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ABSTRACT

Point cloud obtained from 3D scanning is often sparse, noisy, and irregular. To
cope with these issues, recent studies have been separately conducted to densify,
denoise, and complete inaccurate point cloud. In this paper, we advocate that
jointly solving these tasks leads to significant improvement for point cloud re-
construction. To this end, we propose a deep point cloud reconstruction network
consisting of two stages: 1) a 3D sparse stacked-hourglass network as for the ini-
tial densification and denoising, 2) a refinement via transformers converting the
discrete voxels into 3D points. In particular, we further improve the performance
of transformer by a newly proposed module called amplified positional encoding.
This module has been designed to differently amplify the magnitude of the po-
sitional encoding vectors based on the points’ distances. Extensive experiments
demonstrate that our network achieves state-of-the-art performance among the re-
cent studies in the ScanNet, ICL-NUIM, and ShapeNetPart datasets. Moreover,
we underline the ability of our network to generalize toward real-world and unmet
scenes.

1 INTRODUCTION

Noisy Sparse Incomplete

Deep point cloud reconstruction

Figure 1: Point cloud reconstruction.
We propose a novel neural architecture
that jointly solves inherent shortcom-
ings in raw point cloud, such as noise,
sparsity, and incompleteness.

3D scanning devices, such as LiDAR and RGB-D sen-
sors, allows to quickly and accurately reconstruct a scene
as a 3D point cloud. This compact 3D representation is
commonly used to achieve various tasks in autonomous
driving (Yang et al., 2018; Qi et al., 2018; Shi et al.,
2020; Lang et al., 2019; Choe et al., 2021c;b; 2019b),
robotics (He et al., 2021; 2020; Wang et al., 2019), or
3D mapping (Choy et al., 2020; Choe et al., 2021a;d).
However, processing raw point cloud happens to be par-
ticularly challenging due to their sparsity, irregularity and
sensitivity to noise (Xiang et al., 2019; Guo et al., 2020).

To address these issues, recent deep learning-based stud-
ies have proposed to improve the quality of point cloud.
Specifically, prior works that are dedicated to point cloud
refinement can be categorized into three distinct sub-
fields: (1) point upsampling (Yu et al., 2018b), (2) point
denoising (Rakotosaona et al., 2020), and (3) point com-
pletion (Yuan et al., 2018). Each of these tasks has its
own benefits and inconveniences. For instance, the point
upsampling task usually handles noisy input points but do not explicitly deal with strong outliers. On
the other hand, point denoising techniques have been designed to filter noisy data but cannot densify
the point cloud. Finally, point completion methods mainly focus on object-level full 3D completion
but are known for their weak generalization to unmet environments or unknown category of objects.
Though there exist differences among the aforementioned tasks, their common goal is to improve
proximity-to-surface in the 3D point representation.

Thus, we believe in the complementary of these three sub-tasks and hypothesize that a joint frame-
work is greatly beneficial to deal with deteriorated and incomplete 3D point cloud. Accordingly,
this paper challenges to resolve all these issues as a single task, called point cloud reconstruction as
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depicted in Fig. 1. To the best of our knowledge, this paper is the first attempt to jointly resolve the
inherent shortcomings of point cloud obtained from 3D scanning devices: sparsity, noise, irregular-
ity, and outliers. To this end, we propose a deep point cloud reconstruction network that consists in
two stages: a voxel generation network and a voxel re-localization network.

In the first stage, the voxel generation network (Sec. 3.1) aims to densify voxels and remove out-
liers via sparse convolution layer (Choy et al., 2019). Rather than to use k-Nearest Neighbor that
is sensitive to points’ density (Mao et al., 2019), we utilize voxel hashing with sparse convolution
layer to understand absolute-scale 3D structures for densification and denoising. Despite its suc-
cess, voxelization inevitably leads to information loss due to the discretization process. To provide
a fine-grained reconstruction, in the 2nd stage, we propose a voxel re-localization network that con-
verts discrete voxels into 3D points using transformer. Additionally, we increase the performance
of transformer by the amplified positional encoding. In our analysis, spatial frequency plays an
important role in the context of voxel-to-point conversion. Our new positional encoding strategy is
useful to infer descriptive and detailed point cloud by simply changing the amplitude of the encoding
vector. Our contributions can be summarized as follows:

• New problem formulation: point cloud reconstruction.
• Novel two-stage architecture for voxel-to-point refinement.
• A large number of experiments illustrating the generalization ability of our point cloud

reconstruction to real 3D scans.

2 RELATED WORKS

Point cloud obtained from 3D scanning devices are known to contain various artifacts (Berger et al.,
2017), such as noise, outliers, irregularity, and sparsity. Point cloud reconstruction aims at resolving
these aforementioned issues in order to provide fine-grained 3D reconstructions. In this section, we
introduce different approaches related to point cloud refinement.

Point Cloud Denoising. Without extra information, such as RGB images, point cloud denoising
purely based on the input point distribution is a challenging task (Lee, 2000; Avron et al., 2010).
Recent deep learning-based strategies (Rakotosaona et al., 2020; Roveri et al., 2018; Hermosilla
et al., 2019; Pistilli et al., 2020; Luo & Hu, 2021) demonstrate promising results. However, despite
the large improvement provided by these architectures, these methods do not have the ability to
densify the reconstruction.

Point Cloud Completion. A family of solutions called point cloud completion have recently been
proposed to alleviate the problem of incomplete reconstruction. One of the pioneer papers (Yuan
et al., 2018) proposes to overcome the point incompleteness problem by generating points in both
non-observed and visible areas. To improve the completion process, recent approaches (Huang
et al., 2020; Zhang et al., 2020; Wen et al., 2021; Xiang et al., 2021) propose to include prior
structural information of the objects. While these object-specific point completion techniques can
lead to accurate results, they suffer from a lack of versatility since the object class is assumed to be
known beforehand. Without such semantic level a priori, the entire completion in occluded surface
(e.g., behind objects) is a doubtful task. Thus, in this paper, we focus on a reliable and generic
object-agnostic approach that is able to complete visible areas within an arbitrary point cloud and to
cope with sparse, noisy, and unordered point cloud.

Point Cloud Upsampling. Given a sparse 3D reconstruction, the goal of point cloud upsampling
is to densify the point cloud distribution. Conventional methods (Alexa et al., 2003; Huang et al.,
2013) rely on point clustering techniques to re-sample points within the 3D space. Recent deep
learning-based studies (Li et al., 2021; Yu et al., 2018a; Yifan et al., 2019; Yu et al., 2018b) and
concurrent study Qiu et al. (2021) propose point densification networks under the supervision of
dense ground truth points. Though some papers internally conduct point denoising (Yu et al., 2018a;
Yifan et al., 2019), most of these works mainly assume that there are no strong outliers among the
input points, such as flying-point cloud (You et al., 2019).
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Figure 2: Two-stage architecture for point cloud reconstruction. In this figure, point cloud has
been colorized for visualization purpose and we set the identical size of visualized points in Pin and
Pout for fair comparison.

Surface Reconstruction. Point cloud meshing is a common solution for surface reconstruc-
tion (Hoppe et al., 1992; Curless & Levoy, 1996). For instance, this process can be achieved by
converting point cloud to an implicit surface representation via signed distance function (SDF) and
to apply Marching Cubes (Lorensen & Cline, 1987) or Dual Contouring (Ju et al., 2002) for meshing
(e.g., Poisson surface reconstruction (Kazhdan et al., 2006)). This strategies is known to be effec-
tive under favorable conditions but can hardly handle sparse and non-uniform points’ distribution.
Moreover, such technique tends to lead to over-smoothed and undetailed reconstruction (Berger
et al., 2017). Similar limitations can be observed with recent deep learning-based SDF represen-
tation (Park et al., 2019). Many other solution have been developed for the problem of surface re-
construction, such as, Delaunay triangulation (Rakotosaona et al., 2021; Boissonnat, 1984; Kolluri
et al., 2004), alpha shapes (Edelsbrunner & Mücke, 1994), or ball pivoting (Bernardini et al., 1999).
Despite their compelling performances, these approaches require uniform, dense, and accurate in-
puts since they usually preserve the original distribution of a given point cloud. This assumption
still holds for the recent studies (Sharp & Ovsjanikov, 2020; Rakotosaona et al., 2021).

Compared to surface reconstruction, point cloud reconstruction can be viewed as a prior-process
to overcome natural artifacts: sparsity, noise, irregularity. Furthermore, in contrast to previous
studies, our method are object-agnostic and generally applicable toward the real-world 3D point
cloud. To this end, we introduce our deep point cloud reconstruction network that consists of the
voxel generation network and the voxel re-localization network.

3 DEEP POINT CLOUD RECONSTRUCTION

Given a noisy and sparse point cloud Pin, point cloud reconstruction aims to generate a dense and
accurate set of points Pout. For this purpose, we propose a deep point cloud reconstruction net-
work composed of two stages: voxel generation network (Sec. 3.1) and voxel re-localization net-
work (Sec. 3.2). The first network has been designed to perform a densification and outliers removal
in the sparse voxel space. The second network complements and improves this first stage by de-
noising the data further and by converting voxels back to 3D points. The overall architecture is
illustrated in Fig. 2.

3.1 VOXEL GENERATION NETWORK

Most previous studies (Li et al., 2021; Yifan et al., 2019; Yu et al., 2018a; Luo & Hu, 2021) attempts
to resolve these problems by directly processing a raw point cloud. However, it is known to be a
challenging problem due to the unordered nature of the 3D point cloud. To tackle this issue, we
propose to convert the 3D point cloud Pin into a sparse voxel representation Vin through our voxel
generation network. From this data, our network generates a refined and densified volume Vout. A
noticeable advantage of sparse voxel representation is its ability to preserve the neighbor connectiv-
ity of point cloud in a uniform and regular 3D grids (Guo et al., 2020) via voxel hashing (Choy et al.,
2019; Graham & van der Maaten, 2017). Voxel hashing keeps tracking of the geometric positions
of sparse tensors so that we can find the voxels’ neighbors to apply sparse convolution. Moreover,
sparse convolution layer can cover the consistent and absolute-scale scope of the local region and
hierarchically capture its large receptive fields. Such property is then particularly beneficial to deal
with an inaccurate and unordered input point cloud Pin.
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Figure 3: Voxel generation network. We design sparse stacked hourglass network that hierarchi-
cally and sequentially generates and prunes voxels in a coarse-to-fine manner.

In order to denoise and densify Vin, our voxel generation network consists of a sparse stacked hour-
glass network as shown in Fig. 3. Our network architecture is close to the previous studies (Newell
et al., 2016; Chang & Chen, 2018; Im et al., 2019; Choe et al., 2019a) in that it is composed of
several hourglass networks for cascaded refinements of images or dense volumes. In the context
of this paper, scanning devices can only reconstruct the surface of the structure, thus, the resulting
voxelized volume is inherently sparse. Therefore, to process this 3D volume efficiently, our voxel
generation network takes advantage of the sparse convolution network (Choy et al., 2019).

It should be noted that the specificity of sparse convolution operation is particularly desirable for
the tasks at hand. First, generative sparse transposed convolution layer (Gwak et al., 2020) has
the ability to create new voxels given a pre-defined upsampling rate r, which can be seen as a point
upsampling methodology (Yu et al., 2018b). Secondly, voxel pruning is widely used for fine-grained
volume rendering (Liu et al., 2020) and efficient computation (Choy et al., 2019). In our context,
voxel pruning is closely related to outlier removal. Last, the joint use of generation and pruning
enables our network to create an arbitrary number of points.

As illustrated in Fig. 3, we first compute local voxel features using sparse convolutional blocks in an
encoder part. The aggregated voxel features undergo the voxel generation layers and pruning layers
in a decoder part. We use two hourglass networks to densify and prune voxels. To train the voxel
generation network, we adopt a Binary Cross-Entropy loss (BCE) to classify the status of estimated
voxels into an occupied/empty state as:

LBCE(Vout) =
1

Nv

∑
v∈Vout

yv · log(ŷv) + (1− yv) · log(1− ŷv), (1)

where ŷv is an estimated class of a generated voxel v from the network, and yv is the ground truth
class at the generated voxel v. Nv is the total number of voxels that we used to compute the BCE
loss. If v is on the 3D surface, yv becomes true class (i.e., yv=1). Furthermore, following the
original loss design (Newell et al., 2016), we compute the BCE Loss LBCE for both the final voxel
prediction Vout and the intermediate results Vmid. In total, we compute the voxel loss Lvox as:

Lvox = LBCE(Vout) + 0.5 · 1

Nv

∑
Vi∈Vmid

LBCE(Vi), (2)

where Nv is the total number of voxels in the intermediate inference volume Vmid that we used to
calculate the BCE loss. Along with the predicted voxels Vout, we extract voxel features Fv using
sparse interpolation as illustrated in Fig. 3.

3.2 VOXEL RE-LOCALIZATION NETWORK

Despite the denoising and densification offered by the 1st stage network, voxelization inevitably
leads to information loss. Thus, in this section, we propose a voxel re-localization network that
converts the discrete voxels Vout∈RN×3 into 3D points Pout∈RN×3. This conversion requires an un-
derstanding of local geometry to describe the 3D surface as a group of point sets. Inspired by (Zhao
et al., 2021; Choe et al., 2021d), we utilize self-attention as a point set operator.

Let us describe the detailed process in the voxel re-localization network, which is illustrated in Fig. 4.
Given output voxels Vout, we collect the K(=8) closest voxels to each voxel vi∈R1×3 using the
hash table that we used in the 1st stage network. Then, we obtain a voxel set Vi={vk}Kk=1 that
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Figure 4: Voxel re-localization network. The 2nd stage network involves transformers for voxel-
to-point refinement. In particular, transformers are applied into self/cross-attention layers with our
amplified positional encoding to compute the relation between a query voxel and its neighbor voxels.

is referenced to the query voxel vi. Similarly, we cluster a set of voxel features Fi={fk}Kk=1 that
correspond to Pi. As in Fig. 4, the 2nd stage network regresses the location of a query point pi (red
voxel) using the geometric relation between the query voxel vi and its neighbor Vi (white voxels)
through self/cross attention layers.

While this formulation is close to PointTransformer (Zhao et al., 2021), our voxel re-localization
network has three distinctive differences. First, PointTransformer utilizes k-Nearest Neighbors to
group 3D points but we re-use the voxel hashing that covers absolute-scale local geometry. Second,
our network consists of both self-attention and cross-attention. In our analysis, it is better to use
two different attention layer than to solely adopt self-attention. Third, we design our own positional
encoding system that controls the necessity of high-frequency signal by changing the amplitude of
the encoding vector, called amplified positional encoding.

Originally, positional encoding has been introduced to help transformer to understand the orders of
tokens (Vaswani et al., 2017). When applied to other domains of applications, positional encoding is
often used to preserve high-frequency signals which tend to be disregarded by neural networks (Ra-
haman et al., 2019; Ramasinghe & Lucey, 2021). For example, positional encoding is proven to be
essential to synthesize sharp images from an implicit 3D neural representation (NeRF (Mildenhall
et al., 2020)). For our purpose, we need to consider spatial frequency to coherently re-locate a query
voxel vi by using its neighbor set Vi. Our intuition is simple. Since positional encodings are mainly
effective for the high-frequency embedding. As in Fig. 4, we increase the amplitude of positional
encoding when we need to move a query voxel by a small amount of distance (i.e., high-frequency in
3D spatial domain). If a query voxel is far away from its neighbor, we decrease the amplitude of the
positional encoding. Based on the relation between high frequency signals and our voxel re-location
scheme, we define our amplified positional encoding γampPE as:

γampPE(d, pos) = e-‖d‖11 · γPE(pos), (3)

γPE(pos) = [..., sin (pos/10000i/C), cos (pos/10000i/C)], (4)
where γampPE is an amplified positional encoding vectors and ‖ · ‖11 is the L1-norm. Following the
conventions (Vaswani et al., 2017), γPE is 1D positional encoding vectors, pos represents position,
i means dimension, and C is channel dimensions of voxel embedding. After we encode γampPE
into the voxel embedding, we aggregate this embedding through self- and cross-attention layers to
capture local structures around the query voxel. Finally, the regressed offset ∆v is added to the
original location of query voxel vc to update its location. To train the second stage network, we
calculate a chamfer distance loss Ldist as:

Ldist =
1

NPpred

∑
p̃∈Ppred

(
min
p∈Pgt

‖p̃− p‖2
2

)
+

1

NPgt

∑
p∈Pgt

(
min
p̃∈Ppred

‖p− p̃‖2
2

)
. (5)
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where Ppred is the predicted point cloud, Pgt indicates ground truth point cloud, p̃ represents a pre-
dicted point, and p means a ground truth point. NPpred and NPgt are the number of prediction and
ground truth point cloud, respectively. Through our two-stage pipelines, our whole network per-
forms point cloud reconstruction. By jointly generating, removing, and refining points, our network
can robustly recover accurate point cloud and increase the level of proximity-to-surface.

4 EXPERIMENT

In this section, we describe the implementation details of our network and we present a large series
of assessments underlying the effectiveness of our approach. Our point reconstruction network
has been solely trained on the ShapeNet-Part (Yi et al., 2016) dataset but tested on other real and
synthetic datasets such as ScanNet (Dai et al., 2017) and ICL-NUIM (Handa et al., 2014). These
experiments highlight the ability of our solution to generalize well to other scenarios involving
various levels of noise and different densities.

4.1 IMPLEMENTATION

We first train our voxel generation network for 10 epochs using the Adam optimizer (Kingma & Ba,
2014) with initial learning of 1e-3 and a batch size of 4. We decrease the learning rate by half for
every 2 epochs. After that, we freeze the voxel generation network and initiate the training of the
voxel re-localization using the inferred voxels Vout from the voxel generation network. The point re-
location network is trained using identical hyper-parameters used for training the first stage network.
Further details regarding the training rules are provided in Sec. 4.3.

4.2 BASELINE APPROACHES

We conduct a thorough comparison against previous state-of-the-art techniques: PU for point cloud
upsampling (Li et al., 2021), PD for point cloud denoising (Luo & Hu, 2021), and PC for point
cloud completion (Xiang et al., 2021). These three papers are currently positioned at the highest
rank for each task and we utilize their official implementation for training and evaluation. all meth-
ods are trained with the same data augmentation as competing approaches and its performances have
been measured on various datasets: ShapeNet-part (Yi et al., 2016), ScanNet (Dai et al., 2017), and
ICL-NUIM (Handa et al., 2014) datasets. In particular, we analyze the efficacy of ours compared
to the combination of the existing studies. For instance in Table 1, PC(r=4)→PU(r=4)→PD rep-
resents consecutive operation of point completion, and point upsampling and point denoising under
upsampling ratio r=4. Note that we also take into account the point completion task since this task
also considers point densification on visible surface.

4.3 DATASET

ShapeNet dataset. We utilize 13 different categories of objects categories from the ShapeNet-
Part dataset (Chang et al., 2015; Yi et al., 2016). We extract dense and uniform 10K ground truth
point cloud per object by using the Poisson Disk Sampling algorithm (Yuksel, 2015) provided by
Open3D (Zhou et al., 2018). Among these ground truth 3D points, we randomly sample 2048 points
as an input Pin for the training networks. For the sake of fairness, we adjust the unit voxel length
as lvox=0.0200 for training the networks. This is to produce a comparable number of points than
previous studies. We follow a data augmentation scheme proposed by the previous point upsam-
pling study (Li et al., 2021), such as random noise addition and random re-scaling. Additionally, we
include random outliers that constitute less that 5 percent of input points. To train and validate the
networks, we carefully follow the official train/val/test split provided by (Yi et al., 2016).

ScanNet / ICL-NUIM dataset. These datasets (Dai et al., 2017; Handa et al., 2014) are indoor
datasets that provide RGB-D sequences and corresponding camera poses. We utilize these datasets
to evaluate the generalization capability of ours and previous methods. Similar to the image-based
reconstruction study (Yao et al., 2018), we firstly re-use the network parameters pre-trained in the
ShapeNet dataset, then evaluate all methods in unmet datasets without fine-tuning networks. Further
details are included in the supplementary material.
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ShapeNet-Part dataset

Methods Pin Pout
k-Chamf. (↓) Percentage (↑) (< 0.5) Percentage (↑) (< 1.0)

k=1 k=2 k=4 Acc. Comp. f -score Acc. Comp. f -score
PC (r=4) 2048 8192 1.14 1.29 1.51 72.28 42.71 51.51 92.41 88.48 90.16
PU (r=4) 2048 8192 1.56 1.69 1.90 60.71 26.91 36.04 86.67 68.19 75.60
PointRecon (lvox=0.0200) 2048 8732 1.19 1.33 1.52 81.02 40.41 53.48 96.95 81.23 88.08
PC (r=4)→ PU (r=4)→ PD 2048 32987 1.14 1.48 1.60 56.55 49.72 52.43 87.13 82.73 84.67
PU (r=4)→ PC (r=4)→ PD 2048 32723 1.51 1.59 1.71 56.63 59.90 57.63 83.13 89.47 85.97
PointRecon (lvox=0.0150) 2048 15863 0.90 0.94 1.12 85.77 69.01 78.14 97.11 94.98 96.16

ScanNet dataset

Methods Pin Pout
k-Chamf. (↓) Percentage (↑) (< 0.5) Percentage (↑) (< 1.0)

k=1 k=2 k=4 Acc. Comp. f -score Acc. Comp. f -score
PC (r=16) 4098 65536 3.79 4.08 4.48 16.91 11.96 13.12 40.45 53.70 45.45
PC (r=4)→ PU (r=4)→ PD 4096 64427 3.69 3.91 4.23 23.05 12.59 15.31 49.75 42.24 44.84
PU (r=16) 4096 65536 3.68 3.94 4.32 16.81 13.48 13.90 37.89 44.60 40.04
PU (r=4)→ PC (r=4)→ PD 4096 64578 2.66 2.86 3.14 22.89 23.30 21.86 49.64 64.11 55.40
PU (r=4)→ PD→ PC (r=4) 4096 63118 3.75 3.99 4.33 15.99 15.43 14.50 36.60 54.70 43.10
PointRecon (lvox=0.0075) 4096 55188 1.91 2.04 2.24 57.88 36.83 44.72 88.06 68.34 76.72

ICL-NUIM dataset

Methods Pin Pout
k-Chamf. (↓) Percentage (↑) (< 0.5) Percentage (↑) (< 1.0)

k=1 k=2 k=4 Acc. Comp. f -score Acc. Comp. f -score
PC (r=16) 4098 65536 3.41 3.63 3.95 18.69 17.53 16.65 38.26 63.02 47.20
PC (r=4)→ PU (r=4)→ PD 4096 64451 3.61 3.81 4.11 21.62 11.41 14.05 45.34 42.57 43.32
PU (r=16) 4096 65536 3.83 4.03 4.33 17.78 18.19 16.83 35.45 49.93 41.03
PU (r=4)→ PC (r=4)→ PD 4096 64872 3.61 3.94 4.42 27.55 8.64 12.42 54.42 33.58 40.60
PU (r=4)→ PD→ PC (r=4) 4096 63521 4.00 4.21 4.53 10.09 11.64 9.51 22.70 48.52 30.25
PointRecon (lvox=0.0075) 4096 41322 1.87 1.99 2.18 67.78 44.97 53.36 89.09 70.52 78.141
PointRecon (lvox=0.0065) 4096 56902 2.14 2.26 2.45 63.40 42.85 80.26 86.84 67.78 75.41
PointRecon (lvox=0.0050) 4096 99321 2.78 2.92 3.10 54.11 38.09 43.55 81.76 61.88 69.45

Table 1: Quantitative results of point cloud reconstruction. Note that PC, PU, PD represent
point completion (Xiang et al., 2021), point upsampling (Li et al., 2021), and point denoising (Luo
& Hu, 2021), respectively. Please refer to the appendix for more results.

4.4 COMPARISON

For metric computation, we adopt Chamfer distance and percentage metrics (e.g., Accuracy, Com-
pleteness, and f -score) (Yao et al., 2018; Jensen et al., 2014), as shown in Table 1. In particular,
we extend to measure the k-Nearest Chamfer distance (i.e., k-Chamf.1) that efficiently computes
point-wise distance than Earth Mover’s distance. Based on these criteria, we calculate the metrics
of the whole methods.

As shown in Table 1, our network achieves state-of-the-art performance compared to the previous
studies (Li et al., 2021; Luo & Hu, 2021; Xiang et al., 2021). Moreover, the performance gap
increases when we conduct generalization test in ScanNet dataset and ICL-NUIM dataset. There
are two dominant reasons behind the better generalization and transferability. First, each sparse
convolution layer has consistent and absolute-scale receptive fields in 3D space. This local voxel
neighborhood appears to be more robust than raw point cloud processing via k-Nearest Neighbor as
adopted in the three baselines (Xiang et al., 2021; Luo & Hu, 2021; Li et al., 2021). This is also one
of the strength of using voxelization as an initial processing of point cloud reconstruction, which
is conducted by our 1st network. Second, our network does not have task-specific header networks
or losses for completion/upsampling/denoising tasks. Instead, Our network purely focuses on the
inherent problems resided in raw point cloud. Such joint approach trains our network to improve the
overall proximity-to-surface, not the task-specific quality.

Regardless of the combined use of the baselines, our method systematically outperforms them.
When we sequentially apply point densification and point denoising, the performances are not con-
stantly improved in Table 1. This observation is supported by the qualitative results in Fig. 5. While
point denoising can effectively remove the remaining outliers that are generated from (Xiang et al.,
2021) or (Li et al., 2021), it has chance to remove the wrong points sets. For instance in Fig. 4, the
point denoising method erases part of the airplane’s wing. In contrast, our voxel generation network
conducts both voxel pruning and generation in each hourglass network so that it can effectively
circumvent such case.

1Precise equations of the metric computation are described in the appendix.
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Figure 5: Point cloud reconstruction results using two baselines. Note that point cloud has been
colorized for a visualization purpose.

OursPC → PD → PU PU → PC → PDPU → PD → PC Ground truth

Figure 6: Point cloud reconstruction results using three baselines. Note that point cloud has been
colorized for a visualization purpose.
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Type of positional encoding Performance
No PE γPE PE* γampPE Chamf. f -score
X 1.231 52.011

X 1.224 52.434
X 1.226 52.954

X 1.195 55.488
(a) Ablation study for amplified positional encoding.

preserve (X) Performance
1st stage Self-attn Cross-attn Chamf. f -score

X 1.42 49.56
X X 1.209 53.374
X X 1.223 52.692
X X X 1.195 55.488

(b) Ablation study for voxel re-localization.

Table 2: Ablation study of our point cloud reconstruction network. In (a), PE* indicates
positional encoding from NeRF Mildenhall et al. (2020). In (b), S-hourglass represents the voxel
generation network. Self-attn and Cross-attn mean self-attention layers and cross-attention layers,
respectively. The evaluation is conduced in ShapeNet-Part dataset under lvox=0.02, Pin=2048.

4.5 ABLATION STUDY

In this section, we propose to evaluate the contribution of each proposed component (amplified po-
sitional encoding and voxel re-localization network), through an extensive ablation study in Table 2.

In Table 2-(a), we validate our amplified positional encoding in comparison with different styles of
positional encodings, γPE (Vaswani et al., 2017) and PE* (Mildenhall et al., 2020). Also, we include
an additional experiment that does not use any positional encodings (i.e., No PE in Table 2-(a)).
We measure the accuracy by calculating the Chamfer distance and f -score. It demonstrates that our
method outperforms the previous embedding schemes. We deduce that by using the geometric po-
sition priors of point cloud, we can intentionally magnify or suppress the position encoding vectors
that are usually beneficial for the control of high-frequency embedding in 3D spatial domain.

In Table 2-(b), we conduct experiments on different composition of voxel re-localization network.
Our network involves sparse stacked hourglass network (i.e., S-Hourglass), self-attention layers (i.e.,
Self-attn in Table 1), and cross-attention layers (i.e., Cross-attn in Table 1). By intentionally omitting
certain modules in the voxel re-localization network, we measure the quality of point reconstruction
using the Chamfer distance and f -scores. Despite reasonable results from the voxel generation
network (i.e. 1st stage in Table 1), it turns out that self- and cross-attention layers further increase the
accuracy of of the point cloud reconstruction. In particular, the combined usage of self- and cross-
layers outperforms other strategies. To ensure a fair comparison, the self-attention only method and
cross-attention solely network adopts more transformers to balance with our final network design.

So far, we demonstrate the effectiveness of our network design through a fair comparison with
previous studies and an extensive ablation studies. Our network aims at point cloud reconstruction
that can be applied in general cases to achieve high-quality point refinement.

5 CONCLUSION

Contrary to previous approaches – individually addressing the problems of densification and de-
noising, we propose an elegant two-stage pipeline to jointly resolves these tasks. As a result of this
unified framework, the quality of sparse, noisy and irregular point cloud can be drastically improved.
This claim has been validated through a large series of experiments underlying the relevance and effi-
ciency of this joint refinement strategy. Specifically, qualitative and quantitative results demonstrate
significant improvements in terms of reconstruction’s accuracy and generalization when compared
with prior techniques. Our point cloud reconstruction strategy paves the way towards more flexible,
multi-tasks and effective architectures to refine point cloud’s quality. Despite this success, there
exist remaining issues, such as noise modeling for better denoising and point-voxel fusion design.

ACKNOWLEDGMENTS

This work was supported by (1) NAVER LABS Corporation [SSIM: Semantic and scalable in-
door mapping], (2) IITP grant funded by the Korea government(MSIT) (No.2019-0-01906, Artifcial
Intelligence Graduate School Program(POSTECH)) and (3) Institute of Information and communi-
cations Technology Planning and Evaluation (IITP) grant funded by the Korea government(MSIT)
(No.2021-0-02068, Artificial Intelligence Innovation Hub)

9



Published as a conference paper at ICLR 2022

REFERENCES

Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.
Large-scale data for multiple-view stereopsis. International Journal of Computer Vision (IJCV),
120(2):153–168, 2016.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and Claudio T.
Silva. Computing and rendering point set surfaces. IEEE Transactions on visualization and
computer graphics, 9(1):3–15, 2003.

Haim Avron, Andrei Sharf, Chen Greif, and Daniel Cohen-Or. l1-sparse reconstruction of sharp
point set surfaces. ACM Transactions of Graphics (ToG), 2010.

Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud, Joshua A
Levine, Andrei Sharf, and Claudio T Silva. A survey of surface reconstruction from point clouds.
In Computer Graphics Forum. Wiley Online Library, 2017.

Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Claudio Silva, and Gabriel Taubin. The
ball-pivoting algorithm for surface reconstruction. IEEE transactions on visualization and com-
puter graphics, 5(4):349–359, 1999.

Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape representation. ACM
Transactions of Graphics (ToG), 1984.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Jaesung Choe, Kyungdon Joo, Francois Rameau, Gyumin Shim, and In So Kweon. Seg-
ment2regress: Monocular 3d vehicle localization in two stages. In Robotics: Science and Systems,
2019a.

Jaesung Choe, Kyungdon Joo, Francois Rameau, Gyumin Shim, and In So Kweon. Seg-
ment2regress: Monocular 3d vehicle localization in two stages. In Robotics: Science and Systems,
2019b.

Jaesung Choe, Sunghoon Im, Francois Rameau, Minjun Kang, and In So Kweon. Volumefusion:
Deep depth fusion for 3d scene reconstruction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 16086–16095, October 2021a.

Jaesung Choe, Kyungdon Joo, Tooba Imtiaz, and In So Kweon. Volumetric propagation network:
Stereo-lidar fusion for long-range depth estimation. IEEE Robotics and Automation Letters, 6(3):
4672–4679, 2021b. doi: 10.1109/LRA.2021.3068712.

Jaesung Choe, Kyungdon Joo, Francois Rameau, and In So Kweon. Stereo object matching network.
In IEEE International Conference on Robotics and Automation (ICRA), pp. 12918–12924, 2021c.
doi: 10.1109/ICRA48506.2021.9562027.

Jaesung Choe, Chunghyun Park, Francois Rameau, Jaesik Park, and In So Kweon. Pointmixer:
Mlp-mixer for point cloud understanding. arXiv preprint arXiv:2111.11187, 2021d.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

Christopher Choy, Wei Dong, and Vladlen Koltun. Deep global registration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Brian Curless and Marc Levoy. A volumetric method for building complex models from range
images. In Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques, pp. 303–312, 1996.

10



Published as a conference paper at ICLR 2022

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5828–5839,
2017.
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APPENDIX

In this appendix, we describe further details of the proposed methodology, deep point cloud re-
construction. First, we provide the additional quantitative results (Sec. A). Second, we describe
precise equations of the metrics that we used for evaluation (Sec. B). Third, we present qualitative
comparisons of ours and baseline methods (Sec. C).

A QUANTITATIVE RESULTS

Along with Table 1 of the manuscript, we provide additional results that we did not include in the
manuscript.

ShapeNet-Part dataset

Methods Pin Pout
k Nearest Chamf. (↓) Percentage (↑) (< 0.5) Percentage (↑) (< 1.0)
k=1 k=2 k=4 Acc. Comp. f -score Acc. Comp. f -score

PC (r=4) 2048 8192 1.14 1.29 1.51 72.28 42.71 51.51 92.41 88.48 90.16
PU (r=4) 2048 8192 1.56 1.69 1.90 60.71 26.91 36.04 86.67 68.19 75.60
Ours (lvox=0.0200) 2048 8732 1.19 1.33 1.52 81.02 40.41 53.48 96.95 81.23 88.08
PC (r=8) 2048 16384 1.01 1.13 1.31 70.89 60.66 64.17 92.16 93.56 92.76
PC (r=8)→ PD 2048 16384 1.25 1.34 1.49 61.11 42.98 49.74 91.73 81.01 85.83
PC (r=4)→ PU (r=4)→ PD 2048 1.14 1.48 1.60 56.55 49.72 52.43 87.13 82.73 84.67
PU (r=8) 2048 16384 1.02 1.14 1.32 80.84 50.36 60.74 95.69 82.21 88.05
PU (r=8)→ PD 2048 16384 1.29 1.39 1.56 71.79 43.88 53.57 94.68 75.41 83.55
PU (r=4)→ PC (r=4)→ PD 2048 1.51 1.59 1.71 56.63 59.90 57.63 83.13 89.47 85.97
Ours (lvox=0.0150) 2048 15863 0.90 0.94 1.12 85.77 69.01 78.14 97.11 94.98 96.16

ScanNet dataset

Methods Pin Pout
k Nearest Chamf. (↓) Percentage (↑) (< 0.5) Percentage (↑) (< 1.0)
k=1 k=2 k=4 Acc. Comp. f -score Acc. Comp. f -score

PC (r=8) 4098 32768 3.64 3.98 4.43 19.50 8.06 10.53 45.32 40.23 41.19
PC (r=8)→ PD 4098 32768 3.61 3.84 4.19 24.58 10.33 13.82 55.21 38.18 44.47
PU (r=8) 4096 32768 3.20 3.49 3.92 21.52 9.323 11.94 48.30 36.10 39.72
PU (r=8)→ PD 4098 32768 3.01 3.29 3.71 30.24 14.07 18.04 63.36 42.15 49.68
Ours (lvox=0.0100) 4096 27740 1.51 1.64 1.87 70.49 40.59 51.29 93.63 73.24 82.02
Ours (lvox=0.0085) 4096 41022 1.73 1.86 2.05 63.67 38.55 47.77 91.03 70.67 79.36
PC (r=16) 4098 65536 3.79 4.08 4.48 16.91 11.96 13.12 40.45 53.70 45.45
PC (r=16)→ PD 4098 65536 3.71 3.93 4.23 21.93 15.05 17.33 51.57 47.38 49.12
PC (r=4)→ PU (r=4)→ PD 4096 3.69 3.91 4.23 23.05 12.59 15.31 49.75 42.24 44.84
PU (r=16) 4096 65536 3.68 3.94 4.32 16.81 13.48 13.90 37.89 44.60 40.04
PU (r=16)→ PD 4098 65536 2.86 3.10 3.44 26.06 21.04 22.36 55.73 53.56 54.04
PU (r=4)→ PC (r=4)→ PD 4096 2.66 2.86 3.14 22.89 23.30 21.86 49.64 64.11 55.40
PU (r=4)→ PD→ PC (r=4) 4096 3.75 3.99 4.33 15.99 15.43 14.50 36.60 54.70 43.10
Ours (lvox=0.0075) 4096 55188 1.91 2.04 2.24 57.88 36.83 44.72 88.06 68.34 76.72
Ours (lvox=0.0065) 4096 76182 2.17 2.32 2.32 51.55 34.78 41.16 84.47 65.28 73.37
Ours (lvox=0.0050) 4096 116266 2.86 3.02 3.26 40.42 30.24 34.08 76.37 58.12 65.61

ICL-NUIM dataset

Methods Pin Pout
k Nearest Chamf. (↓) Percentage (↑) (< 0.5) Percentage (↑) (< 1.0)
k=1 k=2 k=4 Acc. Comp. f -score Acc. Comp. f -score

PC (r=8) 4098 32768 3.32 3.59 3.97 21.61 12.28 13.87 44.32 50.18 45.98
PC (r=8)→ PD 4098 32768 3.21 3.40 3.69 28.84 15.54 18.89 56.27 48.97 51.88
PU (r=8) 4096 32768 3.25 3.49 3.86 21.00 13.05 14.16 43.31 42.44 41.46
PU (r=8)→ PD 4098 32768 2.85 3.09 3.45 32.34 20.03 22.75 61.38 51.12 54.96
Ours (lvox=0.0100) 4096 21395 1.50 1.61 1.79 75.81 48.13 58.44 92.99 74.57 82.40
Ours (lvox=0.0085) 4096 30986 1.70 1.81 2.00 71.65 46.43 55.74 91.01 72.36 80.12
PC (r=16) 4098 65536 3.41 3.63 3.95 18.69 17.53 16.65 38.26 63.02 47.20
PC (r=16)→ PD 4098 65536 3.18 3.34 3.59 24.46 20.88 21.53 50.98 57.43 53.84
PC (r=4)→ PU (r=4)→ PD 4096 3.61 3.81 4.11 21.62 11.41 14.05 45.34 42.57 43.32
PU (r=16) 4096 65536 3.83 4.03 4.33 17.78 18.19 16.83 35.45 49.93 41.03
PU (r=16)→ PD 4098 65536 2.80 3.00 3.29 27.46 27.11 26.18 53.15 60.50 56.26
PU (r=4)→ PC (r=4)→ PD 4096 3.61 3.94 4.42 27.55 8.64 12.42 54.42 33.58 40.60
PU (r=4)→ PD→ PC (r=4) 4096 4.00 4.21 4.53 10.09 11.64 9.51 22.70 48.52 30.25
Ours (lvox=0.0075) 4096 41322 1.87 1.99 2.18 67.78 44.97 53.36 89.09 70.52 78.141
Ours (lvox=0.0065) 4096 56902 2.14 2.26 2.45 63.40 42.85 80.26 86.84 67.78 75.41
Ours (lvox=0.0050) 4096 99321 2.78 2.92 3.10 54.11 38.09 43.55 81.76 61.88 69.45

Table 3: Additional quantitative results. We measure the quality of point reconstruction from
ours, point completion (PC) (Xiang et al., 2021), point denoising (PD) (Luo & Hu, 2021) and point
upsampling (PU) (Li et al., 2021) using typical criteria: chamfer distance (Fan et al., 2017) and
percentage metric that consists of accuracy (Acc.) and completeness (Comp.) and f -score (Jensen
et al., 2014). For fair comparison, we test various conditions by changing the number of input point
cloud Pin, the upsample ratio r, and voxel size lvox. Note that identical colors mean the results from
the same pre-trained weights for each method.
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B METRICS

B.1 PERCENTAGE METRICS

Let us describe the precise equation of the metrics that we used in Table 1 of the manuscript and
Table 3 of the appendix. Let PGT be ground truth point cloud, Ppred a reconstructed points. For each
inferred point p∈Ppred, its distance to ground truth is defined as:

dp→PGT= min
g∈PGT

‖p− g‖22 , (6)

where g is a single point included in the ground truth point cloud PGT. These distances are gathered
to calculate Accuracy (i.e., Acc.) as:

Accuracy(dthresh) =
100

NPpred

∑
p∈Ppred

[dp→PGT≤dthresh] , (7)

where NPpred is the number of reconstructed points Ppred, [·] is the Iverson bracket, and dthresh is a
threshold distance. In a similar manner, we calculate the distance from ground truth point g∈PGT to
the reconstructed points Ppred as:

dg→Ppred= min
p∈Ppred

‖g − p‖22 , (8)

These distances are gathered to calculate Completeness (i.e., Comp.) as:

Completeness(dthresh) =
100

NPGT

∑
g∈PGT

[
dg→Ppred≤dthresh

]
(9)

whereNPGT is the number of ground truth point clouds. To calculate f1-score, we use Accuracy and
Completeness as below:

f1-score(dthresh) =
2 · Accuracy(dthresh) · Completeness(dthresh)

Accuracy(dthresh) + Completeness(dthresh)
, (10)

Note that in ShapeNet dataset, we set dthresh=0.0200. For ScanNet and ICL-NUIM dataset, we set
dthresh=0.0050 for evaluation. We mostly follow these metrics from (Jensen et al., 2014; Aanæs
et al., 2016; Yao et al., 2018; Knapitsch et al., 2017).

B.2 CHAMFER DISTANCE

Before we explain the k-Nearest Chamfer distance, let us revisit the original Chamfer distance.
Based on the equations Eq. 8 and Eq. 6, we describe the Chamfer distance (i.e., Chamf.) as:

Chamf. =
1

NPpred

∑
p∈Ppred

(dp→PGT) +
1

NPGT

∑
g∈PGT

(dg→Ppred), (11)

Since the original Chamfer distance only considers the closest distances, it has difficulty in describ-
ing the optimal distance between two point sets having different number of points (Fan et al., 2017).
However, rather than to use Earth Mover distance that requires quadratic computational power and
memory consumption, we formulate k-Nearest Chamfer distance by considering the k closest points
instead of the single closest point (i.e., k=1). Let us define the distance from a inferred point p∈Ppred
to the k closest ground truth points gk∈PGT as follow:

dkp→PGT
=

1

k

∑
k

‖p− gk‖22 , (12)

where gk is the k-th closest point to the inferred point p. Similarly, we calculate the distance from
a ground truth point g to the k-closest reconstructed points pk as follows:

dkg→Ppred
=

1

k

∑
k

‖g − pk‖22 , (13)

Based on these equations, we compute k-Nearest Chamfer distance (i.e., k-Chamf.) as below:

k-Chamf. =
1

NPpred

∑
p∈Ppred

(dkp→PGT
) +

1

NPGT

∑
g∈PGT

(dkg→Ppred
). (14)
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C QUALITATIVE RESULTS

Color image Input point cloud Ours Ground truth
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Color image Input point cloud Ours Ground truth

Figure 7: Point cloud reconstruction results. Note that point cloud has been colorized for a visu-
alization purpose.
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