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Abstract

Recently, adversarial attacks that generate adversarial examples by optimizing a multimodal
function with many local optimums have attracted considerable research attention. Quick
convergence to a nearby local optimum (intensification) and fast enumeration of multiple dif-
ferent local optima (diversification) are important to construct strong attacks. Most existing
white-box attacks that use the model’s gradient enumerate multiple local optima based on
multi-restart; however, our experiments suggest that the ability of diversification based on
multi-restart is limited. To tackle this problem, we propose the multi-directions/objectives
(MDO) strategy, which uses multiple search directions and objective functions for diversi-
fication. Efficient Diversified Attack, a combination of MDO and multi-target strategies,
showed further diversification performance, resulting in better performance than recently
proposed attacks against around 88% of 41 CNN-based robust models and 100% of 10 more
advanced models, including transformer-based architecture. These results suggest a rela-
tionship between attack performances and a balance of diversification and intensification,
which is beneficial to constructing more potent attacks.

1 Introduction

Deep neural networks (DNNs) have demonstrated excellent performance in several applications. However,
DNNs are known to misclassify adversarial examples generated by tiny perturbing inputs that are imper-
ceptible to humans (Szegedy et al., 2014). Vulnerabilities caused by adversarial examples can have fatal
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Figure 1: EDA vs. recently proposed attacks on ad-
versarially trained CIFAR-10 model Engstrom et al.
(2019).
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Figure 2: Illustration of the MDO strategy with two
search directions and three objective functions on a
toy model. The different search directions/objective
functions search for different regions.

consequences, especially in safety-critical applications such as automated driving (Gupta et al., 2021), facial
recognition (Adjabi et al., 2020), and cybersecurity (Liu et al., 2022b). Adversarial training (Madry et al.,
2018) is one of the most effective defenses, which uses adversarial examples during training. Generating
many adversarial examples faster is beneficial for the security of DNNs because adversarial training requires
many adversarial examples. Our ultimate goal is to find many adversarial examples quickly, with proper
control of both extensive and intensive searches.

Adversarial attacks optimize a challenging nonconvex function to find adversarial examples. We focus on
white-box attacks that use gradient-based optimization algorithms, assuming access to the outputs and
gradients of the DNN. Higher objective function values increase misclassification chances, creating adversarial
example candidates out of local optima. The objective function of this problem is multimodal because its
maximization involves a complex DNN. Because a multimodal function has a myriad of local optima, quick
convergence to a nearby local optimum and fast enumeration of multiple different local optima are important.
These are referred to as intensification and diversification, respectively (Glover & Samorani, 2019).

Many existing gradient-based attacks are considered to achieve some degree of intensification because the
objective value can be improved by moving in the gradient direction within a neighborhood. Whereas many
existing attacks diversify the search based on the multi-restart (Dong et al., 2013; Madry et al., 2018; Croce
& Hein, 2020b; Liu et al., 2022c), few studies have examined other diversification strategies. Therefore,
further research on diversification is needed.

Diversification and intensification involve trade-offs, particularly under a strict computational budget. Thus,
we have to balance both of them appropriately. However, an appropriate control method for this balance
has yet to be developed. This study is the first to systematically explore and control this balance by
coordinating multiple search directions and objective functions based on diversification indices. Using the
proposed methodology, we can discover adversarial examples that are elusive even to current state-of-the-art
methods. Our experiments using diversification indices in Section 3.1 suggest that the attacks using a multi-
start strategy are likely to converge in the same cluster, which does not yield high diversification performance.
However, the experiments in Section 3.1 also suggest that different local solutions may be enumerated using
different search directions and objective functions. Inspired by this observation, we propose the multi-
directions/objectives (MDO) strategy that uses multiple search directions and objective functions. Figure 2
is a toy example of an attack using the MDO strategy.

To implement this strategy effectively, we propose the Automated Diversified Selection (ADS) and a search
framework called the MDO framework in Section 3.2 and Section 3.3, respectively. The MDO strategy needs
to utilize an appropriate combination of search direction and objective function for effective diversification.
This is because some combinations may explore similar areas. ADS selects search directions and objective
functions that are likely to search different areas based on the Diversity Index (DI) (Yamamura et al., 2022)
to enhance diversification. Unlike existing approaches for attack selection (Mao et al., 2021; Liu et al.,
2023b), which rely on direct indicators like loss value and attack success rate, ADS employs an indirect
indicator such as DI.

2



Published in Transactions on Machine Learning Research (May/2024)

The MDO framework explicitly considers the diversification and intensification phases through ensemble and
composite of attacks to balance them appropriately. The diversification phase finds promising starting points
via extensive search, and the intensification phase enhances attack performance through intensive search in
the vicinity of these points.

We evaluated the proposed methods with robust accuracy, computation cost, and DI because the attack
with an appropriate balance of diversification and intensification is expected to be strong and fast. The
experimental results in Sections 4.3 and 4.4 suggest that ADS contributes to search diversification and suc-
cessfully finds the appropriate combination in both diversification and intensification. The MDO framework
also realizes an appropriate balance of diversification and intensification, resulting in a promising attack
performance. As shown in Section 4.2, the MDO strategy found adversarial examples for some inputs in less
time than the multi-target (MT) strategy (Gowal et al., 2019), one of the promising attacks. These results
imply that the combination of MDO and MT strategies can realize stronger and faster attacks.

Motivated by these results, we experimentally investigated the attack performance of the combination of
MDO and MT strategies, called Efficient Diversified Attack (EDA). Experimental results in Section 4.1 show
that EDA exhibits higher diversification performance than the attack using the MDO strategy alone, resulting
in better attack performance in less computation time than the recently proposed attacks under the standard
setting of perturbation bound (ε) in the RobustBench leaderboard Croce et al. (2021). Given the difference
in robust accuracy among recently proposed attacks, EDA exhibits sufficiently large improvements in robust
accuracy and runtime. The above experimental results suggest that appropriately enhancing diversification
leads to higher attack performance. The major contributions of this study are summarized below.

1. Multi-directions/objectives (MDO) strategy and its implementation: A novel search strategy using
multiple search directions and objective functions, realized by Automated Diversified Selection (ADS) and
the MDO framework. ADS chooses the gradient-based search direction and the objective function that im-
proves the likelihood of misclassification so that the DI-based index is maximized, thereby achieving efficient
diversification and avoiding getting stuck during intensification. The MDO framework finds promising start-
ing points in the diversification phase and enhances the objective value during the intensification phase.
2. Efficient Diversified Attack (EDA): A faster and stronger attack using MDO and MT strategies. Un-
der the standard setting of perturbation bound in RobustBench leaderboard, EDA showed the best attack
performance among recent attacks against around 88% of 41 CNN-based robust models trained on three
representative datasets and 100% of 10 more advanced models, including transformer-based architecture,
trained on ImageNet (Russakovsky et al., 2015).

2 Preliminaries

2.1 Problem settings

Let g : D → RC be a locally differentiable C-classifier, xorg ∈ D be a point with c as the correct label, and
d : D×D → R be a distance function. Given ε > 0, the feasible region S is defined as the set of points x ∈ D
that are within a distance of ε from xorg, i.e., S := {x ∈ D | d(x, xorg) ≤ ε}. Then, we define an adversarial
example as xadv ∈ S satisfying arg maxi=1,...,C gi(xadv) ̸= c. The following expression is a formulation of one
type of adversarial attack, the untargeted attack, where the attacker does not specify the misclassification
target.

find x ∈ S s.t. max
i=1,...C

gi(x)− gc(x) > 0 (1)

Problem 1 is solved through maximization of the objective function L(g(x), c) within the feasible region S.
This maximization aims to reduce the probability that x is classified in class c by g. Therefore, x with a
high objective value L(g(x), c) is more likely to be misclassified by g. When d(xadv, xorg) is small, the norm
of the adversarial perturbation is also small. The targeted attack aims at maximizing the probability that
xadv is classified in a particular class t ̸= c by solving maxx∈S L (g(x), c, t). For adversarial attacks on image
classifiers, D = [0, 1]n and d(v, w) := ∥v − w∥p, (p = 2,∞) is typically used. This study focuses on the
untargeted attack on image classifiers using d(v, w) := ∥v −w∥∞, referred to as ℓ∞ attacks.
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2.2 Related work

General white-box attacks. In the white-box attack, the initial point sampling x determines x(0) first.
Then, the step size update rule η and the search direction δ = δ(L) updates the step size η(k) and the moving
direction δ(k), respectively. Subsequently, the search point x(k+1) is updated by the following formula.

x(0) ← sampled by x, x(k+1) ← PS

(
x(k) + η(k)δ(k)

)
, (2)

where k is the iteration, and PS is a projection onto S. The moving direction δ(k) is usually computed
based on the gradient ∇L(g(x(k)), c). According to equation 2, attack methods are characterized by the
initial point sampling x, step size update rule η, search direction δ, and objective function L. The tuple
a = (x, η, δ, L) is referred to as an attack a. Algorithm 1 shows the procedure of the general white-box
attacks a without multi-restart. We assume that the white-box attack a returns a set of best search points
Xa and a set of classification labels with the highest probability except for the correct classification labels
during the search Πa. The basic white-box attacks iteratively update the search point x(k) as lines 5 and 6
in Algorithm 1 to search for adversarial examples. At each iterations k, the best search point x∗ is updated
if LCW(g(x∗), c) ≤ LCW(g(x(k)), c). LCW denotes CW loss proposed by Carlini & Wagner (2017). After
the N iterations of updates, the attack procedure is finished. For the attacks with a multi-restart strategy,

Algorithm 1 General white-box attacks without multi-restart (Attack)
Require: a = (x, η, δ, L): an attack, N : maximum iteration, PS : a projection function, g: DNN, I: test

samples
Ensure: Xa: a set of best search points, Πa: a set of classification labels with the highest probabilities

except for the correct classification class
1: for i = 1, . . . , |I| do
2: xorg ← xi ∈ I, ci ∈ Y ← correct classification label corresponding to xi

3: x(0) ← initialize by x, x∗ ← x(0), f best
i ← LCW(g(x(0)), ci)

4: for k = 0, . . . , N − 1 do
5: Update η(k) and δ(k) by update rule η and search direction δ.
6: x(k+1) ← PS

(
x(k) + η(k) · δ(k))

7: Update x∗ and f best
i

8: Πa
i ← Πa

i ∪ {arg maxj ̸=ci
gj(x(k+1))}

9: end for
10: Xa

i ← Xa
i ∪ {x∗}

11: end for

Algorithm 1 is repeated from different initial points. The returned Xa
i should contains R best search points

if the number of restarts is R.

Commonly used attack components. Projected Gradient Descent (PGD) (Madry et al., 2018) is a
fundamental white-box attack. PGD uses a fixed step size (ηfix) and moves to the normalized gradient
direction (δPGD). Auto-PGD (APGD) (Croce & Hein, 2020b) is a variant of PGD using a heuristic (ηAPGD)
for updating step size and moving to the momentum direction (δAPGD). In addition, some studies use
cosine annealing (ηcos) (Loshchilov & Hutter, 2017) for updating step size. Gradual reduction of step
size, such as ηAPGD and ηcos, showed better results than fixed step size. Auto-Conjugate Gradient attack
(ACG) (Yamamura et al., 2022) uses ηAPGD and moves to the normalized conjugate gradient direction
(δACG). Whereas the sort of steepest directions, such as δPGD and δAPGD, are suitable for intensification,
the conjugate gradient-based direction is suitable for diversification. For the initial point, uniform sampling
from S or input points (xorg) is usually used. Assuming the many restarts, Output Diversified Sampling
(ODS, xODS) and its variant, which considers the output diversity of the threat model (Tashiro et al., 2020;
Liu et al., 2022c), outperformed naive random sampling. For the objective functions, cross-entropy (CE)
loss (Goodfellow et al., 2015) (LCE) and margin-based losses such as CW loss (LCW), a variation of CW loss
scaled by the softmax function (LSCW), and Difference of Logits Ratio (DLR) loss (Croce & Hein, 2020b)
(LDLR) are often used. We denote the targeted version of these losses as LT , e.g., LT

CE for targeted CE loss.
See Appendices A.1 and A.2 for mathematical formulas of attack components.
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Robustness evaluation. The robustness of DNNs is usually evaluated using AutoAttack (AA) Croce
& Hein (2020b), combining four different attacks, including the MultiTargeted (MT) Gowal et al. (2019)
strategy. MT strategy runs targeted attacks on each of multiple target classes and thus requires higher com-
putation costs. The high computational cost of AA has motivated the research community to pursue faster
attacks for adversarial training and robustness evaluation (Gao et al., 2022; Xu et al., 2022). Composite
Adversarial Attack (CAA) (Mao et al., 2021) and AutoAE (Liu et al., 2023b) combine multiple attacks by
solving an additional optimization problem, requiring the pre-execution of candidate methods on relatively
large samples. Consequently, they are still computationally expensive. Adaptive Auto Attack (A3) Liu et al.
(2022c) demonstrated state-of-the-art (SOTA) attack performance in less computation time by improving the
initial point sampling and discarding the hard-to-attack images. A3 is based on PGD with CW loss, which
uses a single search direction and objective function. Some studies have investigated how to switch either the
search direction or the objective function based on case studies to improve attack performance (Yamamura
et al., 2022; Antoniou et al., 2022). However, to the best of our knowledge, this is the first study that inves-
tigates the combination of multiple search directions and objective functions based on search diversification.
See Appendix A.3 for more information.

Quantification of search diversity. Yamamura et al. (2022) proposed the Diversity Index (DI) to quan-
tify the degree of diversification during the attacks. DI is defined as

DI(X, M) := 1
M

∫ M

0
h(θ; X) dθ, (3)

where M = sup{∥x − y∥2 | x, y ∈ S} is the size of the feasible region, X is the set of search points, and
h(θ; X) is the function of θ based on the global clustering coefficient of the graph G(X, θ) = (X, E(θ)) =
(X, {(u, v) | u, v ∈ X, ∥u− v∥2 ≤ θ}). By definition, 0 ≤ h(θ; X) ≤ 1 holds. Thus, 0 ≤ DI(X, M) ≤ 1 also
holds. DI quantifies the degree of density of any point set as a value between 0 and 1 based on the global
clustering coefficient of a graph. DI tends to be small when the point set forms clusters. Because of this
feature, DI is suitable to evaluate how clustered the point set is. We use the weighted average of DI to choose
pairs of search directions and objective functions that are likely to search for different areas. This study uses
the same value of M as in Yamamura et al. (2022). For simplicity, DI(X, M) is denoted by DI(X) in this
paper.

3 Multi-directions/objectives strategy

3.1 Motivation

We hypothesize that diversification contributes to attack performance. This section empirically demonstrates
that attacks with multiple search directions (δ) and objective functions (L) can achieve more efficient diver-
sification than attacks with a single δ and L. Four search directions and seven objective functions are used
in this experiment. Nmax iterations of attacks are performed from R initial points for each pair of search
direction and objective function. The search point with the highest CW loss (LCW) value is collected at the
end of the attack, which starts at each initial point. The obtained set of these search points is denoted as
Xa

i . We focus on this set of search points to analyze the characteristics of the attack using a single δ and
L. For this experiment, we used 10,000 images from CIFAR-10 (Krizhevsky et al., 2009) as test samples
and attacked the robust model proposed by Sehwag et al. (2022). See Appendix C for more information and
results.

Notation. Let L = {LCE, LCW, LSCW, LDLR}∪{LG-DLR,q | q = 4, 5, 6} be a set of objective functions, and
D = {δPGD, δAPGD, δACG, δNes} be a set of search directions. We have proposed δNes and LG-DLR,q in this
study. δNes is the search direction of Nesterov’s accelerated gradient (NAG) (Nesterov, 2004) normalized by
the sign function to accommodate ℓ∞ attacks. We refer to LG-DLR,q as generalized-DLR (G-DLR) loss with
the denominator of DLR loss extended from gπ1(x) − gπ3(x) to gπ1(x) − gπq (x); πq ∈ Y denotes the class
label that has the q-th largest value of g(x). Mathematical expressions of δNes and LG-DLR,q can be found
in Appendix B. Given an initial point sampling x and a step size update rule η, we define a set of attacks
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Figure 5: The procedure of ADS. The black circle represents a single search point, and DI tends to be smaller
when the search points form clusters. Regions of different colors represent different classification classes, and
the more search points are distributed around multiple regions, the higher the degree of diversification in
the output space, i.e., the value of P e

i .

as A(x, η) = {a = (x, η, δ, L) | δ ∈ D, L ∈ L}. In the following paragraphs, we analyze the characteristics of
attacks a ∈ A(xODS, ηcos), which use single δ and L, based on the experimental results with Nmax = 30 and
R = 10.

Limited diversification ability of attacks using single δ and L. We quantify the diversity of Xa
i

using DI to reveal the diversification ability of the attack a, which uses a single δ and L. Figure 3 shows the
violin plot of DI (Xa

i ) for 10,000 images and all attacks a. The mean and standard deviation of the first,
second, and third quartiles were 0.190± 0.019, 0.223± 0.023, and 0.269± 0.033, respectively. Figure 3 and
these DI values suggest that the diversity of the best point set Xa

i is relatively low. Thus, the diversification
ability of a seems to be limited.

Attacks using multiple δ and L can lead to efficient diversification. Figure 4 shows the best
point set Xa

i embedded in a two-dimensional space using Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018). Dimensionality reduction methods, such as UMAP, preserve the maximum
possible distance information in high-dimensional spaces as possible. Figure 4 (a) depicts the points obtained
by the attack using the same L in the same color. Figure 4 (a) shows that sets of best search points obtained
from searches with different L tend to form different clusters. Figure 4 (b) depicts the points obtained by
the attack using the same δ in the same color. Similarly, sets of best search points obtained by the attack
using different δ also tend to form different clusters. Based on these observations, it is possible to efficiently
search for different local solutions using different δ and L, or an appropriate combination of both.
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Algorithm 2 Automated Diversified Selection (ADS)
Require: J : small samples, A(x, η): candidate attacks,

NADS: maximum iterations, PS : projection, g: DNN, M :
the size of feasible region, na: number of attacks to select

Ensure: {(δa∗
j
, La∗

j
)}na

j=1: The pairs of search direction and
objective function

1: for a = (x, η, δ, L) ∈ A(x, η) do
2: Xa, Πa ← Attack(a, NADS, PS , g,J ) /*Algorithm 1*/
3: end for
4: A← {e ⊂ A(x, η) | |e| = na ∧ |{Laj}

na
j=1| = na}

5: for e ∈ A do
6: P e

i ← | ∪a∈e Πa
i |, ∀i = 1, . . . , |J |

7: Compute De by equation 4
8: end for
9: Get {(δa∗

j
, La∗

j
)}na

j=1 from {a∗
j}na

j=1 = arg max
e∈A

De.

Choose the best

𝑎! 𝑎" 𝑎#!⋯
𝑎!

𝑎"

𝑎#!
⋯

(a) Ensemble (b) Composite (c) MDO Framework

Choose the best

𝑎! 𝑎" 𝑎#!⋯

𝑎#!

𝑎##!

⋯

Figure 6: Illustration of the ensemble, compos-
ite, and the MDO framework.

3.2 Automated Diversified Selection

The analyses in Section 3.1 suggest that the MDO strategy can efficiently search for different local solutions.
However, this strategy is ineffective unless the combinations of δ and L are properly determined because dif-
ferent attacks may search similar regions. To address this issue, we propose Automated Diversified Selection
(ADS), which selects the combinations of search directions and objective functions based on the degree of
diversification in input and output spaces. Algorithm 2 and Figure 5 show the ADS procedure. Ideally, we
aim to identify the combination of δ and L that facilitates the most extensive exploration through numerous
iterations of candidate attacks on the entire dataset. In practice, however, computation time should be min-
imized. Therefore, we attempt to approximate the combination of δ and L capable of exploring extensive
regions by assessing the diversity of the best solutions derived from a limited iteration of attacks on small
samples. The ADS procedure is outlined below.

First, NADS iterations of attack candidates a ∈ A(x, η) are executed on the image set J ⊂ D (lines 1-3 in
Algorithm 2). In this study, J is 1% of the images uniformly sampled from all the test samples. Subsequently,
the set of best search points Xa

i and class labels Πa
i =

{
arg maxq ̸=ci

gq(x(k)) ∈ Y | k = 1, . . . , NADS
}

are
obtained. Xa

i and Πa
i are constructed as described in lines 10 and 8 of Algorithm 1, respectively. The

observations in Section 3.1 suggest that the degree of diversification may be greatly reduced when the
selected attacks employ the same objective function. Therefore, a set of the candidate combinations of na

attacks is defined as A =
{
{aj}na

j=1 ⊂ A(x, η) | |{Laj
}na

j=1| = na

}
so that each attack uses a different L (line

4 in Algorithm 2). The weighted average of the DI is calculated for all e ∈ A to quantify the diversity of the
best point set ∪a∈eXa

i as follows:

De = 1
|J |

|J |∑
i=1

P e
i ·DI(∪a∈eXa

i ), (4)

where P e
i = | ∪a∈e Πa

i | is the number of types of classification labels with the highest prediction probability
excluding the correct label (lines 5-8 in Algorithm 2). A high DI indicates a high diversity of ∪a∈eXa

i ,
and a high P e

i indicates a high output diversity. Finally, ADS outputs {(δa∗
j
, La∗

j
)}na

j=1 as the appropriate
combinations of δ and L, where {a∗

j}
na
j=1 = arg maxe∈A(x,η) De (line 9 in Algorithm 2). The algorithm is

designed on the assumption that the best search points found through appropriate diversification are unlikely
to form clusters. Therefore, ADS selects combinations based on DI, which can directly quantify whether
a point set contains clusters or not. Because there is no general definition of appropriate diversification,
a selection method based on indices other than DI is also possible. The experimental results suggest that
selecting combinations based on DI is a reasonable approach.
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3.3 Search framework for the MDO strategy

Considering the difference in diversification/intensification performance between PGD and CG-based search
directions reported by Yamamura et al. (2022), we propose a search framework called the MDO framework
consisting of diversification and intensification phases. MDO framework is a combination of ensemble and
composite. Figure 6 illustrates the procedure of the ensemble, composite, and MDO framework. An ensemble
realizes the diversification phase, and the intensification phase is based on a composite. The diversification
phase aims to find appropriate starting points via extensive search within the feasible region, and the inten-
sification phase aims to improve the objective value through intensive searches of nearby areas around the
best point obtained during the diversification phase. As demonstrated in Figure 12, DI of best search points
obtained by an ensemble/a composite tends to be relatively high/low. The high/low DI value indicates that
the corresponding search procedure is extensive/intensive. Thus, an ensemble is suitable for diversification,
and a composite is suitable for intensification. The pseudocode of the MDO framework is described in Algo-
rithm 3. The overview of the MDO framework is also illustrated in Figure 7. Assume that the total number
of the MDO framework iterations is N × na. Inspired by the APGD step size control, the diversification
phase takes ⌈0.41N⌉ × na iterations, and the intensification phase uses the remaining iterations.

Diversification phase. The diversification phase uses large step sizes to search a broader area. First, ADS
is executed with a fixed step size of 2ε and initial point sampling x to determine the pairs {(δa∗

j
, La∗

j
)}na

j=1,
where (a∗

1, a∗
2, . . . , a∗

na
) ⊂ A(xinit, ηfix) (line 4 in Algorithm 3). For each pair of δa∗

j
and La∗

j
, N1 = ⌈0.41N⌉

iterations of the attack are executed with an initial step size of 2ε starting at an initial point selected
by xinit (lines 6-11 in Algorithm 3). The images whose adversarial example is found are excluded from
the attack target (line 10 in Algorithm 3) because we assume the robustness evaluation. The step size is
updated by ηAPGD. When the total iteration is Niter, APGD step size control allocates at least ⌈0.22Niter⌉
iterations with a step size of 2ε and ⌈(0.41− 0.22)Niter⌉ = ⌈0.19Niter⌉ iterations with a step size of 2ε or ε.
Inspired by this, the diversification phase uses the total iterations of N1 for each attack and the checkpoints
of W = {⌈0.22 × N⌉} for step size control ηAPGD to achieve diversification with large step sizes. The
diversification phase aims to identify promising starting points through extensive exploration. Therefore,
we need to thoroughly explore the neighborhood of these identified points to enhance the objective value
further. To achieve this, we introduce the intensification phase subsequently.

Intensification phase. The intensification phase takes the solution with the highest LCW value found by
the diversification phase as the initial point and searches for different local solutions within a range not far
from the initial point. In APGD step size control, the step size is set to ε/2 after the search with a step size
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Algorithm 3 MDO framework
Require: I: test samples, g: DNN, ε: allowed perturbation size, na: number of pairs to select, NADS: search

iterations in ADS, M : the size of the feasible region, N : search iterations per attack
Ensure: Xadvs: adversarial examples

1: Xadvs ← ∅
2: /* Diversification phase */
3: J ← uniformly sampled 1% images of I.
4: {(δa∗

j
, La∗

j
)}na

j=1 ← ADS (J ,A(xinit, ηfix), NADS, PS , g, M, na)
5: N1 ← ⌈0.41N⌉, N2 ← N −N1
6: for j = 1, . . . , na do
7: a′ ← (xinit, ηAPGD, δa∗

j
, La∗

j
)

8: Xa′
, Πa′

← Attack(a′, N1, PS , g, I) /*Algorithm 1*/
9: Update Xadvs by Xa′

10: Update I by excluding images that succeeded in the attack.
11: end for
12: /* Intensification phase */
13: Isub ← I
14: J ′ ← uniformly sampled 1% images of I.
15: {(δâj , Lâj )}na

j=1 ← ADS
(
J ′,A(xbest, ηfix), NADS, PS , g, M, na

)
16: for j = 1, . . . , na do
17: al ← (xbest, ηcos, δâj , Lâj ){Use ηAPGD instead of ηcos when δâj = δACG}
18: Xal

, Πal

← Attack(al, N2, PS , g, Isub) /*Algorithm 1*/
19: Update Xadvs by Xal

.
20: /* Extract images whose highest CW loss value is close to 0 for further intensification. */

21: Isub ← Isub ∩

{
xi ∈ I | −0.05 ≤ max

x∗∈Xal

i

LCW(g(x∗), ci) ≤ 0

}
22: Xal

, Πal

← Attack(al, N2, PS , g, Isub) /*Algorithm 1*/
23: Update Xadvs by Xal

.
24: end for

of ε. Based on this, the initial step size is set to ε/2. First, ADS is executed with a fixed step size of η = ε/2
to determine the pairs {(δâj

, Lâj
)}na

j=1 (line 15 in Algorithm 3), where (â1, â2, . . . , âna
) ⊂ A(xbest, ηfix), and

xbest denotes the initial point sampling that uses the solution with the highest LCW value as the initial
point. The experimental results in Table 6 demonstrate the effectiveness of the ADS execution in this phase
(line 15 in Algorithm 3). For each pair of (δâj

, Lâj
), N2 = N − N1 iterative searches are performed with

the initial point determined by xbest, and the initial step size of ε/2, using step size update rule ηcos (lines
16-19 in Algorithm 3). xbest enables composite execution of the attack sequence. The step size update rule
ηcos leads to a larger step size than ηAPGD in nature. Thus, ηcos is expected to avoid getting stuck during
intensification employing the steepest descent-based search directions. On the contrary, ηcos may result in
insufficient intensification using a diversified search direction such as δACG. For this reason, ηAPGD is used
to update the step size when the search direction δâj is equal to δACG, aiming for a better intensification
performance (line 17 in Algorithm 3). Subsequently, the same searches are performed on the images whose
highest LCW values are greater than or equal to −0.05 to accelerate the intensification (lines 20-24 in
Algorithm 3). Lines 20-24 are introduced to avoid insufficient optimization, one cause of attack failure
pointed out by Pintor et al. (2022). Same as in the diversification phase, successfully perturbed images, i.e.
xi ∈ Isub s.t. max

x∗∈Xal

i

LCW(g(x∗), ci) > 0, are excluded (line 23 in Algorithm 3).

3.4 Efficient Diversified Attack

The comparisons of the MDO framework and MTcos in Section 4.2 suggest that combining MDO and MT
strategies would lead to a faster and stronger attack. This result motivates us to propose Efficient Diversified
Attack (EDA), a combination of MDO and MT strategies. EDA is implemented as an ensemble of the MDO
framework and a targeted attack aT = (xinit, ηAPGD, δGD, LT

CW) with N iterations. We selected this targeted
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Figure 8: Flowchart of EDA.

attack configuration based on small experiments in Appendix G.1. Considering computational efficiency,
we estimate the most likely to cause misclassification target class Ti for the targeted attack through a few
iterations of the multi-targeted attack. This procedure is referred to as a small-scale search (lines 6-13 in
Algorithm 4). See Appendix F for validation of the target selection scheme based on the small-scale search.
The pseudocode of EDA is described in Algorithm 4. Figure 8 provides an overview of EDA. EDA executes
the MDO framework first (lines 1-4 in Algorithm 4). Same as in the MDO framework, successfully perturbed
images are excluded because we assume the robustness evaluation (lines 4 in Algorithm 4). Subsequently,
the target class Ti is selected based on the small-scale search from top-K classes (lines 9-13 in Algorithm 4).
Existing researches support the effectiveness of the multi-targeted attack with top-K classes Croce & Hein
(2020b); Gao et al. (2022). Finally, the targeted attack aT with selected target Ti is executed (lines 14-18
in Algorithm 4). Lines 1-4 are the MDO strategy, and lines 5-18 represent the MT strategy. MT strategy is
independent of the MDO strategy. Thus, the execution order of MDO and MT strategies is not so important.

4 Experiments

The efficacy of the proposed methods was examined through a series of experiments involving an ℓ∞ attack
against ℓ∞ defense models listed in RobustBench (Croce et al., 2021).

Dataset and models. We used 41 models and 21 different defenses1, including 25 models trained on
CIFAR-10, 11 on CIFAR-100 (Krizhevsky et al., 2009), and five on ImageNet (Russakovsky et al., 2015).
We also used 10 additional models trained on ImageNet with three different defenses to test the EDA’s
performance against more advanced models, including transformer-based architectures. We performed ℓ∞
attacks on 10,000 images with ε = 8/255 for CIFAR-10 and CIFAR-100 models and on 5,000 images with
ε = 4/255 for ImageNet models. These ε values are used in the RobustBench leaderboard. The test images
were sampled in the same way as in RobustBench. The text presents results against nine representative
models for CNN-based models. Complete results for CNN-based models are described in Appendix D.

Computer specification. The experiments were conducted with two types of CPUs and a single type of
GPU. The CPUs used in the experiments were Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz and Intel(R)
Xeon(R) Silver 4216 CPU @ 2.10GHz. The GPU used in the experiments is NVIDIA GeForce RTX 3090.

1The used models are publicly available as of robustbench v1.1.
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Algorithm 4 Efficient Diversified Attack (EDA)
Require: I: test set, g: DNN, ε: allowed perturbation size, na: number of pairs to select, K: number of target

classes, NADS: search iterations in ADS, M : the size of the feasible region, N : search iterations per attack a, Ns:
number of iterations in small-scale search

Ensure: Xadvs: Adversarial examples
1: Xadvs ← ∅
2: /* Run MDO framework (Algorithm 3) */
3: Xadvs ← MDO framework(I, g, ε, na, NADS, M, N)
4: Update I by excluding images that succeeded in the attack.
5: /* Begin multi-targeted strategy */
6: /* Select target class based on small-scale search */
7: Ti ← π1, (∀i = 1, . . . , |I|)
8: at ← (xinit, ηcos, δGD, LT

CW)
9: for t = 1, . . . K do

10: /* Run targeted attack with the target class πt */
11: Xat

, Πat

← Attack(at, Ns, PS , g, I) /*Algorithm 1*/
12: Update target class Ti for images xi that record the highest loss value
13: end for
14: aT ← (xinit, ηAPGD, δGD, LT

CW)
15: /* Run targeted attack with the target Ti */
16: XaT

, ΠaT

← Attack(aT , N, PS , g, I) /*Algorithm 1*/
17: /* End multi-targeted strategy */
18: Update Xadvs by XaT

.

Table 1: Comparison in robust accuracy. The lower the robust accuracy, the higher the attack performance.
The lowest robust accuracy is in bold. The “#query” row shows the number of queries in the worst-case
per image. The robust accuracy of AA is the value reported by RobustBench. MDO represents the MDO
framework. OOM (Out of Memory) indicates that execution could not be completed due to a memory error.

Dataset No. Defense clean AA ACG MTcos CAA AutoAE A3 MDO EDA
#query 6.1k 500 504 800 3.6k 1k 502.24 802.24

CIFAR-10 1 (Sehwag et al., 2022) 84.59 55.54 56.19 55.54 55.52 55.51 55.53 55.58 55.49
2 (Carmon et al., 2019) 89.69 59.53 60.10 59.54 59.50 59.47 59.44 59.46 59.40

(ε = 8/255) 3 (Rebuffi et al., 2021) 88.54 64.25 64.80 64.28 64.23 64.19 64.24 64.32 64.20

CIFAR-100 4 (Rice et al., 2020) 53.83 18.95 19.48 18.99 18.96 18.91 18.89 18.97 18.88
5 (Sitawarin et al., 2021) 62.82 24.57 25.69 24.55 24.56 24.52 24.56 24.65 24.50

(ε = 8/255) 6 (Gowal et al., 2020) 69.15 36.88 37.84 36.95 36.90 36.86 36.87 36.96 36.81

ImageNet 7 (Salman et al., 2020) 52.92 25.32 26.40 25.24 25.27 OOM 25.22 25.22 25.11
8 (Engstrom et al., 2019) 62.56 29.22 31.54 29.34 29.41 OOM 29.32 29.20 29.01

(ε = 4/255) 9 (Wong et al., 2020) 55.62 26.24 28.46 26.40 26.56 OOM 26.42 26.22 26.12

Summary (# bold / 41 models) 0 0 0 0 2 3 0 36

When we compared the performance of each attack on model A and dataset B, all compared attacks were
run on the same device. The runtime comparison is thus fair.

Hyperparameters. The parameters of the ADS are na = 5 and NADS = 4, which are the number of
pairs of δ and L and the number of iterations, respectively. These parameters were determined based on
small-scale experiments in Appendix D.1. The parameter of the MDO framework is N = 100. The total
number of the MDO framework iterations is na×N = 500. EDA has parameters Ns = 10 and K in addition
to ADS and the MDO framework parameters. The experiments used K = 9, 14, and 20 for CIFAR-10,
CIFAR-100, and ImageNet, respectively. Unless otherwise noted, the initial point sampling (xinit) in ADS,
the diversification phase, and the targeted attack was Prediction Aware Sampling (xPAS, PAS), a variant of
ODS described in Appendix E.
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Table 2: The comparison in the robust accuracy against robust models trained on ImageNet, including
transformer-based architectures. The robust accuracy of AA is the value reported in RobustBench. The
lowest robust accuracy is in bold. “sec (ratio)” columns show the runtime in seconds and the ratio of runtime
to EDA.

Defense Model clean AA CAA A3 EDA
acc acc acc sec (ratio) acc sec (ratio) acc sec (ratio)

(Liu et al., 2023a) ConvNeXt-B 76.02 55.82 55.86 20,244 (1.4) 55.84 37,437 (2.7) 55.78 14,073 (1.0)
(Liu et al., 2023a) Swin-B 76.16 56.16 56.14 25,913 (1.9) 56.06 20,620 (1.5) 56.04 13,988 (1.0)

(Debenedetti et al., 2023) XCiT-L12 73.76 47.60 47.70 25,196 (2.0) 47.54 20,044 (1.6) 47.44 12,705 (1.0)
(Debenedetti et al., 2023) XCiT-M12 74.04 45.24 45.44 13,187 (1.7) 45.22 11,067 (1.4) 45.14 7,884 (1.0)
(Debenedetti et al., 2023) XCiT-S12 72.34 41.78 41.88 8,690 (1.6) 41.74 6,560 (1.2) 41.60 5,548 (1.0)

(Singh et al., 2023) ConvNeXt-B+ConvStem 75.90 56.14 56.12 21,650 (1.5) 56.14 35,422 (2.5) 56.02 14,399 (1.0)
(Singh et al., 2023) ConvNeXt-S+ConvStem 74.10 52.42 52.44 14,184 (1.3) 52.38 24,512 (2.3) 52.30 10,601 (1.0)
(Singh et al., 2023) ConvNeXt-T+ConvStem 72.72 49.46 49.42 8,444 (1.2) 49.44 19,391 (2.7) 49.38 7,311 (1.0)
(Singh et al., 2023) ViT-B+ConvStem 76.30 54.66 54.72 22,262 (1.9) 55.02 17,141 (1.4) 54.62 11,962 (1.0)
(Singh et al., 2023) ViT-S+ConvStem 72.56 48.08 48.18 8,912 (1.7) 48.08 5,928 (1.1) 48.02 5,355 (1.0)

4.1 Comparison with recent attacks

The comparative experiments of EDA with the standard version of AA, CAA, AutoAE, and A3 were con-
ducted to investigate the performance of EDA. The parameters of the existing methods were the default
values in their official codes. In addition, MTcos, a step size variant of MT-PGD (Gowal et al., 2019), was
compared with the MDO framework to analyze the characteristics of the MDO strategy. In our notation,
MTcos is expressed as (xorg, ηcos, δGD, LT

CW). The parameters of MTcos were the number of target classes,
K = 9, and iterations per target class, NT = 56. The MDO framework and MTcos thus spent almost the
same number of queries. To investigate the stability of the compared methods including A3 and EDA, we ran
five times with different random seeds for the experiments on 41 CNN-based models. The results suggest a
stable performance. Table 1 shows the mean of five runs. See Table 11 in the Appendix for the experimental
results including standard deviations. The remaining experiments were conducted with a single fixed random
seed.

EDA showed SOTA performance in less runtime under the standard ε setting in RobustBench
. The summary in Table 1 shows that the attack performance of EDA exceeds that of recently proposed
methods for around 88% of 41 CNN-based robust models. We could not finish AutoAE execution against
ImageNet models due to the out-of-memory error. As shown in Figure 1, EDA showed lower robust accuracy
with fewer numbers of worst-case queries than AA, CAA, AutoAE, and A3. In addition, Figure 9 shows
that EDA is 1.07-2.28, 1.46-2.87, and 18.74-38.61 times faster than A3, CAA, and AutoAE on average. A3

stops the search before the given query budget, depending on the models. Because of this, A3 spent less time
than EDA for some models, specifically for CIFAR-10 models. The reasons for better performance and less
runtime of EDA are the complementarity of MDO and multi-targeted strategies (Section 4.2) and a higher
degree of diversification of EDA (Figure 12), which lead to efficient diversification and intensification. The
differences in robust accuracy among CAA, AutoAE, and A3 are approximately 0.05%. Considering these
advances in robust accuracy by recent attacks, EDA’s performance improvements, around 2 to 30 times
speed-up and approximately 0.01 to 0.21% improvement in robust accuracy, are sufficiently large. As shown
in Table 2, EDA also demonstrated better performance against 100% of 10 advanced models, including
transformer-based architectures. We discuss the complexity of the compared methods in the number of
queries in Appendix D.2 in detail. In the following analyses of EDA, we mainly focus on the comparison
with A3, which is sufficiently fast and strong among baseline methods.

EDA showed higher transferability. We chose three recent models trained on CIFAR-10, including
Semi (Carmon et al., 2019), MMA (Ding et al., 2020), and LBGAT (Cui et al., 2021). Table 3 shows that
EDA tends to exhibit the highest performance among baseline methods in the transfer scenarios from more
robust models to less robust models. EDA showed the second-best performance in the other scenarios.
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Figure 9: The average ratio of computation time
to EDA.

Table 3: Comparison in robust accuracy for transfer set-
ting. “A→B” indicates the transfer attack from model A
to model B.

Transfer clean AA CAA AutoAE A3 EDA
Semi→MMA 84.36 71.82 73.15 73.24 70.46 68.14

Semi→LBGAT 88.22 71.90 74.76 74.66 73.46 70.29
MMA→Semi 89.69 83.23 85.01 84.85 85.16 83.68

MMA→LBGAT 88.22 79.77 82.16 81.83 82.42 80.32
LBGAT→Semi 89.69 76.17 80.24 80.32 79.94 77.24
LBGAT→MMA 84.36 70.16 72.07 72.09 71.28 69.43

Best known robust accuracy LBGAT MMA Semi
in RobustBench leaderboard 52.86 41.44 59.53

Original

CAA

A3

EDA

Image Noise× !
" Image Noise× !

" Image Noise× !
" Image Noise× !

"

2-norm: 5.9547 2-norm: 5.5645 2-norm: 5.8908 2-norm: 5.3621

2-norm: 5.6698 2-norm: 5.2672 2-norm: 5.7469 2-norm: 4.9245

2-norm: 5.7201 2-norm: 5.527 2-norm: 5.6659 2-norm: 5.7124

Figure 10: Visualization of adversarial examples (ε = 4/255 on ImageNet). “2-norm” denotes the perturba-
tion size in terms of Euclidean distance. EDA and CAA succeeded in the attack, but A3 failed.

Visualization of the adversarial examples. Figure 10 shows the visualization of the generated ad-
versarial examples. EDA and CAA, which induced misclassification, perturbed the original image more
extensively than A3 in terms of Euclidean distance. This indicates that EDA explored a broader area than
A3, leading to a successful attack. The DI-based analysis in Section 4.1 also suggests a higher diversification
performance of EDA than A3. Additionally, EDA perturbed the image to a lesser extent than CAA, yet both
methods led to misclassification. This suggests that EDA is more likely to generate adversarial examples
that are closer to the original image than CAA. This study does not focus on the perturbation size in the
Euclidean norm, but it represents an advantageous property for the imperceptibility of perturbations.

Performance evaluation with different perturbation bounds ε. As shown in Figure 11, for all
datasets, the performance difference between the compared attacks is very small when epsilon is small.
Regarding the runtime, EDA spent slightly less time than A3. When epsilon is large, A3 tends to have
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Figure 11: Difference in robust accuracy and runtime with different perturbation bounds ε. The upper part
shows the difference in robust accuracy, and the lower part shows the runtime in seconds. The positive value
of the difference in robust accuracy indicates the EDA’s performance is higher than the compared method.
For the execution time, the lower value is better.

the highest attack performance. However, regarding runtime, AA and EDA tend to decrease as epsilon
increases, while A3 tends to increase. EDA showed better performance than AA for all perturbation bounds.
In terms of overall runtime and performance, EDA is considered to achieve a good balance between the
two. Appendix G.4 provides further results as a table. To further analyze the attack performance of EDA
for large perturbation bounds, we compare the robust accuracy of A3 and EDA with a sufficiently large
value of parameter N . N is set so that the runtime of EDA does not exceed the runtime of A3. We report
the representative results corresponding to Figure 11. For the model proposed by Sehwag et al. (2022) and
trained on CIFAR-10, EDA achieved 19.91% robust accuracy in 718 seconds with N = 300, and A3 achieved
20.07% in 868 seconds. For the model proposed by Sitawarin et al. (2021) and trained on CIFAR-100,
EDA showed 6.14% in 11,024 seconds with N = 2000, and A3 showed 6.14% in 19,993 seconds. For the
model proposed by Engstrom et al. (2019) and trained on ImageNet, EDA showed 7.38% robust accuracy
in 6,752 seconds with N = 1000, and A3 showed 7.44% in 11,717 seconds. These results suggest that EDA’s
performance may be competitive to or slightly better than A3 if the computation budget in the sense of
runtime is almost the same. Thus, the lower attack performance of EDA than A3 in the experimental results
presented in Figure 11 can be attributed to the slower convergence of EDA’s search rather than its earlier
convergence. Given that the runtime of A3 increased as the perturbation size increased and that the attack
performance of EDA with increased runtime was equal to or better than A3, the number of queries required
for attack convergence may increase as the perturbation size increases.

The appropriate balance of diversification and intensification is one of the reasons for EDA’s
high performance. According to Figure 12, EDA and MDO framework showed higher DI values than
A3. The point set with a higher value of DI is less likely to form clusters. This suggests that EDA searches
a larger area than A3 with almost the same or shorter runtime, resulting in EDA’s high attack performance.
A comparison of the MDO framework with ADS (ADS) and EDA in Figure 12 reveals that EDA exhibits
a greater minimum DI than ADS. The distinction between ADS and EDA lies in the presence of MT
strategy. Consequently, the results presented in Figure 12 suggest that the MT strategy may facilitate
the diversification of images that are not adequately diversified by the MDO strategy. Whereas A3 uses a
single δ and L, EDA and MDO framework use multiple δ and L. Thus, this result suggests that the attack

14



Published in Transactions on Machine Learning Research (May/2024)

R-ADS RAND ADS EnsembleComposite EDA A3 MTcos

0.0

0.8

D
I

Figure 12: Violin plot of DI. The model is (Carmon
et al., 2019)

°300 °200 °100 0 100 200 300

DiÆerence in # query (MTcos° GS+LS)

101

103

#
im

ag
es

MTcos > GS+LS

MTcos < GS+LS

MDO
MDO

MDO

Figure 13: The difference between MTcos and the
MDO framework in #queries to find adversarial ex-
amples. The model is (Carmon et al., 2019)

Table 4: Ablation study of ADS.
MDO framework

No. ADS R-ADS RAND
1 55.58 55.58 55.61
2 59.46 59.53 59.56
3 64.32 64.54 64.23
4 18.97 18.99 18.98
5 24.65 24.68 24.71
6 36.96 37.53 37.05
7 25.22 25.44 25.22
8 29.20 29.26 29.56
9 26.22 26.36 26.26
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Figure 14: The ratio of δ and L selected by ADS. LS
and GS refer to the intensification and diversification
phases, respectively.

with multiple δ and L has a higher diversification ability than the attack with a single δ and L. Although
gradient-based attacks can achieve some degree of intensification by adjusting step size, the diversification
and intensification are trade-offs given the computation budget. Figure 12 shows that MTcos showed higher
DI than EDA. However, MTcos showed lower attack performance than EDA, as shown in Table 1. This result
suggests that MTcos performs an insufficient intensification, and EDA has an appropriate balance between
diversification and intensification.

4.2 Analyses of the MDO strategy

The combination of MDO and MT strategies would lead to an efficient attack. Figure 13 shows
the difference between the number of queries spent by MTcos and the MDO framework for images that both
succeeded in attack. The images that MTcos and the MDO framework spent the same number of queries
were excluded. The positive value means MTcos spent more queries than the MDO framework. Figure 13
indicates the presence of images that can be successfully attacked with fewer queries by MTcos/the MDO
framework but require more queries by the MDO framework/MTcos.

The MDO strategy mainly contributed to the attack performance of EDA. We examined the
ratio of adversarial examples generated only by the MDO framework, the targeted attack aT , and both
methods to entire images that EDA succeeded but A3 failed. In the case of CIFAR-10, the percentages of
adversarial examples generated only by the MDO framework, aT , and both methods are 58.98%, 6.71%, and
34.31%, respectively. These values are averages over the 25 models trained on CIFAR-10. Similarly, the
percentages are 35.02%, 8.28%, and 56.70% for CIFAR-100 and 25.90%, 15.51%, and 58.59% for ImageNet.
Here, the percentages in CIFAR-100 are averages over 11 models and those in ImageNet over five. This
analysis suggests that the MDO strategy contributes to the attack performance more than the MT strategy,
and it can find adversarial examples that are difficult to find for existing attacks. In addition, EDA showed
larger improvements in robust accuracy in half the runtime of A3 for models trained on ImageNet, and
the MDO framework showed promising results for the same models. These results indicate that the MDO
strategy may have advantages in the attack for models trained on ImageNet, which is more practical regarding
image size and the number of classification classes.
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4.3 Analyses of ADS

The combination of δ and L selected by ADS brings a higher degree of diversification. We
compared the attack performance of the MDO framework with three selection algorithms, including ADS,
Reverse ADS (R-ADS), which finds the pairs minimizing equation 4, and uniform sampling (RAND). ADS
in Figure 12 and Table 4 represents the MDO framework with the selection algorithm ADS, and the same is
applied to R-ADS and uniform sampling. Figure 12 shows that the DI of the best search points obtained by
the MDO framework with ADS tends to be higher than that obtained by the MDO framework with R-ADS
and uniform sampling, indicating ADS may select the pairs that enhance the diversification. According to
Table 4, the MDO framework with ADS showed lower robust accuracy than that with R-ADS and uniform
sampling. In addition, the MDO framework with R-ADS showed significantly higher robust accuracy on
several models. Although the performance difference between ADS and uniform sampling is smaller than
between ADS and R-ADS, ADS can select the appropriate pair more stably than uniform sampling. These
results indicate that ADS selected the pairs that diversify the search more, leading to stronger attacks.

The percentage of δ and L selected by ADS. As shown in Figure 14, during the diversification phase,
ADS tended to choose DLR loss and the search direction of ACG. In the intensification phase, CW loss
and directions other than ACG were more likely to be selected. Yamamura et al. (2022) reported that
ACG showed superior diversification ability compared to APGD. In addition, ACG showed better attack
performance with DLR loss, whereas APGD showed better performance with CW loss. These experimental
results suggest that ADS selected appropriate pairs in both the diversification and intensification phases.
Similar trends were observed regardless of the dataset.

The role of De in the intensification phase. The correlation between De and the highest CW loss value
was checked to investigate the influence of ADS on the intensification phase. The results show that De and the
highest CW loss value are positively correlated, with correlation coefficients of 0.57 on average. As discussed
in Section 4.4, attack performance is significantly degraded if ADS is not performed in the intensification
phase. These experimental results suggest that ADS can select appropriate pairs for diversification and
intensification. We further discuss the individual influence of the two terms, P e and DI, that appear in De

calculation on the overall ADS search performance in Appendix G.3.

Influence of restricting candidate combinations. To investigate the impact of restricting the can-
didate combinations in ADS (line 4 in Algorithm 2), we compare robust accuracy and runtime with and
without this restriction. Table 5 shows that restriction on the candidate combinations does not necessarily
have a positive impact on attack performance. However, in terms of runtime, this restriction provides a sig-
nificant advantage. This advantage is due to the difference in the number of De calculations. De calculation
requires the Euclidean distance between search points whose computation cost depends on the size of the
images. Therefore, the runtime becomes more significant without this restriction for ImageNet, where the
image size is larger.

4.4 Ablation study of the MDO framework

Comparison with an ensemble and composite. We executed na attacks selected by ADS us-
ing the MDO framework, ensemble, and composite. The ensemble and composite executed the attacks
aj = (xPAS, ηcos, δa∗

j
, La∗

j
) for j = 1, . . . , na. The initial step size and number of iterations of each aj were

set to 2ε and N = 100, respectively. Table 6 shows that the attack performance of the MDO framework is
higher than that of the ensemble and composite in most cases. Table 1 also shows that the attack perfor-
mance of the MDO framework is higher than AA for several models in fewer queries. The violin plot for
DI in Figure 12 shows that the degree of diversification is higher for the ensemble, the MDO framework,
and the composite, in descending order. These experimental results indicate that the MDO framework is
one of the effective implementations of the MDO strategy because it can achieve an appropriate balance of
diversification and intensification than ensemble and composite.
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Table 5: Influence of restricting candidate
combinations.

No. w/o restriction w/ restriction ∆
acc sec acc sec (sec)

1 55.62 672 55.58 386 285
2 59.46 2,308 59.46 2,112 195
3 64.23 15,300 64.32 15,187 113
4 18.98 487 18.97 299 187
5 24.61 1,420 24.65 1,186 233
6 36.92 9,229 36.96 9,175 53
7 25.20 6,190 25.22 1,430 4,759
8 29.28 6,492 29.20 1,973 4,518
9 26.40 7,765 26.22 2,930 4,834

Table 6: Ablation study of the MDO framework.
MDO MDO framework w/o ADS

No. Ensemble Composite framework in the intensification phase
1 55.68 55.90 55.58 62.80
2 59.70 59.59 59.46 69.25
3 64.53 64.43 64.32 70.71
4 19.08 19.12 18.97 24.40
5 24.74 24.83 24.65 32.51
6 37.19 37.17 36.96 43.87
7 25.46 25.48 25.22 29.76
8 29.64 29.68 29.20 36.74
9 26.84 26.78 26.22 30.66

Table 7: Influence of further intensification (lines 21-23 of Algorithm 3).
w/o lines 21-23 w/o lines 22-23 w/ lines 21-23

Attack on subset (line 21) - ✓ ✓
Extra attack iteration (lines 22-23) - - ✓

No. acc sec acc sec acc sec
1 55.58 574 55.63 340 55.58 387
2 59.46 3,675 59.45 1,914 59.46 2,112
3 64.30 26,709 64.30 13,993 64.32 15,187
4 18.94 380 19.00 262 18.97 299
5 24.66 1,749 24.67 1,078 24.65 1,187
6 36.93 14,385 36.93 8,335 36.96 9,175
7 25.18 1,376 25.18 1,182 25.22 1,431
8 29.16 2,688 29.36 1,929 29.20 1,974
9 26.36 3,795 26.42 2,838 26.22 2,931

Influence of ADS in the intensification phase. Table 6 shows the robust accuracy of the MDO frame-
work with and without ADS execution prior to the intensification phase. The results show that the attack
performance significantly drops without ADS prior to the intensification phase. This suggests that the pairs
suitable for diversification and intensification differ from each other. The EDA’s performance may be further
improved by considering the execution order of the attacks with selected δ and L. However, determining the
execution order requires that (na!)2 permutations be considered, which is computationally expensive. The
experimental results suggest that EDA achieves a satisfactory trade-off between the computation cost and
the attack performance.

Influence of further intensification (lines 21-23 of Algorithm 3). The intensification phase of the
MDO framework is conducted on a subset of test samples to reduce the computational cost. This section
validates the efficacy of this heuristic for determining the subset of test samples and further intensification on
this subset (lines 21-23 of Algorithm 3). Table 7 indicates that limiting the attack target images during the
intensification phase results in a notable reduction in computational cost compared to a scenario where no
such limitations are imposed. Nevertheless, simply limiting the target images may reduce attack performance
by up to 0.2%. According to the comparison between “w/o lines 21-23” and “w/ lines 21-23”, the performance
degradation is up to 0.04% when more attack queries are allocated to the subset of test samples. The required
computational overhead is not particularly significant compared to “w/o lines 22-23”. Furthermore, the attack
performance of “w/ lines 21-23” is the highest for some models.
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4.5 Additional results and ablations

Appendix D.5 describes the analysis of EDA for the model of Ding et al. (2020), which showed different
trends. The analysis using the Euclid distance-based measure in Appendix D.4 showed similar trends to
DI-based analysis. Appendix G shows the result of the ablation studies, including the hyperparameter
sensitivity of EDA and performance evaluation with different perturbation bounds. EDA is expected to be
robust to hyperparameter settings to some extent. As described in Appendix H, EDA also showed better
performance than AA and A3 for randomized defenses.

5 Limitations and assumptions

This study has the following assumptions and limitations. EDA assumes to be able to access the outputs
and gradients of the attacked models. Similar to the Adaptive Auto Attack (A3), EDA assumes to attack
the set of images. These assumptions are reasonable for robustness evaluation and adversarial training. The
number of combinations of search directions and objective functions grows exponentially. Thus, the number
of search directions and objective functions to be selected should be manageable. Unlike A3, AA and EDA
do not alter the number of attack queries during the attack process. Although we empirically find that EDA
is robust to hyperparameter settings, users should specify enough number of attack queries, especially for
the different perturbation bounds.

Expected situations in EDA work well This study experimentally verifies the performance of EDA,
focusing on image classifiers using deterministic defenses such as adversarial training. Although EDA was
tested with images of different resolutions, domains, and models of different architectures, EDA worked
in most settings. Therefore, it can be assumed that EDA has some generalization performance for image
classifiers using deterministic defenses. Furthermore, EDA showed lower robust accuracy in less runtime
than AA and A3 on several randomized defenses. Similar to AA, EDA is applicable to the models whose
gradients are available. However, the performance of EDA against models out of image classifiers needs
further investigation.

Expected situations in EDA do not work well EDA contains gradient-based attacks as some compo-
nents. Therefore, EDA’s performance may be degraded for models which cause incorrect gradient calcula-
tions. As reported by Croce & Hein (2020b), existing techniques like expectation over transformation might
help improve the attack performance on these models. Also, the performance of EDA may be degraded when
the MDO and MT strategies do not work well.

6 Conclusion

This study empirically confirmed that different local solutions can be efficiently enumerated using various
search directions and objective functions. Based on this observation, we have proposed the MDO strategy
and its implementation, including ADS and the MDO framework. The experiments on robust models,
including 41 CNN-based and 10 more advanced architectures, have demonstrated that the MDO strategy
realized by the MDO framework has a higher diversification ability. In addition, EDA, a combination of
MDO and MT strategy, showed higher attack performance than recently proposed attacks. Though more
appropriate indices may exist, these results suggest that the attack designed based on the DI shows an
appropriate balance of diversification and intensification, resulting in a stronger attack. We are interested
in exploring simpler algorithms as future work that perform as well or better than the proposed method.

The experimental results in Section 3.1 provide future research directions for further understanding of
optimization-based adversarial attacks or adversarial training. The first direction is a systematic classi-
fication of the optimization-based attacks. Although many optimization-based attacks have been proposed,
the appropriate method differs depending on the purpose, including training, white-box evaluation, and
transfer-based attacks. Systematic classification may help in selecting appropriate methods. The second di-
rection is adversarial training using multiple attacks. The experimental results suggest that different attacks
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find different clusters of adversarial examples. This slight difference may affect the stability or efficiency of
adversarial training. Adversarial training using EDA is also an interesting topic.

Broader Impact Statement

Deep neural networks (DNNs) are known to be vulnerable to adversarial examples. A promising defense
mechanism to address this vulnerability is adversarial training, where training is performed using adversarial
examples. Many adversarial examples generated by strong attack methods are required to produce robust
models through adversarial training. Therefore, developing strong and fast adversarial attacks helps improve
the robustness of DNNs. The EDA, which is one of the main proposals of this research, can generate a larger
number of adversarial examples in a shorter time and can be used for both the robustness evaluation of
defense methods and data generation in adversarial training. Thus, this research significantly contributes
to the security of DNNs. The positive impact of this research is twofold. First, we can make DNNs more
robust through adversarial training using the data generated by the strong attack method EDA. Second, we
can more accurately evaluate the robustness of the models. The potential negative impact of this research
includes possible attacks by malicious users on systems containing DNNs. However, EDA is a white-box
attack that assumes the accessibility of model gradients. In addition, it is difficult to access the model
gradients involved in a real system. EDA is thus unsuitable for attacking a real system. As described above,
research benefits are more significant than the potential negative effects. This study helps to improve the
robustness of DNNs, allowing them to be more safely applied to a broader range of applications, including
safety-critical applications.
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Appendix

This supplementary material provides additional information as follows.

1. The summary of abbreviations and mathematical notations defined in the main text (Tables 8 and 9).

2. More information about related work (Appendix A).

3. The proposed search direction and objective function (Appendix B).

4. Additional results of the analysis in Section 3.1 (Appendix C).

5. Complete results of the experiments in Section 4 (Appendix D).

6. The details of Prediction Aware Sampling (Appendix E).

7. The details of the targeted attack used in EDA (Appendix F).

8. Ablation study of EDA (Appendix G).

9. Experiments on randomized defenses (Appendix H).
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Table 8: Summary of abbreviations
Existing attack techniques

PGD Projected Gradient Descent
MT-PGD MultiTargeted-PGD
APGD Auto-PGD
ACG Auto Conjugate Gradient attack
AA AutoAttack
CAA Composite Adversarial Attack
A3 Adaptive Auto Attack
CE Cross-entropy
DLR Difference of Logit Ratio
ODS Output Diversified Sampling
DI Diversity Index

Proposed methods
G-DLR Generalized-DLR
NAG Nesterov’s accelerated gradient
PAS Prediction Aware Sampling
MDO Multi-directions/objectives
ADS Automated Diversified Sampling
MDO framework Search framework for the MDO strategy
EDA Efficient Diversified Attack

Others
DNN Deep neural network
SOTA State-of-the-art
MT Multi-target
UMAP Uniform Manifold Approximation and Projection

A More information about related work

A.1 Search directions

Projected Gradient Descent Projected Gradient Descent (PGD) (Madry et al., 2018) is the most funda-
mental adversarial attack based on the steepest gradient descent. The search direction of PGD is computed
as follows:

δ
(k)
PGD = sign

(
∇L(g(x(k)), c)

)
(5)

Also, Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) updates towards the same direction.

Auto-PGD Auto-PGD (APGD) (Croce & Hein, 2020b) is a PGD variant that adjusts the step size and
updates towards momentum direction in addition to the PGD’s search direction. The search direction of
APGD is defined as follows.

z(k) = PS

(
x(k) + η(k)δ

(k)
PGD

)
, (6)

δ
(k)
APGD = α(z(k) − x(k)) + (1− α)(x(k) − x(k−1)), (7)

where α is a coefficient of momentum term. APGD uses α = 1 for the first iteration and α = 0.75 for the
remaining iterations. The step size η(k) is halved if the following conditions are satisfied at the wj ∈ W
iteration, with the initial value η(0) = 2ε.
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Table 9: Summary of mathematical notations
Defined in Section 2.1

g : D → RC Locally differentiable C-classifier.
xorg ∈ D Original input.
c ∈ Y = {1, 2, . . . , C} The correct classification label of xorg.
d : D ×D → R A distance function.
S The feasible region.
L : RC × Y → R Objective function (untargeted attack).
LT : RC × Y × Y → R Objective function (targeted attack).

Defined in Section 2.2
PS : D → S Projection onto the feasible region S.
x Initial point sampling.
η Step size update rule.
δ Search direction/Update formula.
x(k) ∈ D Search point at iteration k.
η(k) ∈ R Step size at iteration k.
δ(k) ∈ Rn Search direction at iteration k.
a = (x, η, δ, L) An attack.
Xa A set of best search points.
Xa

i A set of best search points corresponds to image xi.

Πa A set of classification labels with the highest probabilities
except for the correct classification class.

Defined in Section 3.1
πq ∈ Y The class label that has the q-th largest value of g(x).
D A set of update formulas.
L A set of objective functions.

A(x, η) A set of attacks with initial point sampling x
and step size update rule η.

DI(X) = DI(X, M) Diversity Index of a point set X.
M is the size of feasible region.

Defined in Section 3.2
e = {aj}na

j=1 A combination of attacks.

1.
wj−1∑

i=wj−1

1L(g(x(i+1)),c)>L(g(x(i)),c) < ρ · (wj − wj−1)

2. Lmax

(
g(x(wj−1)), c

)
= Lmax

(
g(x(wj)), c

)
and η(wj−1) = η(wj)

The sequence of checkpoints W is computed based on the following gradual equation depending on the total
number of iterations Niter. p0 = 0, p1 = 0.22, pj+1 = pj + max{pj − pj−1 − 0.03, 0.06}, wj = ⌈pjNiter⌉. In
our notation, ηAPGD denotes this step size updating rule.

Auto-Conjugate Gradient attack Auto-Conjugate Gradient (ACG) attack (Yamamura et al., 2022) is
inspired by the Conjugate Gradient method for nonlinear optimization problems. ACG performs a more
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diversified search than the attacks based on the steepest descent. The search direction of ACG is as follows.

y(k) = ∇L(g(x(k−1)), c)−∇L(g(x(k)), c) (8)

β(k) = −∇L(x(k), c)T y(k)

(y(k))T δ
(k−1)
ACG

(9)

δ
(k)
ACG = ∇L(x(k), c) + β(k)δ

(k−1)
ACG (10)

A.2 Objective functions

Cross-entropy loss The untargeted version of cross-entropy (CE) loss is defined as follows.

LCE(g(x), c) = −gc(x) + log

∑
j ̸=c

exp (gj(x))

 (11)

Also, the targeted version of CE loss is defined as follows.

LT
CE(g(x), c, t) = gt(x)− log

∑
j ̸=t

exp (gj(x))

 , (12)

where t denotes the target label of misclassification. CE loss is known to be sensitive to the scaling of
the logit, i.e., the attack performance significantly varies depending on the scaling of the logit (Carlini &
Wagner, 2017; Croce & Hein, 2020b).

CW loss The untargeted version of CW loss is defined as follows.

LCW(g(x), c) = max
j ̸=c

gj(x)− gc(x) (13)

Also, the targeted version of CW loss is defined as follows.

LT
CW(g(x), c, t) = gt(x)− gc(x), (14)

where t denotes the target label of misclassification.

Difference of Logit Ratio loss The untargeted version of the Difference of Logit Ratio (DLR) loss is
defined as follows.

LDLR(g(x), c) = maxj ̸=c gj(x)− gc(x)
gπ1 − gπ3

, (15)

where πq denotes the classification label with q-th highest value in g(x). Also, the targeted version of DLR
loss is defined as follows.

LT
DLR(g(x), c, t) = gt(x)− gc(x)

gπ1 − (gπ3(x) + gπ4(x))/2 , (16)

where t denotes the target label of misclassification.

A.3 Comparison of existing attacks and EDA

Table 10 summarizes the characteristics of PGD-like attacks, Auto Attack (AA) (Croce & Hein, 2020b),
Composite Adversarial Attack (CAA) Mao et al. (2021), AutoAE Liu et al. (2023b), Adaptive Auto Attack
(A3) (Liu et al., 2022c), and EDA in terms of diversification, intensification, and computational cost. The
attacks in Table 10 perform well in intensification because they include gradient-based attacks with ap-
propriate step size management. Although PGD-like attacks have several variations, this section describes
the representative one in Table 10. PGD-like attacks and A3 use multi-restart for diversification, and both
attacks spend a relatively short computational time. However, A3 outperforms PGD-like attacks because
A3 uses better initial point sampling. AA considers multiple objective functions and multi-target attacks
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Table 10: Characteristics of PGD-like attacks, AA, A3, and EDA. multi-L denotes the diversification using
multiple objective functions, and multi-δ denotes the diversification using multiple search directions.

Attacks Diversification Intensification Runtime
multi-L multi-δ multi-restart multi-target

PGD-like - - ✓ - ✓ short
AA ✓ - ✓ ✓ ✓ long

CAA ✓ - ✓ - ✓ long
AutoAE ✓ - ✓ - ✓ long

A3 - - ✓ - ✓ short
EDA ✓ ✓ ✓ ✓ ✓ short

for diversification in addition to multi-restart. Although AA achieves a high attack success rate, AA is
computationally expensive because AA consists of four attacks, including APGD with untargeted CE loss,
APGD with targeted DLR loss, FAB attack (Croce & Hein, 2020a), and square attack (Andriushchenko
et al., 2020). CAA and AutoAE also combine multiple attacks by solving an additional optimization prob-
lem. CAA executes MultiTargeted (MT) attack Gowal et al. (2019) and CW attack Carlini & Wagner (2017)
as a composite of attacks. AutoAE runs APGD with CE loss, APGD with DLR loss, FAB, and MT attack
as an ensemble. In the sense that AA, CAA, and AutoAE use different types of attacks, we can consider
that they employ the diversification strategy based on multi-δ. However, these methods use only a single
search direction to solve (2) in the white-box setting. Therefore, we do not consider AA an attack with
a diversification strategy based on multi-δ. In contrast, EDA, the proposed attack, uses all diversification
strategies listed in Table 10 and achieves a higher attack success rate in a short computation time.

B The proposed search direction and objective function

B.1 Search direction inspired by Nesterov’s Accelerated Gradient

Although some attacks were inspired by Nesterov’s accelerated gradient (Nesterov, 2004), most of them
apply constant value to the coefficient of momentum (Lin et al., 2020; Liu et al., 2022a). However, the
original Nesterov’s accelerated gradient method determines the coefficient of momentum term by solving the
quadratic equations. So then we try to adopt Nesterov’s accelerated gradient to ℓ∞ attacks. Mathematically,
δNes is computed by the following equations.

ρ(k) is a positive solution of (ρ(k))2 = (1− ρ(k))(ρ(k−1))2 (17)

γ(k) ←
ρ(k−1) (

ρ(k−1) − 1
)

ρ(k) + (ρ(k−1))2 (18)

x̃(k) ← x(k) + γ(k)
(

x(k) − x(k−1)
)

(19)

δ
(k+1)
Nes ← sign

(
∇L(g(x̃(k)), c)

)
(20)

B.2 Generalized-DLR loss

We generalize DLR loss by extending the denominator of DLR loss from gπ1(x)− gπ3(x) to gπ1(x)− gπq
(x).

πq ∈ Y denotes the class label that has the q-th largest value of g(x). More precisely, LG-DLR,q is defined as

LG-DLR,q(g(x), c) = − gc(x)− gπ2(x)
gπ1(x)− gπq

(x) . (21)

The motivation for proposing generalized-DLR loss is to increase diversity in the output space. For the search
points with larger values of G-DLR loss, the denominator/numerator will be smaller/larger value, respec-
tively. The small value of denominator gπ1(x)−gπq (x) means that the values of gπ1(x), gπ2(x), . . . gπq (x) are
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Figure 15: Violin plot of DI obtained by attacking the models proposed by (Sehwag et al., 2022; An-
driushchenko & Flammarion, 2020) for CIFAR-10 and (Engstrom et al., 2019; Salman et al., 2020) for
ImageNet.

close. Therefore, the large and small relationships between the predicted probability of classification classes
are expected to be easier to variate than in the case of DLR loss.

C Additional results of the analysis in section 3.1

C.1 Diversity index for the set of best search points

The main paper only includes the results for the model proposed by Sehwag et al. (2022). This section
describes the violin plot of DI for several models (Andriushchenko & Flammarion, 2020; Sehwag et al., 2022;
Engstrom et al., 2019; Salman et al., 2020). Figure 15 shows the violin plot of DI obtained by attacking the
robust models. According to Figure 15, the best point sets obtained by attacks with a single search direction
and objective function have similar DI value trends.

C.2 Visualization of the best search points via UMAP

This section describes the 2D visualization of the best search points using UMAP for several models (An-
driushchenko & Flammarion, 2020; Sehwag et al., 2022; Engstrom et al., 2019; Salman et al., 2020). Figure 16
shows the 2D visualization of the best search points obtained by attacking the robust models trained on
CIFAR-10. Figure 17 shows the 2D visualization of the best search points obtained by attacking the robust
models trained on ImageNet. According to Figures 16 and 17, the best point sets obtained by attacks with
different search directions and objective functions tend to form different clusters. The points determined
to belong to the same cluster due to clustering using the X-means (Pelleg & Moore, 2000) are also plotted
close together in the visualization using UMAP. These results suggest that 2D visualizations using UMAP
are expected to reflect the actual distribution of search points.
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Figure 16: 2D visualization of the best search points obtained by attacking the models proposed by (Sehwag
et al., 2022; Andriushchenko & Flammarion, 2020). The dataset is CIFAR-10. The same color in the
left/center figure represents points obtained using the same objective function/search direction, respectively.
The same color in the right figure shows the points determined by X-means to belong to the same cluster.

C.3 The reason why we used UMAP

The objective of the qualitative evaluation using UMAP is to know how the best points obtained by attacks
using different objective functions/search directions are distributed and form different clusters. In order to
achieve this goal, it is necessary to consider the distance between any two points and the distance between
clusters. We have tried quantitative evaluation. However, we finally chose qualitative evaluation using UMAP
because quantitative evaluations based on indicators such as objective values or DI are difficult to achieve
our objective for the reasons described below. First, in adversarial attacks, distant points may show the
same objective value or close points may show very different objective values because the adversarial attack
is a maximization problem with many local optimums. Therefore, quantitative evaluation using objective
values is considered difficult. In addition, DI cannot consider the distance between clusters because DI shows
low values when a point set forms one or more clusters. Another possible evaluation method is clustering,
such as k-means, but this is a qualitative evaluation as with UMAP. UMAP is a dimensionality reduction
method that preserves the distance information in the original space as much as possible so it can reflect
important information, such as the distance between any two points or clusters. Therefore, we think that
the qualitative evaluation by UMAP provides convincing results.

D Complete results of the experiments

Table 11 shows the complete results of the experiments in Section 4.1, as described in Table 1. Table 12
shows the runtime of CAA, AutoAE, A3, and EDA. Table 13 is the complete results of the experiments in
Sections 4.3 and 4.4, as described in Table 4. To investigate the stability of the proposed methods, we report
the mean and standard deviation from five runs with different random seeds against 41 CNN-based models
in Section 4.1 and Appendix G.2. The results in Section 4.1 and Appendix G.2 suggest a stable performance
of the proposed methods. Owing to the computation cost, the remaining experiments were conducted
with a single fixed random seed. Table 14 shows the quantified degree of diversification of A3, the MDO
framework with ADS, the MDO framework with R-ADS, the MDO framework with uniform sampling, and
EDA. Table 15 provides the complete results for the transferability evaluation of EDA described in Table 3.
Figure 18 shows the difference between MTcos and the MDO framework in #queries to find adversarial
examples for some models. Figure 19 shows the violin plot of DI for several models.
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Figure 17: 2D visualization of the best search points obtained by attacking the models proposed by (Engstrom
et al., 2019; Salman et al., 2020). The dataset is ImageNet. The same color in the left/center figure represents
points obtained using the same objective function/search direction, respectively. The same color in the right
figure shows the points determined by X-means to belong to the same cluster.

D.1 Hyperparameter determination

The values of na, NADS, and Ns are determined based on the following preliminary experiments, as they
should be as small as possible regarding computational cost. The initial step size is determined based on the
step size rules of APGD, a powerful heuristic. The step size of η = 2ε allows the initial search to move from
one end of the feasible region to the other, thus allowing a broader search. The parameters 0.22 and 0.41,
which determine the allocation of the number of iterations for the diversification phase and the intensification
phase, are inspired by the checkpoints in the APGD’s step size update. N1 is the number of iterations to be
searched with a step size of 2ε to ε in APGD. The experiments in Yamamura et al. (2022) suggest that the
CG diversification performance is well achieved by moving in the CG direction according to this iteration
allocation and step size assignment. Therefore, we chose these values for step sizes, N1, and N2.

Preliminary experiments to determine hyperparameters of ADS We conducted preliminary exper-
iments on the following five models to determine the hyperparameters of ADS. 1. ResNet-18 (Sehwag et al.,
2022), 2. WideResNet-28-10 (Gowal et al., 2020), 3. PreActResNet-18 (Rice et al., 2020), 4. WideResNet-
34-10 (Sitawarin et al., 2021), 5. ResNet-50 (Engstrom et al., 2019). These numbers correspond to the “No.”
column in Table 16.

D.2 Comparison in computation cost based on the number of queries

We compare the number of queries because the bottleneck in an adversarial attack is forward/backward
(queries). In attack selection, CAA requires KNt×# samples = 60t× #samples ≥ 60× #samples, where
K = 20 is the population size, N = 3 is the policy length, t ≥ 1 is the number of iterations for the candidate
attacks, and #samples = 4,000 for CIFAR-10 and 1000 for ImageNet. In summary, attack selection in CAA
requires more than 240,000 queries for CIFAR-10 and 60,000 for ImageNet. For attack selection by ADS,
2|A|NADS× #samples = 112× #samples queries are required, where |A| = 28 is the number of candidates,
NADS = 4 is the number of iterations for candidates, and #samples=100 for CIFAR-10/100 and 50 for
ImageNet. ADS thus requires 11,200 queries for CIFAR-10 and 5,600 queries for ImageNet.
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Table 11: Average robust accuracy over five runs. The lowest accuracies are in bold. RN: ResNet, WRN:
WideResNet, PARN: PreActResNet, ∆: A3-EDA. The “EDA/A3” column is the same as the “ratio” column
in Table 1.

CIFAR-10 (ε = 8/255) model clean AA ACG MTcos CAA AutoAE A3 EDA
Andriushchenko & Flammarion (2020) PARN-18 79.84 43.93 45.16 43.96 43.93 43.93 43.96±0.00 43.85±0.02

Addepalli et al. (2022) RN-18 85.71 52.48 52.87 52.48 52.48 52.46 52.46±0.02 52.43±0.03
Sehwag et al. (2022) RN-18 84.59 55.54 56.19 55.54 55.53 55.51 55.53±0.01 55.49±0.01

Engstrom et al. (2019) RN-50 87.03 49.25 50.88 49.21 49.24 49.21 49.25±0.02 49.10±0.03
Carmon et al. (2019) WRN-28-10 89.69 59.53 60.10 59.54 59.50 59.46 59.44±0.01 59.40±0.01
Gowal et al. (2020) WRN-28-10 89.48 62.80 63.18 62.86 62.78 62.80 62.77±0.01 62.75±0.02

Hendrycks et al. (2019) WRN-28-10 87.11 54.92 55.71 54.90 54.88 54.81 54.85±0.01 54.77±0.02
Rebuffi et al. (2021) WRN-28-10 87.33 60.75 61.23 60.80 60.74 60.71 60.72±0.01 60.64±0.01
Sehwag et al. (2020) WRN-28-10 88.98 57.14 57.68 57.18 57.16 57.10 57.14±0.02 57.03±0.01
Sridhar et al. (2022) WRN-28-10 89.46 59.66 60.22 59.67 59.60 59.60 59.56±0.01 59.46±0.02
Wang et al. (2020) WRN-28-10 87.50 56.29 57.45 56.38 56.29 56.23 56.28±0.01 56.15±0.02
Wu et al. (2020) WRN-28-10 88.25 60.04 60.35 60.06 60.00 59.97 60.02±0.01 59.94±0.01

Ding et al. (2020) WRN-28-4 84.36 41.44 44.36 41.99 41.67 41.48 41.24±0.06 41.74±0.06
Addepalli et al. (2022) WRN-34-10 88.71 57.81 58.43 57.77 57.77 57.74 57.73±0.01 57.69±0.02
Sehwag et al. (2022) WRN-34-10 86.68 60.27 61.09 60.31 60.26 60.26 60.22±0.01 60.18±0.02

Sitawarin et al. (2021) WRN-34-10 86.84 50.72 51.94 50.75 50.70 50.64 50.69±0.02 50.59±0.01
Zhang et al. (2019) WRN-34-10 87.20 44.83 45.76 44.69 44.65 44.57 44.63±0.03 44.51±0.02
Zhang et al. (2020) WRN-34-10 84.52 53.51 54.00 53.52 53.48 53.48 53.46±0.01 53.42±0.02
Sridhar et al. (2022) WRN-34-15 86.53 60.41 60.93 60.43 60.39 60.35 60.38±0.01 60.32±0.01
Gowal et al. (2020) WRN-34-20 85.64 56.86 57.15 56.83 56.82 56.85 56.81±0.01 56.79±0.03
Pang et al. (2020) WRN-34-20 85.14 53.74 54.66 53.71 53.72 53.67 53.69±0.01 53.66±0.01
Rice et al. (2020) WRN-34-20 85.34 53.42 54.33 53.39 53.36 53.35 53.38±0.01 53.34±0.01

Gowal et al. (2020) WRN-70-16 85.29 57.20 57.60 57.15 57.16 57.19 57.11±0.01 57.12±0.01
Gowal et al. (2020) WRN-70-16 91.10 65.88 66.29 65.96 65.87 65.80 65.85±0.01 65.83±0.01
Rebuffi et al. (2021) WRN-70-16 88.54 64.25 64.80 64.28 64.23 64.19 64.24±0.01 64.20±0.03

CIFAR-100 (ε = 8/255) model clean AA ACG MTcos CAA AutoAE A3 EDA
Rice et al. (2020) PARN-18 53.83 18.95 19.48 18.99 18.97 18.91 18.89±0.00 18.88±0.01

Hendrycks et al. (2019) WRN-28-10 59.23 28.42 29.51 28.43 28.44 28.35 28.32±0.02 28.27±0.02
Rebuffi et al. (2021) WRN-28-10 62.41 32.06 32.73 32.07 32.05 32.02 32.00±0.02 31.94±0.03

Addepalli et al. (2022) WRN-34-10 68.75 31.85 32.38 31.80 31.80 31.83 31.81±0.02 31.78±0.01
Cui et al. (2021) WRN-34-10 60.64 29.33 29.65 28.99 28.99 28.86 28.84±0.02 28.83±0.02

Sitawarin et al. (2021) WRN-34-10 62.82 24.57 25.69 24.55 24.57 24.52 24.56±0.03 24.50±0.01
Wu et al. (2020) WRN-34-10 60.38 28.86 29.90 28.86 28.82 28.79 28.79±0.02 28.76±0.01
Cui et al. (2021) WRN-34-20 62.55 30.20 30.83 30.03 29.99 29.86 29.84±0.01 29.85±0.01

Gowal et al. (2020) WRN-70-16 60.86 30.03 30.54 30.00 30.00 29.99 29.97±0.01 29.96±0.01
Gowal et al. (2020) WRN-70-16 69.15 36.88 37.84 36.95 36.90 36.86 36.87±0.02 36.81±0.01
Rebuffi et al. (2021) WRN-70-16 63.56 34.64 35.30 34.68 34.63 34.62 34.62±0.01 34.55±0.01

ImageNet (ε = 4/255) model clean AA ACG MTcos CAA AutoAE A3 EDA
Salman et al. (2020) RN-18 52.92 25.32 26.40 25.24 25.28 OOM 25.22±0.03 25.11±0.02

Engstrom et al. (2019) RN-50 62.56 29.22 31.54 29.34 29.41 OOM 29.32±0.05 29.01±0.01
Salman et al. (2020) RN-50 64.02 34.96 36.26 34.68 34.77 OOM 34.75±0.04 34.52±0.02
Wong et al. (2020) RN-50 55.62 26.24 28.46 26.40 26.57 OOM 26.42±0.04 26.12±0.10

Salman et al. (2020) WRN-50-2 68.46 38.14 40.24 38.22 38.23 OOM 38.26±0.02 38.03±0.02

For the entire attack procedure, the standard AA requires queries of 6100× #images. CAA requires at least
60t×#samples queries. AutoAE runs 32 iterations of APGD with CE loss, 63 iterations of APGD with DLR
loss, 160 iterations of FAB, and 378 iterations of MultiTargeted attack with nine target classes. According
to the official implementation of AutoAE, the MultiTargeted attack runs 378 iterations for each target class.
Therefore, AutoAE requires (32+63+160+378×9)×#images = 3, 657×#images queries for the adversarial
attack. EDA requires na × (N1 + N2 + N3)×# images= 5× 100×#images queries for the MDO framework,
and K×Ns +N4×# images= 190-300×#images queries for the targeted attack at. Therefore, EDA requires
692.24 to 802.24×# images queries in total. We compared the runtime of EDA with that of A3 because A3

automatically terminates its search before the query limit.
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Table 12: The computation time in seconds and ratio of runtime to EDA.
CIFAR-10 model clean EDA A3 CAA AutoAE

(ε = 8/255) acc sec ratio sec ratio sec ratio sec ratio
Andriushchenko & Flammarion (2020) PARN-18 79.84 513±32 1.0 382±2 0.74 999±4 1.95 7,782 15.17

Addepalli et al. (2022) RN-18 85.71 625±25 1.0 434±2 0.69 1,107±3 1.77 8,503 13.60
Sehwag et al. (2022) RN-18 84.59 589±36 1.0 1,121±68 1.90 1,104±2 1.87 8,183 13.89

Engstrom et al. (2019) RN-50 87.03 1,485±78 1.0 1,572±11 1.06 3,672±5 2.47 28,263 19.03
Carmon et al. (2019) WRN-28-10 89.69 3,316±65 1.0 4,223±4 1.27 8,957±5 2.70 64,382 19.42
Gowal et al. (2020) WRN-28-10 89.48 4,557±112 1.0 3,841±13 0.84 11,358±8 2.49 80,517 17.67

Hendrycks et al. (2019) WRN-28-10 87.11 3,121±45 1.0 2,719±50 0.87 8,455±7 2.71 62,232 19.94
Rebuffi et al. (2021) WRN-28-10 87.33 4,459±74 1.0 3,928±30 0.88 11,225±11 2.52 79,293 17.78
Sehwag et al. (2020) WRN-28-10 88.98 3,255±64 1.0 2,662±50 0.82 8,761±7 2.69 64,273 19.75
Sridhar et al. (2022) WRN-28-10 89.46 3,355±55 1.0 3,245±119 0.97 8,768±8 2.61 64,021 19.08
Wang et al. (2020) WRN-28-10 87.50 3,285±78 1.0 2,732±4 0.83 8,688±7 2.64 63,662 19.38
Wu et al. (2020) WRN-28-10 88.25 3,502±39 1.0 3,273±8 0.93 8,920±8 2.55 64,568 18.44

Ding et al. (2020) WRN-28-4 84.36 695±29 1.0 2,017±90 2.90 1,591±2 2.29 12,828 18.46
Addepalli et al. (2022) WRN-34-10 88.71 4,225±109 1.0 3,926±7 0.93 11,183±8 2.65 80,337 19.01
Sehwag et al. (2022) WRN-34-10 86.68 4,172±18 1.0 3,858±6 0.92 11,067±14 2.65 79,526 19.06

Sitawarin et al. (2021) WRN-34-10 86.84 3,591±103 1.0 3,845±22 1.07 10,675±5 2.97 79,519 22.14
Zhang et al. (2019) WRN-34-10 87.20 3,219±32 1.0 3,500±12 1.09 10,395±8 3.23 79,064 24.56
Zhang et al. (2020) WRN-34-10 84.52 3,936±134 1.0 3,912±16 0.99 10,593±7 2.69 76,724 19.49
Sridhar et al. (2022) WRN-34-15 86.53 7,785±116 1.0 6,805±14 0.87 20,170±9 2.59 14,9077 19.15
Gowal et al. (2020) WRN-34-20 85.64 14,693±284 1.0 13,463±38 0.92 40,072±21 2.73 301,256 20.50
Pang et al. (2020) WRN-34-20 85.14 18,775±241 1.0 12,436±21 0.66 31,712±25 1.69 242,493 12.92
Rice et al. (2020) WRN-34-20 85.34 11,255±377 1.0 12,290±5 1.09 32,478±55 2.89 244,587 21.73

Gowal et al. (2020) WRN-70-16 85.29 21,790±430 1.0 26,587±1,032 1.22 60,431±71 2.77 451,566 20.72
Gowal et al. (2020) WRN-70-16 91.10 24,885±371 1.0 29,544±252 1.19 63,761±54 2.56 468,883 18.84
Rebuffi et al. (2021) WRN-70-16 88.54 24,652±479 1.0 29,075±887 1.18 63,433±35 2.57 459,409 18.64

CIFAR-100 model clean EDA A3 CAA AutoAE
(ε = 8/255) acc sec ratio sec ratio sec ratio sec ratio

Rice et al. (2020) PARN-18 53.83 497±74 1.0 1,531±924 3.08 1,062±130 2.14 14,409 28.99
Hendrycks et al. (2019) WRN-28-10 59.23 1,981±38 1.0 2,684±10 1.35 5,508±57 2.78 75,410 38.07

Rebuffi et al. (2021) WRN-28-10 62.41 2,701±86 1.0 3,044±8 1.13 7,494±60 2.77 98,909 36.62
Addepalli et al. (2022) WRN-34-10 68.75 2,792±95 1.0 3,046±17 1.09 8,045±83 2.88 109,690 39.29

Cui et al. (2021) WRN-34-10 60.64 3,075±27 1.0 3,002±7 0.98 7,121±76 2.32 95,323 31.00
Sitawarin et al. (2021) WRN-34-10 62.82 1,985±40 1.0 4,935±137 2.49 7,081±86 3.57 99,096 49.92

Wu et al. (2020) WRN-34-10 60.38 2,360±31 1.0 3,258±58 1.38 7,073±66 3.00 96,679 40.97
Cui et al. (2021) WRN-34-20 62.55 8,027±197 1.0 9,798±8 1.22 22,894±265 2.85 313,505 39.06

Gowal et al. (2020) WRN-70-16 60.86 13,060±348 1.0 21,452±701 1.64 42,325±393 3.24 563,747 43.17
Gowal et al. (2020) WRN-70-16 69.15 15,641±467 1.0 22,423±1,969 1.43 49,029±476 3.13 633,166 40.48
Rebuffi et al. (2021) WRN-70-16 63.56 15,474±404 1.0 21,546±190 1.39 45,074±428 2.91 575,450 37.19

ImageNet model clean EDA A3 CAA AutoAE
(ε = 4/255) acc sec ratio sec ratio sec ratio sec ratio

Salman et al. (2020) RN-18 52.92 1,667±119 1.0 2,937±10 1.76 1,511±13 0.91 OOM OOM
Engstrom et al. (2019) RN-50 62.56 3,159±136 1.0 9,380±188 2.97 4,776±16 1.51 OOM OOM
Salman et al. (2020) RN-50 64.02 3,525±302 1.0 9,989±234 2.83 4,997±27 1.42 OOM OOM
Wong et al. (2020) RN-50 55.62 4,459±110 1.0 8,472±194 1.90 7,320±31 1.64 OOM OOM

Salman et al. (2020) WRN-50-2 68.46 5,102±119 1.0 9,886±120 1.94 9,267±79 1.82 OOM OOM

D.3 Mathematical definition of the best point sets of A3and EDA

Mathematically, the best point sets of A3 and EDA are defined as follows. First, the best point set of A3

is defined as X
aA3
i , where aA3 = (xADI, ηcos, δGD, LCW) and xADI is Adaptive Direction Initialization (ADI)

proposed by Liu et al. (2022c). Subsequently, the best point set of EDA is defined as (∪a∗∈e∗Xa∗

i ) ∪ Xat

i ,
where e∗ =

{
(x, η, δa, La) | a ∈ {a∗

1 . . . , a∗
na

, â1, . . . , âna
}
}

and at = (xPAS, ηAPGD, δGD, LT
CW).

D.4 Analysis of EDA using an index based on Euclid distance

DI takes small values when the point set forms a cluster, even if the Euclidean distance between any two points
is large. Therefore, quantification by DI and quantification based on the Euclidean distance between points
in the point set may have different characteristics. Therefore, in this section, to compare the diversification
performance from a different perspective than DI, we consider quantifying the degree of diversification of
the best point set based on the average value of the Euclidean distance between the centroid of the point set
X and all points in the point set X. Mathematically, the average Euclidean distance between all points in
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Table 13: Comparisons with MDO framework(ADS), MDO framework(R-ADS), and MDO frame-
work(RAND) in robust accuracy to validate ADS. The abbreviations are the same as those used in the
main text. The lowest robust accuracies are in bold.

MDO framework Ensemble Composite
CIFAR-10 (ε = 8/255) model RAND R-ADS ADS ADS ADS

(Andriushchenko & Flammarion, 2020) PARN-18 44.09 44.02 43.95 44.12 43.95
(Addepalli et al., 2022) RN-18 52.45 52.83 52.50 52.63 52.65
(Sehwag et al., 2022) RN-18 55.61 55.58 55.58 55.68 55.90

(Engstrom et al., 2019) RN-50 49.60 49.40 49.52 49.79 50.04
(Carmon et al., 2019) WRN-28-10 59.56 59.53 59.46 59.70 59.59
(Gowal et al., 2020) WRN-28-10 62.82 62.99 62.83 62.92 62.86

(Hendrycks et al., 2019) WRN-28-10 54.94 55.02 54.87 55.09 55.14
(Rebuffi et al., 2021) WRN-28-10 60.67 60.84 60.77 60.82 60.82
(Sehwag et al., 2020) WRN-28-10 57.16 57.38 57.14 57.43 57.34
(Sridhar et al., 2022) WRN-28-10 59.63 59.76 59.59 59.89 59.85
(Wang et al., 2020) WRN-28-10 56.32 56.50 56.33 56.66 56.87
(Wu et al., 2020) WRN-28-10 60.02 60.13 59.99 60.14 60.13

(Ding et al., 2020) WRN-28-4 43.54 44.88 43.24 43.49 44.11
(Addepalli et al., 2022) WRN-34-10 57.75 57.87 57.72 57.92 57.90
(Sehwag et al., 2022) WRN-34-10 60.26 60.38 60.21 60.52 60.44

(Sitawarin et al., 2021) WRN-34-10 50.83 50.78 50.70 50.98 51.14
(Zhang et al., 2019) WRN-34-10 44.78 44.70 44.62 44.87 44.79
(Zhang et al., 2020) WRN-34-10 53.51 53.50 53.55 53.60 53.52
(Sridhar et al., 2022) WRN-34-15 60.40 60.46 60.39 60.46 60.48
(Gowal et al., 2020) WRN-34-20 56.86 56.85 56.88 56.90 56.84
(Pang et al., 2020) WRN-34-20 53.77 53.85 53.81 54.00 53.96
(Rice et al., 2020) WRN-34-20 53.47 53.48 53.42 53.52 53.50

(Gowal et al., 2020) WRN-70-16 57.23 57.21 57.18 57.27 57.22
(Gowal et al., 2020) WRN-70-16 65.86 66.02 65.85 66.04 65.99
(Rebuffi et al., 2021) WRN-70-16 64.23 64.54 64.32 64.53 64.43

CIFAR-100 (ε = 8/255)
(Rice et al., 2020) PARN-18 18.98 18.99 18.97 19.08 19.12

(Hendrycks et al., 2019) WRN-28-10 28.56 28.83 28.44 28.61 28.45
(Rebuffi et al., 2021) WRN-28-10 32.08 32.13 32.08 32.22 32.18

(Addepalli et al., 2022) WRN-34-10 31.91 32.23 31.86 31.91 31.97
(Cui et al., 2021) WRN-34-10 28.97 29.20 28.99 29.20 29.13

(Sitawarin et al., 2021) WRN-34-10 24.71 24.68 24.65 24.74 24.83
(Wu et al., 2020) WRN-34-10 28.93 29.46 28.88 28.97 28.97
(Cui et al., 2021) WRN-34-20 30.07 30.35 30.01 30.15 30.29

(Gowal et al., 2020) WRN-70-16 30.06 30.42 30.05 30.11 30.18
(Gowal et al., 2020) WRN-70-16 37.05 37.53 36.96 37.19 37.17
(Rebuffi et al., 2021) WRN-70-16 34.61 34.97 34.65 34.88 34.65

ImageNet (ε = 4/255)
(Salman et al., 2020) RN-18 25.22 25.44 25.22 25.46 25.48

(Engstrom et al., 2019) RN-50 29.56 29.26 29.20 29.64 29.68
(Salman et al., 2020) RN-50 34.68 34.68 34.84 35.00 34.92
(Wong et al., 2020) RN-50 26.26 26.36 26.22 26.84 26.78

(Salman et al., 2020) WRN-50-2 38.38 38.54 38.28 38.52 38.58

a point set X is defined as

E(X) = 1
|X|

∑
x∈X

∥x− x̄∥2, (22)

where x̄ is the centroid of the point set X, defined as x̄ = 1
|X|

∑
x∈X x. As shown in Figure 20, the value of
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Table 14: The quantified degree of diversification. DI denotes the Diversity Index, and E denotes the metric
defined by equation 22. RAND, R-ADS, and ADS represent MDO framework(RAND), MDO framework(R-
ADS), and MDO framework(ADS), respectively.

CIFAR-10 Models A3 RAND R-ADS ADS EDA
(ε = 8/255) DI E DI E DI E DI E DI E

Andriushchenko & Flammarion (2020) PARN-18 0.26±0.09 0.66±0.27 0.30±0.06 0.95±0.20 0.25±0.05 0.73±0.14 0.33±0.07 0.98±0.18 0.36±0.05 1.11±0.15
Addepalli et al. (2022) RN-18 0.27±0.10 0.69±0.28 0.31±0.07 0.94±0.20 0.23±0.05 0.78±0.11 0.36±0.08 1.02±0.19 0.40±0.06 1.18±0.17
Sehwag et al. (2022) RN-18 0.27±0.09 0.72±0.28 0.31±0.06 0.93±0.20 0.26±0.05 0.79±0.15 0.34±0.06 0.99±0.19 0.38±0.05 1.15±0.15

Engstrom et al. (2019) RN-50 0.28±0.09 0.72±0.27 0.33±0.06 0.99±0.19 0.25±0.05 0.76±0.15 0.37±0.07 1.04±0.19 0.39±0.05 1.17±0.16
Carmon et al. (2019) WRN-28-10 0.26±0.08 0.65±0.25 0.33±0.06 1.00±0.18 0.26±0.05 0.84±0.14 0.38±0.07 1.06±0.19 0.41±0.05 1.22±0.17
Gowal et al. (2020) WRN-28-10 0.22±0.10 0.58±0.30 0.30±0.07 0.94±0.21 0.20±0.05 0.71±0.11 0.37±0.08 1.04±0.22 0.41±0.06 1.20±0.18

Hendrycks et al. (2019) WRN-28-10 0.25±0.09 0.64±0.27 0.30±0.06 0.94±0.20 0.22±0.04 0.71±0.12 0.34±0.07 1.01±0.19 0.37±0.05 1.14±0.15
Rebuffi et al. (2021) WRN-28-10 0.24±0.10 0.63±0.30 0.30±0.06 0.89±0.21 0.24±0.05 0.75±0.12 0.34±0.07 0.97±0.18 0.37±0.05 1.09±0.16
Sehwag et al. (2020) WRN-28-10 0.25±0.08 0.64±0.26 0.33±0.06 0.99±0.19 0.23±0.04 0.75±0.11 0.38±0.07 1.09±0.20 0.43±0.05 1.24±0.19
Sridhar et al. (2022) WRN-28-10 0.25±0.09 0.64±0.26 0.33±0.06 1.00±0.18 0.24±0.04 0.76±0.10 0.37±0.07 1.05±0.18 0.41±0.05 1.24±0.16
Wang et al. (2020) WRN-28-10 0.28±0.08 0.68±0.24 0.31±0.06 0.93±0.18 0.25±0.06 0.79±0.12 0.35±0.07 0.99±0.18 0.35±0.06 1.04±0.15
Wu et al. (2020) WRN-28-10 0.25±0.09 0.64±0.27 0.32±0.06 0.98±0.19 0.23±0.04 0.76±0.10 0.38±0.07 1.08±0.19 0.43±0.06 1.25±0.16

Ding et al. (2020) WRN-28-4 0.24±0.10 0.91±0.34 0.33±0.07 0.98±0.22 0.29±0.07 0.91±0.23 0.36±0.08 1.02±0.22 0.38±0.07 1.19±0.16
Addepalli et al. (2022) WRN-34-10 0.27±0.09 0.67±0.28 0.31±0.06 0.94±0.20 0.24±0.05 0.83±0.13 0.37±0.08 1.04±0.20 0.41±0.06 1.21±0.17
Sehwag et al. (2022) WRN-34-10 0.25±0.09 0.65±0.26 0.32±0.06 0.96±0.18 0.24±0.04 0.74±0.12 0.37±0.07 1.02±0.18 0.38±0.05 1.15±0.14

Sitawarin et al. (2021) WRN-34-10 0.27±0.10 0.72±0.30 0.32±0.06 0.99±0.20 0.24±0.05 0.74±0.17 0.33±0.06 1.03±0.20 0.38±0.05 1.18±0.16
Zhang et al. (2019) WRN-34-10 0.27±0.11 0.73±0.31 0.30±0.06 0.96±0.21 0.23±0.05 0.70±0.16 0.32±0.07 1.00±0.21 0.37±0.05 1.18±0.17
Zhang et al. (2020) WRN-34-10 0.25±0.09 0.62±0.26 0.31±0.06 0.95±0.20 0.25±0.05 0.82±0.17 0.33±0.07 0.99±0.20 0.39±0.06 1.21±0.16
Sridhar et al. (2022) WRN-34-15 0.23±0.08 0.57±0.24 0.31±0.07 0.96±0.19 0.24±0.05 0.78±0.11 0.37±0.08 1.06±0.19 0.41±0.06 1.21±0.16
Gowal et al. (2020) WRN-34-20 0.21±0.11 0.55±0.32 0.29±0.07 0.95±0.22 0.21±0.05 0.73±0.15 0.34±0.07 1.02±0.21 0.38±0.05 1.19±0.18
Pang et al. (2020) WRN-34-20 0.24±0.09 0.66±0.30 0.22±0.08 0.80±0.23 0.16±0.07 0.64±0.25 0.25±0.10 0.87±0.21 0.31±0.08 1.06±0.19
Rice et al. (2020) WRN-34-20 0.24±0.11 0.64±0.32 0.28±0.06 0.91±0.22 0.22±0.05 0.71±0.17 0.33±0.07 0.98±0.21 0.37±0.05 1.14±0.17

Gowal et al. (2020) WRN-70-16 0.22±0.10 0.56±0.30 0.30±0.06 0.94±0.20 0.21±0.05 0.71±0.12 0.38±0.08 1.04±0.20 0.39±0.05 1.18±0.17
Gowal et al. (2020) WRN-70-16 0.19±0.10 0.52±0.32 0.28±0.06 0.94±0.22 0.22±0.05 0.76±0.15 0.31±0.07 1.01±0.21 0.38±0.05 1.19±0.16
Rebuffi et al. (2021) WRN-70-16 0.23±0.09 0.59±0.29 0.30±0.06 0.88±0.20 0.23±0.05 0.74±0.12 0.34±0.07 0.96±0.17 0.37±0.05 1.09±0.16

CIFAR-100 Models A3 RAND R-ADS ADS EDA
(ε = 8/255) DI E DI E DI E DI E DI E

Rice et al. (2020) PARN-18 0.34±0.13 0.83±0.31 0.32±0.06 0.97±0.20 0.25±0.06 0.78±0.18 0.35±0.07 1.02±0.21 0.39±0.06 1.15±0.20
Hendrycks et al. (2019) WRN-28-10 0.27±0.11 0.71±0.30 0.29±0.07 0.94±0.22 0.22±0.06 0.75±0.16 0.31±0.08 0.97±0.21 0.36±0.06 1.13±0.18

Rebuffi et al. (2021) WRN-28-10 0.32±0.15 0.81±0.36 0.29±0.07 0.94±0.23 0.25±0.06 0.82±0.17 0.35±0.08 1.02±0.22 0.41±0.06 1.20±0.20
Addepalli et al. (2022) WRN-34-10 0.34±0.13 0.84±0.30 0.31±0.07 0.97±0.21 0.24±0.06 0.86±0.13 0.36±0.09 1.04±0.21 0.42±0.06 1.21±0.18

Cui et al. (2021) WRN-34-10 0.27±0.10 0.67±0.27 0.27±0.08 0.89±0.22 0.23±0.08 0.82±0.14 0.30±0.09 0.97±0.19 0.34±0.07 1.04±0.17
Sitawarin et al. (2021) WRN-34-10 0.31±0.12 0.79±0.30 0.32±0.06 0.98±0.20 0.24±0.05 0.75±0.17 0.35±0.07 1.02±0.21 0.38±0.06 1.14±0.20

Wu et al. (2020) WRN-34-10 0.28±0.12 0.73±0.32 0.29±0.07 0.95±0.22 0.24±0.05 0.79±0.15 0.32±0.08 0.99±0.21 0.37±0.06 1.16±0.18
Cui et al. (2021) WRN-34-20 0.27±0.09 0.66±0.27 0.29±0.08 0.92±0.21 0.22±0.06 0.75±0.13 0.32±0.09 0.99±0.21 0.35±0.07 1.07±0.18

Gowal et al. (2020) WRN-70-16 0.27±0.13 0.69±0.34 0.28±0.07 0.93±0.22 0.19±0.05 0.66±0.13 0.33±0.08 0.98±0.23 0.37±0.06 1.19±0.17
Gowal et al. (2020) WRN-70-16 0.31±0.14 0.79±0.33 0.31±0.07 0.94±0.22 0.23±0.06 0.73±0.14 0.33±0.08 1.01±0.21 0.40±0.06 1.21±0.17
Rebuffi et al. (2021) WRN-70-16 0.29±0.14 0.76±0.36 0.30±0.07 0.93±0.23 0.21±0.06 0.74±0.14 0.34±0.08 0.99±0.20 0.40±0.05 1.19±0.19

ImageNet Models A3 RAND R-ADS ADS EDA
(ε = 4/255) DI E DI E DI E DI E DI E

Salman et al. (2020) RN-18 0.26±0.07 2.60±0.91 0.34±0.07 3.52±0.69 0.28±0.05 2.83±0.42 0.38±0.08 3.66±0.69 0.43±0.04 4.37±0.66
Engstrom et al. (2019) RN-50 0.29±0.06 2.79±0.83 0.38±0.05 3.69±0.58 0.31±0.06 3.18±0.51 0.40±0.06 3.88±0.61 0.44±0.04 4.30±0.64
Salman et al. (2020) RN-50 0.26±0.06 2.61±0.90 0.35±0.06 3.61±0.65 0.30±0.06 3.03±0.47 0.37±0.07 3.70±0.63 0.42±0.04 4.43±0.53
Wong et al. (2020) RN-50 0.27±0.07 3.45±1.12 0.36±0.06 4.59±0.82 0.30±0.06 3.76±0.58 0.38±0.07 4.81±0.80 0.43±0.05 5.43±0.89

Salman et al. (2020) WRN-50-2 0.27±0.06 2.63±0.82 0.37±0.06 3.69±0.60 0.34±0.06 3.53±0.58 0.38±0.05 3.80±0.61 0.43±0.04 4.22±0.65

equation 22 tends to be larger for EDA than for A3 in most models where EDA has higher attack performance
than A3. This difference is more pronounced than the difference in DI. While EDA shows a similar trend for
all models, A3 shows a different trend in the value of equation 22 for some models. For example, as shown
in Figure 20, the value of equation 22 for A3 tends to be larger for the model proposed by Ding et al. (2020)
than for the other models. Given the high attack performance of A3 against these models, this suggests that
the A3 diversification strategy may be more effective for these models.

D.5 Analysis of EDA for the model proposed by Ding et al.

The attack performance of EDA is significantly lower for the model proposed by Ding et al. (2020) compared
to A3. This section discusses the reasons for this regarding diversification performance and computation
time. As described in the main text, the value of DI for the best point set tends to be higher for EDA and
lower for A3, similar to the results for other models. On the other hand, the analysis in the previous section
shows that for the model proposed by Ding et al. (2020), the value of equation 22 for the best point set
obtained by A3 tends to take larger values than the results for the other models. In addition, a comparison
of the computation time for EDA and A3 shows that A3 takes more than three times longer than EDA.
The above comparison suggests that the A3 can perform better diversification for the model than for other
models. In summary, setting a longer computation time and increasing the number of multi-restart are
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Table 15: Comparison in robust accuracy for transfer setting. “source→target” indicates that the transfer
attack from the source to the target model. AutoAE was executed only with CIFAR10 because of its long
execution time.

CIFAR-10

source→target clean acc robust acc AA CAA AutoAE A3 EDA(target model) (in RobustBench)
(Carmon et al., 2019)→(Ding et al., 2020) 84.36 41.44 71.82 73.15 73.24 70.46 68.14
(Carmon et al., 2019)→(Cui et al., 2021) 88.22 52.86 71.90 74.76 74.66 73.46 70.29
(Ding et al., 2020)→(Carmon et al., 2019) 89.69 59.53 83.23 85.01 84.85 85.16 83.68

(Ding et al., 2020)→(Cui et al., 2021) 88.22 52.86 79.77 82.16 81.83 82.42 80.32
(Cui et al., 2021)→(Carmon et al., 2019) 89.69 59.53 76.17 80.24 80.32 79.94 77.24

(Cui et al., 2021)→(Ding et al., 2020) 84.36 41.44 70.16 72.07 72.09 71.28 69.43

CIFAR-100
Rice et al. (2020)→Cui et al. (2021) 62.55 30.20 56.42 58.72 - 58.36 58.10

Rice et al. (2020)→Rebuffi et al. (2021) 63.56 34.64 58.28 60.45 - 59.74 59.55
Cui et al. (2021)→Rice et al. (2020) 53.83 18.95 44.51 45.87 - 44.50 42.86

Cui et al. (2021)→Rebuffi et al. (2021) 63.56 34.64 53.58 56.24 - 55.35 54.02
Rebuffi et al. (2021)→Rice et al. (2020) 53.83 18.95 44.44 45.64 - 43.51 40.84
Rebuffi et al. (2021)→Cui et al. (2021) 62.55 30.20 50.15 51.98 - 51.26 48.45

ImageNet
Salman et al. (2020)→Engstrom et al. (2019) 62.52 29.22 53.74 55.88 - 55.20 52.76

Salman et al. (2020)→Wong et al. (2020) 55.64 26.24 47.22 47.90 - 46.40 45.12
Engstrom et al. (2019)→Salman et al. (2020) 68.46 38.14 63.62 65.34 - 64.68 64.46
Engstrom et al. (2019)→Wong et al. (2020) 55.64 26.24 44.64 46.34 - 46.06 44.92
Wong et al. (2020)→Salman et al. (2020) 68.46 38.14 65.36 66.08 - 65.56 65.42

Wong et al. (2020)→Engstrom et al. (2019) 62.52 29.22 56.40 58.02 - 57.80 56.72

Table 16: Results of the preliminary experiments to determine the hyperparameters of ADS. The robust
accuracy obtained by the MDO framework is described. The default parameters are in bold.

NADS na

Dataset No. 3 4 5 10 3 4 5 6
CIFAR-10 1 55.56 55.58 55.65 55.67 55.63 55.66 55.58 55.57
CIFAR-10 2 56.83 56.80 56.84 56.81 56.90 56.83 56.80 56.78
CIFAR-100 3 19.01 18.87 19.03 19.01 19.16 19.10 18.87 18.90
CIFAR-100 4 24.66 24.56 24.61 24.59 24.61 24.78 24.56 24.56
ImageNet 5 29.40 29.24 29.26 29.30 29.28 29.34 29.24 29.14

considered particularly effective in improving the attack performance for the model proposed by Ding et al.
(2020).

D.6 Trends of search directions and objective functions selected by ADS

Figure 21 is a bar chart displaying the ratio of times each search direction and objective function used by
EDA. Figure 21 shows that δACG and LG-DLR,q are frequently used in the diversification phase, and δNes
is rarely used. In the intensification phase, LCW, LSCW, and δNes were more likely to be selected. This
trend may reflect ACG’s high diversification performance and NAG’s high intensification performance. The
potential reasons for these trends are: 1. P e

i and DI play different roles from each other, 2. the ACG’s
search direction may be similar to the steepest for small step sizes, and 3. the difference between Nesterov’s
acceleration gradient direction and gradient direction.

The role of P e
i and DI. The P e

i measures the degree of diversification in the output space during the
search. A pair with the largest P e

i is expected to show a high diversity in the output space. In addition,
from Yamamura et al. (2022), it can be assumed that the ACG direction increases P e

i , while the steepest-like
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Figure 18: The difference between MTcos and the MDO framework in #queries to find adversarial examples
for some models. The attacked models are Andriushchenko & Flammarion (2020), Sehwag et al. (2022), and
Ding et al. (2020) for CIFAR-10, Cui et al. (2021) for CIFAR-100, and Salman et al. (2020) and Engstrom
et al. (2019) for ImageNet.
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Figure 19: Violin plot of DI. The attacked models are Sehwag et al. (2022) and Ding et al. (2020) for CIFAR-
10, Cui et al. (2021) for CIFAR-100, and Salman et al. (2020) for ImageNet.

direction does not. From the above, it is considered that the pair with the maximum P e
i is likely to include

the ACG direction. DI measures the diversity of the best point set obtained by the search. In our use case,
DI represents the dissimilarity between the best points. That is, we expect that pairs with the largest DI
are more likely to enumerate dissimilar solutions. Intuitively, updates in diverse directions contribute to the
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Figure 20: Violin plot of equation 22. The attacked models are Sehwag et al. (2022) and Ding et al. (2020)
for CIFAR-10, Cui et al. (2021) for CIFAR-100, and Salman et al. (2020) for ImageNet.

0.0 0.2 0.4 0.6 0.8 1.0

GS

LS

±PGD ±ACG ±APGD ±Nes

0.0 0.2 0.4 0.6 0.8 1.0

GS

LS

LCE

LCW

LSCW

LDLR

LG-DLR,4

LG-DLR,5

LG-DLR,6

CIFAR-10 CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

GS

LS

±PGD ±ACG ±APGD ±Nes

0.0 0.2 0.4 0.6 0.8 1.0

GS

LS

LCE

LCW

LSCW

LDLR

LG-DLR,4

LG-DLR,5

LG-DLR,6

CIFAR-100 CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0

GS

LS

±PGD ±ACG ±APGD ±Nes

0.0 0.2 0.4 0.6 0.8 1.0

GS

LS

LCE

LCW

LSCW

LDLR

LG-DLR,4

LG-DLR,5

LG-DLR,6

ImageNet ImageNet

Figure 21: The average ratio of times each search direction and objective function used by EDA. LS and GS
refer to the intensification phase and diversification phase, respectively.

enumeration of dissimilar solutions. Given that the search direction is gradient-dependent, the pair with the
largest DI is likely to include a variety of objective functions and update formulas.
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ACG’s search direction may be similar to the steepest for small step sizes. The reason for this
is as follows. According to equation 10, s(k) is close to the gradient ∇L(g(x(k)), c) when β(k) is close to 0.
From equation 9, ⟨∇L(g(x(k)), c), y(k−1)⟩ is the numerator of β(k). Therefore, as y(k−1) approaches 0, β(k)

also approaches 0. When the step size is small, ∥x(k)−x(k−1)∥ is also small, so y(k−1) is likely to be close to
0. As a result, the ACG’s direction and the steepest direction may be similar. The experiments conducted
by Yamamura et al. (2022) also support this claim.

The difference between Nesterov’s acceleration gradient direction and gradient direction. Nes-
terov’s accelerated gradient (NAG) method updates the search point using the gradient of the point moved
from the current search point to the momentum direction. Assuming that the objective function is multi-
modal, the gradient at the current point is unlikely to be similar to NAG’s search direction. Thus, if the
objective function is multimodal, a search in the NAG’s direction may find different local solutions from that
in the gradient direction.

E Prediction Aware Sampling (PAS)

Motivation The hypothesis behind PAS is that starting the search with an initial point near multiple
decision boundaries increases the likelihood of finding an adversarial example. When maximizing the inner
product of a random vector and logit, as ODS does, the distance to the decision boundary may be farther
away than the initial point. However, when moving in the direction where the predicted probability for the
correct class is as small as possible, the initial point is more likely to be closer to the decision boundary than
the original point. We hypothesized that the attack’s success rate could be improved by starting the search
at a point closer to the decision boundary.

Prediction Aware Sampling One promising initial point sampling is ODS, which considers diversification
in the output space. However, there is room for improvement because its sampling does not consider image-
specific information. Based on the idea that the randomly sampled initial point close to decision boundaries
makes the attacks easier to succeed, we propose Prediction-Aware Sampling (PAS), a variant of ODS. PAS
maximizes the following function in the same way as ODS to sample the initial point.

v(w, g, x) = wT g(x)× exp (−gc(x)) ,
(

w ∼ U (−1, 1)C
)

(23)

PAS samples the initial point by repeating the following updates for NPAS iterations.

x← PS

(
x + ηPAS sign

(
∇xv(w, g, x)
∥∇xv(w, g, x)∥2

))
(24)

Same as ODS, PAS used NPAS = 2 and ηPAS = ε. Intuitively, maximizing equation 23 means moving the
initial point closer to the decision boundary by reducing the prediction probability of the correct class c and,
at the same time, moving the logit g(x) closer to the random vector w.

Experiments To test our hypothesis, we compared the success rate for each class in targeted attacks with
nine target classes, using the input point, the point sampled by ODS, and the point sampled by PAS as initial
points. In our notation, we compared the attack performance of (x, ηcos, δGD, LT

CW), x ∈ {xorg, xODS, xPAS}
with 100 iterations for each target class and initial step size of 2ε. The number of target classes K was
set to 9. The following five models were used in the experiments. 1. ResNet-18 (Sehwag et al., 2022),
2. WideResNet-28-10 (Gowal et al., 2020), 3. PreActResNet-18 (Rice et al., 2020), 4. WideResNet-34-
10 (Sitawarin et al., 2021), 5. ResNet-50 (Engstrom et al., 2019). These numbers correspond to the “No.”
column in Table 17. The experimental results in Table 17 show that the attack with PAS can achieve higher
attack success rates for many target classes than other initial point selections. The experimental results
support our hypothesis that PAS brings the starting point closer to the decision boundary, resulting in a
more successful attack. As described in Appendix G.2, the ablation results for the initial point of the EDA
also indicate that the PAS contributes to the attack performance of the EDA and the MDO framework.
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Table 17: Validation of PAS. The lowest robust accuracy is in bold.
Dataset No. target input ODS PAS

CIFAR-10 1

1 57.41 57.40 57.29
2 65.33 64.82 64.28
3 67.85 66.98 66.27
4 69.06 68.21 67.52
5 69.88 68.77 67.81
6 69.66 68.59 67.88
7 69.11 68.37 67.59
8 68.08 67.47 67.10
9 67.32 66.84 66.46

CIFAR-10 2

1 57.52 57.54 57.57
2 65.93 65.79 65.33
3 68.88 68.63 68.15
4 70.62 70.34 69.33
5 71.41 70.95 70.00
6 72.37 71.82 70.71
7 72.57 71.99 70.80
8 73.09 72.49 71.31
9 72.86 72.28 71.08

CIFAR-100 3

1 20.37 20.39 20.34
2 24.71 24.67 24.46
3 26.65 26.64 26.14
4 27.70 27.49 26.99
5 28.37 28.36 27.70
6 29.02 28.98 28.33
7 29.55 29.32 28.62
8 29.83 29.68 28.95
9 29.72 29.55 28.94

CIFAR-100 4

1 27.25 27.22 27.17
2 31.87 31.74 31.50
3 33.70 33.73 33.18
4 34.92 34.72 34.17
5 36.00 35.91 35.13
6 36.55 36.50 35.58
7 36.75 36.56 35.87
8 37.34 37.20 36.39
9 37.81 37.54 36.73

ImageNet 5

1 32.66 32.62 32.42
2 38.04 37.98 37.68
3 39.64 39.64 39.22
4 41.50 41.34 40.74
5 41.68 41.48 41.00
6 42.82 42.80 42.20
7 43.10 42.92 42.46
8 43.22 43.02 42.52
9 43.20 43.12 42.58
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Table 18: Validation of targeted attack
Dataset No. EDA EDA+

CIFAR-10 1 55.49 55.49
CIFAR-10 2 56.75 56.78
CIFAR-100 3 18.86 18.87
CIFAR-100 4 24.47 24.48
ImageNet 5 29.00 29.02

Table 19: Ablation study of EDA. The default parameter is in bold.
Ns # sampled images

Dataset No. 5 10 15 1% 3% 5% 7%
CIFAR-10 1 55.59 55.49 55.49 55.49 55.47 55.48 55.50
CIFAR-10 2 56.73 56.76 56.76 56.76 56.81 56.81 56.79
CIFAR-100 3 18.85 18.86 18.86 18.86 18.87 18.88 18.87
CIFAR-100 4 24.46 24.47 24.48 24.47 24.49 24.49 24.47
ImageNet 5 29.04 29.04 29.04 29.04 29.04 29.08 29.04

F Targeted attack in EDA

Motivation The motivation for using a targeted attack is to efficiently diversify the most likely prediction
class of the adversarial example away from the correct class (diversification in the output space). CW loss
and DLR loss are objective functions that generate adversarial examples misclassified into the class with
the highest prediction probability among classes other than the correct class. In other words, they attempt
to generate an adversarial example misclassified into the class whose decision boundary is closest to the
current point. However, it is difficult to approach the decision boundary when the gradient is zero, even
if the distance to the decision boundary is close because the gradient-based attack moves in the direction
of the gradient. In addition, Yamamura et al. (2022) reported that in the steepest gradient-based attacks,
the class with the highest prediction probability among classes other than the correct class hardly changes
during the search. Considering these factors, diversification in the output space could be effective, especially
for attacks with untargeted losses. Some existing research also supports the effectiveness of diversification
in the output space (Tashiro et al., 2020; Gowal et al., 2019).

Target selection Although a multi-target attack shows high performance by achieving diversification in
the output space, existing methods (Gowal et al., 2019; Croce & Hein, 2020b) are computationally expensive
because they assign an equal number of iterations to each target. To reduce the computational cost of the
multi-target attack, we propose Target Selection (TS), which estimates the easiest target class to attack
based on a small-scale search. TS estimates the easiest target class to attack based on a small-scale search to
reduce the computational cost of the multi-target attack. The objective is to reduce the computational cost
by focusing the number of iterations on the selected target. The procedure of TS is as follows: (1) Upper
K classes with large logit values of initial points are selected as target candidates. (2) Targeted attacks are
performed for Ns iterations for each target candidate. (3) The output is the target candidate T with the
highest objective function value.

Hyperparameters The parameters of the targeted attack are the number of candidate targets in target
selection K = 9, 14, 20, the number of iterations Ns = 10, and the number of iterations in targeted attack
N = 100. We chose N = 100 because the number of iterations per targeted attack in AA is set to 100, which
achieves a reasonable trade-off between computational cost and attack performance.

Experiments To investigate the validity of this target selection, we compare the attack performance of
EDA+, which executes a normal targeted attack after the MDO framework, with that of EDA. In this
experiment, we performed (xPAS, ηcos, δGD, LT

CW) with 100 iterations for each target class and the initial
step size of 2ε. The following five models were used in the experiments. 1. ResNet-18 (Sehwag et al., 2022),
2. WideResNet-28-10 (Gowal et al., 2020), 3. PreActResNet-18 (Rice et al., 2020), 4. WideResNet-34-
10 (Sitawarin et al., 2021), 5. ResNet-50 (Engstrom et al., 2019). These numbers correspond to the “No.”
column in Table 18. Although the normal targeted attack requires K × N = 100K queries, our targeted
attack scheme selects a single target class and thus requires Ns ×K + N = 10K + 100 queries per image.
Given the parameter of K = 9, 14, 20 ≥ 2, our targeted attack scheme requires fewer queries than the normal
targeted attack. Considering the results described in Table 18, our target selection may reduce runtime
without significantly degrading the attack performance of EDA.
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Table 20: Ablation study of EDA. The default parameter is in bold.
initial stepsize NADS na

Dataset No. ε/4 ε/2 ε 2ε 3 4 5 10 3 4 5 6
CIFAR-10 1 55.50 55.48 55.51 55.49 55.47 55.49 55.50 55.51 55.50 55.48 55.48 55.49
CIFAR-10 2 56.78 56.78 56.78 56.75 56.78 56.76 56.77 56.76 56.77 56.82 56.76 56.76
CIFAR-100 3 18.92 18.92 18.87 18.86 18.88 18.86 18.89 18.89 18.87 18.90 18.89 18.86
CIFAR-100 4 24.49 24.50 24.50 24.47 24.47 24.47 24.49 24.48 24.48 24.49 24.48 24.47
ImageNet 5 29.10 29.08 29.08 29.00 29.00 29.04 29.02 29.04 29.06 29.04 29.04 29.02

Table 21: Ablation for the targeted attack. The default setting is in bold.
δGD δCG δAPGD

Dataset No. LT
CW LT

CE LT
DLR LT

CW LT
DLR LT

DLR

CIFAR-10 1 55.49 55.57 55.48 55.50 55.50 55.48
CIFAR-10 2 56.76 56.89 56.81 56.81 56.83 56.79
CIFAR-100 3 18.86 18.96 18.90 18.93 18.94 18.91
CIFAR-100 4 24.47 24.63 24.50 24.53 24.53 24.50
ImageNet 5 29.00 29.18 29.02 29.08 29.06 29.00

G Ablation study

G.1 Hyperparameter sensitivity of EDA

We investigated the impact of hyperparameter values on EDA’s performance. In this experiment, the follow-
ing five models were used. 1. ResNet-18 (Sehwag et al., 2022), 2. WideResNet-28-10 (Gowal et al., 2020), 3.
PreActResNet-18 (Rice et al., 2020), 4. WideResNet-34-10 (Sitawarin et al., 2021), 5. ResNet-50 (Engstrom
et al., 2019). Tables 19 and 20 show the robust accuracy obtained by EDA with each parameter value.
Although the attack performance of the MDO framework is different among different hyperparameters, as
described in Table 16, the EDA’s performance is stable regardless of the hyperparameter setting. These
experimental results imply that the attacks composed by different strategies could be robust to the hyperpa-
rameter settings. In addition, we tested the EDA’s performance with several targeted attacks. As described
in Table 21, the search directions based on the steepest direction performed better than the conjugate
gradient-based direction. Also, the margin-based losses showed higher performance than the CE loss.

G.2 The impact of initial point sampling on the performance of the MDO framework and EDA

Table 22 shows the robust accuracy of the MDO framework and EDA using different initial point sampling,
including original input (xorg), Output Diversified Sampling (ODS, xODS), and Prediction Aware Sampling
(PAS, xPAS). the MDO framework and EDA showed slightly better performance using PAS than using the
original input. The difference in robust accuracy between the MDO framework using the original input and
ODS was larger than that using PAS and the original input. For EDA, the difference in robust accuracy
among the three initial point sampling was smaller than that of the MDO framework. These experimental re-
sults suggest that initial point sampling does affect attack performance but that differences in the framework
and the pairs of objective function and search direction have a greater impact.

G.3 Influence of DI and P eon ADS’s performance

To investigate the influence of two terms that appear in the computation of indicators used in ADS, we
executed the MDO framework and EDA with the pairs of search direction and objective function selected
using DI, P e, and De. The model under attack is a subset of the 41 CNN-based robust models used in the
main text. The allowable perturbation size, test samples, and computing environment are the same as in the
experiments described in the text. The results of the experiments are shown in Table 23. DI, P e, and De in
Table 23 indicate that the pairs of search direction and objective function were selected using these indicators,
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Table 22: Robust accuracy of the ablation study for the MDO framework and EDA with different initial
point sampling.

CIFAR-10 model MDO framework EDA
(ε = 8/255) xorg xODS xPAS xorg xODS xPAS

(Andriushchenko & Flammarion, 2020) PARN-18 43.96±0.03 44.05±0.07 43.95±0.02 43.85±0.02 43.86±0.01 43.85±0.02
(Addepalli et al., 2022) RN-18 52.50±0.03 52.66±0.12 52.49±0.03 52.41±0.01 52.45±0.02 52.43±0.03
(Sehwag et al., 2022) RN-18 55.62±0.03 55.60±0.02 55.56±0.02 55.49±0.01 55.50±0.01 55.49±0.01

(Engstrom et al., 2019) RN-50 49.40±0.03 49.34±0.06 49.43±0.09 49.11±0.01 49.10±0.01 49.10±0.03
(Carmon et al., 2019) WRN-28-10 59.49±0.03 59.62±0.03 59.49±0.03 59.40±0.01 59.45±0.02 59.40±0.01
(Gowal et al., 2020) WRN-28-10 62.84±0.02 62.99±0.05 62.82±0.03 62.75±0.01 62.78±0.02 62.75±0.02

(Hendrycks et al., 2019) WRN-28-10 54.87±0.03 54.84±0.01 54.85±0.04 54.77±0.01 54.77±0.01 54.77±0.02
(Rebuffi et al., 2021) WRN-28-10 60.78±0.04 60.83±0.07 60.75±0.03 60.69±0.02 60.69±0.02 60.64±0.01
(Sehwag et al., 2020) WRN-28-10 57.11±0.03 57.22±0.05 57.11±0.02 57.01±0.02 57.07±0.03 57.03±0.01
(Sridhar et al., 2022) WRN-28-10 59.62±0.02 59.68±0.10 59.55±0.03 59.48±0.03 59.52±0.03 59.46±0.02
(Wang et al., 2020) WRN-28-10 56.48±0.06 56.52±0.24 56.29±0.02 56.18±0.01 56.20±0.04 56.15±0.02
(Wu et al., 2020) WRN-28-10 60.01±0.02 60.11±0.09 60.00±0.02 59.94±0.01 59.97±0.03 59.94±0.01

(Ding et al., 2020) WRN-28-4 43.33±0.16 43.69±0.13 43.32±0.12 41.70±0.04 41.84±0.03 41.74±0.06
(Addepalli et al., 2022) WRN-34-10 57.78±0.01 58.01±0.09 57.75±0.03 57.70±0.01 57.74±0.01 57.69±0.02
(Sehwag et al., 2022) WRN-34-10 60.27±0.02 60.30±0.02 60.27±0.05 60.17±0.01 60.18±0.02 60.18±0.02

(Sitawarin et al., 2021) WRN-34-10 50.72±0.04 50.69±0.03 50.72±0.03 50.59±0.02 50.60±0.02 50.59±0.01
(Zhang et al., 2019) WRN-34-10 44.62±0.03 44.65±0.04 44.65±0.06 44.51±0.02 44.52±0.02 44.51±0.02
(Zhang et al., 2020) WRN-34-10 53.53±0.03 53.56±0.03 53.50±0.03 53.43±0.01 53.44±0.03 53.42±0.02
(Sridhar et al., 2022) WRN-34-15 60.43±0.02 60.44±0.11 60.38±0.03 60.31±0.02 60.32±0.03 60.32±0.01
(Gowal et al., 2020) WRN-34-20 56.89±0.02 57.08±0.05 56.86±0.02 56.79±0.01 56.81±0.01 56.79±0.03
(Pang et al., 2020) WRN-34-20 53.85±0.03 53.80±0.03 53.82±0.03 53.64±0.00 53.67±0.01 53.66±0.01
(Rice et al., 2020) WRN-34-20 53.47±0.02 53.56±0.09 53.46±0.04 53.33±0.01 53.34±0.01 53.34±0.01

(Gowal et al., 2020) WRN-70-16 57.21±0.02 57.28±0.05 57.18±0.02 57.12±0.00 57.14±0.01 57.12±0.01
(Gowal et al., 2020) WRN-70-16 65.92±0.04 65.91±0.05 65.87±0.01 65.81±0.03 65.81±0.02 65.83±0.01
(Rebuffi et al., 2021) WRN-70-16 64.31±0.04 64.36±0.06 64.30±0.05 64.20±0.01 64.20±0.02 64.20±0.03

CIFAR-100 model the MDO framework EDA
(ε = 8/255) xorg xODS xPAS xorg xODS xPAS

(Rice et al., 2020) PARN-18 18.97±0.01 19.04±0.09 18.98±0.01 18.87±0.01 18.86±0.01 18.88±0.01
(Hendrycks et al., 2019) WRN-28-10 28.46±0.02 28.60±0.13 28.41±0.02 28.28±0.01 28.28±0.02 28.27±0.02

(Rebuffi et al., 2021) WRN-28-10 32.22±0.03 32.45±0.23 32.07±0.04 31.97±0.01 31.99±0.01 31.94±0.03
(Addepalli et al., 2022) WRN-34-10 31.90±0.03 32.01±0.16 31.87±0.02 31.78±0.01 31.78±0.01 31.78±0.01

(Cui et al., 2021) WRN-34-10 29.00±0.04 29.14±0.23 28.96±0.05 28.85±0.02 28.84±0.02 28.83±0.02
(Sitawarin et al., 2021) WRN-34-10 24.61±0.04 24.67±0.07 24.66±0.03 24.50±0.01 24.48±0.01 24.50±0.01

(Wu et al., 2020) WRN-34-10 28.95±0.04 29.17±0.19 28.89±0.04 28.76±0.01 28.77±0.01 28.76±0.01
(Cui et al., 2021) WRN-34-20 30.06±0.02 30.11±0.10 30.00±0.02 29.86±0.01 29.86±0.01 29.85±0.01

(Gowal et al., 2020) WRN-70-16 30.13±0.03 30.29±0.21 30.07±0.01 29.97±0.01 29.99±0.01 29.96±0.01
(Gowal et al., 2020) WRN-70-16 37.06±0.04 37.17±0.15 36.96±0.04 36.81±0.01 36.83±0.01 36.81±0.01
(Rebuffi et al., 2021) WRN-70-16 34.69±0.04 34.81±0.09 34.64±0.03 34.57±0.02 34.58±0.02 34.55±0.01

ImageNet model the MDO framework EDA
(ε = 4/255) xorg xODS xPAS xorg xODS xPAS

(Salman et al., 2020) RN-18 25.31±0.05 25.48±0.21 25.25±0.02 25.12±0.02 25.10±0.01 25.11±0.02
(Engstrom et al., 2019) RN-50 29.29±0.06 29.77±0.48 29.27±0.07 29.01±0.01 29.00±0.02 29.01±0.01
(Salman et al., 2020) RN-50 34.67±0.09 35.13±0.30 34.73±0.07 34.54±0.03 34.54±0.03 34.52±0.02
(Wong et al., 2020) RN-50 26.41±0.12 26.71±0.34 26.32±0.13 26.13±0.12 26.14±0.08 26.12±0.10

(Salman et al., 2020) WRN-50-2 38.42±0.04 39.36±0.10 38.31±0.06 38.04±0.02 38.03±0.03 38.03±0.02

respectively. From the experimental results, the highest attack performance is expected when P e is used to
select the pairs. However, focusing on the MDO framework against CIFAR-10 and CIFAR-100 models, DI
showed the highest number of models that performed better than the 2nd-best. Thus, the MDO framework
is expected to show higher performance when the pairs are selected with DI than with P e for a wide range of
models. The attack performance of the MDO framework with De is often intermediate between that with DI
and P e. Thus, we used De to select the pairs in the text, considering performance and generalization. The
reason for the better performance in selecting the pairs that maximize P e in EDA can be attributed to its
different nature from targeted attacks. Targeted attacks maximize the prediction probability of the target
class. Thus, the class with the highest prediction probability, excluding the correct prediction, is unlikely to
change during the search. In contrast, the pairs that maximize P e have a high probability that the class with
the highest prediction probability, excluding the correct prediction, will change during the search. The pairs
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Table 23: Influence of DI and P e on ADS’s performance. The lowest and second lowest robust accuracy of
each attack is in bold and underlined, respectively.

defense model MDO framework EDA
CIFAR-10 DI P e De DI P e De

Andriushchenko & Flammarion (2020) PARN-18 43.90 44.00 43.95 43.85 43.85 43.86
Addepalli et al. (2022) RN-18 52.52 52.45 52.50 52.42 52.41 52.43
Sehwag et al. (2022) RN-18 55.61 55.59 55.58 55.50 55.50 55.49

Engstrom et al. (2019) RN-50 49.50 49.31 49.52 49.11 49.09 49.12
Carmon et al. (2019) WRN-28-10 59.49 59.51 59.46 59.42 59.42 59.38
Sehwag et al. (2020) WRN-28-10 57.10 57.10 57.14 57.03 57.01 57.06
Sridhar et al. (2022) WRN-28-10 59.50 59.54 59.59 59.45 59.46 59.47

Wu et al. (2020) WRN-28-10 60.02 60.04 59.99 59.96 59.96 59.95
Addepalli et al. (2022) WRN-34-10 57.73 57.72 57.72 57.71 57.66 57.68
Sitawarin et al. (2021) WRN-34-10 50.75 50.85 50.70 50.62 50.60 50.58

Pang et al. (2020) WRN-34-20 53.81 53.74 53.81 53.65 53.65 53.65
Gowal et al. (2020) WRN-70-16 65.89 65.80 65.85 65.83 65.78 65.81

# bold 3 6 5 3 7 5
# underlined 6 2 5 5 4 3

CIFAR-100
Rice et al. (2020) PARN-18 18.91 19.01 18.97 18.88 18.88 18.89

Addepalli et al. (2022) WRN-34-10 31.81 31.85 31.86 31.77 31.77 31.78
Cui et al. (2021) WRN-34-10 28.93 28.96 28.99 28.85 28.82 28.81

Sitawarin et al. (2021) WRN-34-10 24.63 24.59 24.65 24.49 24.48 24.49
Wu et al. (2020) WRN-34-10 28.87 28.90 28.88 28.78 28.78 28.77

Gowal et al. (2020) WRN-70-16 37.03 36.94 36.96 36.84 36.79 36.80
Rebuffi et al. (2021) WRN-70-16 34.65 34.64 34.65 34.57 34.54 34.55

# bold 4 3 0 2 5 2
# underlined 2 2 4 2 2 5

ImageNet
Salman et al. (2020) RN-18 25.20 25.16 25.22 25.12 25.06 25.10

Engstrom et al. (2019) RN-50 29.20 29.10 29.20 28.98 29.00 29.00
Salman et al. (2020) RN-50 34.64 34.62 34.84 34.52 34.50 34.56
Wong et al. (2020) RN-50 26.34 26.10 26.22 26.10 25.96 26.02

Salman et al. (2020) WRN-50-2 38.32 38.30 38.28 38.04 38.00 38.02

# bold 0 4 2 1 4 0
# underlined 3 1 1 1 1 4

that maximize P e are expected to be more complementary to the targeted attack than those that maximize
DI.

G.4 Performance evaluation with different perturbation bounds

This experiment evaluates the performance of EDA at different perturbation sizes with ε = 4/255 and 16/255
for CIFAR-10/100 and ε = 2/255 and 8/255 for ImageNet. We used AutoAttack (AA) and Adaptive Auto
Attack (A3) as baseline methods. AA is a standard technique for robustness evaluation, and A3 showed
superior performance in terms of execution time and attack performance in the experiments presented in
the main text. The experimental setup is the same as in the main text, except for the perturbation size.
Table 24 shows the robust accuracy and execution time. The performance difference between the different
attacks is not that large for small ε, even for models trained on ImageNet. When ε is large, A3 shows the
highest attack performance. However, the computation time of A3 tends to increase significantly compared
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Table 24: Performance evaluation of EDA with different perturbation bound ε.
CIFAR-10 ε = 4/255 ε = 16/255

Defence Model AA A3 EDA AA A3 EDA
acc sec acc sec acc sec acc sec acc sec acc sec

Andriushchenko & Flammarion (2020) PARN-18 63.24 4,066 63.24 633 63.24 613 10.45 786 10.30 470 10.18 231
Addepalli et al. (2022) RN-18 - - 71.08 694 71.08 705 - - 17.59 758 17.53 293
Sehwag et al. (2022) RN-18 71.98 4,616 71.96 705 71.96 647 20.55 1,412 20.07 868 20.11 293
Engstrom et al. (2019) RN-50 - - 70.97 1,967 70.98 1,822 - - 12.23 1,566 12.20 587
Carmon et al. (2019) WRN-28-10 77.59 38,346 77.58 6,244 77.59 4,042 20.35 10,906 19.96 5,995 20.00 1,429
Gowal et al. (2020) WRN-28-10 78.63 45,270 78.60 7,045 78.60 5,547 24.95 15,441 24.49 2,291 24.56 2,292
Rebuffi et al. (2021) WRN-28-10 - - 75.81 6,789 75.80 5,235 - - 24.96 2,697 25.01 2,250
Sehwag et al. (2020) WRN-28-10 75.80 37,244 75.76 5,945 75.78 4,030 18.76 9,959 18.59 1,716 18.55 1,403
Sridhar et al. (2022) WRN-28-10 77.77 38,391 77.74 6,209 77.74 4,180 20.50 10,944 20.10 6,036 20.18 1,468
Wang et al. (2020) WRN-28-10 74.52 36,749 74.51 5,892 74.51 4,150 17.89 9,685 17.48 5,353 17.77 1,336
Wu et al. (2020) WRN-28-10 - - 76.38 6,041 76.38 4,131 - - 23.59 2,299 23.50 1,635
Ding et al. (2020) WRN-28-4 63.39 6,471 63.36 946 63.33 864 12.15 1,540 12.27 870 13.72 368
Addepalli et al. (2022) WRN-34-10 75.26 46,846 75.25 7,460 75.26 5,104 20.40 13,667 19.91 2,221 19.89 1,798
Sehwag et al. (2022) WRN-34-10 - - 75.75 7,581 75.77 4,992 - - 24.47 9,489 24.66 2,029
Sitawarin et al. (2021) WRN-34-10 71.54 44,598 71.52 7,160 71.52 4,672 13.69 9,583 13.31 5,161 13.33 1,334
Zhang et al. (2019) WRN-34-10 69.15 43,120 69.11 6,930 69.13 4,499 8.38 6,229 8.08 13,233 8.18 968
Zhang et al. (2020) WRN-34-10 71.04 44,221 71.01 7,067 71.01 4,956 21.06 14,088 20.74 2,249 20.68 1,799
Sridhar et al. (2022) WRN-34-15 75.34 76,827 75.33 11,393 75.34 9,502 24.75 26,999 24.48 3,986 24.61 3,807
Gowal et al. (2020) WRN-34-20 73.32 162,529 73.32 21,954 73.33 17,833 22.96 53,608 22.55 8,119 22.57 6,545
Rice et al. (2020) WRN-34-20 - - 72.06 18,871 72.06 14,227 - - 15.33 15,510 15.44 4,185
Gowal et al. (2020) WRN-70-16 73.23 240,017 73.22 30,382 73.21 26,431 24.04 84,819 23.82 11,810 23.71 10,315
CIFAR-100 ε = 4/255 ε = 16/255

Defence Model AA A3 EDA AA A3 EDA
acc sec acc sec acc sec acc sec acc sec acc sec

Rice et al. (2020) PARN-18 33.37 2,372 33.36 403 33.37 586 4.45 399 4.38 1,029 4.39 218
Rebuffi et al. (2021) WRN-28-10 45.88 26,571 45.82 4,173 45.83 3,724 12.47 7,995 12.23 1,615 12.17 1,237
Addepalli et al. (2022) WRN-34-10 47.99 30,028 47.98 4,848 47.98 3,968 10.79 7,610 10.67 1,671 10.55 1,211
Cui et al. (2021) WRN-34-10 43.27 26,879 43.26 4,393 43.25 4,526 11.35 7,763 11.11 1,705 11.12 1,297
Sitawarin et al. (2021) WRN-34-10 41.37 28,193 41.37 4,223 41.37 3,067 6.38 5,087 6.14 19,993 6.23 807
Rebuffi et al. (2021) WRN-70-16 48.26 158,196 48.23 20,161 48.23 21,621 14.16 50,339 13.97 9,017 13.79 6,990
ImageNet ε = 2/255 ε = 8/255

Defence Model AA A3 EDA AA A3 EDA
acc sec acc sec acc sec acc sec acc sec acc sec

Salman et al. (2020) RN-18 - - 38.44 1,581 34.70 2,184 - - 8.16 3,990 8.12 1,153
Engstrom et al. (2019) RN-50 45.64 17,000 45.64 4,284 45.62 3,874 7.88 3,389 7.44 11,717 7.72 1,578
Salman et al. (2020) RN-50 - - 46.02 4,255 46.02 4,192 - - 12.20 2,016 12.10 1,965
Wong et al. (2020) RN-50 - - 35.22 5,810 35.16 5,657 - - 7.66 20,459 7.80 2,290
Salman et al. (2020) WRN-50-2 - - 50.32 8,017 50.28 6,788 - - 12.56 3,506 12.60 2,377
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Table 25: Robust accuracy of randomized defenses. The lowest robust accuracy is in bold.
CIFAR-10 (ε = 8/255) AA A3 EDA
Defense Model clean acc sec acc sec acc sec
RNA RN-18 84.48 62.13 5,094 65.99 1,342 53.87 743
RNA WRN-32 86.49 64.53 30,560 69.70 16,087 53.43 4,764
DWQ PARN-18 82.11 53.81 6,469 56.63 3,161 48.00 897
DWQ WRN-34 81.56 58.05 46,058 60.21 7,043 50.32 5,856

SVHN (ε = 8/255)
DWQ PARN-18 81.97 31.90 4,117 38.80 1,802 28.53 676
DWQ WRN-34 88.65 37.20 29,969 43.87 5,438 35.23 4,027

CIFAR100 (ε = 8/255)
RNA RN-18 56.75 42.78 2,378 47.55 1,921 30.67 426
RNA WRN-32 60.19 41.94 15,296 45.98 17,575 30.71 1,851
DWQ PARN-18 55.96 32.61 3,559 33.72 1,491 26.51 607
DWQ WRN-34 55.94 36.77 25,539 37.82 4,658 29.64 3,311

ImageNet (ε = 4/255)
DWQ RN-50 (free) 49.44 35.62 2,386 45.08 109 24.18 829
DWQ RN-50 (fgsmrs) 62.18 39.08 21,994 40.72 4,854 33.72 3,773

to other methods. The above results indicate that robustness evaluation can be effectively achieved by using
these methods in different ways depending on the acceptable computational resources.

H EDA’s performance against randomized defenses

We investigated the efficacy of EDA against two randomized defenses, including Double-Win Quant
(DWQ) (Fu et al., 2021) and Random Normalization Aggregation (RNA) (Dong et al., 2022). For the
models trained on CIFAR-10/100 and SVHN (Netzer et al., 2011), we used ε = 8/255 and 10,000 test im-
ages. For the ImageNet, we used ε = 4/255 and 5,000 images, the same as the RobustBench. We report the
results of a single run with a fixed random seed for reproducibility. The compared methods are AutoAttack
(AA) and Adaptive Auto Attack (A3). A3 showed sufficiently fast and strong performance among recently
proposed attacks against CNN-based robust models. For consistency with AA, we calculated the robust ac-
curacy using generated adversarial examples when the attack terminated and compared these values because
the model with randomized defense may produce different outputs with each inference. Official implementa-
tions of AA and EDA calculate robust accuracy in this way, but the official implementation of A3 calculates
differently. Therefore, we slightly modified the implementation of A3 to calculate robust accuracy in the
same way. The parameters of the compared attacks were the same as in the main text. Table 25 shows the
robust accuracy and runtime of the standard version of AA, A3, and EDA. From Table 25, EDA showed
higher attack performance in less computation time. Although these are the results of a single run, EDA is
expected to be effective for randomized defenses.
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