metric, we achieve
a promising coverage of 36.35% while the state-
of-the-art supervised event graph model (Li et al.,
2021) covers 54.84% using limited event types.
Furthermore, with the high quality event represen-
tations obtained from the One-Pass model and the
proposed logical relation induction algorithm, our
method covers 14.09% of all the relations anno-
tated in the gold schemas, whereas the best per-
formance achieved by the event graph model is
44.44%. The high coverage of the SOTA method
can be attributed to the joint modeling of multiple
relations using graph neural networks, which is
impracticable in our zero-shot settings.

Prediction In the prediction task, our schemas
are able to predict the final outcome in 46.42% of
the cases for the LDC schemas (see Tab. 4). This



Ours (Li et al., 2021)
Coverage Coverage (Synonym)  Total Coverage
Event Match 23.73 36.35 36.35 54.84
Temporal Relations 1.99 5.80
Hierarchical Relations 0.14 0.91 14.09 44 .44
Logical Relations 4.56 7.38

Table 3: Coverage results for the LDC dataset. The first row presents the percentage of events that appeared in both
the LDC schemas and the automatically generated schemas (out of events in LDC schemas), and the three bottom
rows calculates the same metric for relations of different types. Total is the sum of all three types of relations.

Model Accuracy
Event Language Model 49.7
Sequential Pattern Mining 47.8
Human Schema 20.5
Event Graph Model 52.0
Zero-Shot Schema 28.5
Zero-Shot Schema Synonym 46.4

Table 4: Experimental results for last event prediction
in the LDC dataset. The top 4 results are from (Li et al.,
2021), and the metric is HITS@1 where the events are
typed based on a predefined ontology.

result is extremely impressive when it is compared
with Li et al. (2021) since they predict event types
instead of verbs, which is a much easier task due to
the fact that the set of possible answers is limited.

Feigenbaum test In the soundness experiments,
where the testers are asked to decide which events
and relations are valid to appear in the schema, it
turns out that human generated schemas contain
7.14% invalid events and 15.4% invalid relations on
average. For the automatically generated schemas,
6.06% of the events and 22.9% of the relations are
considered to be invalid on average. We observe
that the average percentage of valid events is higher
in the automated schemas, yet the soundness of
induced relations is relative inferior.

For the completeness results, in 4 cases the
testers agreed that the automatically generated
schemas are more complete; in 3 cases they
claimed that the human schemas are more com-
plete; and the result is a tie in the remaining 4
cases. The distribution of votes for completeness is
presented in Tab. 5. Hence our automatically gener-
ated schemas are of comparable quality to human
generated ones in the sense of completeness.

Finally, in the Feigenbaum test, where testers
are asked to decide whether a schema is generated
by a human or a machine, 8 out of 11 times they
correctly identify the human-generated schema, 1
incorrectly, and 2 ties. Some of the testers who

S1|S2|S3|S4|S5|S6/|S7/|S8|8S9|S10]S11
Human 4101 1 1121 110 3 1
Automatic | 2 | 3 | 4 | 2 1 1 1 1 4 0 1

Table 5: Distribution of votes for which is the more
complete schema for Schema-11 dataset.

succeeded in their guesses mentioned that it was
easy to determine which schema was automatically
generated since it tends to be longer and more com-
plete. Although in the test, the machine-generated
schemas fail to deceive the testers into misidentify-
ing them as human generated ones, the experiments
shed light on future directions, e.g., keeping the
most salient events in the schema, improving the
accuracy of temporal and hierarchical relation ex-
traction, developing reliable approaches for causal
relation extraction, and so forth. The full results
from the Feigenbaum test appear in §B.

7 Conclusion

We propose a method to generate schemas given
the sole input of a topic. We use GPT-3 to generate
texts of diverse genres and a pipeline of informa-
tion extraction tools to obtain relevant information
before inducing logical relations and integrating the
events and relations into a schema graph. To im-
prove the efficiency of the pipeline, we implement
One-Pass models for event temporal and hierarchi-
cal relations that achieve comparable performances
with SOTA models but require far less inference
time and GPU memory space. To evaluate our
framework, we conduct experiments on the bench-
mark LDC dataset to show that our schemas cover a
decent amount of pertinent information and display
comparable ability for event prediction with super-
vised approaches. Although our proposed method
fails the Feigenbaum test on Schema-11, we ob-
serve a very high percentage of valid events and
relations and the testers endorsed the completeness
of our machine-generated schemas.



8 Ethical Consideration

The proposed schema induction method does not
present any direct societal implications. As is ob-
served in Abid et al. (2021), the text generated by
GPT-3 might include undesired social bias. Ex-
tracting events and relations from text with such
social bias might potentially propagate the bias to
the induced schemas. Besides, there are risks of
malicious or unintended harmful uses of the gen-
erated schemas, for instance, the system might be
used to inquire about making a bomb or contriving
a terrorist attacks. Yet we believe that the proposed
method can benefit various downstream NLP/NLU
tasks like event prediction, task-oriented dialogue
agents (Andreas et al., 2020) and risk detection
(Pohl et al., 2012).
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A Feigenbaum Test Details

The experiment took place online through filling
a Google Form and involved 11 annotators. Each
annotator got 3-4 scenarios to annotate. The in-
structions for the survey appear in Figure 5. An
example scenario and the questions of the survey
are presented in Figures 6, 7, 8, and 9.

B Feigenbaum Test Results

In this section we present all the results from the ex-
periments on the dataset Schema-11. Table 6 shows
the distribution of answers for the question “which
schema is more complete?” (same as depicted in
Table 5), Table 7 presents the distribution of an-
swers for the question "which schema was gener-
ated by a human?" together with the correct answer
written in the bottom row, and Table 8 presents
the percentage of invalid events and relations deter-
mined by the majority vote of the annotators in the
automatic schema and the human schema.
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Feigenbaum Test - Scenario 11

This form mainly focuses on the evaluation of machine generated schema. Given a certain
scenario, the schema includes stereotypical events and the relations between them, for
instance, within scenario "acquiring a PhD degree”’, a schema would typically includes
"publish papers,’ "attend conferences,’ "write PhD thesis" and "defend PhD thesis." And there
is also a "before” relation between "write PhD thesis" and "defend PhD thesis.” Besides, we
also have "SuperSub” relation that means hierarchical relation between events, and
"AND"/"OR" relation that means the two events must happen together/either of the events
may happen.

We've asked a group of people to generate schemas from their commonsense knowledge.
Given two schemas per scenario, your task is to determine whether you can distinguish the
machine generated schema from the human generated one. And also provide your insights
on the completeness and soundness of each schema.

For completeness, we would like you to tell us which schema is more complete.

For soundness, we would like you to tell us for each event and relation listed, whether it is
valid for this scenario.

Most importantly, we would like to know which schema you think is generated by human.

Figure 5: Instructions for the Feigenbaum test.

S1[{S2|S3S4|S5|S6|S7|S8]|S9|S10]| S11
Human 4 0 1 1 1 2 1 1 0 3
Automatic | 2 3 4 2 1 1 1 1 4 0

Table 6: Completeness results. The table presents the number of votes that were recorded for which schema is more
complete - the human generated schema or the automatically generated schema. The majority vote is highlighted
in yellow.

S1 [S2 [S3[S4[S5]S6][S7[S8]S9]s10]SI1
A rl1[3]o]o[RB[o[RB|2]T1]1

B s/ 2/ @| 8|8 /t1]@2j]0 2] 8!

Correct Answer | B B B B B A B A A B B

Table 7: Feigenbaum test results. The annotators guesses which schema (A or B) was generated by humans. The
number of votes for each option appear along with the correct answer in the bottom row. The correct majority
guesses are marked with green and incorrect with red.

S1 S2 S3 S4 |S5| S6 | S7 S8 S9 S10 | Sl11

Invalid Events (Auto.) 0 0 0 0 0 | 833 0 | 7.69 0 14.28 0
Invalid Relations (Auto.) 46.15 | 16.66 25 25 0 235204 | 11.76 | 12.5 | 22.22 | 46.15
Invalid Events (Human) 0 0 1428 | 1428 | O 0 0 0 0 0 0
Invalid Relations (Human) | 7.69 50 1538 | 1538 | 0 | 6.25 0 | 11.11 0 10 7.69

Table 8: Invalidity results. The table presents the percentage of invalid events and relations determined by the
human annotators for each schema and scenario.
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Scenario 11: Terrorism Attack (A)

Events:

1. event: kill, arg0O: {PER, ORG, VEH, WEA}, arg1: PER

2. event: injure, arg0: {PER, ORG, VEH, WEA}, arg1: PER
event: detonate, arg0: PER, arg1: WEA

. event: come, arg1: attack

event: open, arg0: {PER, ORG}, arg?: fire

6. event: wound, argO: {PER, ORG, VEH, WEA}, arg1: PER
7. event: strike, argO: {PER, ORG, WEA}

8. event: claim, arg0: ORG, arg1: responsibility

9. event: leave, argO: {PER, VEH}

10. event: attack, arg0: {PER, ORG}

11. event: choose, arg0: {PER, ORG}, arg1: {PER, ORG, GPE}
12. event: select, arg0: {PER, ORG}, arg1: method

13. event: acquire, arg0: {PER, ORG}, arg1: WEA

14. event: carry out, arg0: PER

oo w

Relations:

1. before: 3->8

2. before: 3->5

3. before: 1->4

4. before: 1->9

5. before: 2->4

6. before: 2->9

7. before: 6->4

8. before: 6->9

9. before: 11->12->13->14->10
10.OR: 8,5

1. OR: 4,9

12. AND: 1,2,6

13. supersub: 10->7->1,2

Figure 6: An example schema in the topic of Terrorism Attack. This schema was generated automatically (infor-
mation that was unknown to the annotators).
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Scenario 11: Terrorism Attack (B)

Events:

1. event: find, arg0: PER, arg1: ORG, arg-loc:LOC

2. event: emerge, arg0: ORG, argl: ORG

. event: fade, arg0: ORG, arg-tmp: TMP

. event: reemerge, arg0: ORG, arg-tmp: TMP, arg-loc: LOC
. event: lead, arg0: ORG, arg1: losses

6. event: lost, arg0: ORG, arg1: LOC

7. event: declare, arg0: GPE, argl: ORG

8. event: kill, arg0: GPE, arg1: PER

9. event: plan, arg0O: PER

10. event: executes, arg0: PER

11. event: injures, arg0: the attack, arg1: PER

12. event: kills, argO: the attack, arg1: PER

13. event: damages, argO: the attack, arg1: infrastructure
14. event: calls, arg0: PER, arg1l: PER

15. event: arrive, arg0: PER

16. event: treat, arg0: PER, arg1: PER

17. event: take, argO: PER, arg1: PER

18. event: reports, argO: PER

19. event: claims, argQ: the group, argl: responsibility

g h W

Relations:

1. before: 9->10
2. before: 10->11
3. before: 10->12
4. before: 10->13
5. before: 10->14
6. before: 14->15->16->17
7. before: 10->18
8. before: 10->19
9. before: 1->3
10. before: 3->4
11. AND: 1->2

12. cause: 5->6
13. cause: 8->7

Figure 7: An example schema in the topic of Terrorism Attack. This schema was generated by a human (informa-
tion that was unknown to the annotators).

15



Which schema is more complete? *

O w
O ®

Which one do you think is generated by human? *

O w
O

Figure 8: Questions that were asked about the completeness of the schemas and the generator of the schema.

For each EVENT in schema (B), select if it is valid to appear in the scenario. *

valid invalid

Row 1 O O
Row 2 () (3

Figure 9: Questions about the validity of the events appearing in one of the schemas. This question was asked on
both schemas and on the relations appearing in the schemas too.
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