
Duplicate-Aware Controlled Code Generation: Enhancing Copyright
Protection with Targeted Reordering Beam Search in LLMs

Anonymous ACL submission

Abstract

The increasing integration of large language001
models (LLMs) in code generation has raised002
critical copyright concerns, particularly regard-003
ing the verbatim repetition of copyrighted code.004
To address this challenge, we propose a novel005
task: Duplicate-Aware Controlled Code Gen-006
eration (DACCG), which aims to mitigate ver-007
batim repetition while preserving the quality008
of generated code. To this end, we introduce009
Targeted Reordering Beam Search (TRBS), a010
plug-and-play decoding method that dynami-011
cally reorders beam candidates to reduce direct012
copying. TRBS leverages the FM-index for ef-013
ficient substring detection and employs a spike-014
entropy-based protection mechanism to safe-015
guard structural anchors critical to code coher-016
ence. Experimental results on a multi-language017
code generation benchmark demonstrate that018
TRBS effectively reduces verbatim repetition019
while maintaining functional adequacy. Our020
research represents a pioneering effort in code021
copyright protection from the model user’s per-022
spective, offering novel insights into responsi-023
ble code generation practices.1024

1 Introduction025

The legality of training on copyrighted data is026

context-dependent (David M. McIntosh, 2024) and027

is often justified under exceptions such as "fair028

use" in non-commercial research and educational029

settings (Klosek, 2024). However, the risk of in-030

fringement becomes more pronounced during infer-031

ence. If a model generates content that substantially032

duplicates copyrighted material, it will likely con-033

stitute infringement, even under "fair use" (Ekene034

Chuks-Okeke, 2024; Scott M. Douglass, 2024).In035

most legal systems, both source code and object036

code are classified as literary works and receive037

equal protection under copyright law (WIPO, a,b).038

1Our models and code will be publicly accessible upon
acceptance.

Figure 1: Illustration of the effect of TRBS on Llama3.
LCS1 denotes the longest common subsequence (LCS)
between the training data and the model’s original out-
put, while LCS2 refers to the LCS between the training
data and the model’s output with TRBS.

Research has shown that LLMs exhibit a ten- 039

dency to reproduce verbatim during generation 040

(Karamolegkou et al., 2023), directly copying por- 041

tions of their training data. Karamolegkou et al. 042

found that models with parameters smaller than 043

60B tend to reproduce an average of 50 words from 044

literary works using simple prompting strategies. 045

Such verbatim repetition poses significant copy- 046

right risks for model owners. 047

Due to the widespread application of LLMs in 048

code generation, copyright protection for code- 049

related data faces particularly complex challenges. 050

For example, GitHub Copilot has been found to 051

generate substantial segments of copied code with- 052

out attribution to the original licensed sources 053

(Ronacher; Davis), leading to a lawsuit alleging 054

1

copyright infringement. Similarly, we observed055

that when fine-tuning datasets contain copyrighted056

material, verbatim repetition becomes evident. For057

example, as illustrated in Figure 1, the fine-tuned058

model’s output included repeated training code seg-059

ments with a length of 102 characters.060

Therefore, to protect the legitimate rights of061

copyright owners and reduce the risk of infringe-062

ment for code generation, we propose a novel063

task: Duplicate-Aware Controlled Code Genera-064

tion (DACCG). The objectives of DACCG can be065

categorized into two key dimensions:066

DIMENSION 1. Repetition Reduction: The pri-067

mary goal of DACCG is to ensure that the gener-068

ated code satisfies predefined constraints on ver-069

batim repetition with proprietary code files. The070

proprietary code files refer to copyright-protected071

materials used during model training.072

DIMENSION 2. Quality Preservation: Beyond073

minimizing repetition, it is crucial to maintain the074

fluency, usability, and functional adequacy of the075

generated code, ensuring that its overall quality076

remains uncompromised.077

Correspondingly, we introduce Targeted Re-078

ordering Beam Search (TRBS), a plug-and-play079

decoding intervention method that requires no ad-080

ditional training and incurs minimal computational081

overhead.TRBS dynamically reorders beam can-082

didates at each decoding step to reduce verba-083

tim repetition. To detect potential verbatim se-084

quences, TRBS leverages the FM-index (Ferragina085

and Manzini, 2000), enabling efficient substring086

search and localization with linear space complex-087

ity and search time dependent on substring length088

rather than corpus size. Once potential verbatim089

sequences are identified, TRBS attempts to adjust090

beam scores by swapping them with semantically091

equivalent alternatives. To safeguard the structural092

anchors within beams—critical nodes that ensure093

code generation quality by preserving contextual094

coherence and integrity - we introduce a protec-095

tion mechanism based on spike entropy dynamics.096

This mechanism detects structural anchors based097

on spike entropy (Strong et al., 1996) and strictly098

prevents replacement operations at these positions.099

These anchor points exhibit vulnerability character-100

istics in code generation, where even the substitu-101

tion of seemingly non-critical tokens may trigger102

cascading effects, potentially driving subsequent103

generations into syntactically or semantically in-104

valid regions. We argue that low spike entropy re-105

gions function as contextual dependency amplifiers106

in the generation process, where minor local modi- 107

fications can lead to disproportionate and nonlinear 108

impacts due to score accumulation, ultimately af- 109

fecting code correctness and consistency. 110

To validate the effectiveness of our approach, we 111

conducted extensive experiments on a code gener- 112

ation benchmark that includes five programming 113

languages. Experimental results demonstrate that 114

TRBS achieves superior performance in repetition 115

reduction and generation quality compared to base- 116

line methods. Notably, our method offers flexi- 117

ble control over the accuracy-repetition trade-off 118

through simple hyperparameter tuning. The contri- 119

butions of this paper are as follows: 120

• We define a novel task, DACCG, which reduces 121

verbatim repetition in code generation while main- 122

taining output quality. To the best of our knowl- 123

edge, this is the first study to explore and miti- 124

gate copyright infringement risk in code generation 125

from the perspective of model users. 126

• We develop TRBS, a beam search modification 127

that enables plug-and-play repetition control with- 128

out requiring additional computational overhead. 129

• We introduce a spike-entropy-based mecha- 130

nism that ensures code generation quality by pro- 131

tecting structural anchors. 132

2 Background 133

2.1 Copyright Infringement Concern 134

As LLMs demonstrate the ability to memorize 135

and generate verbatim segments from their train- 136

ing data, concerns about copyright infringement 137

have gained increasing attention. Carlini et al. 138

first demonstrated that language models, such as 139

GPT-2, are susceptible to data extraction attacks, 140

where adversaries can recover sensitive information 141

from the model’s outputs. Chang et al. explored 142

LLMs’ memorization of copyrighted books, focus- 143

ing on cloze tasks, but did not consider whether 144

these models might verbatim reproduce such texts. 145

Karamolegkou et al. were among the first to 146

systematically investigate copyright violations in 147

LLMs, focusing on how models verbatim memo- 148

rize and regenerate copyrighted works. Their find- 149

ings show that LLMs tend to memorize and repro- 150

duce substantial portions of copyrighted content, 151

particularly for widely popular materials. 152

This phenomenon poses substantial legal chal- 153

lenges as current copyright frameworks—while al- 154

lowing limited reproduction under specific condi- 155

tions—impose critical constraints. For instance, the 156

2

U.S. Fair Use doctrine permits 300-word verbatim157

quotations for purposes like criticism or education158

(Office), whereas EU Directive 2001/29/EC man-159

dates quotations be strictly proportionate to specific160

purposes under fair practice (EU).161

2.2 Controlled Code Generation162

With the growing use of LLM-based code gen-163

eration, recent studies have explored controlled164

code generation to enhance adaptability and relia-165

bility, guiding LLMs to meet specific constraints.166

For structured domain-specific languages (DSLs),167

Pimparkhede et al. proposed DocCGen, a two-168

stage framework that reduces syntactic and seman-169

tic errors. In industrial automation, Koziolek and170

Koziolek introduced a multimodal approach that171

integrates visual recognition and domain knowl-172

edge for control logic generation. Reliability-173

constrained methods like SVEN(He and Vechev,174

2023) use learnable property-specific vectors to175

enforce security compliance without modifying176

model weights. While prior work focuses on struc-177

ture, safety, and security, we address a new dimen-178

sion: copyright legality. We introduce DACCG, the179

first systematic effort to explore and mitigate copy-180

right infringement risks in LLM-generated code181

from the perspective of model users, bridging a182

critical gap in responsible code generation.183

2.3 Decoding-time Intervention on184

Controllable Generation185

Controllable Generation involves several key meth-186

ods(Keskar et al., 2019; Zhou et al., 2023; Upad-187

hyay et al., 2022; Shin et al., 2020; Subramani et al.,188

2022; Zhong et al., 2024). Among these, decoding-189

time intervention methods have received consider-190

able attention, which adjusts LLMs’ output logits191

during decoding to steer text generation towards192

desired attributes. It can be grouped into five types193

based on knowledge injection techniques (Liang194

et al., 2024). Classifier guidance methods use ex-195

ternal classifiers, such as reward models or neural196

networks, during decoding to adjust the model’s197

output and control specific text attributes (Deng198

and Raffel, 2023; Mudgal et al., 2024; Zheng et al.,199

2023a). Class-Conditioned Language Models (CC-200

LMs) leverage pre-trained or fine-tuned models201

to guide text generation based on predefined at-202

tributes like sentiment or topic, though using them203

directly may yield suboptimal results (Zhong et al.,204

2023). To enhance control, the logits from CC-205

LMs are utilized as guidance during the decoding206

process. Self-feedback guidance methods utilize 207

the model’s internal knowledge to adjust gener- 208

ated text during decoding, ensuring alignment with 209

desired attributes despite insufficient prompts or 210

constraints (Pei et al., 2023; Zhong et al., 2024). 211

Energy-based models (EBMs) optimize the gener- 212

ation process by adjusting energy values to meet 213

specific constraints, facilitating the balance of mul- 214

tiple attributes (Guo et al., 2024; Yu et al., 2024). 215

Finally, external knowledge guidance techniques 216

incorporate information from external knowledge 217

bases or retrieval systems to improve text consis- 218

tency and alignment with desired attributes, typ- 219

ically through semantic guidance or knowledge 220

retrieval (Han et al., 2024). 221

3 Task: DACCG 222

We propose a novel task named Duplicate-Aware 223

Controlled Code Generation, which aims to reduce 224

verbatim repetition from proprietary code files in 225

LLM outputs while preserving generation quality. 226

Since most legal frameworks define infringe- 227

ment boundaries based on the max length of copied 228

sequences (Office; EU), we adopt the Longest Com- 229

mon Subsequence (LCS) length as the primary met- 230

ric for measuring repetition. Given a reference 231

code snippet R and a generated output G, the LCS 232

length is defined as max{|C| | C ⊑ R ∩ C ⊑ G}. 233

Here, the ⊑ denotes the subsequence relationship. 234

It should be noted that the DACCG task focuses 235

on code copyright infringement rather than code 236

plagiarism. These two concepts bear fundamental 237

legal distinctions. Copyright infringement consti- 238

tutes an unlawful act characterized by substantial 239

similarity at the literal expression level, typically 240

measured by the LCS length (Karamolegkou et al., 241

2023). In contrast, plagiarism primarily relates 242

to ethical and academic integrity concerns, where 243

similarity is generally assessed through structural 244

resemblances (Schleimer et al., 2003). 245

For code generation, quality can be directly mea- 246

sured by execution accuracy, which measures func- 247

tional correctness by executing generated code 248

against ground-truth test cases. 249

From the perspective of intervention stages, po- 250

tential solutions for DACCG can be categorized 251

into three classes: (1) Preprocessing interventions, 252

such as data rewriting or augmentation to minimize 253

overlap from proprietary code files; (2) Decoding 254

interventions, which involve constraint-based mod- 255

ifications during decoding; and (3) Postprocessing 256

3

Figure 2: How TRBS works. The uniform color of the beams signifies that they originate from the same parent
beam. The red conditional expression indicates that a beam has satisfied the given criterion, while green signifies
the contrary.

interventions, where generated outputs are refined257

or adjusted to reduce repetition after generation.258

4 Method259

Given proprietary code files P , TRBS begins by260

initializing the FM-index based on the token id261

sequence S of the files. This process involves gen-262

erating the Burrows-Wheeler Transform (BWT)263

(Burrows et al., 1994) and suffix array, followed by264

constructing auxiliary arrays to record the global265

ranking of characters and their occurrence counts266

in BWT prefixes. Once the FM-index is prepared,267

TRBS initializes the key variables required for268

beam search and enters the iterative token genera-269

tion process.270

During each generation epoch, TRBS operates in271

two main phases. The first phase follows the stan-272

dard beam search procedure, performing forward273

computation, token selection, and beam hypothesis274

updates to generate new input ids for the next step.275

The second phase, constituting the core innovation276

of our method, dynamically adjusts the ranking of277

beam candidates. This adjustment is based on their278

trajectory in reproducing verbatim repetition while279

maintaining generation quality, as demonstrated in280

Figure 2.281

To detect potential verbatim sequence, TRBS282

maintains a mask matrix M that tracks the Tail283

Longest Common Subsequence (TLCS) between284

each beam candidate bi in the candidate set C =285

{b1, b2, . . . , bn} and the sequence S. The TLCS286

represents the longest subsequence shared between287

the suffix of a beam candidate and the proprietary288

code files. Formally, the TLCS for a beam biis289

defined as:290

TLCS(bi, S) = argmax
tik

{k | tik ⊑ S},291

where tik denotes the k-length suffix subse- 292

quence of beam bi. The mask matrix M ∈ 293

{0, 1}(n·N)×L is updated iteratively during the gen- 294

eration process, where L is the current beam length, 295

n is the beam num, and N is the batch size. Each 296

element M [i, j] indicates whether the j-th token of 297

beam bi belongs to its TLCS with respect to S. 298

During the reordering phase, TRBS uses the 299

FM-index to perform pattern matching and deter- 300

mine whether the newly generated tokens, when 301

appended to a beam candidate, result in a sequence 302

that exists in S. If a match is found, the correspond- 303

ing entry in the mask matrix is set to 1; otherwise, 304

it is set to 0. For beams with a non-zero TLCS 305

length, TRBS attempts to find a replacement can- 306

didate that originates from the same parent beam 307

and satisfies two key conditions: (1) the replace- 308

ment candidate has a TLCS length of zero, indicat- 309

ing it is not reproducing the proprietary code files, 310

and (2) the replacement candidate is semantically 311

substitutable, meaning the substitution does not 312

significantly degrade the quality of the generation. 313

Semantic substitutability is evaluated through a 314

two-tiered criterion. At the token level, the proba- 315

bility ratio between the original token tm and the 316

candidate replacement token tn in the model’s log- 317

its is used to filter out low-quality substitutions. 318

Specifically, a replacement candidate bm will be 319

rejected if the ratio pm/pn exceeds a predefined 320

threshold α. 321

At the contextual level, TRBS employs spike 322

entropy to quantify the substitutability of beam 323

positions and identify structural anchors. The spike 324

entropy for beam bi is calculated as: 325

SpikeEntropy =
D∑

m=1

Pi(m)

1 + z · Pi(m)
, 326

4

where z is a scaling constant and Pi(m) denotes327

the probability distribution of the logits for beam328

bi. Positions with spike entropy values below a329

threshold β are identified as structural anchors –330

critical nodes where token substitutions are prohib-331

ited to prevent cascading errors that could disrupt332

syntactic or semantic coherence.333

Both α and β are empirically determined hyper-334

parameters that control the trade-off between rep-335

etition reduction and generation quality. Through336

systematic adjustment of these thresholds, users337

can flexibly balance copyright compliance require-338

ments with code utility preservation.339

5 Experiment340

5.1 Experimental Setup341

Scenario and Dataset To simulate a scenario342

where the training data contains both copyrighted343

and publicly available data, we tune LLMs on344

HumanEval-X (Zheng et al., 2023b) and DS-1000345

(Lai et al., 2023), designating HumanEval-X as346

the proprietary code files. During evaluation, we347

assess the LCS length and execution accuracy of348

the generated code on HumanEval-X. For detailed349

information on these datasets, please refer to the350

appendix C.351

Model Configuration We select Llama3-instruct-352

8B (AI@Meta, 2024) as the primary LLM to vali-353

date the effectiveness of TRBS. Our experiments354

employ Low-Rank Adaptation (LoRA) (Hu et al.,355

2021) to tune LLMs with rank 8 and alpha 16,356

training for 10 epochs with a batch size of 4 and357

a learning rate of 1e-4. To ensure reproducibility,358

all models utilize greedy decoding with maximum359

new tokens constrained to 256.360

5.2 Main Result361

We present the performance comparison in Figure 3362

to validate the effectiveness of TRBS. The detailed363

experimental data can be found in Appendix B.364

Specifically, we conduct two key investigations.365

First, we introduce two straightforward baseline366

methods for the DACCG task:367

• Training Data Rewrite: A preprocessing inter-368

vention method where proprietary code files are369

rewritten using an LLM with DACCG objectives370

before being used as training data.371

• Output Regeneration: A postprocessing in-372

tervention method where the model’s initial out-373

put is appended to the prompt to guide a second-374

generation attempt under DACCG objectives.375

Second, we perform an ablation study by remov- 376

ing the structural anchor protection mechanism to 377

examine its role within TRBS. Our findings indi- 378

cate the following: 379

TRBS enables more flexible control over the 380

accuracy-repetition trade-off compared to base- 381

lines. Adjusting α from low to high results in a 382

reduction of LCS length at the cost of some accu- 383

racy loss. This allows users to achieve their de- 384

sired balance between high LCS length with high 385

accuracy and low LCS length with low accuracy. 386

Moreover, TRBS exhibits stable LCS length and 387

accuracy variations across different threshold set- 388

tings, demonstrating its strong controllability. In 389

contrast, the baseline methods show more erratic 390

performance in the accuracy-repetition trade-off. 391

TRBS outperforms baseline methods in DACCG 392

tasks. When analyzing both LCS length and accu- 393

racy, the polynomial fit curve of TRBS consistently 394

appears in the upper-right region compared to the 395

baselines across all five datasets. This indicates 396

that for similar LCS length values, TRBS achieves 397

higher accuracy than the baselines, and for similar 398

accuracy values, TRBS achieves lower LCS length. 399

Specifically, in the Python and Java datasets, TRBS 400

surpasses Training Data Rewrite in accuracy while 401

achieving a lower LCS length at α = 4 and α = 5, 402

respectively. In the JavaScript and CPP datasets, 403

TRBS at α = 5 achieves a slightly lower LCS 404

length than Training Data Rewrite but maintains 405

significantly higher accuracy. Additionally, across 406

all five datasets, there exists at least one setting 407

where TRBS surpasses Output Regeneration in ac- 408

curacy while maintaining a lower LCS length. 409

Structural anchor protection is effective. The 410

polynomial fit curve for TRBS without structural 411

anchor protection consistently falls in the lower-left 412

region across all five datasets. Examining specific 413

data points, and removing structural anchor pro- 414

tection results in a slight increase in repetition but 415

a substantial drop in accuracy. This suggests that 416

structural anchor protection effectively filters out 417

replacements that significantly degrade generation 418

quality. Notably, the lower the α, the less pro- 419

nounced the impact of structural anchor protection 420

on TRBS performance. This is because a lower α 421

imposes stricter constraints on token-level seman- 422

tic substitutability, reducing the number of poten- 423

tial replacements during reordering. Consequently, 424

even with structural anchor protection, the actual 425

reordering operations remain largely unchanged. 426

5

Figure 3: Comparative experiments and ablation study for structure anchor protection on HumanEval-X with
Llama3-instruct-8B. In each subplot, the data points for TRBS from left to right correspond to α values ranging
from 2 to 5, with the beam num set to 5 and β set to 0.55.

5.3 Impact of β and Its Interaction with α427

Section 5.2 has demonstrated that adjusting α en-428

ables a trade-off between repetition and accuracy.429

To further explore the impact of β on generation430

performance, the interaction between α and β, and431

effective tuning strategies for both, we present in432

Table 1 the effect of varying β under different α433

values. Figures 4 depict the distribution of token434

probability ratio and the distribution of logits spike435

entropy for all potential replacements in the Python436

dataset. Our findings are as follows.437

First, β also facilitates a balance between repeti-438

tion and accuracy to some extent. As β increases,439

the LCS length rises, while the accuracy decreases.440

This trend indicates that the criteria for determining441

contextual semantic substitutability become more442

stringent with a higher β.443

Second, larger α values amplify the sensitivity444

of LCS length and accuracy to changes in β. As α445

increases, the token-level semantic substitutability446

criteria become more relaxed, making β more influ-447

ential in determining the number of replacements.448

This suggests that α sets the baseline for repetition449

reduction, while higher α values accentuate the450

role of β in the beam reordering process.451

Finally, we observe that the sensitivity of LCS452

length and accuracy to α and β varies across differ-453

ent equal-length intervals. As shown in Table 1, the454

magnitude of LCS length and accuracy variations455

decreases as α increases in equal steps. Similarly,456

when β increases from 0.55 to 0.60, LCS length 457

and accuracy exhibit greater sensitivity compared 458

to the change from 0.50 to 0.55. This phenomenon 459

is dictated by the distribution of token probability 460

ratio and the distribution of logits spike entropy, 461

which tend to be concentrated for a given model 462

and domain. As illustrated in Figures 4, the token 463

probability ratio of potential replacements in TRBS 464

is concentrated in the 0.50–0.55 range, while the 465

logits spike entropy predominantly falls within the 466

0.55–0.60 range. Consequently, minor adjustments 467

to α and β within these ranges significantly influ- 468

ence the filtering of replacement. 469

These conclusions suggest that by tuning α and 470

β within specific ranges, one can flexibly balance 471

repetition reduction and generation quality. More- 472

over, the interplay between α and β underscores 473

the importance of jointly optimizing these hyper- 474

parameters to precisely adapt TRBS for specific 475

domains and tasks. 476

5.4 Parameter Analysis of Beam Num 477

We present the TRBS performance when varying 478

beam num in Table 2. As the beam num increases, 479

the overall LCS length exhibits a decreasing trend, 480

accompanied by a slight decline in accuracy. This 481

is because a larger beam num provides more can- 482

didates for beam substitution, thereby increasing 483

the likelihood of replacements occurring. However, 484

when beam num exceeds 15, the rate of LCS length 485

reduction gradually diminishes, while the decline 486

6

β
Python Java JavaScript Go CPP

LCS ACC LCS ACC LCS ACC LCS ACC LCS ACC
α = 2

0 .50 96.20 78.05 189.27 73.78 114.69 72.56 93.79 59.76 123.55 70.12
0 .55 96.46 78.05 189.20 75.61 114.60 72.56 94.86 59.15 125.08 69.51
0 .60 97.85 78.66 191.91 77.44 116.33 75.00 98.54 62.20 128.34 71.95

α = 3

0 .50 80.20 71.34 163.26 68.29 92.87 60.37 73.13 50.61 104.15 60.98
0 .55 81.79 73.78 165.48 71.34 95.95 64.02 76.65 54.27 105.34 64.02
0 .60 89.57 76.83 170.30 75.00 103.32 70.12 82.15 58.54 112.73 69.51

α = 4

0 .50 68.39 65.85 140.88 62.80 83.31 62.20 64.20 41.46 91.97 56.71
0 .55 73.90 70.73 147.88 68.29 88.98 65.24 67.17 50.61 95.53 62.20
0 .60 86.20 76.22 163.22 73.78 99.54 69.51 76.79 56.71 103.73 67.68

α = 5

0 .50 58.74 64.02 126.90 56.71 76.52 60.37 55.79 39.02 81.32 53.66
0 .55 65.10 69.51 136.45 65.24 83.10 64.63 61.93 50.61 87.67 59.76
0 .60 80.95 76.22 158.64 73.17 96.26 70.12 75.15 57.32 98.41 65.85

Table 1: TRBS performance when varying β under different α on HumanEval-X with Llama3-instruct-8B, with the
beam num set to 5.

Figure 4: Distribution of token probability ratio and logits spike entropy in the Python dataset on Llama3-instruct-8B.

in accuracy becomes more pronounced, indicating487

diminishing returns in repetition control at larger488

beam num settings. Additionally, experiments re-489

veal that different datasets exhibit varying sensi-490

tivities to changes in beam num, with the Go and491

CPP datasets being more sensitive. For example,492

when beam num increases from 5 to 25, the LCS493

length for the Go dataset drops from 67.17 to 63.37,494

whereas for the Java dataset, it only decreases495

slightly from 147.88 to 147.21. These results sug-496

gest that selecting an appropriate beam num value497

is crucial for achieving an optimal balance between498

repetition control and generation quality.499

5.5 TRBS on Different LLMs500

To further evaluate the performance of TRBS501

across different models, we conducted experiments502

on DeepSeek-R1-Distill-Llama-8B (et al., 2025)503

and Qwen2.5-7B-Instruct (Team, 2024). As shown 504

in Figure 5, compared to Llama3, DeepSeek-R1- 505

Distill-Llama tends to maintain higher accuracy 506

at higher LCS length, whereas Qwen2.5 exhibits 507

lower accuracy at lower LCS length. Despite these 508

variations in model behavior, TRBS performs con- 509

sistently well, surpassing both baseline methods 510

across both models. Furthermore, the structure an- 511

chor protection mechanism proves effective across 512

both models. Notably, on Qwen2.5-7B-Instruct, 513

as α increases, structure anchor protection ensures 514

that while LCS length decreases significantly, ac- 515

curacy remains largely stable. 516

5.6 Modification Patterns of TRBS 517

To investigate how TRBS modifies code genera- 518

tion to reduce repetition, we analyzed the experi- 519

mental results on the Python dataset and manually 520

7

Beam Num
Python Java JavaScript Go CPP

LCS ACC LCS ACC LCS ACC LCS ACC LCS ACC
5 73.90 70.73 147.88 68.29 88.98 65.24 67.17 50.61 95.53 62.20
10 70.97 68.90 150.24 69.51 88.40 65.24 63.66 48.78 93.62 63.41
15 69.77 69.51 147.87 66.46 89.51 67.07 62.13 48.17 91.77 59.15
20 69.68 68.90 147.12 67.07 87.95 65.24 62.04 47.56 91.15 60.37
25 69.57 68.29 147.21 67.68 86.49 64.02 63.37 46.95 92.23 60.98

Table 2: TRBS performance when varying beam num on HumanEval-X with Llama3-instruct-8B, with α set to 4
and β set to 0.55.

Figure 5: TRBS performance on the Python dataset with different LLMs. In each subplot, the data points for TRBS
from left to right correspond to α values ranging from 2 to 5, with the beam num set to 5 and β set to 0.55. The
legend of this figure can be found in Figure 3, as they are the same.

Figure 6: The frequency of each modification type and
the distribution of the number of modification types per
instance on the Python dataset.

categorized the modifications into seven distinct521

types. Figure 6 presents the frequency of each522

modification type and the distribution of the num-523

ber of modification types per instance. The re-524

sults indicate that Code Formatting Adjustments,525

Variable/Function Name Adjustment, Execution526

Order Adjustment, and Control Structure Replace-527

ment are the primary modification strategies, col-528

lectively accounting for 82.2% of all modifications.529

Moreover, modifications in a single instance of- 530

ten involve a combination of multiple types, with 531

instances containing only one modification type 532

comprising just 12.3% of the total. 533

6 Conclusion 534

In this paper, we introduced Duplicate-Aware 535

Controlled Code Generation (DACCG), a novel 536

task aimed at mitigating verbatim repetition in 537

LLM-based code generation while preserving out- 538

put quality. To address this challenge, we pro- 539

posed Targeted Reordering Beam Search (TRBS), 540

a plug-and-play decoding intervention that dynam- 541

ically reorders beam candidates to minimize di- 542

rect copying. TRBS efficiently detects potential 543

verbatim sequences using the FM-index and em- 544

ploys a spike-entropy-based protection mechanism 545

to maintain the structural integrity of generated 546

code. Through extensive experiments on a multi- 547

language code generation benchmark, we demon- 548

strated that TRBS effectively reduces repetition 549

while maintaining functional correctness. Our find- 550

ings highlight the feasibility of controlling LLM 551

output to reduce copyright risks without requiring 552

additional training. This work provides a founda- 553

tion for future research on controlled code genera- 554

tion and legal compliance in AI-assisted software 555

development. 556

8

Limitations557

First, although TRBS eliminates the infer-558

ence/training overhead characteristic of meth-559

ods like Output Regeneration and Training Data560

Rewrite, it introduces computational costs through561

real-time substring searches. These operations,562

though optimized via FM-index’s corpus-size-563

independent time complexity, create measurable564

processing overhead during beam verification.565

This represents a fundamental efficiency-reliability566

tradeoff: our approach maintains substantially567

lower operational costs than alternatives requiring568

complete output recomputation or linear-time cor-569

pus scans, yet may prove suboptimal for extreme570

low-latency applications. The architecture deliber-571

ately prioritizes verifiable text grounding while pre-572

serving deployable responsiveness for most practi-573

cal use cases.574

Second, while TRBS demonstrates technical ef-575

fectiveness in reducing verbatim repetition at the al-576

gorithmic level, its legal implications remain com-577

plex. Current copyright frameworks primarily rely578

on the maximum consecutive matching substring579

to determine infringement, a standard that DACCG580

specifically targets in its technical design. However,581

this may not fully account for other legal princi-582

ples, such as substantial similarity or the qualitative583

assessment of creative expression. The inherent584

complexity of copyright jurisprudence means that585

compliance with repetition thresholds at the techni-586

cal level does not necessarily equate to the absence587

of infringing behavior.588

Ethics Statement589

We take ethical considerations very seriously and590

strictly adhere to the ACL Ethics Policy. This study591

aims to reduce verbatim repetition in code gener-592

ation to protect the legitimate rights of copyright593

holders while maintaining output quality. We intro-594

duce controlled modifications without restricting595

creative freedom, promoting responsible AI deploy-596

ment rather than censorship. All pre-trained models597

and evaluation datasets used in this study are pub-598

licly available and widely adopted by researchers.599

Additionally, we acknowledge the potential risk of600

misuse and therefore call for the responsible use of601

our method to ensure ethical AI-generated content.602

References603

AI@Meta. 2024. Llama 3 model card.604

Michael Burrows, D J Wheeler D I G I T A L, Robert W. 605
Taylor, David J. Wheeler, and David Wheeler. 1994. 606
A block-sorting lossless data compression algorithm. 607

Nicholas Carlini, Florian Tramèr, Eric Wallace, 608
Matthew Jagielski, Ariel Herbert-Voss, Katherine 609
Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar 610
Erlingsson, Alina Oprea, and Colin Raffel. 2021. Ex- 611
tracting training data from large language models. In 612
30th USENIX Security Symposium (USENIX Security 613
21), pages 2633–2650. USENIX Association. 614

Kent Chang, Mackenzie Cramer, Sandeep Soni, and 615
David Bamman. 2023. Speak, memory: An archaeol- 616
ogy of books known to ChatGPT/GPT-4. In Proceed- 617
ings of the 2023 Conference on Empirical Methods 618
in Natural Language Processing, pages 7312–7327, 619
Singapore. Association for Computational Linguis- 620
tics. 621

Yam Schaal David M. McIntosh, Georgina Jones Suzuki. 622
2024. Ai and the copyright liability overhang: A 623
brief summary of the current state of ai-related copy- 624
right cases. 625

Tim Davis. @github copilot, with "public code" 626
blocked, emits large chunks of my copyrighted code, 627
with no attribution, no lgpl license. 628

Haikang Deng and Colin Raffel. 2023. Reward- 629
augmented decoding: Efficient controlled text gener- 630
ation with a unidirectional reward model. In Proceed- 631
ings of the 2023 Conference on Empirical Methods in 632
Natural Language Processing, pages 11781–11791, 633
Singapore. Association for Computational Linguis- 634
tics. 635

Brenda Leong Ekene Chuks-Okeke, Natalie Linero. 636
2024. Generative ai and intellectual property: Copy- 637
right implications for ai inputs, outputs. 638

DeepSeek-AI et al. 2025. Deepseek-r1: Incentivizing 639
reasoning capability in llms via reinforcement learn- 640
ing. Preprint, arXiv:2501.12948. 641

EU. Directive (eu) 2019/790 of the european parliament 642
and of the council of 17 april 2019 on copyright and 643
related rights in the digital single market and amend- 644
ing directives 96/9/ec and 2001/29/ec (text with eea 645
relevance.). 646

P. Ferragina and G. Manzini. 2000. Opportunistic data 647
structures with applications. In Proceedings 41st 648
Annual Symposium on Foundations of Computer Sci- 649
ence, pages 390–398. 650

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin, 651
and Bin Hu. 2024. COLD-attack: Jailbreaking LLMs 652
with stealthiness and controllability. In Proceedings 653
of the 41st International Conference on Machine 654
Learning, volume 235 of Proceedings of Machine 655
Learning Research, pages 16974–17002. PMLR. 656

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai 657
Sun, Nan Jiang, Tarek Abdelzaher, and Heng Ji. 2024. 658
Word embeddings are steers for language models. In 659

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://api.semanticscholar.org/CorpusID:2167441
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://doi.org/10.18653/v1/2023.emnlp-main.453
https://doi.org/10.18653/v1/2023.emnlp-main.453
https://doi.org/10.18653/v1/2023.emnlp-main.453
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://www.ropesgray.com/en/insights/alerts/2024/04/ai-and-the-copyright-liability-overhang-a-brief-summary-of-the-current-state-of-ai-related?utm_source=chatgpt.com
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://x.com/DocSparse/status/1581461734665367554?cxt=HHwWhMDRibPEvfIrAAAA
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://iapp.org/news/a/generative-ai-and-intellectual-property-copyright-implications-for-ai-inputs-outputs?utm_source=chatgpt.com
https://iapp.org/news/a/generative-ai-and-intellectual-property-copyright-implications-for-ai-inputs-outputs?utm_source=chatgpt.com
https://iapp.org/news/a/generative-ai-and-intellectual-property-copyright-implications-for-ai-inputs-outputs?utm_source=chatgpt.com
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790&qid=1697560391726
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://proceedings.mlr.press/v235/guo24i.html
https://proceedings.mlr.press/v235/guo24i.html
https://proceedings.mlr.press/v235/guo24i.html
https://doi.org/10.18653/v1/2024.acl-long.864

Proceedings of the 62nd Annual Meeting of the As-660
sociation for Computational Linguistics (Volume 1:661
Long Papers), pages 16410–16430, Bangkok, Thai-662
land. Association for Computational Linguistics.663

Jingxuan He and Martin Vechev. 2023. Large language664
models for code: Security hardening and adversarial665
testing. In Proceedings of the 2023 ACM SIGSAC666
Conference on Computer and Communications Se-667
curity, CCS ’23, page 1865–1879, New York, NY,668
USA. Association for Computing Machinery.669

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan670
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,671
and Weizhu Chen. 2021. Lora: Low-rank adap-672
tation of large language models. arXiv preprint673
arXiv:2106.09685.674

Antonia Karamolegkou, Jiaang Li, Li Zhou, and An-675
ders Søgaard. 2023. Copyright violations and large676
language models. In Proceedings of the 2023 Con-677
ference on Empirical Methods in Natural Language678
Processing, pages 7403–7412, Singapore. Associa-679
tion for Computational Linguistics.680

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,681
Caiming Xiong, and Richard Socher. 2019. Ctrl: A682
conditional transformer language model for control-683
lable generation. ArXiv, abs/1909.05858.684

Katherine Klosek. 2024. Training generative ai models685
on copyrighted works is fair use.686

Heiko Koziolek and Anne Koziolek. 2024. Llm-based687
control code generation using image recognition. In688
2024 IEEE/ACM International Workshop on Large689
Language Models for Code (LLM4Code), pages 38–690
45.691

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,692
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel693
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000:694
a natural and reliable benchmark for data science695
code generation. In Proceedings of the 40th Interna-696
tional Conference on Machine Learning, ICML’23.697
JMLR.org.698

Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao699
Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu,700
Shunyu Yao, Feiyu Xiong, and Zhiyu Li. 2024. Con-701
trollable text generation for large language models:702
A survey. ArXiv, abs/2408.12599.703

Sidharth Mudgal, Jong Lee, Harish Ganapathy,704
YaGuang Li, Tao Wang, Yanping Huang, Zhifeng705
Chen, Heng-Tze Cheng, Michael Collins, Trevor706
Strohman, Jilin Chen, Alex Beutel, and Ahmad707
Beirami. 2024. Controlled decoding from lan-708
guage models. In Proceedings of the 41st Interna-709
tional Conference on Machine Learning, ICML’24.710
JMLR.org.711

U.S. Copyright Office. Chapter 1: Subject matter and712
scope of copyright.713

Jonathan Pei, Kevin Yang, and Dan Klein. 2023. 714
PREADD: Prefix-adaptive decoding for controlled 715
text generation. In Findings of the Association for 716
Computational Linguistics: ACL 2023, pages 10018– 717
10037, Toronto, Canada. Association for Computa- 718
tional Linguistics. 719

Sameer Pimparkhede, Mehant Kammakomati, 720
Srikanth G. Tamilselvam, Prince Kumar, Ashok Pon 721
Kumar, and Pushpak Bhattacharyya. 2024. DocC- 722
Gen: Document-based controlled code generation. 723
In Proceedings of the 2024 Conference on Empirical 724
Methods in Natural Language Processing, pages 725
18681–18697, Miami, Florida, USA. Association for 726
Computational Linguistics. 727

Armin Ronacher. I don’t want to say anything but that’s 728
not the right license mr copilot.). 729

Saul Schleimer, Daniel Shawcross Wilkerson, and 730
Alexander Aiken. 2003. Winnowing: local algo- 731
rithms for document fingerprinting. In ACM SIG- 732
MOD Conference. 733

Dominic Rota Scott M. Douglass. 2024. The fast- 734
moving race between gen-ai and copyright law. 735

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric 736
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic- 737
iting Knowledge from Language Models with Auto- 738
matically Generated Prompts. In Proceedings of the 739
2020 Conference on Empirical Methods in Natural 740
Language Processing (EMNLP), pages 4222–4235, 741
Online. Association for Computational Linguistics. 742

S. Strong, Roland Koberle, Rob Steveninck, and 743
William Bialek. 1996. Entropy and information in 744
neural spike trains. Physical Review Letters, 80. 745

Nishant Subramani, Nivedita Suresh, and Matthew Pe- 746
ters. 2022. Extracting latent steering vectors from 747
pretrained language models. In Findings of the Asso- 748
ciation for Computational Linguistics: ACL 2022, 749
pages 566–581, Dublin, Ireland. Association for 750
Computational Linguistics. 751

Qwen Team. 2024. Qwen2.5: A party of foundation 752
models. 753

Bhargav Upadhyay, Akhilesh Sudhakar, and Arjun Ma- 754
heswaran. 2022. Efficient reinforcement learning for 755
unsupervised controlled text generation. 756

WIPO. a. Berne convention for the protection of literary 757
and artistic works. 758

WIPO. b. U.s. copyright act, 17 u.s.c. §§ 101 et seq. 759

Sangwon Yu, Changmin Lee, Hojin Lee, and Sungroh 760
Yoon. 2024. Controlled text generation for black-box 761
language models via score-based progressive editor. 762
In Proceedings of the 62nd Annual Meeting of the 763
Association for Computational Linguistics (Volume 1: 764
Long Papers), pages 14215–14237, Bangkok, Thai- 765
land. Association for Computational Linguistics. 766

10

https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.1145/3576915.3623175
https://doi.org/10.18653/v1/2023.emnlp-main.458
https://doi.org/10.18653/v1/2023.emnlp-main.458
https://doi.org/10.18653/v1/2023.emnlp-main.458
https://api.semanticscholar.org/CorpusID:202573071
https://api.semanticscholar.org/CorpusID:202573071
https://api.semanticscholar.org/CorpusID:202573071
https://api.semanticscholar.org/CorpusID:202573071
https://api.semanticscholar.org/CorpusID:202573071
https://www.arl.org/blog/training-generative-ai-models-on-copyrighted-works-is-fair-use/
https://www.arl.org/blog/training-generative-ai-models-on-copyrighted-works-is-fair-use/
https://www.arl.org/blog/training-generative-ai-models-on-copyrighted-works-is-fair-use/
https://api.semanticscholar.org/CorpusID:271924120
https://api.semanticscholar.org/CorpusID:271924120
https://api.semanticscholar.org/CorpusID:271924120
https://api.semanticscholar.org/CorpusID:271924120
https://api.semanticscholar.org/CorpusID:271924120
https://www.copyright.gov/title17/92chap1.html#107
https://www.copyright.gov/title17/92chap1.html#107
https://www.copyright.gov/title17/92chap1.html#107
https://doi.org/10.18653/v1/2023.findings-acl.636
https://doi.org/10.18653/v1/2023.findings-acl.636
https://doi.org/10.18653/v1/2023.findings-acl.636
https://doi.org/10.18653/v1/2024.emnlp-main.1040
https://doi.org/10.18653/v1/2024.emnlp-main.1040
https://doi.org/10.18653/v1/2024.emnlp-main.1040
https://x.com/mitsuhiko/status/1410886329924194309?mx=2
https://x.com/mitsuhiko/status/1410886329924194309?mx=2
https://x.com/mitsuhiko/status/1410886329924194309?mx=2
https://api.semanticscholar.org/CorpusID:12976851
https://api.semanticscholar.org/CorpusID:12976851
https://api.semanticscholar.org/CorpusID:12976851
https://www.bakerdonelson.com/the-fast-moving-race-between-gen-ai-and-copyright-law?utm_source=chatgpt.com
https://www.bakerdonelson.com/the-fast-moving-race-between-gen-ai-and-copyright-law?utm_source=chatgpt.com
https://www.bakerdonelson.com/the-fast-moving-race-between-gen-ai-and-copyright-law?utm_source=chatgpt.com
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.1103/PhysRevLett.80.197
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.48550/arXiv.2204.07696
https://doi.org/10.48550/arXiv.2204.07696
https://doi.org/10.48550/arXiv.2204.07696
https://www.wipo.int/treaties/en/ip/berne
https://www.wipo.int/treaties/en/ip/berne
https://www.wipo.int/treaties/en/ip/berne
https://www.wipo.int/wipolex/en/legislation/details/3923
https://doi.org/10.18653/v1/2024.acl-long.767
https://doi.org/10.18653/v1/2024.acl-long.767
https://doi.org/10.18653/v1/2024.acl-long.767

Carolina Zheng, Claudia Shi, Keyon Vafa, Amir Feder,767
and David Blei. 2023a. An invariant learning charac-768
terization of controlled text generation. In Proceed-769
ings of the 61st Annual Meeting of the Association for770
Computational Linguistics (Volume 1: Long Papers),771
pages 3186–3206, Toronto, Canada. Association for772
Computational Linguistics.773

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan774
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,775
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.776
Codegeex: A pre-trained model for code generation777
with multilingual benchmarking on humaneval-x. In778
Proceedings of the 29th ACM SIGKDD Conference779
on Knowledge Discovery and Data Mining, pages780
5673–5684.781

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and782
Dacheng Tao. 2024. ROSE doesn‘t do that: Boosting783
the safety of instruction-tuned large language models784
with reverse prompt contrastive decoding. In Find-785
ings of the Association for Computational Linguistics:786
ACL 2024, pages 13721–13736, Bangkok, Thailand.787
Association for Computational Linguistics.788

Tianqi Zhong, Quan Wang, Jingxuan Han, Yongdong789
Zhang, and Zhendong Mao. 2023. Air-decoding: At-790
tribute distribution reconstruction for decoding-time791
controllable text generation. In Proceedings of the792
2023 Conference on Empirical Methods in Natural793
Language Processing, pages 8233–8248, Singapore.794
Association for Computational Linguistics.795

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan796
Wilcox, Ryan Cotterell, and Mrinmaya Sachan. 2023.797
Controlled text generation with natural language798
instructions. In Proceedings of the 40th Interna-799
tional Conference on Machine Learning, ICML’23.800
JMLR.org.801

A Pseudo Code for TRBS802

In this section, we present the pseudo code for803

TRBS in algorithm 1.804

B Detailed Experimental Data805

In this section, we present the detailed experimen-806

tal data for the main result in Section 5.2 and the807

experiment between different models in Section808

5.5. Specifically, Table 5 corresponds to Figure 1,809

while Tables 4 and 3 correspond to Figure 5.810

C Details of Datasets811

C.1 HumanEval-X812

HumanEval-X is a multilingual extension of the813

HumanEval benchmark, designed to systematically814

evaluate multilingual code generation and transla-815

tion capabilities. While HumanEval, like MBPP816

and APPS, consists solely of handcrafted Python817

Algorithm 1 Pseudo code of TRBS.

programming problems, it cannot be directly ap- 818

plied to assess performance across multiple pro- 819

gramming languages. To address this limitation, 820

HumanEval-X extends HumanEval by manually 821

translating each Python problem into four addi- 822

tional languages: C++, Java, JavaScript, and Go. 823

Each problem-solution pair in HumanEval-X in- 824

cludes: 825

• task_id: A unique identifier for each problem, 826

specifying the programming language and problem 827

index (e.g., Java/0 represents the 0th problem in 828

Java). 829

• declaration: The function declaration, includ- 830

11

https://doi.org/10.18653/v1/2023.acl-long.179
https://doi.org/10.18653/v1/2023.acl-long.179
https://doi.org/10.18653/v1/2023.acl-long.179
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2024.findings-acl.814
https://doi.org/10.18653/v1/2023.emnlp-main.512
https://doi.org/10.18653/v1/2023.emnlp-main.512
https://doi.org/10.18653/v1/2023.emnlp-main.512
https://doi.org/10.18653/v1/2023.emnlp-main.512
https://doi.org/10.18653/v1/2023.emnlp-main.512

Method LCS ACC
QWEN2.5-7B
– Standard Beam Search

20.20 40.85

QWEN2.5-FINETUNE-7B
– Standard Beam Search

36.98 59.15

QWEN2.5-FINETUNE-7B
– Output Regeneration

26.66 39.63

QWEN2.5-FINETUNE-7B
– Training Data Rewrite

29.14 40.24

QWEN2.5-FINETUNE-7B
– TRBS w\o SAP (α = 2)

25.34 46.34

QWEN2.5-FINETUNE-7B
– TRBS w\o SAP (α = 3)

23.12 38.41

QWEN2.5-FINETUNE-7B
– TRBS w\o SAP (α = 4)

22.35 36.59

QWEN2.5-FINETUNE-7B
– TRBS w\o SAP (α = 5)

21.91 37.80

QWEN2.5-FINETUNE-7B
– TRBS (α = 2)

25.91 46.34

QWEN2.5-FINETUNE-7B
– TRBS (α = 3)

24.36 46.95

QWEN2.5-FINETUNE-7B
– TRBS (α = 4)

23.68 46.34

QWEN2.5-FINETUNE-7B
– TRBS (α = 5)

23.44 48.17

Table 3: The detailed experimental data of compara-
tive experiments and ablation study for structure anchor
protection (SAP) on Python datasets with Qwen2.5-7B-
Instruct.

ing necessary libraries or packages.831

• docstring: A description specifying the func-832

tionality of the function, including example inputs833

and expected outputs.834

• prompt: The function declaration along with835

its docstring.836

• canonical_solution: A verified reference solu-837

tion for the problem.838

• test: A test program containing test cases to839

validate the correctness of solutions.840

With 820 problem-solution pairs, HumanEval-X841

provides a comprehensive benchmark for evaluat-842

ing multilingual code generation and translation843

models.844

C.2 DS-1000845

DS-1000 is a code generation benchmark consist-846

ing of 1,000 data science problems drawn from847

seven Python libraries like NumPy and Pandas.848

Method LCS ACC
DEEPSEEK-8B
– Standard Beam Search

24.71 40.85

DEEPSEEK-FINETUNE-8B
– Standard Beam Search

126.55 87.20

DEEPSEEK-FINETUNE-8B
– Output Regeneration

85.46 62.20

DEEPSEEK-FINETUNE-8B
– Training Data Rewrite

90.06 77.44

DEEPSEEK-FINETUNE-8B
– TRBS w\o SAP (α = 2)

89.35 78.05

DEEPSEEK-FINETUNE-8B
– TRBS w\o SAP (α = 3)

73.01 71.34

DEEPSEEK-FINETUNE-8B
– TRBS w\o SAP (α = 4)

62.87 64.02

DEEPSEEK-FINETUNE-8B
– TRBS w\o SAP (α = 5)

58.66 60.98

DEEPSEEK-FINETUNE-8B
– TRBS (α = 2)

89.60 77.44

DEEPSEEK-FINETUNE-8B
– TRBS (α = 3)

73.34 72.56

DEEPSEEK-FINETUNE-8B
– TRBS (α = 4)

65.80 67.68

DEEPSEEK-FINETUNE-8B
– TRBS (α = 5)

61.32 66.46

Table 4: The detailed experimental data of compara-
tive experiments and ablation study for structure anchor
protection (SAP) on Python datasets with DeepSeek-
R1-Distill-Llama-8B.

12

Model
Python Java JavaScript Go CPP

LCS ACC LCS ACC LCS ACC LCS ACC LCS ACC
LLAMA3-8B
– standard beam search

24.30 57.32 56.41 51.83 23.62 52.44 30.37 43.29 19.85 42.68

LLAMA3-FINETUNE-8B
– standard beam search

121.14 84.15 245.37 81.10 145.80 79.27 147.87 72.56 166.59 84.76

LLAMA3-FINETUNE-8B
– output regeneration

84.12 59.76 138.26 51.83 85.50 54.88 69.31 43.90 96.73 39.63

LLAMA3-FINETUNE-8B
– training data rewrite

77.94 70.12 140.57 59.76 76.15 58.54 86.86 56.71 80.73 38.41

LLAMA3-FINETUNE-8B
– TRBS w\o SAP (α = 2)

96.20 78.05 189.27 73.78 114.69 72.56 93.79 59.76 123.55 70.12

LLAMA3-FINETUNE-8B
– TRBS w\o SAP (α = 3)

80.20 71.34 163.26 68.29 92.87 60.37 73.13 50.61 104.15 60.98

LLAMA3-FINETUNE-8B
– TRBS w\o SAP (α = 4)

68.39 65.85 140.88 62.80 83.31 62.20 64.20 41.46 91.97 56.71

LLAMA3-FINETUNE-8B
– TRBS w\o SAP (α = 5)

58.74 64.02 126.90 56.71 76.52 60.37 55.79 39.02 81.32 53.66

LLAMA3-FINETUNE-8B
– TRBS (α = 2)

96.46 78.05 189.20 75.61 114.60 72.56 94.86 59.15 125.08 69.51

LLAMA3-FINETUNE-8B
– TRBS (α = 3)

81.79 73.78 165.48 71.34 95.95 64.02 76.65 54.27 105.34 64.02

LLAMA3-FINETUNE-8B
– TRBS (α = 4)

73.90 70.73 147.88 68.29 88.98 65.24 67.17 50.61 95.53 62.20

LLAMA3-FINETUNE-8B
– TRBS (α = 5)

65.10 69.51 136.45 65.24 83.10 64.63 61.93 50.61 87.67 59.76

Table 5: The detailed experimental data of comparative experiments and ablation study for structure anchor
protection (SAP) on HumanEval-X.

D Prompt Details849

Figure 7: The prompt templates.

In this part, we show the prompts used in this study, 850

covering the prompts in finetune, inference, out- 851

put regeneration, and training data rewrite. The 852

detailed these prompts are shown in Figure 7. 853

13

	Introduction
	Background
	Copyright Infringement Concern
	Controlled Code Generation
	Decoding-time Intervention on Controllable Generation

	Task: DACCG
	Method
	Experiment
	Experimental Setup
	Main Result
	Impact of and Its Interaction with
	Parameter Analysis of Beam Num
	TRBS on Different LLMs
	Modification Patterns of TRBS

	Conclusion
	Pseudo Code for TRBS
	Detailed Experimental Data
	Details of Datasets
	HumanEval-X
	DS-1000

	Prompt Details

