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ABSTRACT
In recent years, the field of human-computer interaction (HCI) re-
search has seen increasing efforts to model social intelligence and
behavior based on artificial intelligence. For human-agent commu-
nication to evolve in a human-way, non-verbal features can be
used as important factors. We conducted our research as part of
the GENEA Challenge 2023[13], where the task is to generate hu-
man gestures using these non-verbal elements. We applied two
main approaches to generating natural gestures. First, we modi-
fied the provided baseline model to apply RoBERTa-based speech
transcription embedding, and second, we designed a gesture gen-
eration model by adding a zero-crossing rate and rhythmical fea-
tures to the input features. The gestures generated by this method
were evaluated as unnatural in terms of human-like and confor-
mity. However, through this, we will study the SOTA model struc-
ture of gesture generation in the future and apply various prepro-
cessing methods to the input data to generate natural gestures.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).
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1 INTRODUCTION
In recent years, the field of Human-Computer Interaction (HCI) re-
search has seen an increase in efforts to model social intelligence
and behavior based on artificial intelligence[2, 3]. According to Al-
bert Mehrabian’s Three elements of communication[20], humans
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rely more on para-verbal and non-verbal elements of communica-
tion than on verbal elements. In order for human-agent commu-
nication to evolve towards the human-way, para-verbal and non-
verbal behavioral cues can be used as important elements. People
usually express social signals and behaviors through non-verbal
behavioral cues such as facial expressions, body postures and ges-
tures, or para-verbal behavioral cues such as tone and pitch from
vocal sounds[26]. According to Vinciarelli et al. (2009)[26], 90% of
nonverbal behavioral cues are associated with speech. Therefore,
assuming that amatching gesture exists based on audio and speech
data, we will participate in the GENEA Challenge 2023 and pro-
ceed with the co-speech gesture generation task.The generated co-
speech gestures can be utilized for multi-modal fusion by consid-
ering matching and combining verbal, para-verbal, and non-verbal
features in future research on human-agent communication.

In traditional gesture generation research, motion system frame-
works have been proposed as concatenative approaches such as
motion graphs[10]. In recent years, learning-based approaches have
been used to generate high-quality and interactive gestures by uti-
lizing neural networks such as FFNNs, RNNs, GANs, and VAEs[6,
8, 11, 22, 24]. There are also studies on gesture generation tasks
using text, speaker identity and style, and personality parameters
as input features for generation models[1, 12, 23, 27]. In GENEA
Challenge 2023, our team applied two main approaches to achieve
a more natural and appropriate matching with speech. First, we
modified the provided baselinemodel with RoBERTa-based embed-
ding for speech transcription, and second, we designed a gesture
generation model by adding a zero-crossing rate and rhythmical
feature as additional audio features to the input features.

As a result, it was evaluated as unnatural for human-likeness
and appropriateness. After checking with a 3D animation tool, we
found that there were some natural gestures, but most of them
were inappropriate for speech. Through this experiment, we real-
ized that using more features does not always lead to better gener-
ation performance.

2 BACKGROUND AND PRIORWORK
2.1 Data-driven gesture generation research
Data-driven gesture generation models are models that learn from
a large amount of data, such as audio, text, and pose data, and gen-
erate gestures that correspond to the data. There are a variety of
studies [7][18][19][29] that use data-driven generative models to
generate gestures.

Habibie, Ikhsanul, et al [7] combined the benefits of database
matching and adversarial learning to generate 3D gestures.The pa-
per used the k-Nearest Neighbors (k-NN) algorithm to consider the
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similarity between the correct audio-pose data stored in the data-
base and the input data. Based on this, the correct audio-pose data
stored in the database is sequentially searched to find the data with
the highest similarity to the input data. Then, a Conditional Gener-
ative Adversarial Network (cGAN)model[21] was used to generate
gestures corresponding to the input data. Unlike the GAN model,
the cGAN model can use additional information such as the label
of the input data to generate the desired data while the generator
and discriminator are training. Therefore, the paper used the re-
sults of the k-NN algorithm as additional information to generate
gestures corresponding to the input data.

Lu, Shuhong, et al [18] used the encoder structure of Liu, Xian,
et al [17] to extract features from text and audio, and the Vector-
QuantizedVariational AutoEncoder (VQ-VAE)model[25] to extract
gesture features. The VQ-VAE model is a model that applies vector
quantization (VQ) to the VAE model. Vector quantization is a tech-
nique that uses an algorithm similar to K-means clustering to re-
place continuous probability values with discrete values. By doing
so, we converted the latent values of the gesture data into low-
dimensional vectors. As a result, we generate gestures similar to
the input data by learning low-dimensional latent variables that
better represent the features of the gesture data.

Lu, Shuhong, et al [19] considered the problem that when gener-
ating gestures based on speech data, multiple gestures may be gen-
erated for the same speech data. To solve this problem, they used in-
dividual gesture tokens and a Residual-Quantized Variational Au-
doencoder (RQ-VAE) model[14]. By using discrete gesture tokens,
we solved the mapping problem of gesture generation by assign-
ing different probabilities to different gestures generated based on
the same speech data. We also used the RQ-VAE model to train the
discrete gesture tokens. The RQ-VAE model recursively discretizes
the latent variables in the input data to reduce the loss of infor-
mation as the encoding progresses. This resulted in higher-quality
gestures.

Zhang, Fan, et al [29] proposed the DiffMotion model based on
the diffusion model for gesture generation. The DiffMotion model
consists of an Autoregressive Temporal Encoder (AT-Encoder) and
aDenoisingDiffusion ProbabilisticModule (DDPM).TheAT-Encoder
uses a multi-layer LSTM structure to encode the temporal context
of the speech data.Then, through the diffusion and generation pro-
cess of the DDPM model, it learned a one-to-many mapping of in-
put data and gestures and generated new gestures.

2.2 Multimodal gesture generation research
Multimodal-based research utilizes various types of data through
multiple modalities to overcome the limitations of using only a sin-
gle type of data for learning. Feature vectors are extracted using
a deep learning structure suitable for each modality, and multiple
tasks are performed based on them.Multimodal-based gesture gen-
eration research uses audio, text, and pose data as input data for
each modality to extract feature vectors and utilize them to gener-
ate gestures that correspond to the input data. Various studies use
this multimodal structure to generate gestures.

Kim, Gwantae, et al [9] proposed a new framework, Multimodal
Pretrained Encoder for Feature generation (MPE4G), to generate

natural gestures using (speech, text, motion) as input data for mul-
timodal structures. This framework solves the problem of inaccu-
rate gesture generation when there is noise in the input data used
for training. To achieve this, the proposed framework consists of
three main steps. First, a frame-by-frame embedder and generator
are trained with joint embedding loss and reconstruction loss. Sec-
ond, a multimodal encoder is trained with a self-supervised learn-
ing approach. Third, the embedder, encoder, decoder, and genera-
tor are jointly trained using supervised learning. Based on these
components, we not only achieved good performance in gesture
generation but also solved problems such as noise in the input data
and generated natural gestures that respond to the input data.

3 METHOD
Our model structure for gesture generation is based on [4]. Our
model structure consists of an encoder, an attachment, and a de-
coder, as shown in the following figure 1.

The encoder consists of character embedding, three 1d convolu-
tion layers, and a bi-directional LSTM. When a one-hot vector is
input, it is converted into an embedding vector through character
embedding. It is then converted to an encoded feature through a
convolutional layer and a bi-directional LSTM. Attention is the pro-
cess of aligning what information to get from the encoder by using
the encoded features from the encoder and the features generated
at the previous point in the decoder’s LSTM. In our model, we use
a locality constraint attention like [4]. The decoder consists of two
(Fully connected layer + ReLU), a uni-directional LSTM, a Fully
connected layer, and five convolutional layers. The alignment fea-
ture information obtained through attention and the gesture fea-
ture generated at the previous time is used to generate the gesture
feature at the next time.Through this process, gestures correspond-
ing to the input data are generated.

For gesture generation, we built on the aforementioned model
structure and focused on input features. First, to vary the text fea-
tures, we used RoBERTa-based (784 dimensions) pretrained with
word embeddings. Next, we used mfcc, mel-spectrogram, pitch,
and energy, which are commonly used audio features, as well as
zero-crossing rate and rhythmical features.

We used twoNVIDIAA100-SXM4-80GBGPUs to train the afore-
mentioned models. For both Monadic and Dyadic, we trained for
a total of 25,000 iterations and set the learning rate to 1e-4. We
also used a weight decay value of 1e-6 and a batch size of 64 to
match the GPU memory. For the optimizer and loss function used
for training, we used the most popular Adam optimizer and MSE
loss function.

3.1 Data and data processing
We trained our model using a dataset [15] provided by GENEA
Challenge 2023. The dataset is based on the Talking With Hands
16.2M gesture dataset, which are audio and motion capture data
of several pairs of people talking freely about various topics. The
dataset consists of 372 training datasets and 41 validation datasets.
The training and validation datasets contain motion capture data
(BVH format), audio (WAV format), and transcript (CSV format)
data corresponding to the motion, and speaker id (CSV format)
data, respectively. Since GENEA Challenge 2023[13] considers not
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Figure 1: Our Proposed Architecture

only monadic but also dyadic situations, unlike GENEA Challenge
2022[28], the training and validation datasets include the main-
agent and additionally the interlocutor.

3.1.1 Motion. We extracted features from the motion using PyMo
library for gesture generation.Themotion FPS is 30.The team used
an exponential map[5] to represent 3D motion. Unlike GENEA
Challenge 2022, GENEA Challenge 2023 evaluates only the full
body[13]. Therefore, we utilised the motion features correspond-
ing to the full body using the root position and 19 keypoints in the
upper body and 6 keypoints in the lower body. Therefore, the full
body has 78 dimensions.

3.1.2 Audio. We extracted several features from the audio for ges-
ture generation. The sample rate of the audio is 44100 Hz. First,
we used mfcc, mel-spectrogram, and prosody (energy, pitch) fea-
tures, which are widely used in gesture generation research[16].
We also used zero-crossing rate and rhythmical feature in addition
to the aforementioned features because we believe that gestures
are highly related to audio. In the case of zero-crossing rate, the di-
rection and shape of the gesture can be determined, so we thought
that audio with a high zero-crossing rate could be used to generate
gently waving gestures, etc. In the case of rhythmical feature, we
thought that if the rhythm of the audio is uniform, the correspond-
ing gesture will also have a smooth shape.

The characteristics of the six features mentioned above are as
follows. For mfcc, mel-spectrogram, zero-crossing rate, and rhyth-
mical features, the Librosa library was used. The prosody feature
was extracted using the Parselmouth library.mfcc,mel-spectrogram,
zero-crossing rate, and rhythmical features were all extracted us-
ing a hop length of 1470 on the audio. The mel-spectrogram was
extracted by specifying the number of filter banks as 64, and the
mfcc was extracted using 40 dimensions. Thus, the features ex-
tracted from the audio for model training are mfcc (40 dimensions),
mel-spectrogram (64 dimensions), prosody (4 dimensions), zero-
crossing rate (1 dimension), and rhythmical feature (384 dimen-
sions).

3.1.3 Text. We used pretrained word embedding to extract fea-
tures from the text for gesture generation. Forword embedding, we

used the RoBERTa-based model (784 dimensions). The RoBERTa-
based model is a Transformer-based language model that performs
better than BERT by applying several improvements. Unlike BERT,
it does not use masking during the training process, which short-
ens the training time and improves performance. It also shows
better generalization performance by using layer regularization,
which is one of the techniques to prevent model overfitting dur-
ing the training process. We used the RoBERTa-based model as
our word embedding model.

The text features used to train the model were extracted using
the transcripts contained in the provided dataset. Each text data
was preprocessed with a word embedding model, and all OOV
wordswere zeroed. In addition, we usedmetadata information such
as the speaker’s ID and the presence or absence of finger joints.

4 EVALUATION
GENEA Challenge 2023 was slightly different from GENEA Chal-
lenge 2022 in that it was evaluated on three different aspects:

• Human-likeness: How human-like the gestures are, regard-
less of the speech

• Appropriateness for agent speech: Evaluation of natu-
ral gestures for speech of the interlocutor, while considering
human-likeness.

• Appropriateness for the interlocutor: Evaluatewhether
the interlocutor shows appropriate gestures to match the
speech of the interlocutor, while considering human-likeness.

4.1 Result and Discussion
The test dataset used to compare and analyze the performance of
our gesture generation model was provided by GENEA Challenge
2023. Unlike GENEA Challenge 2022, we also considered dyadic
situations, so the dataset used to generate gestures for the main-
agent includes motion, audio, and text data for the interlocutor.
We submitted the motion data generated using the test dataset to
GENEA Challenge 2023 for evaluation and received the following
evaluation results.

4.1.1 Human-likeness. Table 1 shows the results of the human-
likeness evaluation. Our submission falls into the SC submission,
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and as can be seen in Table 1, it was evaluated as an unnatural
gesture in terms of human-likeness. To analyze these results, we
visualized some of the gestures generated by our model using a
3D animation tool called Blender. When we checked the visual-
ized gestures, we found that our model produced several unnatu-
ral gestures, such as the gesture with the right arm fixed (left in
Figure 2) and the gesture with the right arm bent behind the head
(right in Figure 2), as shown in Figure 2. This confirmed that our
model produced a large number of unnatural gestures, as shown
in Table 1. We also confirmed that simply increasing the number
of input features, which was the focus of our research, can have
a detrimental effect on the model’s ability to generate gestures by
learning unnecessary information.

Condi- Human-likeness
tion Median Mean

NA 71 ∈ [70, 71] 68.4±1.0
SG 69 ∈ [67, 70] 65.6±1.4
SF 65 ∈ [64, 67] 63.6±1.3
SJ 51 ∈ [50, 53] 51.8±1.3
SL 51 ∈ [50, 51] 50.6±1.3
SE 50 ∈ [49, 51] 50.9±1.3
SH 46 ∈ [44, 49] 45.1±1.5
BD 46 ∈ [43, 47] 45.3±1.4
SD 45 ∈ [43, 47] 44.7±1.3
BM 43 ∈ [42, 45] 42.9±1.3
SI 40 ∈ [39, 43] 41.4±1.4
SK 37 ∈ [35, 40] 40.2±1.5
SA 30 ∈ [29, 31] 32.0±1.3
SB 24 ∈ [23, 27] 27.4±1.3
SC 9 ∈ [ 9, 9] 11.6±0.9

Table 1: The table of statistics for the human-likeness evalu-
ation, with confidence intervals at the level 𝛼 = 0.05. Condi-
tions are ordered by decreasing sample median rating.

Figure 2: Visualisation of the unnatural generated gestures

4.1.2 Appropriateness. Table 2 shows the evaluation results in terms
of appropriateness for speech. For our submission, SC, the eval-
uation result is an unnatural gesture that is not appropriate for
speech in terms of appropriateness to speech. Aswith human-likeness,
we visualized the generated gestures to analyze the evaluation re-
sults. When we checked the visualized gestures, we found that in
many caseswewere unable to generate gestures that corresponded
to the speech. The evaluation results and visualizations confirmed
that the zero-crossing rate and rhythmical features, which we used
as additional input features, require different preprocessing.

Condi- 2*MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum
NA 0.81±0.06 73.6% 755 452 185 217 157 1766
SG 0.39±0.07 61.8% 531 486 201 330 259 1807
SJ 0.27±0.06 58.4% 338 521 391 401 155 1806
BM 0.20±0.05 56.6% 269 559 390 451 139 1808
SF 0.20±0.06 55.8% 397 483 261 421 249 1811
SK 0.18±0.06 55.6% 370 491 283 406 252 1802
SI 0.16±0.06 55.5% 283 547 342 428 202 1802
SE 0.16±0.05 54.9% 221 525 489 453 117 1805
BD 0.14±0.06 54.8% 310 505 357 422 220 1814
SD 0.14±0.06 55.0% 252 561 350 459 175 1797
SB 0.13±0.06 55.0% 320 508 339 386 262 1815
SA 0.11±0.06 53.6% 238 495 438 444 162 1777
SH 0.09±0.07 52.9% 384 438 258 393 325 1798
SL 0.05±0.05 51.7% 200 522 432 491 170 1815
SC −0.02±0.04 49.1% 72 284 1057 314 76 1803

Table 2:The table of statistics for the speech appropriateness
evaluation, with confidence intervals for themean appropri-
ateness score (MAS) at the level 𝛼 = 0.05. “Pref. matched”
identifies how often test-takers preferred matched motion
in terms of appropriateness, ignoring ties.

Condi- 2*MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum
NA 0.63±0.08 67.9% 367 272 98 189 88 1014
SA 0.09±0.06 53.5% 77 243 444 194 55 1013
BD 0.07±0.06 53.0% 74 274 374 229 59 1010
SB 0.07±0.08 51.8% 156 262 206 263 119 1006
SL 0.07±0.06 53.4% 52 267 439 204 47 1009
SE 0.05±0.07 51.8% 89 305 263 284 73 1014
SF 0.04±0.06 50.9% 94 208 419 208 76 1005
SI 0.04±0.08 50.9% 147 269 193 269 129 1007
SD 0.02±0.07 52.2% 85 307 278 241 106 1017
BM −0.01±0.06 49.9% 55 212 470 206 63 1006
SJ −0.03±0.05 49.1% 31 157 617 168 39 1012
SC −0.03±0.05 49.1% 34 183 541 190 45 993
SK −0.06±0.09 47.4% 200 227 111 276 205 1019
SG −0.09±0.08 46.7% 140 252 163 293 167 1015
SH −0.21±0.07 44.0% 55 237 308 270 144 1014
Table 3:The table of statistics for the evaluation of appropri-
ateness for the interlocutor, with confidence intervals for
the mean appropriateness score (MAS) at the level 𝛼 = 0.05.
“Pref. matched” identifies how often test-takers preferred
matched motion in terms of appropriateness, ignoring ties.
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Table 3 shows the results of our evaluation in terms of appropri-
ateness, i.e., the ability to generate gestures that match the speech
as information about the interlocutor is added. To analyze the eval-
uation results, we visualized the gestures generated by our model.
We found that our model did not generate appropriate gestures
for the interlocutor, but unnatural gestures that were not related
to the interlocutor’s information, such as monadic situations. We
thought that this could be improved by resolving the aforemen-
tioned issues of human-likeness and appropriateness.

After analyzing the results of the previous evaluation, we found
that gesture generation based on input features, which is the fo-
cus of our research, requires appropriate preprocessing for each
feature rather than simply adding features. Although most of the
evaluation results show unnatural gestures, we believe that our re-
search has the potential for further development.

5 CONCLUSION AND FUTUREWORK
We conducted a study to generate gestures according to input data
(motion, audio, text) based on the model structure of [4]. As men-
tioned earlier, we conducted experiments by changing the word
embedding and adding audio features based on the existing model
structure. We did not focus on improving the performance of the
gesture generation model, but rather on checking how gestures
are generated according to the input features. After training our
model in this way, we found that it produced low-quality gestures
when evaluated. Through these results, we confirmed that the pre-
processing method for each feature is important, not just increas-
ing the number of input features, and we have the following plans
to improve the performance of gesture generation by conducting
experiments with various research methods.

We will conduct experiments by changing SOTA models such
as diffusion, RQ-VAE, and detailed hyper-parameters instead of
simply using the model structure used in the past. We will also
conduct experiments in a different way to compare and analyze
the performance of gesture generation according to the input fea-
tures we focused on. In the past, we simply added features to learn,
but in the future, we will conduct experiments by segmenting the
features of motion, audio, and text. For example, we will conduct
experiments using only motion features, only audio features, and
a combination of motion and audio features to see which features
have the most impact on gesture generation.
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