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ABSTRACT

Tables have their own structure, calling for dedicated tabular learning methods
with the right inductive bias. These methods outperform language models. Yet,
many tables contain text that refers to real-world entities, and most tabular learn-
ing methods ignore the external knowledge that such strings could unlock. Which
knowledge-rich representations should tabular learning leverage? While large
language models (LLMs) encode implicit factual knowledge, knowledge graphs
(KGs) share the relational structure of tables and come with the promise of better-
controlled knowledge. Studying tables in the wild, we assemble 105 tabular
learning datasets comprising text. We find that knowledge-rich representations,
from LLMs or KGs, boost prediction, and combined with simple linear models
they markedly outperform strong tabular baselines. Larger LLMs provide greater
gains, and refining language models on a KG boosts models slightly. On datasets
where all entities are linked to a KG, LLMs and KG models of similar size per-
form similarly, suggesting that the benefit of LLMs over KGs is to solve the entity
linking problem. Our results highlight that external knowledge is a powerful but
underused ingredient for advancing tabular learning, with the most promising di-
rection lying in the combination of LLMs and KGs.

1 INTRODUCTION: BACKGROUND KNOWLEDGE FOR TABULAR LEARNING

Tabular learning Tabular data is central to machine-learning applications, powering applications
from healthcare to finance. Yet, tables have properties that set them apart from other modalities.
Cells may contain heterogeneous values: numbers, dates, categorical codes, or short texts. These
values often only gain meaning through relational context, via column headers and neighboring en-
tries. Tabular learning consists of making row-wise predictions, whether classification or regression,
from these heterogeneous features. This unique structure has long favored learning methods with
strong inductive biases for mixed-type features, such as gradient-boosted decision trees, over generic
deep learning approaches (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022). Recent progress
on table foundation models uses transformers with dedicated row-wise architectures, pretrained on
synthetic tables (Hollmann et al., 2022; 2025), that are however purely numerical, leaving aside
strings, dates, or categories. On the opposite, casting tables to text to readily apply large language
models (LLMs) for in-context learning gives excellent few-shot performance, but does not scale nor
benefit beyond a few dozen rows (Hegselmann et al., 2023; Gardner et al., 2024).

Text in tabular learners Tabular learners, unlike LLMs, leverage the specific repetitions of rows
and features for state-of-the-art predictions on tables (Chen & Guestrin, 2016; Hollmann et al.,
2025). Yet they also depart from LLMs in that they do not natively model text columns in tables.
Here, a particularly underexplored dimension is that these texts often correspond to real-world en-
tities, such as company names, drugs, or locations, that carry latent information far beyond the raw
string. Exploiting this background knowledge could substantially improve prediction, especially in
small-data regimes where tables themselves do not suffice to infer such knowledge from scratch.
For example, a table of clinical trials mentioning drug names could benefit from external knowledge
about drug classes, interactions, or approval status. However, state-of-the-art tabular learners are tai-
lored to numbers (Erickson et al., 2025), using pipelines that cast entity strings to opaque numbers:
categorical features are one-hot encoded, text reduced to surface-level representations, e.g., from
character n-grams. Doing so discards the opportunity to ground table entries in external knowledge.



Under review as a conference paper at ICLR 2026

How can strings and entities bring background knowledge to tabular learning? A traditional answer
would be to use data-integration and database techniques, augmenting tables with features obtained
through joins with external databases (Doan et al., 2012; Cappuzzo et al., 2024). Yet, this approach
faces well-known obstacles: discovering relevant tables, identifying joins, engineering relevant fea-
tures while preventing their exponential growth across chained joins (Kanter & Veeramachaneni,
2015). A more scalable alternative enriches tables implicitly by mapping entity strings to vector
representations pretrained on large-scale knowledge sources (Cvetkov-Iliev et al., 2023; Grinsztajn
etal., 2023; Lefebvre & Varoquaux, 2025). Such embeddings provide compact summaries of factual
and relational information from these sources, and can easily be injected into tabular models.

KGs and LLMs: two opposing philosophies of knowledge Pretraining embeddings from knowl-
edge sources is shaped by two opposing philosophies of knowledge.

The Knowledge Graph (KG) perspective strives for pure, curated, knowledge. General-purpose
KGs (Bollacker et al., 2008; Vrandec¢i¢ & Krotzsch, 2014; Suchanek et al., 2024) gather facts in a
structured, symbolic form, with a high signal-to-noise ratio: what they contain is largely correct.
Their strength also lies in their explicit relational modeling, close to the relational nature of tabular
data. Yet, their main weakness is their incompleteness: the number of true facts being potentially
infinite, no KG can store them exhaustively.

By contrast, the LLM perspective treats knowledge as the statistical aggregation of written language.
LLMs are probabilistic black-boxes trained on massive, weakly curated text corpora with no explicit
notion of truth (Suchanek & Luu, 2023). They do not store curated facts, but model token co-
occurrence statistics that implicitly encode fragments of factual knowledge (Petroni et al., 2019;
Roberts et al., 2020; Jiang et al., 2020). Their power lies in breadth: scale enables coverage that far
exceeds manually constructed KGs. This breadth comes at the price of reliability: LLMs are prone
to hallucinations and factual drift (Ji et al., 2023; Tonmoy et al., 2024; Bang et al., 2025; Mallen
et al., 2022), may produce confident but incorrect statements (Bender et al., 2021; Kadavath et al.,
2022), and their internal reasoning remains opaque (Bender & Koller, 2020; Nanda et al., 2023).
Raw application of LLMs to tabular learning also hits the wall of the size of their context window.

The knowledge integration bottleneck While LLMs can easily embed any string, the use of KGs
in downstream tasks is hindered by a difficult knowledge integration step. Early KG embedding
models operated in a transductive setting, learning representations for a fixed set of entities, primar-
ily for internal tasks like link prediction (Bordes et al., 2013; Yang et al., 2014). Applying these
embeddings to external data, such as tables, requires solving the challenging entity linking problem:
mapping messy, real-world strings to canonical entities in the KG (Mendes et al., 2011; Delpeuch,
2019; Foppiano & Romary, 2020). This challenge is related to the broader “symbol grounding
problem”, a central difficulty of symbolic Al (Wikipedia, 2025). Recent advances in KG embedding
models strive to overcome this limitation via generalization to unseen entities. One line of work
couples KG embedding with pretrained (or jointly trained) text encoders applied to entity names or
descriptions, so that unseen entities can be embedded directly from their textual mentions (Wang
et al., 2021b; Saxena et al., 2022). A parallel effort focuses on building KG foundation models that
can operate in a fully inductive setting, generalizing to entirely new graph structures by reasoning
on their topology (Galkin et al., 2023; Huang et al., 2025a). These developments open up new av-
enues for integrating structured knowledge into downstream applications, but their effectiveness in
the context of tabular learning remains an open question.

Contributions We study how to bring background information to tabular learning. Which modal-
ity, KGs or open-ended texts, should be preferred to pretrain world-knowledge models? Are numer-
ical table foundation models all we need? What basic components for future research on table foun-
dation models? To answer these questions, we assemble, from three diverse sources with different
inclusion biases, 105 tabular learning datasets containing text. We conduct a large-scale empirical
study, comparing, in a controlled setting, knowledge-rich representations from both LLMs and KG
embedding models of varying sizes. We also study the impact of refining LLMs on KGs, to assess
whether this hybrid approach combines the strengths of both modalities. Our findings are threefold:

1. Bringing knowledge-rich representations into tabular learning matters: both LLM
and KG embeddings improve upon standard encoding techniques such as TF-IDF, bringing
more gains than SOTA tabular learners developed for numerical tables.
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2. Refining LLMs on KGs is a promising combination: clear gains are brought by scale,
but refining LLMs on KGs also improves performance.

3. Entity linking is the key bottleneck: when all entities in a table are already linked to a
KG, LLMs and KG models of comparable size perform similarly, suggesting that the main
advantage of LLMs is their ability to implicitly solve the entity linking problem.

2 RELATED WORK

2.1 TABULAR LEARNING WITH TEXT FEATURES

From tree-based models to foundation models Historically, tabular learning has been dom-
inated by gradient-boosted decision trees (GBDTs) (Chen & Guestrin, 2016; Ke et al., 2017;
Prokhorenkova et al., 2018), which remain strong baselines due to their inductive biases for het-
erogeneous features (Grinsztajn et al., 2022). Recently, deep learning approaches (Ye et al., 2024;
Holzmiiller et al., 2024; Gorishniy et al., 2024), including table foundation models pretrained on
synthetic data (Hollmann et al., 2022; 2025; Ma et al., 2024; Qu et al., 2025), now markedly outper-
form GBDTs (Erickson et al., 2025). However, a shared limitation of these methods is that they lack
a dedicated mechanism for text features. Instead, they typically rely on simple string preprocessing
turning these entries to numerical vectors, and then treat them as any other numerical feature. In
practice, this vectorization step often ignores the semantics of string entries, relying on surface-level
representations such as TF-IDF or character n-grams that bear no external knowledge.

Leveraging external knowledge from LLMs and KGs To address this gap, recent work has
explored using external knowledge sources. One prominent approach is to leverage LLMs. Methods
like TabLLM (Hegselmann et al., 2023) and Tabula-8B (Gardner et al., 2024) serialize table rows
into text and fine-tune an LLM for classification and regression. These works put forward the benefit
of in-context learning of LLMs, that brings their excellent few-shot performance to tabular learning,
but cannot scale to the size of typical tables. Other work, such as TabStar (Arazi et al., 2025),
adapt smaller, efficient text encoders with specialized architectures for tabular data. An alternative
paradigm uses KGs as the source of external knowledge. For instance, CARTE (Kim et al., 2024)
and TARTE (Kim et al., 2025) pretrain tabular models on KGs, but rely on the simple FastText
(Bojanowski et al., 2017) model to process strings.

Prior comparative studies A few studies have begun to analyze the benefits of these knowledge-
rich representations. Grinsztajn et al. (2023) demonstrated that embeddings from language models
outperform traditional substring-based encoders, particularly for columns with diverse text entries.
Similarly, Kasneci & Kasneci (2024) showed on 9 datasets that integrating embeddings from models
like ROBERTa and GPT-2 into GBDTs often improves performance, especially in low-data regimes.
While these works sketch out the value of using language models for text in tables, they do not
inform of the relative merits of knowledge sourced from unstructured text (via LLMs) and structured
graphs (via KG models).

2.2 LEARNING ON KGs

Structure-based KG models A long-standing line of research learns representations from KGs
by focusing solely on the graph structure. Early models operate in a transductive setting, learning
low-dimensional embeddings for a fixed set of entities and relations. Such methods, that include
TransE (Bordes et al., 2013), DistMult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), and
RotatE (Sun et al., 2019b), model the relations as geometric transformations in the embedding space
and define a scoring function to measure the plausibility of triples. To overcome the limitations
of transductive learning, subsequent work has focused on inductive models that can generalize to
unseen entities (Zhu et al., 2021; Galkin et al., 2021). More recently, this has led to the development
of KG foundation models that operate in a fully inductive setting, reasoning on the graph’s topology
to predict new links on entirely unseen graphs (Galkin et al., 2023; Lee et al., 2023; Huang et al.,
2025a;b; Zhang et al., 2025; Du et al., 2025; Arun et al., 2025). Their application to tables remains
however open, as it requires extracting from a table a relational graph rich-enough to enable the
inductive setting.
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Text-based KG models A parallel approach leverages the textual information associated with
entities and relations, such as their names and descriptions. These models typically use a pretrained
language model to create text-aware representations, bridging the gap between symbolic knowledge
and natural language. One common strategy is to fine-tune a pretrained model such as BERT or
RoBERTa using an objective that combines a masked language modeling loss with a KG-specific
loss (Wang et al., 2021b;a; Youn & Tagkopoulos, 2022). Other methods frame link prediction as
a textual task, either by scoring text sequences representing triples (Yao et al., 2019; Wang et al.,
2022) or by treating it as a sequence-to-sequence problem where the model generates the missing
entity’s name (Chen et al., 2022; Xie et al., 2022). A prominent example of the latter is KGT5
(Saxena et al., 2022), which verbalizes triples and fine-tunes TS5 (Raffel et al., 2020) to predict the
missing elements. These text-based approaches enable embedding entities that were not seen during
training, a crucial feature for downstream applications.

LLMs refined on knowledge Instead of training a model specifically for KG completion, an-
other line of research refines general-purpose LLMs with structured knowledge to enhance their
factual grounding. This approach aims to inject the high-quality, curated facts from KGs into the
broader world knowledge implicitly stored in LLMs. For example, the ERNIE line of work (Sun
et al., 2019a; 2020; 2021) refines language models like RoBERTa (Liu et al., 2019) by incorpo-
rating knowledge-base data into their pretraining objectives. More recently, the Knowledge Card
framework (Feng et al., 2023) demonstrated that fine-tuning a moderately-sized LLM such as OPT-
1.3B (Zhang et al., 2022) on KG triples can effectively plug factual knowledge into larger LLMs,
improving their performance on knowledge-intensive tasks.

3 METHODOLOGY: A BENCHMARK FOR TABLE BACKGROUND KNOWLEDGE

3.1 105 TABULAR DATASETS

Three diverse data sources To ensure Table 1: Task distribution across sources.
the robustness and generality of our find-  Source b-clf m-clf reg Total
ings, we assemble a diverse benchmark o TabBench 5 2 10 17
of 105 tabular datasets from three sources CARTE 11 0 40 51
with distinct characteristics and inclusion WikiDBs 1 21 15 37
biases: TextTabBench (Mraz et al., 2025),

CARTE (Kim et al., 2024), and WikiDBs  Total 17 23 65 105

(Vogel et al., 2024).

TextTabBench and CARTE are established
benchmarks for tabular learning, provid-
ing real-world tables with varied text fea-

Table 2: Aggregated features of tabular datasets across
sources. The cardinality is computed on 1,024 rows.

tures, from short entity names to longer TextTabBench CARTE WikiDBs
descriptions.  Each table is associated g .olumns 15.65 6.76 6.73
with a predefined prediction task (regres- cardinality 286.36 371.44 463.70
sion, binary, or multi-class classification). string length 975.29 298.80 203.62
WikiDBs is a large corpus of over 1.6 mil- string similarity' 0.16 0.10 0.08

lion semi-synthetic tables generated from
Wikidata. To create meaningful tasks from
this source, we first filtered for tables with
at least 1,200 rows, then manually curated a subset of 37 tables for which we could define a rele-
vant prediction problem. Table 1 summarizes the final distribution of tasks across the three sources.
Further details on each dataset are available in the Appendix (Table 6, Table 7, Table 8).

1 cosine similarity of TF-IDF across rows

Data preprocessing We adopt the original preprocessing from TextTabBench and CARTE. For
WikiDBs, we apply a procedure similar to TextTabBench. We also ensure that multi-class classifi-
cation tasks have at most 10 classes, each with at least 105 samples. For all 105 datasets, we then
apply the following preprocessing pipeline: (1) we remove all numerical columns to focus our study
on text-based knowledge; (2) we log-transform regression targets with wide-ranging distributions;
(3) we downsample majority classes in multi-class problems to create balanced datasets; and (4) we
discard any table with fewer than 1,050 rows post-processing to ensure sufficient data for evaluation.
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Figure 1: An overview of our evaluation pipeline. For each dataset, we sample training and test sets.
We then serialize the rows and use the embedding model to generate a vector representation for each
row. Finally, we train a tabular learning estimator to evaluate these embeddings.

We also exclude one dataset from TextTabBench with excessively long text entries that exceed the
context limits of some of our baselines.

Linked tables for controlled comparison
To isolate the contribution of knowledge
from the challenge of entity linking, we cre-
ate a specialized subset of 15 tables where
text entries are unambiguously linked to en- # entities  # triples deg.
tities in WikidataSM (Wang et al., 2021b),

Table 3: Knowledge graph datasets. Smaller versions
of WikidataSM are created by filtering entities by de-
gree (“deg.”). All graphs use the same 822 relations.

a large-scale KG derived from Wikidata. WikidataSM 4.6M 20.6M -
These tables are selected from our main Wikidata3M 3.2M 15.5M 3
benchmark if they contain at least 1,050 Wikidata2M 2.1M 11.5M 4
rows with entities that can be matched to the WikidatalM 1.IM 6.8M 6
KG. For this subset, we retain only the en- Wikidata500k 0.5M 3.1M 9

tity column and the prediction target, and re-
move all unlinked rows. This setup allows for a direct comparison of pure KG models with LLMs
in a scenario where entity linking is solved.

To analyze the impact of KG size, we generate four smaller KGs by progressively filtering out low-
degree entities and retaining the largest connected component of the induced subgraph. The statistics
of these graphs are presented in Table 3.

3.2 EVALUATION PIPELINE

Our evaluation pipeline, summarized in Figure 1, is designed to assess the quality of representations
from various knowledge sources for downstream tabular tasks. For each dataset, we first generate
embeddings from a given model and then train a tabular predictor on these embeddings to predict
the target variable.

Experimental setup To simulate small-data scenarios where external knowledge is most critical,
we sample training sets of varying sizes, ntrqin € {64,256,1024}. The test set consists of 1,024
held-out samples (or all remaining samples if fewer are available). To ensure robust evaluation, we
repeat this process 10 times with different random seeds for each configuration.

Embedding models We evaluate a wide range of models to generate representations, categorized
as follows:

* Non-pretrained baseline: As a simple baseline without external knowledge, we use a
TF-IDF vectorizer followed by a Truncated SVD with 30 components per column, imple-
mented in the Skrub library.
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* Pure LLMs: To study the effect of model scale and architecture, we include a diverse set of
pretrained language models: the Llama-3.1 family (1B, 3B, 8B), the Qwen3 family (0.6B
to 8B) (Yang et al., 2025) which performs well on the Massive Text Embedding Benchmark
(Muennighoff et al., 2022), RoBERTa (base, large), T5 (small, base), and OPT-1.3B. We
also include FastText as a representative of shallow, non-transformer text models.

* Hybrid LLM+KG models: To assess the benefit of structured knowledge, we evaluate
models that refine LLMs on relational data. This includes ERNIE 2.0, KGTS5, Knowledge
Card, Tabula-8B, and TARTE. Each model is compared against its corresponding base
LLM.

* Pure KG models: For the subset of 15 linked tables, we evaluate classic KG embedding
models: DistMult, TransE, ComplEx, and RotatE. We train these models on WikidataSM
and its subsets, using an embedding dimension of d = 300.

Table serialization and downstream estimators To generate embeddings from LLMs, we serial-
ize each table row into a natural language prompt. Following Gardner et al. (2024), we use the for-
mat: “The <col_a> is <val_a>. The <col_b> is <val_b>. What is the value of <target>?".
For KGT5, we adapt the prompt to better match its pretraining format: “<col_a> | <val_a>.
<col_b> | <val_b>. Predict: <target>". Contructing the embeddings across multiple columns
(as opposed to the study of Grinsztajn et al. (2023)) is important because it enables the context
(column name, other entries on the same row) to inform the representation, eg lead to disambiguate
“Cambridge; UK” from “Cambridge; Massachusetts” in a table with columns “city;
country”.

The resulting high-dimensional embeddings are then fed into three representative tabular learners:

* Ridge regression: A simple and efficient linear model.

* XGBoost: A powerful GBDT model. To manage computational cost, we first reduce the
embedding dimensionality to 300 using PCA. We then perform hyperparameter optimiza-
tion via a randomized search (see Table 5).

e TabPFNv2: A transformer-based table foundation model, doing in-context learning. We
use PCA to reduce dimensionality to 500, the maximum supported by the model.

4 RESULTS: KNOWLEDGE REPRESENTATIONS FOR TABULAR LEARNING

4.1 KNOWLEDGE-RICH REPRESENTATIONS BOOST TABULAR LEARNING

More gains from knowledge representations than advanced tabular learning Figure 2 shows
that improving the quality of the representations leads to more gains than using advanced tabular
learning methods. Indeed, the best performance across the 105 datasets is obtained by a simple
predictor, ridge, applied on good representations, such as those created via modern LLMs, outper-
forming sophisticated tabular learning methods XGBoost and TabPFNv2 (Figure 2a). In addition,
more sophisticated tabular-learning models benefit less from advanced representations. This could
be either because their flexibility enables them to fill-in for a less rich representation, or because
the representations do not match their implicit inductive biases, tailored for tabular learning. In-
deed, unlike typical tabular data, these representations are high-dimensional and closer to being
rotationally-invariant Grinsztajn et al. (2022). Note that these advanced tabular learners cannot be
applied as such to the knowledge-rich representations, as they have too many features for the cor-
responding implementations. Thus we need to reduce the input dimensions with PCA, following
Grinsztajn et al. (2023).

A complementary observation is that the benefit of adding knowledge-rich representations to a sim-
ple tabular learner is larger than the benefit of using a sophisticated tabular learner on simpler rep-
resentations: Figure 2b shows that TabPFNv2 achieves only half of the performance gains of Ridge
combined with a good LLM-based representation.

Benefits for a wide variety of tables, from multiple sources Figure 2b shows that, for the ridge
learner, knowledge-rich representations bring an improvement over non-pretrained string represen-
tation across methods, and larger models benefit consistently across the three different sources (Fig-
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Tabula-8B Tabula-8B -
Llama-3.1-8B Llama-3.1-8B -
Llama-3.2-3B Llama-3.2-3B -
Llama-3.2-1B Llama-3.2-1B -
Qwen3-8B Qwen3-8B -
Qwen3-4B Qwen3-4B -
Qwen3-0.6B Qwen3-0.6B -
Knowledge-card Knowledge-card -
OPT-1.3B OPT-1.3B -
ERNIE-large ERNIE-large -
RoBERTa-large RoBERTa-large -
ERNIE-base ERNIE-base -
RoBERTa-base RoBERTa-base -
KGT5 KGTS -
KG_I:rss_basi T5-base - Model-type
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FastText TARTE 1 _“ E:;FNVZ
Non-pretrained Fastiext] H — Rige
0.50 0.55 0.60 0.65 0.70 0.0 0.1 0.2 0.3

Average scores

a. PR . b. Normalized performance gain for Ridge
(AUC for classification tasks, R2 for regression)

over non-pretrained representations

Figure 2: Performance gain of the various knowledge-rich representations compared to a non pre-
trained baseline — @a. Comparisons including three tabular learners: ridge, XGBoost, and TabPFNv2;
absolute scores. — b. Relative improvements to non-pretrained string representations, when using
a ridge model as a tabular learner; normalized scores (0 is 10% worse, 1 is best score observed). —
Appendix Figure 7 gives critical difference diagrams across all methods and datasets.

ure 8 gives source-specific results). These datasets are varied (Table 2), and the different sources
represent different selections of tables with text. This diversity suggests that knowledge-rich rep-
resentations help tabular learning in general, when the tables have text columns. The benefit is, on
average, quite marked: going from non-pretrained string representation to the best LLM-based ones
gives a .2 average boost in AUC or R2 to ridge (though only a .05 boost to TabPFNv2).

4.2 LARGER LLMS BRING MORE VALUE + " .
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4.3 REFINING LLMS ON KGS BOOSTS LANGUAGE MODELS SLIGHTLY

Figure 4 focuses on comparing the benefit
brought by each method that has refined an

families show the same scaling, but refining on
KGs brings an offset: it enables reaching the
same performance with a model with a number
of parameters smaller by a factor of 2/31d,

%)
e
LLM on a knowledge graph or knowledge base % 0.3F 4
to the corresponding non-refined base LLM, as % 5
R . Model-type
a function of size. £ g 02l ® LM
. . o LLM + KG
We estimate the scaling of the performanceasa g g % Fasﬂzxt
function of the number of parameters withalin- 52 g1} ® _
ear regression for both families of approaches ~ E'g Non-pretraines
-LLMs with and without KG refinement. Both 5 £ 0.0 :/ ® X XGB
a % 0.0F Ridge
g

1 1 ]
108 10° 10%°
Number of parameters

Note that the data points with the largest model Figure 4: Comparison of LLM and their matched
correspond to the pair Tabula/Llama3 (Gard- counterpart refined on knowledge bases.
ner et al., 2024), which refines on tabular data

rather than a rich KG. This pair also displays a comparatively smaller benefit of the refinement,
which may result from the limited richness of the corresponding data.

The observed benefit of refining LLMs on KGs raises the question: what do knowledge graphs add
to LLMs? How important is a rich knowledge graph?

4.4 TEASING OUT KNOWLEDGE FROM ENTITY MATCHING: TESTING PURE KG SOLUTIONS

LLMs are more than pure knowledge engineer-
ing objects: applied to embed texts, as we do

. . 2 o6} @ Model-type
here, they also bring in a form of fuzzy match- S ® ¢ © M
ing of entities (technically related to recontex- & £ H L WG
tualizing the tokens) and language understand- g 2 041 e ° ! .D KG-Models
ing. This is to be contrasted with KGs, which & ° of " o
are pure knowledge engineering objects (ar- o 0.2 @ . B TransE
guably with crisper knowledge), but 1) require g_g ] ComplEx
entity matching and 2) do not bring language E% 0.0 o Non-pretrained
understanding. To tease out the role of back- & & TabPFNv2
ground knowledge for tabular learning, we in- § -02 isze
vestigate a subset of tables for which the entity 108 109 o0
matching problem is solved, and each entry is Number of parameters

linked to an entity in WikidataSM.

In such an ideal scenario, pure KG embedding Figure 5: Comparing pure knowledge graphs to
approaches provide features for the tables en- pure LLMs approaches on matched tables.

tries (Grover & Leskovec, 2016; Cvetkov-Iliev

et al., 2023; Robinson et al., 2024). Figure 5

compares the benefits of LLM-based approaches with KG embedding approaches, varying the size
of the models. For KG embedding, the size of the model is varied by varying the size of the KG used
to build the embeddings (see Table 3): a smaller KG represents fewer entities, and thus has fewer
parameters. When we reduce the size of the KG, it only provides representations for a fraction of
the entities of the downstream table, and thus the downstream performance. This decrease is sharper
than for LLMs, because smaller KGs face a hard failure (entity is not matched) while language
models face a soft failure: they give an embedding whatever the query is. This embedding can be of
varying quality, sometimes extrapolating beyond the knowledge of the LLMs, which corresponds to
hallucination. However, an extrapolation that is only partly correct can still help downstream tabular
learning.

Without entity-matching challenges, KG embedding is on par with LLMs For the largest, non-
reduced KG, all table entries are matched, and good KG embedding models perform as well as LLMs
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of the same size (Figure 5). Interestingly, this suggests that for the same number of parameters, KG
embeddings do not store crispier knowledge than LLMs.

Driven by knowledge, rather than language understanding On the converse, when all entities
are matched in the KG, LLMs of the same size do not bring a benefit, which suggests that for these
tasks, the language-understanding features of LLMs are not important. Note that the selection of
tables with entities all represented in KGs may introduce a selection bias towards more knowledge-
centric tasks.

5 DISCUSSION AND CONCLUSION

Our large-scale study demonstrates that external knowledge is a powerful, yet underleveraged, in-
gredient for tabular learning. Representations from knowledge sources, whether LLMs or KGs,
consistently improve prediction over standard text encodings. The gains from using better represen-
tations with a simple linear model surpass those from applying state-of-the-art tabular learners on
less informative features, suggesting that for tables with text, the primary bottleneck is in represent-
ing this text well, rather than in the tabular learning algorithm.

LLMs solve symbol grounding, KGs provide curated knowledge Our results reveal a key trade-
off. LLMs excel by implicitly solving the entity linking problem, mapping messy text to meaningful
representations. Their performance scales with size, reflecting the vast knowledge encoded during
pretraining. Conversely, pure KG models require explicit entity linking. Yet, when entities are pre-
linked, KG embeddings match LLMs of similar size. This implies, on the one hand, that the main
advantage of LLMs here is not superior knowledge, but their ability to solve the symbol grounding
problem by bridging unstructured text and canonical entities, and on the other hand, that pure-KG
approaches, shying away from language models, do not bring the benefits of crispier knowledge for
tabular learning.

A promising synergy: refining LLMs on KGs Our findings point to a potential synergy between
LLMs and KGs. Refining LLMs on KGs improves performance, making models more parameter-
efficient: a refined model achieves the performance of a pure LLM roughly 1.5 times its size.

Next-generation tabular foundation models should refine large language models The clear
benefit of scale points to a crucial direction for future research: developing large-scale, multimodal
tabular foundation models pretrained on a combination of text and structured knowledge. Current
tabular methods that jointly model strings and numbers use relatively small language models (Kim
et al., 2024; 2025; Arazi et al., 2025), while our results stress the benefit of larger ones. The full
potential of combining these large language models with KGs remains largely untapped. Massive,
openly available knowledge bases like Wikidata, with more than 100M described entities, represent
a rich yet underexploited resource for pretraining the next generation of tabular learners. In contrast,
current methods pre-trained on knowledge (Kim et al., 2024; 2025) leverage only a small fraction of
this available resource.
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Figure 6: Statistics distribution across sources.

A MORE DETAILS ON THE EXPERIMENTS

More statistics on datasets Figure 6 gives statistics

about table sizes, proportion of missing values, and 1able 4: Task distribution across sources,

mean column cardinality. for linked tables.
. . Source b-clif m-clf reg Total
Table 6, Table 7 and Table 8 provide details on each
individual dataset. CARTE 0 0 3 3
WikiDBs 1 3 8 12
Total 1 3 11 15

Experiments on linked tables We have 15 linked
tables, 4 for classification and 11 for regression. De-
tails on these tables are provided in Table 4.

For the KG embedding models (DistMult, TransE, ComplEx and RotatE), we use d = 300 for the
embedding dimension, and train them for 100 epochs with a batch size of 8192 and a learning rate
of 1073, and use the default parameters of their PyKEEN implementation (Ali et al., 2021).

Metrics and score normalization We evaluate performance using the R2 score for regression and
the ROC-AUC score for classification. To aggregate results across datasets of varying difficulty, we
normalize scores for each dataset and random seed. Following Grinsztajn et al. (2022), we establish
anormalized scale where the best-performing model scores 1 and the model at the 10th performance
percentile scores 0. Other models’ scores are mapped to this [0, 1] range via an affine transformation.
For regression, we clip scores at 0 to mitigate the impact of poor-performing outliers.

Uncertainty estimation To account for statistical variability, we repeat each experiment 10 times
with different random seeds. The error bars in our result figures represent the standard error to the
mean across these runs.

XGBoost hyperparameter tuning For the XGBoost estimator, we perform hyperparameter op-
timization via a randomized search with 100 iterations. We use 5-fold cross-validation, repeated 5
times on the training set, to evaluate each hyperparameter configuration. The detailed search space
is provided in Table 5.

B ADDITIONAL RESULTS

B.1 RUNTIME ANALYSIS

The benefits of leveraging external knowledge come at a computational cost. Table 9 details the
average runtimes for embedding generation and estimator fitting (ridge) across different embed-
ding models and training sizes. As expected, larger models introduce a significant computational
overhead. For instance, generating embeddings with an 8-billion-parameter LLM is, on average,
over 100 times slower than using the non-pretrained baseline. This highlights the trade-off between
predictive performance and the computational resources required for knowledge integration.

15



Under review as a conference paper at ICLR 2026

Table 5: Search space for XGBoost hyperparameters.

Hyperparameter Distribution Range
n_estimators Integer [50, 1000]
max_depth Integer [2, 6]
min_child.weight Log-uniform [1, 100]
subsample Uniform [0.5, 1.0]
learning_rate Log-uniform [1075, 1]
colsample bylevel Uniform [0.5,1.0]
colsample_ bytree Uniform [0.5, 1.0]
gamma Log-uniform [10-8,7]
reg_lambda Log-uniform [1, 4]
alpha Log-uniform [10~8, 100]

Table 6: Overview of TextTabBench datasets used in our benchmark. Table statistics after prepro-
cessing.

Dataset Task #rows #columns #classes # linked rows
Diabetes b-clf 17,000 5 2 -
Job Frauds b-clf 1,732 12 2 -
Kickstarter b-clf 18,720 10 2 -
Lending Club b-clf 11,254 13 2 -
Osha Accidents b-clf 3,598 16 2 -
Customer Complaints  m-clf 1,384 9 4 -
Spotify m-clf 10,000 4 10 -
Airbnb reg 3,818 33 - -
Beer reg 2,914 6 - -
California Houses reg 11,349 14 - -
Covid Trials reg 1,165 14 - -
Insurance Complaints  reg 37,484 9 - -
IT Salary reg 1,253 17 - -
Mercari reg 12,000 5 - -
San Francisco Permits  reg 183,794 13 - -
Stack Overflow reg 19,427 90 - -
Wine reg 1,281 13 - -

B.2 OVERALL MODEL RANKING

Figure 7 presents a critical difference diagram comparing the mean ranks of all embedding methods
when paired with a Ridge predictor. It also includes the performance of more advanced estimators
on non-pretrained representations for context.

B.3 PERFORMANCE ANALYSIS BY DATA SOURCE

Figure 8 illustrates the relative improvements of knowledge-rich representations over non-pretrained
ones, broken down by data source. The benefits of external knowledge vary with dataset characteris-
tics; tables from WikiDBs and CARTE, which are more knowledge-intensive, gain more from these
representations than those from TextTabBench.

Figure 9 details the effect of LLM size on performance for each data source, confirming the scaling
trend across different types of tables.

Figure 10 compares the performance of base LLMs to their counterparts refined on KGs. The
benefits of refinement are most pronounced for the WikiDBs datasets, which are inherently more
knowledge-centric as they are derived from a knowledge base.
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LLMs were used to polish the writing of some parts of this paper.
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Figure 8: Relative improvements to non-pretrained string representations, when using a ridge model
as a tabular learner for each source Larger models consistently yield better performances.: a. Text-
TabBench b. CARTE c¢. WikiDBs.
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Table 7: Overview of CARTE datasets used in our benchmark. Table statistics after preprocessing.

Dataset Task  #rows #columns #classes # linked rows
Chocolate Bar Ratings b-clf 2,218 7 2 -
Coffee Ratings b-clf 1,670 9 2 -
Michelin b-clf 6,774 6 2 -
NBA Draft b-clf 1,550 5 2 -
Ramen Ratings b-clf 3,726 5 2 -
Roger Ebert b-clf 2,668 6 2 -
Spotify b-clf 41,096 8 2 -
US Accidents Severity b-clf 20,930 10 2 -
Whisky b-clf 1,788 7 2 -
Yelp b-clf 60,088 9 2 -
Zomato b-clf 60,302 8 2 -
Movies reg 7,224 8 - 7,095
US Accidents Counts reg 22,623 7 - 14,697
US Presidential reg 19,857 7 - 13,221
Anime Planet reg 14,391 7 - -
Babies R Us reg 5,085 5 - -
Beer Ratings reg 3,197 6 - -
Bikedekho reg 4,786 6 - -
Bikewale reg 8,992 6 - -
Buy Buy Baby reg 10,718 5 - -
Cardekho reg 37,813 14 - -
Clear Corpus reg 4,724 11 - -
Company Employees reg 10,941 8 - -
Employee Remuneration reg 35,396 3 - -
Employee Salaries reg 9,211 7 - -
Fifa22 Players reg 18,085 10 - -
Filmtv Movies reg 41,205 7 - -
Journal JCR reg 9,615 5 - -
Journal SJR reg 27,931 10 - -
Japanese anime reg 15,535 12 - -
K-Drama reg 1,239 9 - -
ML/DS salaries reg 10,456 8 - -
Museums reg 11,467 15 - -
Mydramalist reg 3,400 11 - -
Prescription Drugs reg 1,714 6 - -
Rotten Tomatoes reg 7,158 11 - -
Used Cars 24 reg 5,918 7 - -
Used Cars Benz Italy reg 16,391 6 - -
UsedCars.com reg 4,009 9 - -
Used Cars Pakistan reg 72,655 5 - -
Used Cars Saudi Arabia  reg 5,507 8 - -
Videogame Sales reg 16,410 5 - -
Wikiliq Beer reg 13,461 8 - -
Wikiliq Spirit reg 12,275 6 - -
Wina Poland reg 2,247 13 - -
Wine.com Prices reg 15,254 7 - -
Wine.com Ratings reg 4,095 7 - -
WineEnthusiasts Prices reg 120,975 9 - -
WineEnthusiasts Ratings  reg 129,971 9 - -
‘WineVivino Price reg 13,834 6 - -
WineVivino Rating reg 13,834 7 - -
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Table 8: Overview of WikiDBs datasets used in our benchmark. Table statistics after preprocessing.

Dataset Task #rows #columns # classes # linked rows
CC Authors b-clf 16,224 8 2 1,302
Defenders m-clf 18,610 11 10 8,700
Philosophers m-clf 4,230 9 10 1,656
US Music Albums m-clf 3,270 11 10 2,180
Artist Copyrights m-clf 2,000 10 10 -
Artworks Catalog m-clf 1,210 9 10 -
Forward Players m-clf 1,400 11 10 -
Geographers m-clf 1,130 10 10 -
Historic Buildings m-clf 27,980 7 10 -
Islands m-clf 19,650 4 10 -
Kindergarten Locations m-clf 2,790 7 3 -
Magic Narratives m-clf 1,062 5 9 -
Museums m-clf 9,550 5 10 -
Noble Individuals m-clf 1,400 10 10 -
Notable Trees m-clf 1,408 5 8 -
Parish Churches m-clf 1,350 5 10 -
Sculptures m-clf 3,720 7 10 -
Spring Locations m-clf 5,930 3 10 -
State Schools m-clf 2,800 4 10 -
Scientific Articles m-clf 2,760 14 10 -
Sub Post Offices m-clf 1,530 4 10 -
Transport Stations m-clf 4,640 9 10 -
Business Locations reg 16,821 5 - 16,438
Dissolved Municipalities reg 13,462 7 - 1,656
Geopolitical Regions reg 1,114 7 - 1,066
Historical Figures reg 11,260 12 - 2,134
Municipal District Capitals  reg 1,658 6 - 1,267
Poets reg 60,240 11 - 21,564
Territorial Entities reg 36,717 8 - 34,189
WWI Personnel reg 30,675 12 - 16,227
Artworks Inventory reg 10,635 6 - -
Drawings Catalog reg 63,130 9 - -
Eclipsing Binary Stars reg 297,934 7 - -
Registered Ships reg 4,644 7 - -
Research Articles reg 6,962 7 - -
Research Article Citations  reg 4,115 10 - -
Ukrainian Villages reg 21,355 4 - -
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Table 9: Average runtimes for embedding extraction and ridge fitting.

Train-size
Models 64 256 1024
Tabula-8B 123.86 +141.32  145.15+165.82 215.92 £ 257.74
Llama-3.1-8B 119.44 +133.49 140.00 + 156.66  209.29 £ 246.60
Llama-3.2-3B 43.22 + 50.78 50.77 £+ 59.65 75.76 +£92.71
Llama-3.2-1B 18.07 £20.18 21.34 4+ 23.69 31.69 + 36.55
Qwen3-8B 119.54 +143.78 140.11 £ 168.76  209.66 + 262.17
Qwen3-4B 64.99 + 82.19 76.23 4+ 96.49 114.36 4+ 150.38
Qwen3-0.6B 12.01 £ 12.62 14.23 £14.75 20.99 4+ 21.96
Knowledge-card 25.48 £ 29.22 30.16 4 34.27 44.85 + 53.11
OPT-1.3B 22.82 + 28.97 27.06 £+ 33.98 40.37 + 52.91
ERNIE-large 8.28 +5.87 10.00 £ 6.77 14.50 £+ 9.00
RoBERTa-large 7.92+5.59 9.60 £ 6.51 14.09 £9.31
ERNIE-base 4.79 £ 3.76 5.94 +£4.30 8.35 £5.51
RoBERTa-base 4.22 +3.05 5.28 + 3.47 7.43 +4.26
KGTS5 4.60 + 3.43 5.80 £ 3.98 8.32 £ 5.33
T5-base 5.31 £ 6.26 6.55 + 7.29 9.24 +10.69
KGT5-small 3.22+£2091 4.22 +£3.31 5.60 £ 3.84
T5-small 3.50 £ 3.00 4.42 +3.43 5.94 £ 3.96
TARTE 4.444+4.33 5.37+£5.01 7.75+6.28
FastText 2.30 £ 3.80 3.05 £4.42 3.85 £ 5.64
Non-pretrained-Ridge 0.52 £ 0.65 1.27+1.21 2.14 + 2.26
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