Duplicate-Aware Controlled Code Generation: Enhancing Copyright
Protection with Targeted Reordering Beam Search in LLMs

Anonymous ACL submission

Abstract

The increasing integration of large language
models (LLMs) in code generation has raised
critical copyright concerns, particularly regard-
ing the verbatim repetition of copyrighted code.
To address this challenge, we propose a novel
task: Duplicate-Aware Controlled Code Gen-
eration (DACCG), which aims to mitigate ver-
batim repetition while preserving the quality
of generated code. To this end, we introduce
Targeted Reordering Beam Search (TRBS), a
plug-and-play decoding method that dynami-
cally reorders beam candidates to reduce direct
copying. TRBS leverages the FM-index for ef-
ficient substring detection and employs a spike-
entropy-based protection mechanism to safe-
guard structural anchors critical to code coher-
ence. Experimental results on a multi-language
code generation benchmark demonstrate that
TRBS effectively reduces verbatim repetition
while maintaining functional adequacy. Our
research represents a pioneering effort in code
copyright protection from the model user’s per-
spective, offering novel insights into responsi-
ble code generation practices.!

1 Introduction

The legality of training on copyrighted data is
context-dependent (David M. McIntosh, 2024) and
is often justified under exceptions such as "fair
use" in non-commercial research and educational
settings (Klosek, 2024). However, the risk of in-
fringement becomes more pronounced during infer-
ence. If amodel generates content that substantially
duplicates copyrighted material, it will likely con-
stitute infringement, even under "fair use" (Ekene
Chuks-Okeke, 2024; Scott M. Douglass, 2024).In
most legal systems, both source code and object
code are classified as literary works and receive
equal protection under copyright law (WIPO, a,b).

'Our models and code will be publicly accessible upon
acceptance.

Training Data

def common(listl: list, list2: list):
"""Return sorted unique common elements.
>>> common([5, 3, 2, 8], [3, 21)

[2, 3]
result
result.add(elementl)
(___ (list(result))
Original Output

common_set

LCS?

common_set.add(elementl)
return sorted(list(common_set))

" TRBS Output

L——— ([x for x in listl if x \
in list2])

Figure 1: Illustration of the effect of TRBS on Llama3.
LCS! denotes the longest common subsequence (LCS)
between the training data and the model’s original out-
put, while LCS? refers to the LCS between the training
data and the model’s output with TRBS.

Research has shown that LLMs exhibit a ten-
dency to reproduce verbatim during generation
(Karamolegkou et al., 2023), directly copying por-
tions of their training data. Karamolegkou et al.
found that models with parameters smaller than
60B tend to reproduce an average of 50 words from
literary works using simple prompting strategies.
Such verbatim repetition poses significant copy-
right risks for model owners.

Due to the widespread application of LLMs in
code generation, copyright protection for code-
related data faces particularly complex challenges.
For example, GitHub Copilot has been found to
generate substantial segments of copied code with-
out attribution to the original licensed sources
(Ronacher; Davis), leading to a lawsuit alleging

copyright infringement. Similarly, we observed
that when fine-tuning datasets contain copyrighted
material, verbatim repetition becomes evident. For
example, as illustrated in Figure 1, the fine-tuned
model’s output included repeated training code seg-
ments with a length of 102 characters.

Therefore, to protect the legitimate rights of
copyright owners and reduce the risk of infringe-
ment for code generation, we propose a novel
task: Duplicate-Aware Controlled Code Genera-
tion (DACCG). The objectives of DACCG can be
categorized into two key dimensions:

DIMENSION 1. Repetition Reduction: The pri-
mary goal of DACCG is to ensure that the gener-
ated code satisfies predefined constraints on ver-
batim repetition with proprietary code files. The
proprietary code files refer to copyright-protected
materials used during model training.

DIMENSION 2. Quality Preservation: Beyond
minimizing repetition, it is crucial to maintain the
fluency, usability, and functional adequacy of the
generated code, ensuring that its overall quality
remains uncompromised.

Correspondingly, we introduce Targeted Re-
ordering Beam Search (TRBS), a plug-and-play
decoding intervention method that requires no ad-
ditional training and incurs minimal computational
overhead. TRBS dynamically reorders beam can-
didates at each decoding step to reduce verba-
tim repetition. To detect potential verbatim se-
quences, TRBS leverages the FM-index (Ferragina
and Manzini, 2000), enabling efficient substring
search and localization with linear space complex-
ity and search time dependent on substring length
rather than corpus size. Once potential verbatim
sequences are identified, TRBS attempts to adjust
beam scores by swapping them with semantically
equivalent alternatives. To safeguard the structural
anchors within beams—critical nodes that ensure
code generation quality by preserving contextual
coherence and integrity - we introduce a protec-
tion mechanism based on spike entropy dynamics.
This mechanism detects structural anchors based
on spike entropy (Strong et al., 1996) and strictly
prevents replacement operations at these positions.
These anchor points exhibit vulnerability character-
istics in code generation, where even the substitu-
tion of seemingly non-critical tokens may trigger
cascading effects, potentially driving subsequent
generations into syntactically or semantically in-
valid regions. We argue that low spike entropy re-
gions function as contextual dependency amplifiers

in the generation process, where minor local modi-
fications can lead to disproportionate and nonlinear
impacts due to score accumulation, ultimately af-
fecting code correctness and consistency.

To validate the effectiveness of our approach, we
conducted extensive experiments on a code gener-
ation benchmark that includes five programming
languages. Experimental results demonstrate that
TRBS achieves superior performance in repetition
reduction and generation quality compared to base-
line methods. Notably, our method offers flexi-
ble control over the accuracy-repetition trade-off
through simple hyperparameter tuning. The contri-
butions of this paper are as follows:

¢ We define a novel task, DACCG, which reduces
verbatim repetition in code generation while main-
taining output quality. To the best of our knowl-
edge, this is the first study to explore and miti-
gate copyright infringement risk in code generation
from the perspective of model users.

* We develop TRBS, a beam search modification
that enables plug-and-play repetition control with-
out requiring additional computational overhead.

* We introduce a spike-entropy-based mecha-
nism that ensures code generation quality by pro-
tecting structural anchors.

2 Background

2.1 Copyright Infringement Concern

As LLMs demonstrate the ability to memorize
and generate verbatim segments from their train-
ing data, concerns about copyright infringement
have gained increasing attention. Carlini et al.
first demonstrated that language models, such as
GPT-2, are susceptible to data extraction attacks,
where adversaries can recover sensitive information
from the model’s outputs. Chang et al. explored
LLMs’ memorization of copyrighted books, focus-
ing on cloze tasks, but did not consider whether
these models might verbatim reproduce such texts.
Karamolegkou et al. were among the first to
systematically investigate copyright violations in
LLMs, focusing on how models verbatim memo-
rize and regenerate copyrighted works. Their find-
ings show that LLMs tend to memorize and repro-
duce substantial portions of copyrighted content,
particularly for widely popular materials.

This phenomenon poses substantial legal chal-
lenges as current copyright frameworks—while al-
lowing limited reproduction under specific condi-
tions—impose critical constraints. For instance, the

U.S. Fair Use doctrine permits 300-word verbatim
quotations for purposes like criticism or education
(Office), whereas EU Directive 2001/29/EC man-
dates quotations be strictly proportionate to specific
purposes under fair practice (EU).

2.2 Controlled Code Generation

With the growing use of LLM-based code gen-
eration, recent studies have explored controlled
code generation to enhance adaptability and relia-
bility, guiding LLMs to meet specific constraints.
For structured domain-specific languages (DSLs),
Pimparkhede et al. proposed DocCGen, a two-
stage framework that reduces syntactic and seman-
tic errors. In industrial automation, Koziolek and
Koziolek introduced a multimodal approach that
integrates visual recognition and domain knowl-
edge for control logic generation. Reliability-
constrained methods like SVEN(He and Vecheyv,
2023) use learnable property-specific vectors to
enforce security compliance without modifying
model weights. While prior work focuses on struc-
ture, safety, and security, we address a new dimen-
sion: copyright legality. We introduce DACCG, the
first systematic effort to explore and mitigate copy-
right infringement risks in LLM-generated code
from the perspective of model users, bridging a
critical gap in responsible code generation.

2.3 Decoding-time Intervention on
Controllable Generation

Controllable Generation involves several key meth-
ods(Keskar et al., 2019; Zhou et al., 2023; Upad-
hyay et al., 2022; Shin et al., 2020; Subramani et al.,
2022; Zhong et al., 2024). Among these, decoding-
time intervention methods have received consider-
able attention, which adjusts LLMs’ output logits
during decoding to steer text generation towards
desired attributes. It can be grouped into five types
based on knowledge injection techniques (Liang
et al., 2024). Classifier guidance methods use ex-
ternal classifiers, such as reward models or neural
networks, during decoding to adjust the model’s
output and control specific text attributes (Deng
and Raffel, 2023; Mudgal et al., 2024; Zheng et al.,
2023a). Class-Conditioned Language Models (CC-
LMs) leverage pre-trained or fine-tuned models
to guide text generation based on predefined at-
tributes like sentiment or topic, though using them
directly may yield suboptimal results (Zhong et al.,
2023). To enhance control, the logits from CC-
LMs are utilized as guidance during the decoding

process. Self-feedback guidance methods utilize
the model’s internal knowledge to adjust gener-
ated text during decoding, ensuring alignment with
desired attributes despite insufficient prompts or
constraints (Pei et al., 2023; Zhong et al., 2024).
Energy-based models (EBMs) optimize the gener-
ation process by adjusting energy values to meet
specific constraints, facilitating the balance of mul-
tiple attributes (Guo et al., 2024; Yu et al., 2024).
Finally, external knowledge guidance techniques
incorporate information from external knowledge
bases or retrieval systems to improve text consis-
tency and alignment with desired attributes, typ-
ically through semantic guidance or knowledge
retrieval (Han et al., 2024).

3 Task: DACCG

We propose a novel task named Duplicate-Aware
Controlled Code Generation, which aims to reduce
verbatim repetition from proprietary code files in
LLM outputs while preserving generation quality.

Since most legal frameworks define infringe-
ment boundaries based on the max length of copied
sequences (Office; EU), we adopt the Longest Com-
mon Subsequence (LCS) length as the primary met-
ric for measuring repetition. Given a reference
code snippet R and a generated output GG, the LCS
length is defined as max{|C| | C C RN C C G}.
Here, the C denotes the subsequence relationship.
It should be noted that the DACCG task focuses
on code copyright infringement rather than code
plagiarism. These two concepts bear fundamental
legal distinctions. Copyright infringement consti-
tutes an unlawful act characterized by substantial
similarity at the literal expression level, typically
measured by the LCS length (Karamolegkou et al.,
2023). In contrast, plagiarism primarily relates
to ethical and academic integrity concerns, where
similarity is generally assessed through structural
resemblances (Schleimer et al., 2003).

For code generation, quality can be directly mea-
sured by execution accuracy, which measures func-
tional correctness by executing generated code
against ground-truth test cases.

From the perspective of intervention stages, po-
tential solutions for DACCG can be categorized
into three classes: (1) Preprocessing interventions,
such as data rewriting or augmentation to minimize
overlap from proprietary code files; (2) Decoding
interventions, which involve constraint-based mod-
ifications during decoding; and (3) Postprocessing

Order Beams

Spike Entropy Token Prob Prob Ratio New Order

f
beam 1 | |E| Gfor || Gi || Gin ||

i Gnums |\E 0.74>B — E > 113<a beam_3

beam_2 | | | Gnew | | _nums |E| G= | | Glist | | (map | | (square |E 0.69 > - beam_5
L) = Score_3

beam_3 | | | Gfor | | Gi | | Gin | | Grange | 0.74 > : beam_1
H > 136<a

beam_4 | ------ | | Gfor | | Gidx | |:| | Gi §\| Gin | | Genumerate |E 0.53<B : beam_4

] 1
beam 5 | ... | | Gnew | | _nums | | G= | | Glist | | (map | | (lambda | 0.69>p : Score.5 beam_2

=1

f:_,- means the tail longest common subsequence of a beam identified by the FM-index

Figure 2: How TRBS works. The uniform color of the beams signifies that they originate from the same parent
beam. The red conditional expression indicates that a beam has satisfied the given criterion, while green signifies

the contrary.

interventions, where generated outputs are refined
or adjusted to reduce repetition after generation.

4 Method

Given proprietary code files P, TRBS begins by
initializing the FM-index based on the token id
sequence S of the files. This process involves gen-
erating the Burrows-Wheeler Transform (BWT)
(Burrows et al., 1994) and suffix array, followed by
constructing auxiliary arrays to record the global
ranking of characters and their occurrence counts
in BWT prefixes. Once the FM-index is prepared,
TRBS initializes the key variables required for
beam search and enters the iterative token genera-
tion process.

During each generation epoch, TRBS operates in
two main phases. The first phase follows the stan-
dard beam search procedure, performing forward
computation, token selection, and beam hypothesis
updates to generate new input ids for the next step.
The second phase, constituting the core innovation
of our method, dynamically adjusts the ranking of
beam candidates. This adjustment is based on their
trajectory in reproducing verbatim repetition while
maintaining generation quality, as demonstrated in
Figure 2.

To detect potential verbatim sequence, TRBS
maintains a mask matrix M that tracks the Tail
Longest Common Subsequence (TLCS) between
each beam candidate b; in the candidate set C' =
{b1,ba,...,b,} and the sequence S. The TLCS
represents the longest subsequence shared between
the suffix of a beam candidate and the proprietary
code files. Formally, the TLCS for a beam b;is
defined as:

TLCS(b;, S) = arglrtlax{k | ti C S},
ik

where t;; denotes the k-length suffix subse-
quence of beam b;. The mask matrix M €
{0, 1}(»N)xL js updated iteratively during the gen-
eration process, where L is the current beam length,
n is the beam num, and N is the batch size. Each
element M [z, j] indicates whether the j-th token of
beam b; belongs to its TLCS with respect to .S.

During the reordering phase, TRBS uses the
FM-index to perform pattern matching and deter-
mine whether the newly generated tokens, when
appended to a beam candidate, result in a sequence
that exists in S. If a match is found, the correspond-
ing entry in the mask matrix is set to 1; otherwise,
it is set to 0. For beams with a non-zero TLCS
length, TRBS attempts to find a replacement can-
didate that originates from the same parent beam
and satisfies two key conditions: (1) the replace-
ment candidate has a TLCS length of zero, indicat-
ing it is not reproducing the proprietary code files,
and (2) the replacement candidate is semantically
substitutable, meaning the substitution does not
significantly degrade the quality of the generation.

Semantic substitutability is evaluated through a
two-tiered criterion. At the token level, the proba-
bility ratio between the original token ¢,, and the
candidate replacement token ¢,, in the model’s log-
its is used to filter out low-quality substitutions.
Specifically, a replacement candidate b,, will be
rejected if the ratio p,,/p, exceeds a predefined
threshold a.

At the contextual level, TRBS employs spike
entropy to quantify the substitutability of beam
positions and identify structural anchors. The spike
entropy for beam b; is calculated as:

D

Zl+z P()’

Spike Entropy =

where z is a scaling constant and P;(m) denotes
the probability distribution of the logits for beam
b;. Positions with spike entropy values below a
threshold § are identified as structural anchors —
critical nodes where token substitutions are prohib-
ited to prevent cascading errors that could disrupt
syntactic or semantic coherence.

Both « and (3 are empirically determined hyper-
parameters that control the trade-off between rep-
etition reduction and generation quality. Through
systematic adjustment of these thresholds, users
can flexibly balance copyright compliance require-
ments with code utility preservation.

S Experiment
5.1 Experimental Setup

Scenario and Dataset To simulate a scenario
where the training data contains both copyrighted
and publicly available data, we tune LLMs on
HumanEval-X (Zheng et al., 2023b) and DS-1000
(Lai et al., 2023), designating HumanEval-X as
the proprietary code files. During evaluation, we
assess the LCS length and execution accuracy of
the generated code on HumanEval-X. For detailed
information on these datasets, please refer to the
appendix C.

Model Configuration We select Llama3-instruct-
8B (Al@Meta, 2024) as the primary LLM to vali-
date the effectiveness of TRBS. Our experiments
employ Low-Rank Adaptation (LoRA) (Hu et al.,
2021) to tune LLMs with rank 8 and alpha 16,
training for 10 epochs with a batch size of 4 and
a learning rate of le-4. To ensure reproducibility,
all models utilize greedy decoding with maximum
new tokens constrained to 256.

5.2 Main Result

We present the performance comparison in Figure 3
to validate the effectiveness of TRBS. The detailed
experimental data can be found in Appendix B.
Specifically, we conduct two key investigations.
First, we introduce two straightforward baseline
methods for the DACCG task:

* Training Data Rewrite: A preprocessing inter-
vention method where proprietary code files are
rewritten using an LLM with DACCG objectives
before being used as training data.

* Output Regeneration: A postprocessing in-
tervention method where the model’s initial out-
put is appended to the prompt to guide a second-
generation attempt under DACCG objectives.

Second, we perform an ablation study by remov-
ing the structural anchor protection mechanism to
examine its role within TRBS. Our findings indi-
cate the following:

TRBS enables more flexible control over the
accuracy-repetition trade-off compared to base-
lines. Adjusting o from low to high results in a
reduction of LCS length at the cost of some accu-
racy loss. This allows users to achieve their de-
sired balance between high LCS length with high
accuracy and low LCS length with low accuracy.
Moreover, TRBS exhibits stable LCS length and
accuracy variations across different threshold set-
tings, demonstrating its strong controllability. In
contrast, the baseline methods show more erratic
performance in the accuracy-repetition trade-off.

TRBS outperforms baseline methods in DACCG
tasks. When analyzing both LCS length and accu-
racy, the polynomial fit curve of TRBS consistently
appears in the upper-right region compared to the
baselines across all five datasets. This indicates
that for similar LCS length values, TRBS achieves
higher accuracy than the baselines, and for similar
accuracy values, TRBS achieves lower LCS length.
Specifically, in the Python and Java datasets, TRBS
surpasses Training Data Rewrite in accuracy while
achieving a lower LCS length at « = 4 and o = 5,
respectively. In the JavaScript and CPP datasets,
TRBS at « = 5 achieves a slightly lower LCS
length than Training Data Rewrite but maintains
significantly higher accuracy. Additionally, across
all five datasets, there exists at least one setting
where TRBS surpasses Output Regeneration in ac-
curacy while maintaining a lower LCS length.

Structural anchor protection is effective. The
polynomial fit curve for TRBS without structural
anchor protection consistently falls in the lower-left
region across all five datasets. Examining specific
data points, and removing structural anchor pro-
tection results in a slight increase in repetition but
a substantial drop in accuracy. This suggests that
structural anchor protection effectively filters out
replacements that significantly degrade generation
quality. Notably, the lower the «, the less pro-
nounced the impact of structural anchor protection
on TRBS performance. This is because a lower «
imposes stricter constraints on token-level seman-
tic substitutability, reducing the number of poten-
tial replacements during reordering. Consequently,
even with structural anchor protection, the actual
reordering operations remain largely unchanged.

85 ,’ i
. 80-

80° .
Java JavaScript

" | \(\U

0

60

55-

Tho 150 1io 100 90 80 70
LCS Length

X Python

80 - ! | 75-
§ ~ » D\
o
S 75 N 70- + 70
[v] N
< S~
= 701) ., 65
.o
5 60-
O 65-
(9]
< 55-
w

60 J J

130 120 100 90 80 70 60 250 240195 185 175 165 155 145 135 125 150

LCS Length LCS Length
L 70 : Go 80- CPP
T 65
g 60 0)
< 55 60 .
S
T

2 50 ¢ .
g 45
X
* a0 i 40

i e TRBS (afrom2to5) i
i — Polynomial Fit of TRBS :
i TRBS w/o Structural Anchors Protection :
B (o from 2 to 5) ;
i Polynomial Fit of TRBS w/o Structural i
; Anchors Protection :
! Standard Beam Search !
: Training Data Rewrite :
: Output Regeneration :

150 140100 90 80 70 60 50 170
LCS Length

/
160 130 120

110 100 90 80
LCS Length

Figure 3: Comparative experiments and ablation study for structure anchor protection on HumanEval-X with
Llama3-instruct-8B. In each subplot, the data points for TRBS from left to right correspond to « values ranging

from 2 to 5, with the beam num set to 5 and 3 set to 0.55.

5.3 Impact of $ and Its Interaction with o

Section 5.2 has demonstrated that adjusting o en-
ables a trade-off between repetition and accuracy.
To further explore the impact of 5 on generation
performance, the interaction between « and (3, and
effective tuning strategies for both, we present in
Table 1 the effect of varying S under different o
values. Figures 4 depict the distribution of token
probability ratio and the distribution of logits spike
entropy for all potential replacements in the Python
dataset. Our findings are as follows.

First, 3 also facilitates a balance between repeti-
tion and accuracy to some extent. As J increases,
the LCS length rises, while the accuracy decreases.
This trend indicates that the criteria for determining
contextual semantic substitutability become more
stringent with a higher 3.

Second, larger o values amplify the sensitivity
of LCS length and accuracy to changes in 8. As «
increases, the token-level semantic substitutability
criteria become more relaxed, making 5 more influ-
ential in determining the number of replacements.
This suggests that « sets the baseline for repetition
reduction, while higher o values accentuate the
role of S in the beam reordering process.

Finally, we observe that the sensitivity of LCS
length and accuracy to « and 3 varies across differ-
ent equal-length intervals. As shown in Table 1, the
magnitude of LCS length and accuracy variations
decreases as « increases in equal steps. Similarly,

when f increases from 0.55 to 0.60, LCS length
and accuracy exhibit greater sensitivity compared
to the change from 0.50 to 0.55. This phenomenon
is dictated by the distribution of token probability
ratio and the distribution of logits spike entropy,
which tend to be concentrated for a given model
and domain. As illustrated in Figures 4, the token
probability ratio of potential replacements in TRBS
is concentrated in the 0.50-0.55 range, while the
logits spike entropy predominantly falls within the
0.55-0.60 range. Consequently, minor adjustments
to o and 3 within these ranges significantly influ-
ence the filtering of replacement.

These conclusions suggest that by tuning o and
[within specific ranges, one can flexibly balance
repetition reduction and generation quality. More-
over, the interplay between « and 8 underscores
the importance of jointly optimizing these hyper-
parameters to precisely adapt TRBS for specific
domains and tasks.

5.4 Parameter Analysis of Beam Num

We present the TRBS performance when varying
beam num in Table 2. As the beam num increases,
the overall LCS length exhibits a decreasing trend,
accompanied by a slight decline in accuracy. This
is because a larger beam num provides more can-
didates for beam substitution, thereby increasing
the likelihood of replacements occurring. However,
when beam num exceeds 15, the rate of LCS length
reduction gradually diminishes, while the decline

3 Python Java JavaScript Go CpPP
LCS ACC LCS ACC LCS ACC LCS ACC LCS AcCcC
a=2
0.50 96.20 78.05 189.27 73.78 114.69 72.56 93.79 59.76 123.55 70.12
0.55 96.46 78.05 189.20 75.61 114.60 72.56 9486 59.15 125.08 69.51
0.60 97.85 78.66 19191 77.44 11633 75.00 9854 6220 128.34 71.95
a=3
0.50 80.20 7134 163.26 6829 9287 6037 73.13 50.61 104.15 60.98
0.55 81.79 7378 16548 7134 9595 64.02 76.65 5427 10534 64.02
0.60 89.57 76.83 17030 75.00 103.32 70.12 82.15 58.54 112.73 69.51
a=4
0.50 68.39 65.85 140.88 62.80 83.31 6220 6420 4146 9197 56.71
0.55 73.90 70.73 147.88 6829 8898 6524 67.17 50.61 9553 62.20
0.60 86.20 76.22 163.22 7378 99.54 69.51 76.79 56.71 103.73 67.68
a=275
0.50 58.74 64.02 12690 56.71 76.52 60.37 5579 39.02 8132 53.66
0.55 65.10 69.51 13645 6524 83.10 64.63 6193 50.61 87.67 59.76
0.60 80.95 76.22 158.64 73.17 96.26 70.12 75.15 5732 98.41 65.85

Table 1: TRBS performance when varying 3 under different & on HumanEval-X with Llama3-instruct-8B, with the

beam num set to 5.

Distribution of Token Probability Ratio

140
120
100
80

[

60 i

I
40
20 —
0 mH [o O AP

2 4 6 8 10
Probability Ratio

Frequency / Density

Distribution of Logits Spike Entropy

600

500

400

300

200

Frequency / Density

100

1

il

[[———
I e e e

o . _
0.50 0.55 0.60 0.65 0.70 0.75 0.80
Spike Entropy

Figure 4: Distribution of token probability ratio and logits spike entropy in the Python dataset on Llama3-instruct-8B.

in accuracy becomes more pronounced, indicating
diminishing returns in repetition control at larger
beam num settings. Additionally, experiments re-
veal that different datasets exhibit varying sensi-
tivities to changes in beam num, with the Go and
CPP datasets being more sensitive. For example,
when beam num increases from 5 to 25, the LCS
length for the Go dataset drops from 67.17 to 63.37,
whereas for the Java dataset, it only decreases
slightly from 147.88 to 147.21. These results sug-
gest that selecting an appropriate beam num value
is crucial for achieving an optimal balance between
repetition control and generation quality.

5.5 TRBS on Different LLMs

To further evaluate the performance of TRBS
across different models, we conducted experiments
on DeepSeek-R1-Distill-Llama-8B (et al., 2025)

and Qwen2.5-7B-Instruct (Team, 2024). As shown
in Figure 5, compared to Llama3, DeepSeek-R1-
Distill-Llama tends to maintain higher accuracy
at higher LCS length, whereas Qwen2.5 exhibits
lower accuracy at lower LCS length. Despite these
variations in model behavior, TRBS performs con-
sistently well, surpassing both baseline methods
across both models. Furthermore, the structure an-
chor protection mechanism proves effective across
both models. Notably, on Qwen2.5-7B-Instruct,
as « increases, structure anchor protection ensures
that while LCS length decreases significantly, ac-
curacy remains largely stable.

5.6 Modification Patterns of TRBS

To investigate how TRBS modifies code genera-
tion to reduce repetition, we analyzed the experi-
mental results on the Python dataset and manually

Beam Num Python Java JavaScript Go CPP
LCS ACC LCS ACC LCS ACC LCS ACC LCS Acc
5 7390 70.73 147.88 6829 8898 6524 67.17 50.61 9553 62.20
10 70.97 68.90 150.24 69.51 88.40 6524 63.66 48.78 93.62 63.41
15 69.77 69.51 147.87 6646 89.51 67.07 62.13 48.17 91.77 59.15
20 69.68 68.90 147.12 67.07 8795 6524 62.04 4756 91.15 60.37
25 69.57 6829 147.21 67.68 86.49 64.02 6337 4695 9223 60.98

Table 2: TRBS performance when varying beam num on HumanEval-X with Llama3-instruct-8B, with « set to 4

and 3 set to 0.55.
60—

Qwen2.5-7B-Instruct

B w w
w o w

Execution Accuracy %
B
o

030 57

4030 26 25 24 23 22 21

LCS Length

85- DeepSeek-R1-Distill-Llama-8B
X
3 80
o
3 N
g 75 : g
< —
S >
= 70- - <
8 e
X 65-
60 |
130 120 90 80 70 60
LCS Length

Figure 5: TRBS performance on the Python dataset with different LLMs. In each subplot, the data points for TRBS
from left to right correspond to « values ranging from 2 to 5, with the beam num set to 5 and /3 set to 0.55. The
legend of this figure can be found in Figure 3, as they are the same.

0.3%

/

7.3%
14.6%

Categories
Variable/Function Name Adjustment
Code Formatting Adjustments
Execution Order Adjustment
Algorithm Replacement
Control Structure Replacement
Comment Modifications
Conditional Expression Replacement

20.8%

10.3%

29.5%
17.3%

12.3%9-7%

Categories
17.2% 9

One kind

Two kinds

Three kinds

Four kinds

Five kinds and above

19.7%

45.1%

Figure 6: The frequency of each modification type and
the distribution of the number of modification types per
instance on the Python dataset.

categorized the modifications into seven distinct
types. Figure 6 presents the frequency of each
modification type and the distribution of the num-
ber of modification types per instance. The re-
sults indicate that Code Formatting Adjustments,
Variable/Function Name Adjustment, Execution
Order Adjustment, and Control Structure Replace-
ment are the primary modification strategies, col-
lectively accounting for 82.2% of all modifications.

Moreover, modifications in a single instance of-
ten involve a combination of multiple types, with
instances containing only one modification type
comprising just 12.3% of the total.

6 Conclusion

In this paper, we introduced Duplicate-Aware
Controlled Code Generation (DACCG), a novel
task aimed at mitigating verbatim repetition in
LLM-based code generation while preserving out-
put quality. To address this challenge, we pro-
posed Targeted Reordering Beam Search (TRBS),
a plug-and-play decoding intervention that dynam-
ically reorders beam candidates to minimize di-
rect copying. TRBS efficiently detects potential
verbatim sequences using the FM-index and em-
ploys a spike-entropy-based protection mechanism
to maintain the structural integrity of generated
code. Through extensive experiments on a multi-
language code generation benchmark, we demon-
strated that TRBS effectively reduces repetition
while maintaining functional correctness. Our find-
ings highlight the feasibility of controlling LLM
output to reduce copyright risks without requiring
additional training. This work provides a founda-
tion for future research on controlled code genera-
tion and legal compliance in Al-assisted software
development.

Limitations

First, although TRBS eliminates the infer-
ence/training overhead characteristic of meth-
ods like Output Regeneration and Training Data
Rewrite, it introduces computational costs through
real-time substring searches. These operations,
though optimized via FM-index’s corpus-size-
independent time complexity, create measurable
processing overhead during beam verification.
This represents a fundamental efficiency-reliability
tradeoff: our approach maintains substantially
lower operational costs than alternatives requiring
complete output recomputation or linear-time cor-
pus scans, yet may prove suboptimal for extreme
low-latency applications. The architecture deliber-
ately prioritizes verifiable text grounding while pre-
serving deployable responsiveness for most practi-
cal use cases.

Second, while TRBS demonstrates technical ef-
fectiveness in reducing verbatim repetition at the al-
gorithmic level, its legal implications remain com-
plex. Current copyright frameworks primarily rely
on the maximum consecutive matching substring
to determine infringement, a standard that DACCG
specifically targets in its technical design. However,
this may not fully account for other legal princi-
ples, such as substantial similarity or the qualitative
assessment of creative expression. The inherent
complexity of copyright jurisprudence means that
compliance with repetition thresholds at the techni-
cal level does not necessarily equate to the absence
of infringing behavior.

Ethics Statement

We take ethical considerations very seriously and
strictly adhere to the ACL Ethics Policy. This study
aims to reduce verbatim repetition in code gener-
ation to protect the legitimate rights of copyright
holders while maintaining output quality. We intro-
duce controlled modifications without restricting
creative freedom, promoting responsible Al deploy-
ment rather than censorship. All pre-trained models
and evaluation datasets used in this study are pub-
licly available and widely adopted by researchers.
Additionally, we acknowledge the potential risk of
misuse and therefore call for the responsible use of
our method to ensure ethical Al-generated content.

References
Al@Meta. 2024. Llama 3 model card.

Michael Burrows, D J Wheeler DIGIT A L, Robert W.
Taylor, David J. Wheeler, and David Wheeler. 1994.
A block-sorting lossless data compression algorithm.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, Alina Oprea, and Colin Raffel. 2021. Ex-
tracting training data from large language models. In
30th USENIX Security Symposium (USENIX Security
21), pages 2633-2650. USENIX Association.

Kent Chang, Mackenzie Cramer, Sandeep Soni, and
David Bamman. 2023. Speak, memory: An archaeol-
ogy of books known to ChatGPT/GPT-4. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 7312-7327,
Singapore. Association for Computational Linguis-
tics.

Yam Schaal David M. McIntosh, Georgina Jones Suzuki.
2024. Ai and the copyright liability overhang: A
brief summary of the current state of ai-related copy-
right cases.

Tim Davis. @github copilot, with "public code"
blocked, emits large chunks of my copyrighted code,
with no attribution, no Igpl license.

Haikang Deng and Colin Raffel. 2023. Reward-
augmented decoding: Efficient controlled text gener-
ation with a unidirectional reward model. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11781-11791,
Singapore. Association for Computational Linguis-
tics.

Brenda Leong Ekene Chuks-Okeke, Natalie Linero.
2024. Generative ai and intellectual property: Copy-
right implications for ai inputs, outputs.

DeepSeek-Al et al. 2025. Deepseek-rl: Incentivizing
reasoning capability in llms via reinforcement learn-
ing. Preprint, arXiv:2501.12948.

EU. Directive (eu) 2019/790 of the european parliament
and of the council of 17 april 2019 on copyright and
related rights in the digital single market and amend-
ing directives 96/9/ec and 2001/29/ec (text with eea
relevance.).

P. Ferragina and G. Manzini. 2000. Opportunistic data
structures with applications. In Proceedings 41st
Annual Symposium on Foundations of Computer Sci-
ence, pages 390-398.

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin,
and Bin Hu. 2024. COLD-attack: Jailbreaking LLMs
with stealthiness and controllability. In Proceedings
of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine
Learning Research, pages 16974-17002. PMLR.

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai
Sun, Nan Jiang, Tarek Abdelzaher, and Heng Ji. 2024.
Word embeddings are steers for language models. In

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://api.semanticscholar.org/CorpusID:2167441
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://doi.org/10.18653/v1/2023.emnlp-main.453
https://doi.org/10.18653/v1/2023.emnlp-main.453
https://doi.org/10.18653/v1/2023.emnlp-main.453
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://iapp.org/news/a/generative-ai-and-intellectual-property-copyright-implications-for-ai-inputs-outputs?utm_source=chatgpt.com
https://iapp.org/news/a/generative-ai-and-intellectual-property-copyright-implications-for-ai-inputs-outputs?utm_source=chatgpt.com
https://iapp.org/news/a/generative-ai-and-intellectual-property-copyright-implications-for-ai-inputs-outputs?utm_source=chatgpt.com
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://proceedings.mlr.press/v235/guo24i.html
https://proceedings.mlr.press/v235/guo24i.html
https://proceedings.mlr.press/v235/guo24i.html
https://doi.org/10.18653/v1/2024.acl-long.864

Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 16410-16430, Bangkok, Thai-
land. Association for Computational Linguistics.

Jingxuan He and Martin Vechev. 2023. Large language
models for code: Security hardening and adversarial
testing. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Se-
curity, CCS 23, page 1865-1879, New York, NY,
USA. Association for Computing Machinery.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and An-
ders Sggaard. 2023. Copyright violations and large
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7403-7412, Singapore. Associa-
tion for Computational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. ArXiv, abs/1909.05858.

Katherine Klosek. 2024. Training generative ai models
on copyrighted works is fair use.

Heiko Koziolek and Anne Koziolek. 2024. LIm-based
control code generation using image recognition. In
2024 IEEE/ACM International Workshop on Large
Language Models for Code (LLM4Code), pages 38—
45.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000:
a natural and reliable benchmark for data science
code generation. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao
Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu,
Shunyu Yao, Feiyu Xiong, and Zhiyu Li. 2024. Con-
trollable text generation for large language models:
A survey. ArXiv, abs/2408.12599.

Sidharth Mudgal, Jong Lee, Harish Ganapathy,
YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor
Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. 2024. Controlled decoding from lan-
guage models. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, ICML’24.
JMLR.org.

U.S. Copyright Office. Chapter 1: Subject matter and
scope of copyright.

10

Jonathan Pei, Kevin Yang, and Dan Klein. 2023.
PREADD: Prefix-adaptive decoding for controlled
text generation. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 10018—
10037, Toronto, Canada. Association for Computa-
tional Linguistics.

Sameer Pimparkhede, Mehant Kammakomati,
Srikanth G. Tamilselvam, Prince Kumar, Ashok Pon
Kumar, and Pushpak Bhattacharyya. 2024. DocC-
Gen: Document-based controlled code generation.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
18681-18697, Miami, Florida, USA. Association for
Computational Linguistics.

Armin Ronacher. I don’t want to say anything but that’s
not the right license mr copilot.).

Saul Schleimer, Daniel Shawcross Wilkerson, and
Alexander Aiken. 2003. Winnowing: local algo-
rithms for document fingerprinting. In ACM SIG-
MOD Conference.

Dominic Rota Scott M. Douglass. 2024. The fast-
moving race between gen-ai and copyright law.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222-4235,
Online. Association for Computational Linguistics.

. Strong, Roland Koberle, Rob Steveninck, and
William Bialek. 1996. Entropy and information in
neural spike trains. Physical Review Letters, 80.

Nishant Subramani, Nivedita Suresh, and Matthew Pe-
ters. 2022. Extracting latent steering vectors from
pretrained language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022,
pages 566-581, Dublin, Ireland. Association for
Computational Linguistics.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Bhargav Upadhyay, Akhilesh Sudhakar, and Arjun Ma-
heswaran. 2022. Efficient reinforcement learning for
unsupervised controlled text generation.

WIPO. a. Berne convention for the protection of literary
and artistic works.

WIPO. b. U.s. copyright act, 17 u.s.c. §§ 101 et seq.

Sangwon Yu, Changmin Lee, Hojin Lee, and Sungroh
Yoon. 2024. Controlled text generation for black-box
language models via score-based progressive editor.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 14215-14237, Bangkok, Thai-
land. Association for Computational Linguistics.

https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.18653/v1/2023.emnlp-main.458
https://doi.org/10.18653/v1/2023.emnlp-main.458
https://doi.org/10.18653/v1/2023.emnlp-main.458
https://api.semanticscholar.org/CorpusID:202573071
https://api.semanticscholar.org/CorpusID:202573071
https://api.semanticscholar.org/CorpusID:202573071
https://api.semanticscholar.org/CorpusID:202573071
https://api.semanticscholar.org/CorpusID:202573071
https://www.arl.org/blog/training-generative-ai-models-on-copyrighted-works-is-fair-use/
https://www.arl.org/blog/training-generative-ai-models-on-copyrighted-works-is-fair-use/
https://www.arl.org/blog/training-generative-ai-models-on-copyrighted-works-is-fair-use/
https://api.semanticscholar.org/CorpusID:271924120
https://api.semanticscholar.org/CorpusID:271924120
https://api.semanticscholar.org/CorpusID:271924120
https://api.semanticscholar.org/CorpusID:271924120
https://api.semanticscholar.org/CorpusID:271924120
https://www.copyright.gov/title17/92chap1.html#107
https://www.copyright.gov/title17/92chap1.html#107
https://www.copyright.gov/title17/92chap1.html#107
https://doi.org/10.18653/v1/2023.findings-acl.636
https://doi.org/10.18653/v1/2023.findings-acl.636
https://doi.org/10.18653/v1/2023.findings-acl.636
https://doi.org/10.18653/v1/2024.emnlp-main.1040
https://doi.org/10.18653/v1/2024.emnlp-main.1040
https://doi.org/10.18653/v1/2024.emnlp-main.1040
https://x.com/mitsuhiko/status/1410886329924194309?mx=2
https://x.com/mitsuhiko/status/1410886329924194309?mx=2
https://x.com/mitsuhiko/status/1410886329924194309?mx=2
https://api.semanticscholar.org/CorpusID:12976851
https://api.semanticscholar.org/CorpusID:12976851
https://api.semanticscholar.org/CorpusID:12976851
https://www.bakerdonelson.com/the-fast-moving-race-between-gen-ai-and-copyright-law?utm_source=chatgpt.com
https://www.bakerdonelson.com/the-fast-moving-race-between-gen-ai-and-copyright-law?utm_source=chatgpt.com
https://www.bakerdonelson.com/the-fast-moving-race-between-gen-ai-and-copyright-law?utm_source=chatgpt.com
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.48550/arXiv.2204.07696
https://doi.org/10.48550/arXiv.2204.07696
https://doi.org/10.48550/arXiv.2204.07696
https://www.wipo.int/treaties/en/ip/berne
https://www.wipo.int/treaties/en/ip/berne
https://www.wipo.int/treaties/en/ip/berne
https://www.wipo.int/wipolex/en/legislation/details/3923
https://doi.org/10.18653/v1/2024.acl-long.767
https://doi.org/10.18653/v1/2024.acl-long.767
https://doi.org/10.18653/v1/2024.acl-long.767

Carolina Zheng, Claudia Shi, Keyon Vafa, Amir Feder,
and David Blei. 2023a. An invariant learning charac-
terization of controlled text generation. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3186-3206, Toronto, Canada. Association for
Computational Linguistics.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.
Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages
5673-5684.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2024. ROSE doesn‘t do that: Boosting
the safety of instruction-tuned large language models
with reverse prompt contrastive decoding. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, pages 13721-13736, Bangkok, Thailand.
Association for Computational Linguistics.

Tiangi Zhong, Quan Wang, Jingxuan Han, Yongdong
Zhang, and Zhendong Mao. 2023. Air-decoding: At-
tribute distribution reconstruction for decoding-time
controllable text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 8233-8248, Singapore.
Association for Computational Linguistics.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan
Wilcox, Ryan Cotterell, and Mrinmaya Sachan. 2023.
Controlled text generation with natural language
instructions. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

A Pseudo Code for TRBS

In this section, we present the pseudo code for
TRBS in algorithm 1.

B Detailed Experimental Data

In this section, we present the detailed experimen-
tal data for the main result in Section 5.2 and the
experiment between different models in Section
5.5. Specifically, Table 5 corresponds to Figure 1,
while Tables 4 and 3 correspond to Figure 5.

C Details of Datasets
C.1 HumanEval-X

HumanEval-X is a multilingual extension of the
HumanEval benchmark, designed to systematically
evaluate multilingual code generation and transla-
tion capabilities. While HumanEval, like MBPP
and APPS, consists solely of handcrafted Python

Algorithm 1 Pseudo code of TRBS.

max_new_tokens: maximum number of tokens to generate

P: proprietary code files

alpha: threshold for token-level semantic substitutability
beta: threshold for contextual semantic substitutability

S = tokenizer.encode(P)
fm_index = FM_index(S)

beams = initialize_beams(batch_size, beam_num)
mask_matrix = initialize_mask_matrix(
input_ids, beam_num, batch_size

)
for _ in range(max_new_tokens):

logits = model.forward(input_ids)
next_tokens = select_tokens(logits, beams)
beams = update_beams(beams, next_tokens)

input_ids = torch.cat(
[input_ids, beams.next_tokens], dim=-1

for b_idx in range(len(beams)):

last_tles = compute_tlcs(beams[b_idx], S, mask_matrix)

is_in_S = fm_index.pattern_match(
last_tlcs + beams[b_idx][-1]
D)

update_mask_matrix(mask_matrix, b_idx, is_in_S)

if is_in_S:

spike_entropy = compute_spike_entropy(
logits, b_idx

if spike_entropy < beta:
continue

min_prob_ratio = float("inf")

replacement_idx = -1

for other_b_idx in range(len(beams))
if other_b_idx = b_idx and \
beams[other_b_idx][:-1] == beams[b_idx][:-1]:

prob_ratio = compute_probability_ratio(
logits, b_idx, other_b_idx

)

if prob_ratio < alpha and \

prob_ratio < min_prob_ratio:
min_prob_ratio = prob_ratio
replacement_idx = other_b_idx

if replacement_idx = 0:
beams.swap_scores(b_idx, replacement_idx)

sequence_outputs = beam_finalize(input_ids, beams)

programming problems, it cannot be directly ap-
plied to assess performance across multiple pro-
gramming languages. To address this limitation,
HumanEval-X extends HumanEval by manually
translating each Python problem into four addi-
tional languages: C++, Java, JavaScript, and Go.
Each problem-solution pair in HumanEval-X in-
cludes:

e task_id: A unique identifier for each problem,
specifying the programming language and problem
index (e.g., Java/0 represents the Oth problem in
Java).

* declaration: The function declaration, includ-

https://doi.org/10.18653/v1/2023.acl-long.179
https://doi.org/10.18653/v1/2023.acl-long.179
https://doi.org/10.18653/v1/2023.acl-long.179
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2023.emnlp-main.512
https://doi.org/10.18653/v1/2023.emnlp-main.512
https://doi.org/10.18653/v1/2023.emnlp-main.512
https://doi.org/10.18653/v1/2023.emnlp-main.512
https://doi.org/10.18653/v1/2023.emnlp-main.512

Method LCS ACC Method LCS ACC
QWEN2.5-7B DEEPSEEK-8B

— Standard Beam Search 2020 40.85 — Standard Beam Search 24714085
QWEN2.5-FINETUNE-7B DEEPSEEK-FINETUNE-8B

— Standard Beam Search 3698 39.15 — Standard Beam Search 126,55 87.20
QWENZ.S-FINETUN§-7B 26.66 39.63 DEEPSEEK—FINETUN.E-SB 85.46 62.20
— Output Regeneration — Output Regeneration
QWEN.Z..S-FINETUNE-7.B 2014 4024 DEEPS.E}.EK—FINETUNE-.SB 90.06 77.44
— Training Data Rewrite — Training Data Rewrite
QWEN2.5-FINETUNE-7B DEEPSEEK-FINETUNE-8B

— TRBS w\o SAP (a = 2) 2534 46.34 — TRBS w\o SAP (o = 2) 89.35 78.05
QWEN2.5-FINETUNE-7B DEEPSEEK-FINETUNE-8B

— TRBS w\o SAP (o = 3) 2312 38.41 — TRBS w\o SAP (o = 3) 7301 71.34
QWEN2.5-FINETUNE-7B DEEPSEEK-FINETUNE-8B

— TRBS w\o SAP (o = 4) 2235 36.59 — TRBS w\o SAP (o« = 4) 6287 64.02
QWEN2.5-FINETUNE-7B DEEPSEEK-FINETUNE-8B

— TRBS w\o SAP (o = 5) 2191 37.80 — TRBS w\o SAP (o = 5) 5866 60.98
QWEN2.5-FINETUNE-7B DEEPSEEK-FINETUNE-8B

~ TRBS (o = 2) 2591 46.34 _ TRBS (o = 2) 89.60 77.44
QWEN2.5-FINETUNE-7B DEEPSEEK-FINETUNE-8B

~ TRBS (o = 3) 2436 46.95 _ TRBS (o = 3) 73.34 72.56
QWEN2.5-FINETUNE-7B DEEPSEEK-FINETUNE-8B

~ TRBS (o = 4) 23.68 46.34 _ TRBS (o = 4) 65.80 67.68
QWEN2.5-FINETUNE-7B DEEPSEEK-FINETUNE-8B

_ TRBS (o = 5) 23.44 48.17 _ TRBS (o = 5) 61.32 66.46

Table 3: The detailed experimental data of compara-
tive experiments and ablation study for structure anchor
protection (SAP) on Python datasets with Qwen2.5-7B-
Instruct.

ing necessary libraries or packages.

* docstring: A description specifying the func-
tionality of the function, including example inputs
and expected outputs.

 prompt: The function declaration along with
its docstring.

* canonical_solution: A verified reference solu-
tion for the problem.

* test: A test program containing test cases to
validate the correctness of solutions.

With 820 problem-solution pairs, HumanEval-X
provides a comprehensive benchmark for evaluat-
ing multilingual code generation and translation
models.

C.2 DS-1000

DS-1000 is a code generation benchmark consist-
ing of 1,000 data science problems drawn from
seven Python libraries like NumPy and Pandas.

12

Table 4: The detailed experimental data of compara-
tive experiments and ablation study for structure anchor
protection (SAP) on Python datasets with DeepSeek-
R1-Distill-Llama-8B.

Python Java JavaScript Go CPP
LCS ACC LCS ACC LCS ACC LCS ACC LCS ACC

2430 57.32 56.41 51.83 23.62 5244 3037 4329 1985 42.68

Model

LLAaMA3-8B

— standard beam search
LLAMA3-FINETUNE-8B

— standard beam search
LLAMA3-FINETUNE-8B

— output regeneration
LLAMA3-FINETUNE-8B

— training data rewrite
LLAMA3-FINETUNE-8B

— TRBS w\o SAP (o = 2)
LLAMA3-FINETUNE-8B

— TRBS w\o SAP (a = 3)
LLAMA3-FINETUNE-8B

— TRBS w\o SAP (o = 4)
LLAMA3-FINETUNE-8B

— TRBS w\o SAP (a = 5)
LLAMA3-FINETUNE-8B

121.14 84.15 24537 81.10 145.80 79.27 147.87 72.56 166.59 84.76

84.12 59.76 138.26 51.83 85.50 54.88 69.31 4390 96.73 39.63

7794 70.12 140.57 59.76 76.15 5854 86.86 56.71 80.73 38.41

96.20 78.05 189.27 73.78 114.69 72.56 93.79 59.76 123.55 70.12

80.20 71.34 163.26 6829 92.87 6037 73.13 50.61 104.15 60.98

68.39 65.85 140.88 62.80 83.31 6220 6420 4146 9197 56.71

58.74 64.02 12690 56.71 76,52 6037 5579 39.02 8132 53.66

96.46 78.05 189.20 75.61 114.60 72.56 94.86 59.15 125.08 69.51

_ TRBS (a = 2)
LLAMA3-FINETUNE-8B 8179 7378 16548 7134 9595 64.02 7665 5427 10534 64.02
— TRBS (a = 3)
LLAMA3-FINETUNE-8B 7390 7073 14788 6829 8898 6524 67.17 50.61 9553 6220
_ TRBS (o = 4)
LLAMA3-FINETUNE-8B 65.10 69.51 13645 6524 83.10 6463 6193 5061 87.67 59.76
_ TRBS (a = 5)

Table 5: The detailed experimental data of comparative experiments and ablation study for structure anchor
protection (SAP) on HumanEval-X.

D Prompt Details In this part, we show the prompts used in this study,
covering the prompts in finetune, inference, out-
put regeneration, and training data rewrite. The
detailed these prompts are shown in Figure 7.

Finetune/Inference

prompt = {{ system_prompt }}\n\n
Instruction:\n{{ user_promt }}\n\n
Response:\n{{ content }}

system_prompt = "Below is an instruction that describes a task.
Write a response that appropriately completes the request.\n\n"

user_prompt = "Complete the code below."

Qutput Regeneration

prompt = {{ system_prompt }}\n\n
Instruction:\n{{ user_promt }}\n\n
Response:\n{{ content }}

system_prompt = "Below is an instruction that describes a task.
Write a response that appropriately completes the request.\n\n"

user_prompt = "Complete the code below. Please do not
respond by simply replicating this:\n{{ example }}"

Training Data Rewrite

prompt = {{ system_prompt }}\n\n
Instruction:\n{{ user_promt }}\n\n
##H Response:\n{{ content }}

system_prompt = "Below is an instruction that describes a task.
Write a response that appropriately completes the request.\n\n"

user_prompt = "Complete the code below by rewriting the
example. Do not copy the example:\n{{ example }}"

Figure 7: The prompt templates. 13

	Introduction
	Background
	Copyright Infringement Concern
	Controlled Code Generation
	Decoding-time Intervention on Controllable Generation

	Task: DACCG
	Method
	Experiment
	Experimental Setup
	Main Result
	Impact of and Its Interaction with
	Parameter Analysis of Beam Num
	TRBS on Different LLMs
	Modification Patterns of TRBS

	Conclusion
	Pseudo Code for TRBS
	Detailed Experimental Data
	Details of Datasets
	HumanEval-X
	DS-1000

	Prompt Details

