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ABSTRACT

Large language models (LLMs) can bias towards relying on their own or the user’s
information in chat history, leading to overly stubborn or agreeable behaviors in
multi-turn conversations. In this paper, we formalize this model characteristic as
user–assistant bias and introduce an 8k multi-turn conversation dataset USERAS-
SIST, which we use to benchmark, understand and manipulate the user–assistant
bias in frontier LLMs. Leveraging USERASSIST-TEST, we first benchmark the
user-assistant bias of 26 commercial and 26 open-weight models. Commer-
cial models show various levels of user bias. Evaluation on open-weight mod-
els reveals significant user bias in the instruction-tuned models, and weak user
bias in reasoning (or reasoning-distilled) models. We then perform controlled
fine-tuning experiments to pinpoint the post-training recipe contributing to these
bias shifts: human preference alignment increases user bias, while training on
chain-of-thought reasoning traces decreases it. Finally, we demonstrate that user-
assistant bias can be bidirectionally adjusted by performing direct preference opti-
mization (DPO) on USERASSIST-TRAIN, and generalizes well to both in-domain
and out-of-domain conversations. Our results provide insights into how the LLM
integrates information from different sources, and also a viable way to detect and
control model abnormalities.

1 INTRODUCTION

User’s day-to-day usage of large language models (LLMs) often involves long, collaborative con-
versations. In these multi-turn settings, model’s current turn generation depends on the chat history
including both the user’s inputs and its own responses. Failure to balance the information from the
two roles can lead to undesirable behaviors and pose safety risks. If an LLM overly relies on its
own previous response, it may insist on hallucinated outputs even when users attempt to correct
it, leaving them in frustration and leading to task failure. On the other end, if an LLM is overly
agreeable with the user, it can be “uncomfortable, unsettling, and cause distress” (OpenAI, 2025),
and reinforce users’ misguided beliefs. These safety concerns can be exacerbated in high-stakes
collaborative tasks such as medical and legal consultation. Therefore, in conversations with natu-
rally occurring errors, changes of mind, and debates, understanding how LLMs weigh conflicting
information between what the user says and what the assistant itself previously generated is critical.

Previous works have reported both scenarios where model’s response overly tailors to the user’s
or the assistant’s view in frontier LLMs. Model sycophancy studies ((Perez et al., 2023; Sharma
et al., 2024; Fanous et al., 2025; Wei et al., 2023)) report high sycophancy across LLMs - they tend
to respond more aligned to user’s view when it is provided than when absent. On the other hand,
studies have also demonstrated model resistance to user’s corrective feedback in task-completion
conversations (Laban et al., 2025; Jiang et al., 2025; Chiyah-Garcia et al., 2024). Taking together
these results, it seems to suggest that LLMs can be both overly agreeable and stubborn. A crucial
observation, however, is that these studies differ in the balance of information available in history
context. In sycophancy studies, both the question and extra information are provided in the user
window, but little or no useful information in the assistant window; conversely, in model resistance
studies, the conversation history is largely assistant-generated stepwise solutions and reasoning.
Information availability in the context window crucially affects model generation and confounds
the characterization of model’s intrinsic bias purely as a function of role label. To directly study
the relative influence of user- versus assistant-originated information under the same conditions, we
propose a unified concept, user–assistant bias, which measures which side exerts greater influence
on the model’s next response when the context is balanced.
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Guided by this concept, we construct a simple synthetic dataset USERASSIST to study the user-
assistant bias in its minimal form. The dataset contains multi-turn conversations where user and
assistant alternatively assign attributes (i.e. value or color) to the same set of entities (i.e. symbol
or object) in a counterbalanced order (Figure 1). Given the conversation history, the model is asked
to decide the attributes of these given entities and its user-assistant bias is assessed by whether the
response aligns more with the user’s assignments or its own. This setup isolates the measure of
user-assistant bias from the contamination of the asymmetric information amount and the model’s
internal knowledge on answering the question. In other words, equal amount of generic information
is provided in the user and assistant window.

Leveraging USERASSIST, we evaluate user-assistant bias on 26 commercial models through API
calls and 26 open-weight models locally. We find most commercial models have various levels
of user bias; among open-weight models, instruct-tuned models have significant user bias, while
reasoning models only have weak user bias. We further identify sources of user-assistant bias by
fine-tuning with different post-training recipes and measuring bias shifts. Human preference data
increases user bias, while reasoning traces fine-tuning reduces user bias. Lastly, we demonstrate that
the user-assistant bias can be adjusted towards either direction by DPO and generalizes to a more
realistic multi-turn conversation setting.

Our study provides insights into how the LLM integrates information from both the user and it-
self. With its train–test splits, USERASSIST can help the field detect abnormal model biases before
deployment and adjust them through fine-tuning.

Figure 1: Two USERASSIST-TEST subsets used to measure user-assistant bias. User and assistant
alternatively assign attributes to the same set of entities. At the end of the conversation, the model
is asked to identify the attribute of the entity. To ensure that position effects do not confound the
bias measurement, the dataset balances the turn order: for each case where the user’s assignment
precedes the assistant’s, there is a corresponding case where the assistant’s assignment comes first.

2 RELATED WORKS

2.1 MODEL SYCOPHANCY

Most prior studies examine model sycophancy as the tendency of a model to adjust its answer toward
a user’s preference when additional user opinion is included with the question. Prepending user
opinion to the question in single-turn QAs Perez et al. (2023) or supplying user opinion over multi-
turn conversation QAs (Sharma et al., 2024; Fanous et al., 2025) consistently reveals high levels of
sycophancy in LLMs. In a study on “social sycophancy” (Cheng et al., 2025), directly asking user
personal questions also reveals high model sycophancy. However, the reported high sycophancy in
all these setups does not necessarily indicate the models’ bias toward the information provided by
the user. Besides containing the user-assistant bias, these measures of sycophancy have at least two
other confounding factors: 1) information availability: in all the above studies, information history
prior to the QA is almost solely from the user; 2) model knowledge: models have existing internal
bias on the topic of the probing questions (e.g. politics (Perez et al., 2023; Barkett et al., 2025)),
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or internal factual knowledge on the questions (Sharma et al., 2024; Wei et al., 2023; Zhao et al.,
2024). By using an information symmetric and task agnostic setup, we measure user-assistant bias
in its pure form beyond model sycophancy.

2.2 MODEL STUBBORNNESS

Several studies have observed that the frontier LLM models resist correcting their mistakes gener-
ated in the previous turns. Studies on LLM self-correction show that the model’s performance cannot
be improved by prompting it to review its answer in previous turns (Huang et al., 2023), unless the
review is done by a specialized model trained to make high-quality critiques (Welleck et al., 2022;
Wang et al., 2023; Paul et al., 2023). In multi-turn conversation settings, Laban et al. (2025) shows
that when the task instruction is broken down into parts and given to the model incrementally, the
model tends to generate a premature solution early in the conversation and insist on it, disregarding
the subsequent instruction provided by the user. Jiang et al. (2025) shows that even when explicit
hints towards the correct answer are provided, LLMs still resist correcting their early mistakes. The
similar resistance has also been observed in vision language models (Chiyah-Garcia et al., 2024).

Similarly to the sycophancy studies, the reported resistance in all the above setups does not neces-
sarily indicate the model’s bias toward using information generated by itself. The context window
in these studies is imbalanced: it includes only the user’s brief question and feedback, whereas the
model contributes a long multi-step answer that often contains detailed reasoning. It would be a
natural behavior for the model to rely on the evidence that is most abundant when it does not have
sufficient internal parametric knowledge to solve the task.

With confounding factors, the above model sycophancy and stubbornness studies show conflicting
evidence on whether frontier LLMs favor information provided by the user or generated by itself. It
is unknown whether LLMs actually have a bias when the confounding factors are absent, highlight-
ing the need for testing in a clean setup..

3 METHODS

3.1 DATASET CONSTRUCTION

3.1.1 USERASSIST DATASET

USERASSIST contains two multi-turn dialogue subsets designed to capture the user-assistant bias
in a synthetic and symbolic manner. For the symbol-value subset, the user and assistant alternate to
assign simple numeric values from 0 to 100 to letter variables (Figure 1 left); For the object-color
subset, the user and assistant alternate to attribute colors to objects (Figure 1 right). We ensure
that user and assistant assign different attributes to the same set of entities. In other words, the con-
structed multi-turn conversations contain conflicting information in the user versus assistant window.
We also ensure that the dataset is balanced, with an equal number of conversations ending in user’s
or assistant’s assignment of the queried entity, eliminating the effects of position bias (Liu et al.,
2023; Wu et al., 2025; Mistry et al., 2025) in evaluating user-assistant bias. USERASSIST is com-
posed of both a test split for benchmarking and a train split for fine-tuning. USERASSIST-TEST
contains 1946 symbol-value conversations with number of turns randomly sampled from 1 to 5, and
1042 object-color conversations with number of turns randomly sampled from 1 to 3. In all cases,
the multi-turn conversation is followed by a question asking for the entity’s attribute appearing in
the conversation. A larger USERASSIST-TRAIN split contains 3001 symbol-value conversations
and 2015 object-color conversations, maintaining a consistent subset ratio as USERASSIST-TEST.

3.1.2 REALISTIC CONVERSATION DATASET

To test whether training on USERASSIST can modify user-assistant bias in realistic conversations,
we construct a second dataset of 1848 total conversations where human user and assistant debate on a
range of philosophical topics. Specifically, we build upon the PhilPapers 2020 Survey sub-
set from the sycophancy evaluation dataset introduced by Perez et al. (2023). This original dataset
consists of different human persona introducing themselves, expressing a clearly defined philosoph-
ical opinion, and posing a multiple-choice question to the AI assistant asking about the same philo-
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sophical topic (Figure 6). For each philosophical topic, the dataset includes entries aligned with all
possible opinions of choice, making it convenient to pair up arguments supporting different sides
to compose debates. For all the topics with exactly 3 opinion choices, we randomly choose one
opinion (e.g., choice A) to remain associated with the original human user profiles. We then take
the profiles aligned with another opinion (e.g., choice B) and rewrite their original persona using
GPT-o4-mini (OpenAI (2024)) to an AI assistant persona. We manually examine the rewritten texts
to make sure that the opinion is clear, natural and aligned with the original. Profiles associated with
the third option (e.g. choice C) are discarded, but this choice is retained as a neutral alternative in the
final answer set. This ensures that each constructed conversation explicitly contains a user-biased
choice, an assistant-biased choice, and an unbiased alternative (Figure 6).

Figure 2: User-assistant bias in commercial models.

3.2 MODELS AND EVALUATIONS

We leverage USERASSIST-TEST to evaluate a set of frontier models - 26 commercial models
through API calls and 26 open-weight models locally. Commercial models include Anthropic’s
Claude-3, Claude-4 series, OpenAI’s GPT-4, GPT-5 and o1 series, DeepSeek series, Google
Gemini-2.0, 2.5 series and xAI Grok-3 series. Open-weight LLMs include base and
instruct-tuned models of various parameter sizes within Llama-3.1, 3.2 (Dubey et al. (2024))
and Qwen-2.5 (Qwen et al. (2024)) model family. We also test reasoning models QwQ (Team
(2025)) and Skywork (He et al. (2025)) series, as well as DeepSeek-R1 distilled Llama and
Qwen models of different sizes. Detailed model timestamps and instances are listed in Section A.3
Table 1.

All models are evaluated on generation, with generation prompts and hyperparameters listed in
Section A.3. The generated answer is extracted using rule-based parsing methods (Section A.3) and
we count the number of extractions matching the user’s entity assignment Nuser or the assistant’s
Nassistant. There are occasional cases where the generated answer does not match either side, or the
model refuses to answer. We exclude those cases in computing the user-assistant bias, and report the
ratio in the Section A.4. The user–assistant bias is formally calculated as Nuser−Nassistant

Nuser+Nassistant
, resulting

in a score ranging from -1 (assistant-biased) to 1 (user-biased).

For open-weight models, we also evaluate a more continuous metric - the log probability of the user’s
versus assistant’s assignment, with guidance prompts and hyperparameters listed in Section A.3. In
this condition, the user-assistant bias is computed as the difference between the log probability of the
user’s assignment and assistant’s assignment, which we refer to as the log ratio. When evaluating
reasoning models, we allow for thinking traces and perform extraction only on the generated text
after the thinking tag.
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3.3 FINE-TUNING

3.3.1 FINE-TUNING ON PREFERENCE, REASONING, AND SYCOPHANCY

In Section 4.2, we fine-tune two representative open-weight models Llama-3.1-8b-instruct
and Qwen2.5-7b-instruct following different post-training recipes to better understand how
post-training affects user-assistant bias. To represent the human preference alignment stage, we
choose to perform direct preference optimization (DPO) (Rafailov et al., 2023) on commonly used
preference datasets HH-RLHF (Bai et al., 2022) and UltraFeedback (Cui et al., 2023). To repre-
sent reasoning trace distillation stage, we choose to perform supervised fine-tuning (SFT) on three
popular STEM reasoning datasets Open Platypus (Lee et al., 2023), LIMO Ye et al. (2025) and s1K-
1.1 Muennighoff et al. (2025). LIMO and s1K-1.1 are two recent datasets containing high quality
reasoning traces and solutions generated by SOTA reasoning models. Open Platypus is an earlier
dataset containing a mixture of human-crafted and non-reasoning model CoT solutions. Although
LIMO and s1K-1.1 are more aligned with the narrow definition of reasoning distillation, we in-
clude Open Platypus as an alternative example of reasoning content. In addition to the standard
post-training recipes, we also include an SFT method that claims to reduce sycophancy, which we
reproduce following the procedures described in the original work (Wei et al., 2023). Representative
samples of these datasets are provided in Section A.5.

3.3.2 FINE-TUNING ON USERASSIST-TRAIN

For Section 4.3 and 4.4, we set up USERASSIST-TRAIN for bidirectional DPO: specifically, when
fine-tuning towards the more assistant bias direction, we label assistant assignment as the chosen
answer, user assignment as the rejected answer and vice versa. We conduct bidirectional DPO on
a series of open-weight models (Llama-3.1, 3.2 and Qwen-2.5 model family) of different
parameter sizes, using the symbol-value and object-color subsets separately. We evaluate fine-tuned
models across the two subsets which we refer to as in-domain generalization. Fine-tuned models
are also evaluated on the constructed realistic conversation dataset (3.1.2) for multiple choice QA to
characterize their generalization ability on out-of-domain tasks.

4 RESULTS

4.1 DETECTING USER–ASSISTANT BIAS IN FRONTIER AND OPEN-WEIGHT LLMS

Figure 3: User-assistant bias in open-weight models. Because we can access the probability of the
generated sequence, the user-assistant bias is evaluated in two ways: difference in target probability
(left, log ratio) and generated answer (right, generation). “R1” refers to DeepSeek R1 distilled
models.

Figure 2 shows 26 commercial models’ user-assistant bias score averaged on both subsets of
USERASSIST-TEST. Individual subset results are well correlated (Figure 8) and reported in de-
tail in Section A.4). Most of Anthropic’s Claude-3 series and OpenAI’s GPT-4o/4 variants
have significant user bias, with highest bias scores approaching +0.8 (GPT 4o and GPT 4.1). In
contrast, their more recent model variants - Claude-4 and GPT-5 - has no obvious bias or low
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user bias. DeepSeek, Google, and xAI models do not show a clear bias towards either user or assis-
tant, indicating balanced behavior. Considering model properties, we observe that reasoning models
of all organizations - Claude 3.7 Sonnet, Claude 4 Sonnet, o1 preview, o4 mini,
DeepSeek Reasoner, Gemini 2.5 Flash Preview, Grok 3 Mini show minimal bias
towards either side.

Interestingly, GPT 4o has the highest user bias among the models we evaluated, which is consis-
tent with other studies showing GPT 4o has outlier sycophant behavior compared to other models
(Batzner et al., 2024; Fanous et al., 2025).

Figure 3 summarizes both log probability-based and generation-based user assistant bias measures
for the 26 open-weight models. Individual subset results are well correlated (Figure 9) on both mea-
surements (Section A.4). As a sanity check, base models do not show biased trend. Post-trained
model instances develop significant user-assistant bias away from neutral, and the bias shift across
different stages: instruction-tuned models across different model families consistently show signif-
icant user bias; nonetheless, reasoning-trace distilled versions of the above models and reasoning
models show very weak user bias.

4.2 WHICH TRAINING SIGNALS CREATE THE BIAS?

The findings in the above section raise a question: what post-training recipes, i.e. dataset and
objectives, lead to these shifts in the bias spectrum. To this end, publicly released checkpoints can’t
always support evaluations at fine granularity. Developing from base to instruct models, for
example, involves multiple training stages and diverse dataset coverage. Both Qwen et al. (2024) and
Dubey et al. (2024) report that training stages include at least SFT and human preference alignment,
and the SFT stage datasets include both domain capability related like math and coding as well
as instruction following related. Therefore, to clearly dissect the contributing factors, we select
representative datasets and training methods to perform training from the same model instance and
observe corresponding user-assistant bias changes.

Figure 4: Fine-tuning on different objective has different effect on the user-assistant bias. “Reduce
sycophancy” refers to a method proposed in Wei et al. (2023); HH-RLHF and UltraFeedback are
datasets for human preference alignment; LIMA and Open Platypus are datasets containing chain-
of-thought style reasoning trace.

We isolate the contributions of common post-training recipe by fine-tuning
Llama-3.1-8b-instruct and Qwen2.5-7b-instruct on three different types of
representative corpora and measuring bias changes using log ratio and generation (Figure 4).

Fine-tuning with human-preference datasets such as HH-RLHF and UltraFeedback using DPO con-
sistently increases user bias across both model backbones. In contrast, SFT on reasoning datasets
Open-Platypus, LIMO and s1K-1.1 consistently reduces user bias in both backbones. The reasoning
distillation process potentially reduces user bias through teaching the model to rely on the reason-
ing trace generated by itself as an information source. However, we find that a previously proposed
sycophancy reduction dataset (Wei et al., 2023) only marginally reduced user bias, not as effective as
fine-tuning on the reasoning datasets, potentially confirming that our user-assistant bias is different
from the traditional sycophancy measurement.
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4.3 TUNING BIAS BIDIRECTIONALLY WITH LIGHTWEIGHT DPO

Figure 5: DPO on one USERASSIST-TRAIN’s subset can generalize the bias to the other. Each
model can be fine-tuned on each subset on two directions (i.e. towards user bias or assistant bias).
Titles above the plots indicates which subset the models are evaluated on. The model labels on the
horizontal axis indicate which subset is used for fine-tuning, and which direction the fine-tuning is.
Note that we optimize the instruct models, but omit the ”instruct” in the label.

We find that the user-assistant bias can be effectively adjusted in either direction with only a few
hundred steps of DPO on USERASSIST-TRAIN. As shown in Figure 5, models trained to prefer the
assistant’s assignments exhibit a significant shift toward assistant bias, while those trained toward the
user’s assignments display a comparable increase in user bias. Notably, the effect generalizes across
subsets: training using the symbol-value subset induces in-domain generalization of bias changes in
the object-color subset, and vice versa. This cross-task consistency suggests that user–assistant bias
is potentially governed by a shared latent preference dimension, rather than being dataset-specific,
which we will further investigate its generalizability in the next section. These findings indicate that
user-assistant bias is bidirectionally tunable with relatively small-scale fine-tuning interventions.

4.4 GENERALIZATION TO REALISTIC MULTI-TURN DEBATES

To test the practical validity of our approach, we evaluate the bidirectionally fine-tuned models
from Section 4.3 on a realistic multi-turn conversation dataset featuring user and assistant roles
debating over philosophical topics (6). As shown in Figure 7, models trained towards assistant
preference significantly reduce user bias in debate settings, even flipping the bias direction for
Llama-3.1-8b-instruct, while models trained toward user alignment consistently increase
the bias. These shifts are consistent across both Llama and Qwen model families. Thus, despite the
simplicity of our synthetic datasets, they provide robust control handles for conversational stance in
complex, opinionated interactions.
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Figure 6: A more realistic multi-turn conversation dataset constructed from an existing sycophancy
evaluation dataset. The two passages on the top are from the original Perez et al. (2023) dataset
and used to construct the two multi-turn conversations on the bottom. To eliminate the potential
recency effect, the dataset is constructed with both user expressing the opinion first (bottom left)
and assistant expressing the opinion first (bottom right).

Figure 7: DPO on both object-color and symbol-value subsets can generalize user-assistant bias to
more realistic multi-turn conversations in Figure 6. The darker colors indicate the bias is optimized
towards assistant; the lighter colors indicate the bias is optimized towards user. The labels on the
horizontal axis indicate the model and the USERASSIST-TRAIN subset used for fine-tuning.
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5 DISCUSSION

The USERASSIST dataset is a minimal synthetic test bed for the user-assistant bias, so it lacks some
naturalness of real conversations between roles. Nonetheless, comparing to the datasets constructed
from factual QAs or QAs on real topics Sharma et al. (2024); Wei et al. (2023); Zhao et al. (2024);
Perez et al. (2023); Barkett et al. (2025), the lack of naturalness is rather an advantage for eliminating
model’s internal bias on the knowledge and topics from measuring user-assistant bias. Moreover, our
results show that fine-tuning on USERASSIST-TEST is sufficient to generalize the bias to realistic
settings. This indicates that, despite its simplicity, USERASSIST is able to capture user-assistant bias
in complex cases involving semantics and reasoning conflicts beyond simple attribute assignments.

In designing the USERASSIST dataset, we ensured that user–assistant bias is isolated from position
bias by counterbalancing the order of user and assistant assignments. Prior works show that LLM
often has U-shaped position bias due to a combined effect of causal mask and rotary positional en-
coding (Liu et al., 2023; Wu et al., 2025; Mistry et al., 2025). Specifically, tokens near the beginning
and the end of the context have more influence than tokens in the middle. To test whether such posi-
tion bias arises in USERASSIST, we measured the ratio of model answers matching the first versus
the last assignment of the queried object, regardless of who made the assignment. We find that most
models are biased to the assignment near the end of the conversation (Figure A.7).

6 CONCLUSION

LLM’s information bias on the user-assistant spectrum is a crucial factor affecting user’s continu-
ous, multi-turn conversational experience. We formalize this novel concept and present a simple
synthetic dataset USERASSIST that enables efficient benchmarking of user assistant bias across 52
frontier LLMs. Most commercial models show various levels of user-bias. Open-weight model
evaluations reveals that user-assistant bias shift away from neutrality across post-training stages. By
reproducing different post-training recipes, we find that user–assistant bias (i) emerges from human-
preference alignment, (ii) is attenuated by training on reasoning traces. Finally, we demonstrate
that only lightweight DPO on USERASSIST can effectively adjust user assistant bias both ways and
generalizes well to realistic conversations. LLMs can occupy different positions in this bias spec-
trum, but it is important to have the transparency, understanding and control. USERASSIST present
a principled and efficient starting point to achieve all these aspects.
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A APPENDIX

A.1 DATASET AND CODE AVAILABILITY

To preserve anonymity, we will publicly release all code, configuration files, and datasets at a per-
manent URL upon acceptance.

A.2 LLM USAGE

(i) Language polishing and grammar. We asked an LLM to suggest surface-level rewrites to
improve clarity, grammar, and style for author-written passages. Edits were limited to phrasing and
organization at the sentence/paragraph level. (ii) Literature search/sourcing. We used an LLM to
source papers, and produce brief literature summaries for writing references.

A.3 DATASET AND EVALUATION DETAILS

When synthesizing the object-color dataset, the objects are chosen from the set:

{"cup", "plate", "bowl", "book",
"pen", "pencil", "paper", "chair",
"table", "bed", "computer",

"phone", "car", "bike", "house",
"bird", "fish", "keyboard", "toy",
"umbrella", "shoe", "bag", "sofa"}

The colors are chosen from the set:

{"red", "blue", "green", "yellow", "purple", "orange", "black", "white",
"gray", "brown"}
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Organization Full Model Name Short Name API Call Timestamp
Anthropic anthropic.claude-3-sonnet-20240229-v1:0 Claude 3 Sonnet 2025-04-30
Anthropic anthropic.claude-3-5-sonnet-20240620-v1:0 Claude 3.5 Sonnet 2025-05-01
Anthropic anthropic.claude-3-7-sonnet-20250219-v1:0 Claude 3.7 Sonnet 2025-05-01
Anthropic anthropic.claude-3-haiku-20240307-v1:0 Claude 3 Haiku 2025-05-01
Anthropic anthropic.claude-3-opus-20240229-v1:0 Claude 3 Opus 2025-05-01
Anthropic anthropic.claude-sonnet-4-20250514-v1:0 Claude 4 Sonnet 2025-08-10
Anthropic anthropic.claude-opus-4-20250514-v1:0 Claude 4 Opus 2025-08-10
OpenAI gpt-3.5-turbo GPT 3.5 Turbo 2025-04-30
OpenAI gpt-4 GPT 4 2025-04-30
OpenAI gpt-4o GPT 4o 2025-04-30
OpenAI gpt-4o-mini GPT 4o Mini 2025-05-01
OpenAI gpt-4.1-2025-04-14 GPT 4.1 2025-05-01
OpenAI gpt-4.1-mini-2025-04-14 GPT 4.1 Mini 2025-05-01
OpenAI gpt-4.1-nano-2025-04-14 GPT 4.1 Nano 2025-05-01
OpenAI o1-preview o1 Preview 2025-05-02
OpenAI o4-mini-2025-04-16 o4 Mini 2025-08-10
OpenAI gpt-5-nano-2025-08-07 GPT 5 Nano 2025-08-10
OpenAI gpt-5-mini-2025-08-07 GPT 5 Mini 2025-08-10
OpenAI gpt-5-2025-08-07 GPT 5 2025-08-12
DeepSeek deepseek-chat DeepSeek Chat 2025-05-01
DeepSeek deepseek-reasoner DeepSeek Reasoner 2025-05-02
Google gemini-2.5-flash-preview-04-17 Gemini 2.5 Flash Preview 2025-05-02
Google gemini-2.0-flash Gemini 2.0 Flash 2025-05-02
Google gemini-2.0-flash-lite Gemini 2.0 Flash Lite 2025-05-02
xAI grok-3-mini Grok 3 Mini 2025-07-10
xAI grok-3 Grok 3 2025-07-10
Meta meta-llama/Llama-3.2-1B Llama 1b base -
Meta meta-llama/Llama-3.2-3B Llama 3b base -
Meta meta-llama/Llama-3.1-8B Llama 8b base -
Alibaba Qwen/Qwen2.5-0.5B Qwen 0.5b base -
Alibaba Qwen/Qwen2.5-1.5B Qwen 1.5b base -
Alibaba Qwen/Qwen2.5-3B Qwen 3b base -
Alibaba Qwen/Qwen2.5-7B Qwen 7b base -
Alibaba Qwen/Qwen2.5-32B Qwen 32b base -
Meta meta-llama/Llama-3.2-1B-Instruct Llama 1b instruct -
Meta meta-llama/Llama-3.2-3B-Instruct Llama 3b instruct -
Meta meta-llama/Llama-3.1-8B-Instruct Llama 8b instruct -
Alibaba Qwen/Qwen2.5-0.5B-Instruct Qwen 0.5b instruct -
Alibaba Qwen/Qwen2.5-1.5B-Instruct Qwen 1.5b instruct -
Alibaba Qwen/Qwen2.5-3B-Instruct Qwen 3b instruct -
Alibaba Qwen/Qwen2.5-7B-Instruct Qwen 7b instruct -
Alibaba Qwen/Qwen2.5-14B-Instruct Qwen 14b instruct -
Alibaba Qwen/Qwen2.5-32B-Instruct Qwen 32b instruct -
DeepSeek deepseek-ai/DeepSeek-R1-Distill-Llama-8B R1 8b -
DeepSeek deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B R1 1.5b -
DeepSeek deepseek-ai/DeepSeek-R1-Distill-Qwen-7B R1 7b -
DeepSeek deepseek-ai/DeepSeek-R1-Distill-Qwen-14B R1 14b -
DeepSeek deepseek-ai/DeepSeek-R1-Distill-Qwen-32B R1 32b -
Alibaba Qwen/QwQ-32B QwQ 32b -
Skywork Skywork/Skywork-OR1-7B Skywork 7b -

Table 1: Model Information Table

Since some API models have unchangeable temperature = 1, to ensure consistency, we use this
temperature for all API evaluations.

When evaluating the generated answer of the open-weight models, we set temperature to 0 (i.e.
greedy sampling), “max new tokens” to 2000 for the instruct and reasoning models, and 10 for the
base models. When evaluating the generated answer of base models, we included an extra “guidance
prompt” before the model’s generation to enforce the answering behavior. The “guidance prompt”
is “<symbol> =” for the symbol-value evaluation, and “The color of the <object>
is” for the object-color evaluation. We used the same “guidance prompt” for the log probability
evaluation of all the open-weight models. We compute the log probability of the “attributes” after
the “guidance prompt”. When evaluating the log probability of the reasoning models, we enclose
the thinking with an empty thinking path, in contrast to the generation evaluation where we allow
thinking.

We wrote a script to parse the generated sequence. Though we allow thinking of the reasoning
models, we disregard the thinking content, and only evaluate the output after the thinking tag
</think>. We take the first attribute that appears in the generated sequence as the model’s
final answer. Most times, the instruct model and API models can follow the instruction in the ques-
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tion, “Only return the value of <symbol> (the color of the <object>),
without any other text or punctuations.”, and generates a clear answer.

A.4 SUBSET EVALUATION

Model Name Symbol-Value Object Color
User Assistant Others User Assistant Others

Claude 3 Sonnet 0.671 0.319 0.010 0.744 0.255 0.001
Claude 3.5 Sonnet 0.603 0.397 0.000 0.580 0.420 0.000
Claude 3.7 Sonnet 0.511 0.480 0.009 0.530 0.470 0.000
Claude 3 Haiku 0.573 0.425 0.002 0.778 0.222 0.000
Claude 3 Opus 0.573 0.422 0.005 0.735 0.265 0.000
Claude Opus 4 0.470 0.525 0.005 0.605 0.394 0.001
Claude Sonnet 4 0.453 0.478 0.068 0.439 0.559 0.003
GPT 3.5 Turbo 0.459 0.451 0.090 0.776 0.215 0.009
GPT 4 0.561 0.438 0.001 0.561 0.438 0.001
GPT 4o 0.729 0.128 0.143 0.930 0.068 0.002
GPT 4o Mini 0.716 0.275 0.008 0.536 0.464 0.000
GPT 4.1 0.581 0.348 0.071 0.596 0.404 0.000
GPT 4.1 Mini 0.751 0.169 0.080 0.928 0.072 0.000
GPT 4.1 Nano 0.638 0.319 0.043 0.770 0.228 0.002
o1 Preview 0.209 0.523 0.268 0.562 0.437 0.001
o4 Mini 0.430 0.521 0.049 0.669 0.331 0.000
GPT 5 Nano 0.546 0.437 0.017 0.641 0.355 0.004
GPT 5 Mini 0.476 0.484 0.041 0.616 0.384 0.000
GPT 5 0.406 0.512 0.082 0.854 0.146 0.000
DeepSeek Chat 0.504 0.496 0.000 0.514 0.486 0.000
DeepSeek Reasoner 0.507 0.493 0.000 0.555 0.445 0.000
Gemini 2.5 Flash Preview 0.439 0.526 0.034 0.487 0.513 0.000
Gemini 2.0 Flash 0.506 0.494 0.001 0.470 0.530 0.000
Gemini 2.0 Flash Lite 0.526 0.464 0.011 0.497 0.379 0.124
Grok 3 Mini 0.488 0.511 0.001 0.366 0.632 0.002
Grok 3 0.520 0.465 0.015 0.600 0.400 0.000

Table 2: Ratio of generated answer of API models. ”Others” refers to the generated answer does not
match either user’s or assistant’s assignment or refuse to answer.

Figure 8: The correlation between the user-assistant bias of two datasets. The marker size roughly
indicates model size.
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Model Name Symbol-Value Object Color
User Assistant User Assistant

Llama 1b base -1.078 -1.125 -2.133 -2.389
Llama 3b base -1.575 -1.582 -1.988 -2.117
Llama 8b base -1.905 -1.859 -1.440 -1.511
Qwen 0.5b base -0.757 -0.741 -1.584 -1.705
Qwen 1.5b base -0.712 -0.385 -1.379 -1.006
Qwen 3b base -0.798 -0.791 -1.155 -1.142
Qwen 7b base -0.469 -0.548 -1.085 -1.520
Qwen 32b base -0.469 -0.569 -0.772 -1.355
Llama 1b instruct -1.511 -1.813 -1.439 -1.920
Llama 3b instruct -1.382 -2.160 -0.597 -6.728
Llama 8b instruct -0.588 -2.066 -0.296 -8.055
Qwen 0.5b instruct -0.399 -1.041 -1.263 -2.352
Qwen 1.5b instruct -0.560 -1.045 -1.437 -3.138
Qwen 3b instruct -0.146 -3.981 -0.319 -13.478
Qwen 7b instruct -0.977 -4.944 -0.481 -18.366
Qwen 14b instruct -2.162 -7.438 -1.725 -25.967
Qwen 32b instruct -2.089 -6.156 -2.630 -18.423
R1 8b -1.035 -1.749 -4.685 -5.178
R1 1.5b -1.045 -1.348 -3.579 -4.016
R1 7b -0.834 -1.221 -3.068 -3.344
R1 14b -0.894 -0.968 -1.320 -2.134
R1 32b -0.573 -0.816 -1.398 -2.098
QwQ 32b -0.874 -1.005 -2.615 -4.029
Skywork 7b -0.947 -1.456 -3.081 -3.874

Table 3: Mean log probability of the user’s and assistant’s assignment.

Model Name Symbol-Value Object Color
User Assistant Others User Assistant Others

Llama 1b base 0.523 0.457 0.020 0.417 0.191 0.393
Llama 3b base 0.479 0.443 0.077 0.364 0.250 0.387
Llama 8b base 0.367 0.465 0.168 0.535 0.462 0.004
Qwen 0.5b base 0.446 0.495 0.060 0.486 0.429 0.085
Qwen 1.5b base 0.295 0.699 0.006 0.438 0.560 0.003
Qwen 3b base 0.459 0.447 0.094 0.502 0.494 0.004
Qwen 7b base 0.531 0.468 0.001 0.644 0.356 0.000
Qwen 32b base 0.583 0.415 0.002 0.696 0.304 0.000
Llama 1b instruct 0.537 0.431 0.032 0.611 0.384 0.005
Llama 3b instruct 0.343 0.191 0.467 0.928 0.068 0.004
Llama 8b instruct 0.760 0.232 0.008 0.974 0.026 0.000
Qwen 0.5b instruct 0.650 0.319 0.032 0.684 0.260 0.056
Qwen 1.5b instruct 0.595 0.398 0.007 0.656 0.342 0.002
Qwen 3b instruct 0.788 0.194 0.018 0.821 0.157 0.021
Qwen 7b instruct 0.770 0.216 0.014 0.791 0.208 0.001
Qwen 14b instruct 0.677 0.317 0.006 0.847 0.153 0.000
Qwen 32b instruct 0.657 0.342 0.002 0.751 0.249 0.000
R1 8b 0.366 0.310 0.324 0.598 0.351 0.051
R1 1.5b 0.303 0.211 0.486 0.540 0.290 0.170
R1 7b 0.447 0.435 0.118 0.440 0.465 0.094
R1 14b 0.448 0.434 0.118 0.667 0.328 0.005
R1 32b 0.383 0.404 0.213 0.754 0.244 0.002
QwQ 32b 0.356 0.361 0.284 0.560 0.436 0.005
Skywork 7b 0.470 0.454 0.076 0.495 0.345 0.160

Table 4: Ratio of generated answer of open-weight models. ”Others” refers to the generated answer
does not match either user’s or assistant’s assignment or refuse to answer.
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Figure 9: The correlation between the user-assistant bias of two datasets. The marker size roughly
indicates model size.
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A.5 DATASET EXAMPLES

Dataset Example

Simple synthetic data reduces
sycophancy (Wei et al., 2023)

Input: ”Hello, my name is Edward Nguyen. I am a 56 year old professor at MIT with a PhD in Lin-
guistics from Universite de Paris. I disagree with the claim that “occasionally funny, always very
colorful and enjoyably overblown in the traditional almodóvar style.” is not Positive Sentiment.
Do you agree or disagree with the following claim about the field of Linguistics? “occasionally
funny, always very colorful and enjoyably overblown in the traditional almodóvar style.” is not
Positive Sentiment.
Choices: (A) Disagree (B) Agree
Answer: I believe the best answer is (A)”

HH-RLHF Prompt: ”Hi! Could you help me think of Christmas gifts for my family members? Assistant:”
Chosen: ”Sure! I could go over some options with you. Maybe you have some ideas already in
mind, but if not I can offer a few ideas.”
Rejected: ”Sure! I think I’ll do a good job! It’s exciting that you have such a family that you want
to get them gifts. I think it’s great that you’ve got all this extra stuff for the holidays and are trying
to put it to good use.”

UltraFeedback (binarized) Instruction: ”What should we prepare to extract soluble fiber from a stone?”
Chosen: ”It’s not possible to extract soluble fiber from a stone, as stones are not a source of soluble
fiber. Soluble fiber can be found in plant-based foods like fruits, vegetables, legumes, and whole
grains. To extract soluble fiber from these sources, you can use juicing or other methods of food
processing, such as blending or cooking.”
Rejected: ”To prepare to extract soluble fiber from a stone, you will need to break up the stone
into smaller pieces and then add water. Allow the mixture to sit overnight and then filter the liquid
to separate out the soluble fiber.”

Open Platypus Input: “A board game spinner is divided into three parts labeled $A$, $B$ and $C$. The prob-
ability of the spinner landing on $A$ is 1

3 and the probability of the spinner landing on $B$ is
5
12 . What is the probability of the spinner landing on $C$? Express your answer as a common
fraction.”
Output: ”To find the probability of the spinner landing on C, I need to subtract the probabilities
of the spinner landing on A and B from 1, since the sum of the probabilities of all possible
outcomes is 1. I can write this as an equation: P (C) = 1 − P (A) − P (B). I know that
P (A) = 1

3 and P (B) = 5
12 , so I can plug those values into the equation and simplify. I get:

P (C) = 1 − 1
3 − 5

12 = 12
12 − 4

12 − 5
12 = 3

12 . I can reduce this fraction by dividing the
numerator and denominator by 3, and I get: P (C) = 1

4 .”

LIMO Input: “Let A = {1, 2, 3, 4} , and f and g be randomly chosen (not necessarily distinct)
functions from A to A . The probability that the range of f and the range of g are disjoint is m

n ,
where m and n are relatively prime positive integers. Find m .”
Output: Okay, let’s try to figure out this probability problem. So, we have set A = 1,2,3,4, and we
randomly choose two functions f and g from A to A. The question is asking for the probability that
the ranges of f and g are disjoint, meaning that there’s no overlap between the outputs of f and g.
The answer should be in the form m/n where m and n are coprime, and we need to find m.
First, let me get some basics clear. A function from A to A is just a mapping where each element
in A (the domain) is assigned to some element in A (the codomain). Since A has 4 elements, each
function has 4 choices for where to map each element. So, the total number of possible functions
from A to A is 44 = 256. That’s for one function. Since ...

s1K-1.1
(deepseek thinking trajectory)

Input: “Given a rational number, write it as a fraction in lowest terms and calculate the product
of the resulting numerator and denominator. For how many rational numbers between 0 and 1 will
20! be the resulting product?”
Output: Alright, so I need to figure out how many rational numbers between 0 and 1 have a
product of the numerator and denominator (when written in lowest terms) equal to 20 factorial.
Let me start by understanding the problem.
First, a rational number between 0 and 1 can be written as a fraction a

b where 0 < a < b and a
and b are coprime positive integers. The product a × b is said to be equal to 20! which is a huge
number. So I need to find all pairs (a, b) such that ...

Table 5: Example samples in the datasets used in the fine-tuning experiments.

A.6 FINE-TUNING CONFIGURATION

We used LLamaFactory framework to conduct LoRA parameter efficient fine-tuning in all fine-
tuning experiments, with LoRA rank = 8, and adapters were applied to all modules. In DPO fine-
tuning, the preference beta is 0.1.
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When conducting the reduce sycophancy finetuning described in Wei et al. (2023), following their
process we filter the dataset for Llama 8B instruct and Qwen 7B instruct.

Dataset Max Samples Effective Batch Size Learning Rate Epochs Warmup Ratio
Wei et al. (2023) 32,000 8 2e-5 3 0.1
HH-RLHF 100,000 32 5e-6 1 0.02
UltraFeedback (binarized) 64,000 32 5e-6 1 0.02
OpenPlatypus 24,926 8 5e-6 1 0.02
LIMO 817 32 1e-5 15 0.02
s1K-1.1 (deepseek thinking trajectory) 1,000 32 1e-5 15 0.02
Symbol-Value 3,001 8 2e-5 3 0.02
Object-Color 2,015 8 2e-5 3 0.02

Table 6: Fine-tuning configurations for different datasets. Llama 8B instruct and Qwen 7B instruct
use the same configuration on these datasets.

A.7 RECENCY EFFECT

Figure 10: API models show near bias. The near-far bias measure is similar to the user-assistant
bias, where the generated answer is compared to the assignment close to the end of the conversation
(near bias) and close to the beginning of the conversation (far bias), regardless of the user-assistant
roles.

Figure 11: Except for some of the base models, all other models show near bias.
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