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Abstract

Multimodal Large Language Models (MLLMs) have tremendous potential to
improve the accuracy, availability, and cost-effectiveness of healthcare by providing
automated solutions or serving as aids to medical professionals. Despite promising
first steps in developing medical MLLMs in the past few years, their capabilities and
limitations are not well-understood. Recently, many benchmark datasets have been
proposed that test the general medical knowledge of such models across a variety
of medical areas. However, the systematic failure modes and vulnerabilities of such
models are severely underexplored with most medical benchmarks failing to expose
the shortcomings of existing models in this safety-critical domain. In this paper,
we introduce MediConfusion, a challenging medical Visual Question Answering
(VQA) benchmark dataset, that probes the failure modes of medical MLLMs from
a vision perspective. We reveal that state-of-the-art models are easily confused by
image pairs that are otherwise visually dissimilar and clearly distinct for medical
experts. Strikingly, all available models (open-source or proprietary) achieve
performance below random guessing on MediConfusion, raising serious concerns
about the reliability of existing medical MLLMs for healthcare deployment. We
also extract common patterns of model failure that may help the design of a
new generation of more trustworthy and reliable MLLMs in healthcare. The
evaluation code and the dataset are available at https://github.com/AIF4S/
MediConfusion.

1 Introduction

Multimodal Large Language Models (MLLMs) have demonstrated unprecedented capabilities in a
variety of multimodal tasks, including image understanding and visual reasoning, autonomous driving
(Cui et al., 2024), robotics (Wang et al., 2024a) and embodied AI (Driess et al., 2023). Motivated by
this success, a growing body of work (Moor et al., 2023; Li et al., 2024; Lin et al., 2023) explores
the potential of MLLMs in medical applications with the hope of paving the way to more accurate,
personalized and cost-effective healthcare solutions through modern generative AI.
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Even though MLLMs show enormous potential in a wide range of tasks, a swath of challenges have
stymied their deployment, including object hallucinations Li et al., relationship hallucinations (Wu
et al., 2024), inaccurate object counting (Jain et al., 2024) and lack of spatial reasoning capabilities
(Kamath et al., 2023). These shortcomings are especially worrisome in safety-critical applications,
such as healthcare, where reliability is an essential requirement. In fact, recent research efforts on
medical MLLMs have revealed weak anatomic knowledge (Nan et al., 2024), concerns on toxicity
and patient privacy Xia et al. (2024), highly unreliable disease diagnosis Wu et al. (2023a), and the
fact that even a junior doctor far outperforms the most proficient medical MLLMs across a wide
spectrum of tasks Wang et al. (2024b). As model failure in the medical domain can lead to serious
adverse health effects, it is of utmost importance to understand the performance and limitations of
generative AI in the medical context.

A flurry of activity has emerged around probing the performance of medical MLLMs in a multitude
of tasks, including visual question answering (VQA) (Ben Abacha et al., 2021), disease classification
and report generation (Royer et al., 2024), and modality recognition (Wu et al., 2023b). Even though
the proposed medical benchmarks offer valuable insights on model performance across a variety of
anatomic regions and imaging modalities, they are focused on evaluating the medical knowledge of
MLLMs across large evaluation sets, heavily biased towards common or typical scenarios. Therefore,
it is unclear how well the measured performance correlates with the actual multimodal medical
reasoning capabilities of these models, especially in the face of systematic but perhaps more intricate
model failures underrepresented in the dataset. Therefore, developing new evaluation benchmarks that
carefully test and probe the capabilities of these systems, expose their vulnerabilities, and facilitate
the development of a better understanding of failure modes is vital in healthcare applications.

In this work, we introduce MediConfusion, a challenging benchmark for evaluating the failure
modes of medical MLLMs from a vision perspective. We combine novel insights on the image
representations of medical MLLMs with the expertise of clinical radiologists to craft a benchmark
dataset that stress-tests the visual capabilities of state-of-the-art models. Our work reveals that
medical MLLMs often confuse image pairs that otherwise appear very different in the image domain.
Leveraging this observation, we introduce an automated pipeline to discover such pairs in the ROCO
(Pelka et al., 2018) multimodal radiology dataset. Then, in collaboration with radiologists, we curate
a VQA benchmark of clinically relevant multiple-choice problems designed to probe the model’s
ability to distinguish between such images. By design, relying solely on unimodal (language) priors
cannot achieve better than random guessing accuracy on our benchmark, and therefore performance
on MediConfusion directly correlates with multimodal medical reasoning and image understanding
capabilities. Remarkably, we discover that both state-of-the-art medical MLLMs, as well as the most
advanced proprietary models, are easily confused by the image pairs, resulting in performance below
random guessing for all models at the time of writing this paper. What is striking about this poor
performance is that for some of the models (i.e. all medical MLLMs we studied) the images and
corresponding captions are part of the training data!1 Finally, we leverage our pipeline to categorize
failure cases in order to guide future research toward more reliable medical AI solutions.

2 The MediConfusion Benchmark

The majority of existing multimodal foundation models leverage CLIP (Radford et al., 2021) to
encode the input image (Li et al., 2024; Liu et al., 2024; Moor et al., 2023; Li et al., 2023). CLIP
has been pretrained on internet-scale general domain data and, therefore, may not be suitable for the
nuanced representation of medical images due to the considerable distribution shift. Thus, variants
trained on large-scale medical image-text datasets have been introduced as image encoders for
medical agents, including BiomedCLIP (Zhang et al., 2023b) and PMC-CLIP (Lin et al., 2023). Due
to the specialized training data, these models are able to better capture the structure and semantics of
medical images. However, surprisingly, we observe that the feature space of even specialized medical
encoders is often not rich enough to clearly differentiate between images that are otherwise highly
dissimilar. A growing body of recent work Thrush et al. (2022); Yuksekgonul et al. (2022) has shown
that the contrastive pretraining objective, shared by common image encoders for MLLMs, can be
optimized via shortcuts that lead to fundamental flaws in multimodal understanding. In particular,

1Given the public nature of the original dataset such images and captions are also likely part of the pre-
training of proprietary models such as OpenAI’s GPT-4o, Google Deep Mind’s Gemini 1.5 Pro, and Anthropic’s
Claude 3 Opus.
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Figure 1: Overview of MediConfusion curation pipeline. First, we extract image pairs from the
ROCO radiology dataset that are clearly distinct in the image domain, but may be challenging to
differentiate between for multimodal models (left). Next, we use an automated pipeline leveraging
LLM prompting to generate VQA from the confusing pairs and their corresponding captions (center).
Finally, we incorporate radiologist feedback to filter questions for correctness, relevance and quality,
and to revise the questions and answer options for improved medical language and precision (right).

training consists of aligning image features with their corresponding text features within a batch
of data. Thus, if the images are clearly distinct within the batch, the task becomes easy and the
model is not encouraged to learn embeddings nuanced enough for more intricate downstream tasks,
such as medical reasoning. As a result, MLLMs that leverage such pretrained encoders suffer from
impaired image understanding and visual reasoning (Tong et al., 2024a,b), casting serious doubt
on the reliability of such models in critical medical diagnosis. Therefore, designing challenging
benchmarks that stress-test the visual capabilities of medical MLLM is of utmost importance for
gaining a better understanding of the limitations of existing models.

In this work, we introduce the MediConfusion Benchmark, a challenging multiple choice medical
visual question answering benchmark designed to probe the reasoning capabilities of medical MLLMs.
The overview of our curation pipeline is summarized in Figure 1. First, we extract image pairs that
are visually clearly different, but MLLMs will likely confuse them due to their similar features in
embedding space. Next, based on the captions corresponding to each of the images in the confusing
pairs, we generate a large pool of multiple choice problems via LLM prompting. Finally, each
question in the LLM-generated pool is scrutinized and revised by an expert radiologist before being
added to MediConfusion. We evaluate a range of state-of-the-art medical and general domain MLLMs
and demonstrate that even flagship proprietary models have performance worse than random guessing.

Discovering confusing pairs– We find confusing image pairs in ROCO (Pelka et al., 2018), a
multimodal dataset of ≈ 80k radiology images and their corresponding captions extracted from
PMC-OA (Lin et al., 2023) (Figure 1, left). Inspired by Tong et al. (2024b), we seek out pairs with
clear visual differences, but high similarity in the feature space of the medical MLLMs. This implies
that at least one of the images in the pair is compressed ambiguously, and thus, it is likely that
relevant visual information is lost in the encoding. In particular, we base our selection criteria on
BiomedCLIP’s embedding space, as this model has been specifically trained on medical image-text
data, and thus it has a more refined feature space for medical images than a general-domain encoder,
such as CLIP. Simply put, a radiology image pair that confuses BiomedCLIP, will likely confuse CLIP
as well. Moreover, BiomedCLIP has been pretrained on the largest dataset of medical image-caption
data among publicly available CLIP-style biomedical vision-language models. We measure visual
differences between images in the feature space of DINOv2, a state-of-the-art vision-only foundation
model with robust image representations that capture visual details. We randomly sample pairs of
images and evaluate their similarity in BiomedCLIP (simmed) and DINOv2 (simgen) feature spaces.
We consider them a confusing pair if simmed ≥ 0.9 and simgen ≤ 0.75 hold at the same time. The
gap |simmed − simgen| can be increased further in order to obtain more difficult pairs; however, we
find that our setting is already challenging enough for most contemporary models. We depict sample
pairs uncovered by our technique in Appendix C.

VQA generation– Given a pool of candidate confusing pairs, we generate multiple choice medical
VQA problems that probe the MLLM’s ability to effectively differentiate between the images in the
pair (Figure 1, center). First, we filter the candidate pool by removing images with short captions
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Figure 2: A sample question pair from MediCon-
fusion. A confusing pair shares the same question
and corresponding answer options, but the correct
answer is different for the two. The model re-
ceives a set score of 1 only if it correctly answers
both questions in the confusing pair. Individual
score is evaluated separately for each image.

Figure 3: Distribution of question categories in
MediConfusion. We assign a category to the ques-
tion based on the category of the corresponding
image in the VQA. A single image can belong to
multiple categories at the same time.

(< 100 characters) that likely contain insufficient detail about the image. Next, we pass the pair
of captions to an LLM (GPT-4) and prompt the model to generate a question to which the answer
is different for the two images and to provide the two answer options. Thus, we create two VQA
problems for each pair that share the same question and answer options, however the correct answer
is different for the two images (Figure 2). Therefore, if the medical MLLM is unable to differentiate
between the input images, it would only be able to answer at most one of the pair of VQA problems
correctly, but not both. As a result, our benchmark by construction cannot be solved to higher than
50% accuracy by relying solely on language prior. In particular, we only credit a set score to the
model on a particular question pair, if the question has been answered correctly for both images. On
the other hand, as a less strict metric an individual score is awarded to the model for each correct
answer, irrespective of correctness on the other image in the pair. Furthermore, in order to categorize
questions in the VQA, we prompt the LLM to assign the most relevant medical area to each of the
questions based on the corresponding image’s PMC caption. We leverage these categories to break
down the performance of existing medical MLLMs across the various categories. We include all
prompts used in VQA generation in Appendix A.

Data filtering and revision via radiologist feedback– As we generate the questions/answer choices
using an LLM, various issues may arise such as factual errors and inconsistencies in quality, format,
or language. To ensure the curation of a reliable benchmark dataset, oversight and feedback from
a radiology expert are crucial. A radiologist evaluated each of the automatically generated VQA
problems focusing on three aspects.

Correctness: the question has to be valid with respect to both of the images, the problems need to be
solvable by looking at the individual images alone, and the corresponding answers have to be correct.

Relevance: the question has to be relevant to clinical practice or medical research.

Language: the problem has to use proper medical terminology and precise language.

Based on these guidelines, the radiologist assigned a quality score to each question, on a scale 1− 10.
Higher scores correspond to better problems, and a score of 1 is assigned if correctness is violated
in any form (e.g., irrelevant question, incorrect answer). We add a VQA pair to MediConfusion
only if the quality score is at least 5 for both individual problems in the pair. Moreover, the expert
verified the medical categories assigned by the LLM to each of the images and revised the question
and answer options to improve language quality and precision. This step is crucial in eliminating
model artifacts that originate in LLM-generated text inputs.
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The resulting benchmark is well-rounded, with questions touching upon 9 areas (see Figure 3):
cerebral, spinal, cardiac, gastrointestinal, musculoskeletal, vascular, pulmonary, head and neck, and
nuclear medicine with 352 questions in total. Figure 3 depicts the distribution of question categories.

3 Experiments

3.1 Evaluation

We evaluate models on MediConfusion based on two notions of accuracy. Set accuracy is the
portion of correct confusing pairs, where we only consider a pair correct if the model has answered
the question correctly for both images in the pair. Individual accuracy is the standard notion of
accuracy, that is, the portion of correct answers over all questions. An example is depicted in Figure
2. Furthermore, we report confusion score, which indicates the portion of pairs where the model
has chosen the same answer for both images in the pair, out of all pairs (we exclude pairs where
the model generated invalid answers or failed to answer). A high confusion score signifies that the
model prediction is overwhelmingly invariant to the specific input image within a pair, and thus, it is
confused by the images.

Extracting the knowledge from MLLMs for VQA benchmarking is often challenging due to sensitivity
to the specific prompt format and phrasing, strong reliance on language bias and other factors. For
instance, instruction tuned models can be directly prompted to answer a multiple choice question with
the correct letter option, whereas models without instruction tuning often fail to do so. Therefore, in
order to provide a fair comparison, we use a range of evaluation techniques to assess performance.

Prefix-based score (PS) – Following Xu et al. (2023), we compute the normalized likelihood of
image-question-answer triplets for each answer option, and pick the option with the highest likelihood
as the answer. In other words, we select the answer option that the model assigns the highest
probability to, given the image and question. To compute the prefix-based score, we concatenate the
medical question and the answer sentence directly, stripping the multiple choice question style (e.g.,
removing "Choose the letter of the correct answer.") and option indicators (e.g., removing "Option A:
...") in order to ensure that models that have not been specifically trained on multiple choice question
answering can also consistently provide valid answers.

Multiple choice prompting (MC) – We directly prompt the model to answer the multiple choice
question with the letter of the correct option. As the output formats may vary (e.g., "A" vs. "The
answer is A."), we parse the outputs and attempt to match it to one of the answer options.

Free-form evaluation (FF) – We prompt the model to answer the question without providing the
answer options or requiring any specific output format. Then, we attempt to match the model output
to one of the options using an LLM. In particular, we prompt GPT-4 to score how well the generated
output matches each of the options, and we pick the answer option with the highest score. We include
the specific evaluation prompt in Appendix A.

Greedy decoding (GD)– Similar to multiple choice prompting, we directly prompt the model to
answer the problem with the letter of the correct option, then we pick the option with the highest
assigned next-token probability. Greedy decoding evaluation is a special case of prefix-based scoring,
where the answer options consist of a single letter.

PS and FF evaluations are suitable for models that are not instruction tuned or have not been trained
to understand the multiple choice QA format. On the other hand, MC and GD are simpler to
evaluate, however these techniques may fail to correctly measure the knowledge of MLLMs unable
to understand and follow the multiple choice format. Overall, we represent the performance of each
model by their best performance across all evaluation techniques. As we observe, proprietary models
can consistently pick an answer option for multiple choice questions; for these models, we only
provide MC results. Moreover, output logits necessary for PS and GD evaluation are not available for
proprietary models.

We evaluate a representative set of 12 models, 3 of which are medical MLLMs (LLaVA-Med (Li et al.,
2024), Med-Flamingo (Moor et al., 2023), RadFM (Wu et al., 2023b)), 3 are flagship proprietary
models (GPT-4o, Claude 3 Opus, Gemini 1.5 Pro) and 6 open-source general-domain MLLMs
(LLaVA-7B v1.6 (Liu et al., 2024), BLIP-2 (Li et al., 2023), InstructBLIP (Dai et al., 2023), Llama
3.2 90B, and Molmo 72B and 7B). We set generation parameters according to the corresponding
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Set acc. (%) Indiv. acc.(%) Confusion (%) Best

Method MC GD FF PS MC GD FF PS MC GD FF PS Set acc. Indiv. acc.

Llama 3.2 15.34 14.77 2.84 9.66 54.55 55.97 21.02 50.85 78.41 82.39 75.61 82.39 15.34 55.97
Molmo 72B 6.82 6.82 1.7 3.98 49.72 52.56 18.75 50.57 85.80 91.48 90.91 93.18 6.82 52.96
Molmo 7B 9.66 0.57 0.57 5.11 52.84 49.72 14.77 51.42 86.21 98.3 83.33 92.61 9.66 52.84
LLaVA 8.52 9.09 1.70 1.14 50.57 51.70 15.06 49.72 85.47 85.80 76.00 97.16 9.09 51.70
BLIP-2 0.57 6.82 1.70 3.98 22.16 50.28 11.65 51.42 92.19 86.93 86.67 94.89 6.82 51.42
InstructBLIP 12.50 7.95 2.84 3.41 51.99 53.12 19.60 50.57 80.35 90.34 87.23 94.32 12.50 53.12
LLaVA-Med 0.00 0.00 1.14 1.14 23.58 49.72 18.75 49.72 100.00 99.43 95.92 97.16 1.14 49.72
RadFM 0.57 1.14 0.57 5.68 35.90 50.28 16.19 48.58 97.54 98.30 95.12 85.80 5.68 50.28
Med-Flamingo 1.14 2.27 0.57 4.55 47.73 50.00 17.05 51.99 98.75 95.45 94.89 98.30 4.55 51.99
GPT-4o 18.75 - - - 56.25 - - - 75.00 - - - 18.75 56.25
Claude 3 Opus 8.52 - - - 50.85 - - - 84.09 - - - 8.52 50.85
Gemini 1.5 Pro 19.89 - - - 51.14 - - - 58.52 - - - - 19.89 51.14
Random guessing 25.00 50.00

Table 1: Experimental results on MediConfusion. Evaluation techniques: PS - prefix-based scoring,
MC - multiple choice prompting, FF - free-form evaluation, GD - greedy decoding evaluation. We
underscore the best accuracy for each method across evaluation techniques and report the overall best
in bold.

code release and recommended settings and use few-shot prompting for Med-Flamingo (more details
in Appendix B).

3.2 Results

We summarize the performance of MLLMs on MediConfusion in Table 1. Alarmingly, all MLLMs
perform below random guessing in terms of set accuracy, corroborating our hypothesis that models
struggle to differentiate in fine enough detail between the extracted image pairs necessary for accurate
medical reasoning. This observation is further supported by the markedly high (often above 90%)
confusion scores indicating that models tend to select the same answer for both images within a
confusing pair. Even RadFM, a model that does not leverage a CLIP-style image encoder, is confused
on our benchmark (82.39% confusion score) with performance well below random guessing. As
most likely proprietary models leverage visual encoders other than CLIP as well, the overall poor
performance and extremely high confusion scores suggest that the exposed vulnerability is more
general and not solely rooted in the specific ambiguities of CLIP encoding.

An interesting outlier is Gemini 1.5, which has been the least confused (approx. 60%) on the dataset;
however, its accuracy is still close to random guessing. This may suggest that the model’s visual
representations are rich enough to meaningfully distinguish between images; however, the medical
knowledge or necessary reasoning skills are lacking to correctly answer the questions.

Furthermore, perhaps surprisingly, medical MLLMs did not outperform other methods, which
indicates that the shortcomings cannot be addressed exclusively by domain-specific training. These
results are especially surprising, as the image-caption pairs used to generate MediConfusion are part
of PMC-OA, which is included in the pre-training set of all 3 medical MLLMs in our experiments.
We also note that given the public nature of PMC-OA these image-caption pairs are likely included in
the training set of proprietary models as well. Finally, we do see some performance gap between
open-source and proprietary models, with GPT-4o achieving the highest individual accuracy, however,
barely surpassing that of random guessing (56.25% vs. 50%) with set accuracy still well below
random guessing.

We further break down the results based on the category of the question in order to identify if specific
areas have been more/less challenging to the models. We summarize our findings in Appendix C. Even
though the overall results across all categories are close to random guessing performance, proprietary
models demonstrate slightly better accuracies on questions related to cerebral and vascular images.
In particular, GPT-4o achieves 34.25% and 67.12% set and individual accuracy correspondingly on
vascular images, an overall best across all models and categories
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4 Discussion

4.1 Identifying Patterns in Confusing Pairs

Our experiments have demonstrated that state-of-the-art MLLMs are easily confused by radiology
image pairs that exhibit major differences obvious to human experts. The first step towards improving
the reliability of such models is to identify and categorize common cases where medical MLLMs
tend to break down. We leverage an expert-in-the-loop pipeline to extract failure modes from
MediConfusion via a combination of LLM prompting and radiologist supervision. In particular, we
pass the VQA problems from MediConfusion to GPT-4, where we replace the images with their
corresponding captions from ROCO. We prompt the model to summarize the key differences between
images in a pair that the questions are designed to test (details in Appendix A). The LLM identifies
patterns in the extracted differences and distills them into a set of categories that the radiologist
corrects and refines based on the dataset. As a result, we identify the following common patterns that
have confused the models:

Pattern 1: Normal/variant anatomy vs. pathology– Models often struggle with differentiating
between normal/variant anatomy and pathological structures. For instance, the model often confuses
malalignment with normal alignment (e.g., atlantoaxial dislocation vs. normal atlantoaxial interval) or
differentiating pituitary region masses (suprasellar vs. parasellar vs. intrasellar) or various anatomical
regions of the spine (cervical vs. thoracic vs. lumbar).

Pattern 2: Lesion signal characteristics– Models fail to correctly identify regions of high signal
intensity and their significance, particularly on T2-weighted sequences. This failure is especially of
clinical significance in differentiating solid vs. cystic entities.

Pattern 3: Vascular conditions– Identifying aneurysms and differentiating them from normal
vascular structures or other abnormalities like vascular malformations seems to be challenging for
MLLMs. Furthermore, there is often confusion between total occlusions and partial stenosis in
coronary arteries.

Pattern 4: Medical devices– Models often fail to detect the presence of stents and have difficulties
distinguishing between various types of stents. Identifying the presence or absence of guidewires in
images of interventional procedures tends to also be challenging for MLLMs.

Most of the above shortcomings can be, to some degree, traced back to known, common failure
modes (Tong et al., 2024b) of visual reasoning in MLLMs in the general domain.

Detecting presence (or absence) of specific features: Correct reasoning over medical VQA problems
strongly relies on detecting the presence (or absence) of particular features or objects relevant to the
question. MLLMs are known to suffer from object hallucinations (Li et al.) rooted in parts in flawed
image encoding, statistical biases and strong reliance on language priors (Leng et al., 2024). We can
see this specific weakness reflected in Patterns 3 and 4 directly.

Understanding state and condition: In medical VQA, it is crucially important for the model to
understand the difference between "normal" and "abnormal" structures. MLLMs have difficulties
identifying the state and condition of objects in the general domain, such as whether the ground is
wet or if a flag is blowing in the air (Tong et al., 2024b). These challenges may be amplified in the
more nuanced medical setting, which we observe in Patterns 1 and 3 especially.

Positional and relational context: Answering medical VQA problems often necessitate a careful
understanding of the spatial relationships of various anatomical features and their specific location.
Recent research has uncovered serious limitations in the spatial reasoning capabilities of MLLMs
(Kamath et al., 2023), some even failing to distinguish left from right. This pervasive weakness in
spatial reasoning may translate to failures in medical VQA seen in Pattern 1.

Color and appearance: Recent work has shown that MLLMs can confuse colors and their intensity
(bright/dark) (Tong et al., 2024b), which may cause challenges in identifying signal characteristics in
radiology images (high/low intensity) reflected in Pattern 2.

4.2 Visual Prompts in MediConfusion

Free-form visual prompts are intuitive annotations in the input image, such as a red bounding box
or an arrow, aimed at highlighting a specific point or area within the image. It is natural to ask
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whether well-placed visual prompts in medical images, annotated by a doctor, can potentially guide
the attention of MLLMs to important areas in the image and thus help provide accurate answers. Such
a capability would greatly facilitate human-machine collaboration in healthcare and provide more
reliable AI-assisted diagnosis. In the general domain, research has shown that MLLMs typically are
unable to efficiently interpret visual prompts without incorporating such task specifically into the
training procedure (Cai et al., 2024).

We find that some images in MediConfusion include such visual prompts, typically in the form of
arrows pointing at the abnormality, and in a specific case the correct answer is written in the image
along with the prompt (Figure 4 in the Appendix). We observe that only proprietary models, as well
as LLaVA v1.6 and BLIP-2, have been able to provide consistently correct answers for this particular
image, and none of the medical MLLMs. We hypothesize that the success of proprietary models and
LLaVA v1.6 can be attributed to their OCR (optical character recognition) capabilities, which are
missing from medical MLLMs. In examples where only the visual prompt (e.g., an arrow pointing
at the abnormality/region of interest) is included, we don’t observe a similar trend. We believe that
understanding and improving the visual prompting capabilities of medical MLLMs is a promising
direction for future research.

5 Related Work

Multimodal Large Language Models (MLLMs)– Beyond the general domain, MLLMs are espe-
cially promising in automating costly medical tasks, such as analyzing radiology images, generating
medical reports or acting as medical conversational agents to provide healthcare advice. There has
been substantial research recently to develop medical MLLMs, most often by adapting popular
general domain architectures to medical data. Med-Flamingo (Moor et al., 2023) pretrains Flamingo
on interleaved image-text medical data sourced from publications and textbooks, unlocking few-shot
medical VQA capabilities. Authors of LLaVA-Med (Li et al., 2024) focus on rapid adaptation to
the medical domain by fine-tuning LLaVA on filtered image-text pairs from PMC-15M (Zhang
et al., 2023a). Authors in Zhang et al. (2023c) generate a large-scale medical VQA dataset from
PMC-OA (Lin et al., 2023) which is subsequently used to train MedVInT, a state-of-the-art medical
MLLM. Moreover, authors in Wu et al. (2023b) propose a multimodal foundation model for radiology,
aligning natural language with 2D and 3D radiology images.

Encoding visual information in MLLMs– The prevailing approach to incorporate visual information
in MLLM training is to leverage contrastive language-image pretrained models as frozen image
encoders. CLIP (Radford et al., 2021), and its variants (Cherti et al., 2023), are trained on internet-
scale image-text data, and thus its representations are readily aligned with natural language, and can
be effectively combined with language models. The frozen representations are typically adapted to
the feature space of the language model using MLP heads (Liu et al., 2024), Q-Former (Li et al.,
2022), cross-attention (Alayrac et al., 2022) or other mechanisms. The image encoder acts as the
"eye" of the MLLM as it directly determines what visual information will enter the model. In fact,
imperfect compression of relevant visual information is a dominant issue with contemporary MLLMs,
resulting in object hallucinations (Li et al.; Gunjal et al., 2024), fundamental errors in spatial reasoning
(Kamath et al., 2023), and inability to understand inter-object relationships (Wu et al., 2024).

As the distribution of general ’internet data’ and medical image-text data is markedly different, CLIP
may be unable to capture the intricate structure of medical images with fidelity sufficient for reliable
performance. Researchers have proposed CLIP-like models pretrained on large-scale medical data
better suited as image encoders for medical MLLMs. LLaVA-Med leverages BiomedCLIP (Zhang
et al., 2023b), a foundation model designed for biomedical image-text processing that has been
pretrained on PMC-15M. MedVInT uses PMC-CLIP (Lin et al., 2023), a CLIP-style model pretrained
on PMC-OA with 1.6M medical image-caption pairs. The limitations of image encoders in medical
MLLMs have attracted less attention than in the general domain, which is especially troubling due to
the safety-critical nature of healthcare applications. Thus, the lack of in-depth understanding of the
shortcomings and possible failure modes of the image encoder in the medical MLLM pipeline is an
exceedingly pressing concern.

Medical VQA benchmarks– With the recent rapid advances in developing medical MLLMs, there
has been substantial effort in quantifying their performance in a wide range of tasks within the
medical domain. VQA-Rad (Lau et al., 2018), SLAKE (Liu et al., 2021), Path-VQA (He et al.,
2020) and VQA-Med (Ben Abacha et al., 2021) are widely-used to benchmark the performance
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of MLLMs in medical VQA. Due to their small size and limited scope, there has been a push for
more comprehensive and diverse evaluation datasets. OmniMedVQA (Hu et al., 2024) introduces the
largest medical VQA dataset to date, encompassing 12 data modalities and 20 anatomical regions with
a total of more than 100k images. Authors of Asclepius (Wang et al., 2024b) focus on eliminating data
leakage present in other benchmarks and providing human evaluations. GMAI-MMBench (Chen et al.,
2024) incorporates problems probing the performance of MLLMs at various perceptual granularities,
and targets a well-categorized data structure for ease of preparing customized evaluations. Other
benchmarks extend the evaluation task beyond VQA to provide a more comprehensive view of model
performance. MultiMedEval (Royer et al., 2024) builds a uniform and fair benchmarking framework
for multiple tasks including report generation and classification. RadBench (Wu et al., 2023b) focuses
on radiology with associated tasks such as modality recognition and disease diagnosis. CARES (Xia
et al., 2024) aims to provide a more holistic view of model performance by focusing on aspects such
as fairness, privacy and safety (toxicity) of MLLMs as well as factual correctness (trustfulness).

All of these datasets are aimed at probing the medical knowledge of MLLMs and quantifying their
average performance on a wide variety of tasks, modalities and anatomic regions. However, none
of these benchmarks are specifically designed to probe the reliability, fundamental limitations and
failure modes in the medical domain, all critical aspects in healthcare applications.

Perhaps the closest work in spirit to ours is RadVUQA (Nan et al., 2024), where authors call attention
to the critical deficiencies of existing medical MLLMs, revealing a large gap between state-of-the-art
MLLMs and clinicians. Their dataset focuses on more fundamental visual question answering and
understanding, such as spatial reasoning, anatomic understanding and quantitative reasoning on
medical images. However, we go a step further and design a benchmark that stress-tests the visual
capabilities of MLLMs by curating questions expected to be challenging for the image processing
pipeline of state-of-the-art models.

Related to our work, Tong et al. (2024b) has investigated the failure modes of MLLMs originating in
ambiguous vision encoding in the general domain. Their study is based on finding CLIP-blind pairs,
images that have high similarity in CLIP embedding space, but otherwise have dissimilar low-level
image features. However, their methodology is not directly applicable in the medical domain for
two reasons. First, CLIP has been pretrained on general domain data and thus it is unable to capture
the intricate structure of medical images. Second, their methodology relies on human annotators to
describe the difference between a large number of image pairs, which is prohibitively costly in our
scenario, as only radiologists are qualified to provide such annotations in the medical setting.

6 Conclusion
In this paper, we introduce MediConfusion, a challenging medical VQA benchmark designed to probe
the limitations of multimodal reasoning in medical MLLMs. In particular, we discover radiology
image pairs that, due to ambiguities originating in image encoding, confuse contemporary models
despite being dissimilar in the image domain. We leverage an automated pipeline along with the
expertise of radiologists to create a dataset of VQA problems that tests the ability of MLLMs to
effectively distinguish and answer clinically relevant questions about such confusing pairs. Our
benchmark, by construction, cannot be solved by leveraging unimodal priors, and thus, it directly
probes multimodal capabilities. We find that existing models achieve performance no better than
random guessing on MediConfusion, as models tend to select the same answer option for both images
in the pair, raising serious concerns about the reliability of existing MLLMs in a medical setting. In
order to guide future research in addressing the limitations of current MLLMs, we identify common
failure patterns where models often break and relate them to known limitations in the general domain.
We hope that our work sparks further research efforts to improve the reliability of AI for healthcare
applications.
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Appendix

A Prompts for dataset curation

In this section, we provide the prompts used to interact with GPT-4o for dataset generation and
MLLM evaluation. Wherever we use **TEXT**, we mean that TEXT is a description or variable
that is image/pair specific.

A.1 Question generation

We use the following prompt to generate a question for a single confusing pair. We describe the
output format as detailed as possible to be able to process the answers with little human interaction.

System message: You are a helpful assistant expert in the medical domain.
Prompt: Here is the description of two medical images that I can see:
Image1: **CAPTION OF IMAGE 1**
Image2: **CAPTION OF IMAGE 2**
Your task is to create multiple-choice questions. Follow the rules below.
1. The question should be about a property that is clearly visible in the
images.
2. It should be possible to answer the question by only looking at the
images.
3. Pretend that you can only see one image. You are not allowed to refer
to ’Image1’, ’Image2’ or ’images’. You should also not create questions
that require comparing the two images.
4. There should be exactly two answer options. You have to come up with a
question for which the answer is different for the two images.
5. The answer options should be clearly different.
Please provide the question and the two answer options in the following
format:
Question: <YOUR QUESTION>
Option1: <ANSWER 1>
Option2: <ANSWER 2>
Also, please provide the correct answers to the question for the images
corresponding to our captions in the following format:
Image1: <ANSWER>
Image2: <ANSWER>
Aim for simple, efficient and concise questions to best test someone’s
knowledge and understanding of the underlying concepts.

A.2 Categorizing images

To categorize the images, we first show GPT-4o captions of several (here we use 100) images and ask
it to separate them into different categories. Afterward, for each image, we ask GPT-4o to pick one of
the categories for that image based on its caption.
We used the following prompt to extract categories:

System message: You are a helpful assistant expert in the medical domain.
Prompt: I have several medical images related to radiology that each one
has a corresponding caption. I have listed the captions below. Can you
go through the captions and categorize them? Please focus on the general
categories.
Caption 0: **IMAGE 0 CAPTION**
Caption 1: **IMAGE 1 CAPTION**
...
Caption 99: **IMAGE 99 CAPTION**
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Using this prompt, we find 9 categories: Cerebral, Spinal, Cardiac, Gastrointestinal, Musculoskeletal,
Vascular, Pulmonary, Head and Neck, Breast, and Other.
We used the following prompt to assign categories:

System message: You are a helpful assistant expert in the medical domain.
Prompt: Caption: **IMAGE CAPTION**
The above caption describes a radiology image. To which of the following
categories does this image belong? You should only name the category, and
you do not need to specify your reasoning.
Categories: Cerebral, Spinal, Cardiac, Gastrointestinal, Musculoskeletal,
Vascular, Pulmonary, Head and Neck, Breast, Other"

The final set of categories in our dataset are somewhat different, as we incorporated feedback from
the radiologist to revise the automatically generated categories.

A.3 Finding failure modes

To find common failure modes that our dataset probes, we use the questions and captions of 100 pairs
in the following prompt to send to GPT-4o:

System message: You are a helpful assistant expert in the medical domain.
Prompt: I am analyzing an image embedding model. I have several image
pairs that each one has a corresponding two choice question. I know that
the embedding model confuses the images about the corresponding question.
Can you go through the questions, options, and image descriptions, trying
to figure out some general patterns that the embedding model struggles
with? Please focus on the visual features and generalize patterns that
are important to vision models.
Pair 0
First image description: **IMAGE 1 CAPTION**
Second image description: **IMAGE 2 CAPTION**
Confusing multiple choice question: **QUESTION**
Pair 1
First image description: **IMAGE 1 CAPTION**
Second image description: **IMAGE 2 CAPTION**
Confusing multiple choice question: **QUESTION**
...
Pair 99
First image description: **IMAGE 1 CAPTION**
Second image description: **IMAGE 2 CAPTION**
Confusing multiple choice question: **QUESTION**

A.4 Free Form Evaluation

For the free-form (FF) GPT-4o evaluation, we pass the MLLM’s answers with the following prompt
to GPT-4o to obtain two scores, one for each answer option.
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System message: You are a helpful and precise assistant for checking the
quality of the answer.
Prompt: [Question]
**QUESTION**
[Answer A]
**OPTION A**

[Answer B]
**OPTION B**

[Assistant]
**RESPONSE**

[End of Assistant]

[System]
We would like to request your feedback on the performance of an AI
assistant in response to the user question displayed above. The user asks
the question on observing an image. We have provided two possible answers,
[Answer A] and [Answer B] to the question. Your job is to evaluate how
close the AI assistant’s answer is to each of the answers. You don’t have
to decide whether the answers are correct or not. Each answer should
receive an overall score on a scale of 1 to 10, where a higher score
indicates the AI assistant’s answer is closer to the specific answer.
After providing the scores, concisely provide your explanation for the
given scores. Remember, you don’t need to comment on the correctness of
the answers. Please provide your answer in the following format:
A: <SCORE>
B: <SCORE>
Your explanation: <EXPLANATION>

These scores are the similarities of the MLLM’s answer to the different answer options. If the gap
between the higher and lower score is at least 3, we assign the option with the higher score as the
MLLM’s output. Otherwise, we mark the answer as invalid.

B Model details

In this section, we provide details on the versions and hyperparameters of MLLMs that we use. It
should be noted that for the multiple choice (MC) evaluation mode, we set temperature to 0, as we
only expect a single letter option to be generated.

MLLM Version/LLM Temperature Beams Top p

LLaVA v1.6/Mistral 7B 0.2 1 -
BLIP-2 Opt 2.7B 1 5 0.9
InstructBLIP Vicuna 7B 1 5 0.9
LLaVA-Med v1.5/Mistral 7B 0.2 1 -
RadFM - - - -
Med-Flamingo - 1 5 0.9
GPT 4o (release 20240513) 0.7 - -
Claude 3 Opus 0.2 - -
Gemini 1.5 Pro 0.2 - -

Table 2: MLLM details
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B.1 MedFlamingo few-shot prompting

In order for MedFlamingo to produce valid responses, we need to use few-shot prompting. Here, we
show three questions and answers from PMC-VQA benchmarks Zhang et al. (2023c). The following
is the prompt we used for MC evaluation:

Prompt: You are a helpful medical assistant. You are being provided with
images, a two choice question about each image and an answer. Follow the
examples and answer the last question. <image>Question: What radiological
technique was used to confirm the diagnosis?
A: CT Scan
B: Mammography
Answer: B: Mammography<|endofchunk|><image>Question: What did the CT scan
show?
A: Cerebral edema
B: Intracranial hemorrhage
Answer: A: Cerebral edema|endofchunk|><image>Question: What is the
purpose of the asterisk shown in the figure?
A: To indicate the formation of lobes around the contracting nucleus.
B: To indicate the normal lentoid shape of hypocotyl nuclei.
Answer: B: To indicate the normal lentoid shape of hypocotyl
nuclei.<|endofchunk|><image>
Question: **QUESTION**
A: **OPTION A**
B: **OPTION B**
Answer:

The following is the prompt we used for FF evaluation:

Prompt: You are a helpful medical assistant. You are being provided
with images, a question about each image and an answer. Follow
the examples and answer the last question. <image>Question: What
radiological technique was used to confirm the diagnosis? Answer:
Mammography<|endofchunk|><image>Question: What did the CT scan show?
Answer: Cerebral edema|endofchunk|><image>Question: What is the
purpose of the asterisk shown in the figure? Answer: To indicate the
normal lentoid shape of hypocotyl nuclei.<|endofchunk|><image>Question:
**QUESTION** Answer:
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The following is the prompt we used for GD evaluation:

Prompt: You are a helpful medical assistant. You are being provided with
images, a two choice question about each image and an answer. Follow the
examples and answer the last question. <image>Question: What radiological
technique was used to confirm the diagnosis?
A: CT Scan
B: Mammography
Answer: B: Mammography<|endofchunk|><image>Question: What did the CT scan
show?
A: Cerebral edema
B: Intracranial hemorrhage
Answer: A: Cerebral edema|endofchunk|><image>Question: What is the
purpose of the asterisk shown in the figure?
A: To indicate the formation of lobes around the contracting nucleus.
B: To indicate the normal lentoid shape of hypocotyl nuclei.
Answer: B: To indicate the normal lentoid shape of hypocotyl
nuclei.<|endofchunk|><image>
Question: **QUESTION**
A: **OPTION A**
B: **OPTION B**
Answer:

The following is the prompt we used for PS evaluation:

Prompt: You are a helpful medical assistant. You are being provided
with images, a question about each image and an answer. Follow
the examples and answer the last question. <image>Question: What
radiological technique was used to confirm the diagnosis? Answer:
Mammography<|endofchunk|><image>Question: What did the CT scan show?
Answer: Cerebral edema<|endofchunk|><image>Question: What is the
purpose of the asterisk shown in the figure? Answer: To indicate the
normal lentoid shape of hypocotyl nuclei.<|endofchunk|><image>Question:
**QUESTION** Answer: **ANSWER**

C Examples and further results

Figure 4: Sample VQA from MediConfusion where the solution is directly provided in the image in
the form of text and visual prompts (arrows). Medical MLLMs not trained for OCR have been unable
to leverage the hint.
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Figure 5: Sample confusing image pairs we have extracted from the ROCO dataset across 9 categories.

Cerebral Vascular Head & Neck Spinal Musculoskel. Cardiac Gastroint. Pulmonary Nuclear Med.

Model Set Indiv. Set Indiv. Set Indiv. Set Indiv. Set Indiv. Set Indiv. Set Indiv. Set Indiv. Set Indiv.

Llama 3.2 21.52 60.76 23.29 58.09 14.93 53.73 19.61 64.71 21.43 59.52 11.54 50.00 16.28 58.14 30.00 65.00 14.29 50.00
Molmo 72B 15.19 58.23 9.59 54.79 13.43 56.72 3.92 52.94 9.52 50.00 11.54 55.77 9.3 51.16 10.00 50.00 28.57 64.29
Molmo 7B 13.92 55.70 13.70 54.79 8.96 52.24 5.88 56.86 19.05 54.76 7.69 51.92 13.95 53.49 10.00 55.00 14.29 50.0
LLaVA 7.59 49.37 13.70 54.79 4.48 52.24 5.88 52.94 9.52 52.38 7.69 51.92 27.91 60.47 10.00 55.00 14.29 57.14
BLIP2 5.06 54.43 8.22 53.42 4.48 46.27 3.92 49.02 4.76 50.00 7.69 50.00 13.95 51.16 10.00 55.00 28.57 64.29
InstructBLIP 16.46 59.49 10.96 56.16 7.46 52.24 17.65 52.94 23.81 59.52 7.69 50.00 9.30 51.16 10.00 60.00 14.29 57.14
LLaVA-Med 1.27 53.16 2.74 49.32 0.00 50.75 0.00 50.98 4.76 50.00 0.00 50.00 4.65 53.49 0.00 45.00 0.00 50.00
RadFM 1.27 49.37 4.11 49.32 5.97 49.25 3.92 50.98 2.38 50.00 11.54 50.00 11.63 53.49 10.00 50.00 0.00 50.00
Med-Flamingo 7.59 58.23 10.95 56.16 8.96 52.24 0.00 52.94 4.76 52.38 3.85 51.92 2.33 48.84 10.00 50.00 0.00 50.00
GPT-4o 15.19 59.49 34.25 67.12 8.96 58.21 15.69 52.94 14.29 52.38 19.23 55.77 16.28 55.81 35.00 65.00 14.29 42.86
Claude 3 Opus 7.59 55.70 20.55 58.90 0.00 44.78 0.00 52.94 9.52 45.24 11.54 53.85 11.63 51.16 10.00 50.00 14.29 50.00
Gemini 1.5 Pro 25.32 58.23 27.40 60.27 16.42 52.24 17.65 43.14 26.19 47.62 7.69 48.08 23.26 44.19 5.00 50.00 28.57 57.14

Table 3: Results by category. We report the best set and individual accuracies (%) for each model
across all evaluation techniques.
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