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ABSTRACT

Tables have their own structure, calling for dedicated tabular learning methods
with the right inductive bias. These methods outperform language models. Yet,
many tables contain text that refers to real-world entities, and most tabular learn-
ing methods ignore the external knowledge that such strings could unlock. Which
knowledge-rich representations should tabular learning leverage? While large
language models (LLMs) encode implicit factual knowledge, knowledge graphs
(KGs) share the relational structure of tables and come with the promise of better-
controlled knowledge. Studying tables in the wild, we assemble 105 tabular
learning datasets comprising text. We find that knowledge-rich representations,
from LLMs or KGs, boost prediction, and combined with simple linear models
they markedly outperform strong tabular baselines. Larger LLMs provide greater
gains, and refining language models on a KG boosts models slightly. On datasets
where all entities are linked to a KG, LLMs and KG models of similar size per-
form similarly, suggesting that the benefit of LLMs over KGs is to solve the entity
linking problem. Our results highlight that external knowledge is a powerful but
underused ingredient for advancing tabular learning, with the most promising di-
rection lying in the combination of LLMs and KGs.

1 INTRODUCTION: BACKGROUND KNOWLEDGE FOR TABULAR LEARNING

Tabular learning Tabular data is central to machine-learning applications, powering applications
from healthcare to finance. Yet, tables have properties that set them apart from other modalities.
Cells may contain heterogeneous values: numbers, dates, categorical codes, or short texts. These
values often only gain meaning through relational context, via column headers and neighboring en-
tries. Tabular learning consists of making row-wise predictions, whether classification or regression,
from these heterogeneous features. This unique structure has long favored learning methods with
strong inductive biases for mixed-type features, such as gradient-boosted decision trees, over generic
deep learning approaches (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022). Recent progress
on table foundation models uses transformers with dedicated row-wise architectures, pretrained on
synthetic tables (Hollmann et al., 2022; 2025), that are however purely numerical, leaving aside
strings, dates, or categories. On the opposite, casting tables to text to readily apply large language
models (LLMs) for in-context learning gives excellent few-shot performance, but does not scale nor
benefit beyond a few dozen rows (Hegselmann et al., 2023; Gardner et al., 2024).

Text in tabular learners Tabular learners, unlike LLMs, leverage the specific repetitions of rows
and features for state-of-the-art predictions on tables (Chen & Guestrin, 2016; Hollmann et al.,
2025). Yet they also depart from LLMs in that they do not natively model text columns in tables.
Here, a particularly underexplored dimension is that these texts often correspond to real-world en-
tities, such as company names, drugs, or locations, that carry latent information far beyond the raw
string. Exploiting this background knowledge could substantially improve prediction, especially in
small-data regimes where tables themselves do not suffice to infer such knowledge from scratch.
For example, a table of clinical trials mentioning drug names could benefit from external knowledge
about drug classes, interactions, or approval status. However, state-of-the-art tabular learners are tai-
lored to numbers (Erickson et al., 2025), using pipelines that cast entity strings to opaque numbers:
categorical features are one-hot encoded, texts reduced to surface-level representations, e.g., from
character n-grams. Doing so discards the opportunity to ground table entries in external knowledge.
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How can strings and entities bring background knowledge to tabular learning? A traditional answer
would be to use data-integration and database techniques, augmenting tables with features obtained
through joins with external databases (Doan et al., 2012; Cappuzzo et al., 2024). Yet, this approach
faces well-known obstacles: discovering relevant tables, identifying joins, engineering relevant fea-
tures while preventing their exponential growth across chained joins (Kanter & Veeramachaneni,
2015). A more scalable alternative enriches tables implicitly by mapping entity strings to vector
representations pretrained on large-scale knowledge sources (Cvetkov-Iliev et al., 2023; Grinsztajn
etal., 2023; Lefebvre & Varoquaux, 2025). Such embeddings provide compact summaries of factual
and relational information from these sources, and can easily be injected into tabular models.

KGs and LLMs: two opposing philosophies of knowledge Pretraining embeddings from knowl-
edge sources is shaped by two opposing philosophies of knowledge.

The Knowledge Graph (KG) perspective strives for pure, curated, knowledge. General-purpose
KGs (Bollacker et al., 2008; Vrandec¢i¢ & Krétzsch, 2014; Suchanek et al., 2024) gather facts in a
structured, symbolic form, with a high signal-to-noise ratio: what they contain is largely correct.
Their strength also lies in their explicit relational modeling, close to the relational nature of tabular
data. Yet, their main weakness is their incompleteness: the number of true facts being potentially
infinite, no KG can store them exhaustively.

By contrast, the LLM perspective treats knowledge as the statistical aggregation of written language.
LLMs are probabilistic black-boxes trained on massive, weakly curated text corpora with no explicit
notion of truth (Suchanek & Luu, 2023). They do not store curated facts, but model token co-
occurrence statistics that implicitly encode fragments of factual knowledge (Petroni et al., 2019;
Roberts et al., 2020; Jiang et al., 2020). Their power lies in breadth: scale enables coverage that far
exceeds manually constructed KGs. This breadth comes at the price of reliability: LLMs are prone
to hallucinations and factual drift (Ji et al., 2023; Tonmoy et al., 2024; Bang et al., 2025; Mallen
et al., 2022), may produce confident but incorrect statements (Bender et al., 2021; Kadavath et al.,
2022), and their internal reasoning remains opaque (Bender & Koller, 2020; Nanda et al., 2023).
Raw application of LLMs to tabular learning also hits the wall of the size of their context window.

The knowledge integration bottleneck While LLMs can easily embed any string, the use of KGs
in downstream tasks is hindered by a difficult knowledge integration step. Early KG embedding
models operated in a transductive setting, learning representations for a fixed set of entities, primar-
ily for internal tasks like link prediction (Bordes et al., 2013; Yang et al., 2014). Applying these
embeddings to external data, such as tables, requires solving the challenging entity linking problem:
mapping messy, real-world strings to canonical entities in the KG (Mendes et al., 2011; Delpeuch,
2019; Foppiano & Romary, 2020). This challenge is related to the broader “symbol grounding
problem”, a central difficulty of symbolic AI (Wikipedia, 2025). Recent advances in KG embedding
models strive to overcome this limitation via generalization to unseen entities. One line of work
couples KG embedding with pretrained (or jointly trained) text encoders applied to entity names or
descriptions, so that unseen entities can be embedded directly from their textual mentions (Wang
et al., 2021b; Saxena et al., 2022). A parallel effort focuses on building KG foundation models that
can operate in a fully inductive setting, generalizing to entirely new graph structures by reasoning
on their topology (Galkin et al., 2023; Huang et al., 2025a). These developments open up new av-
enues for integrating structured knowledge into downstream applications, but their effectiveness in
the context of tabular learning remains an open question.

Contributions We study how to bring background information to tabular learning. Which modal-
ity, KGs or open-ended texts, should be preferred to pretrain world-knowledge models? Are numer-
ical table foundation models all we need? What basic components for future research on table foun-
dation models? To answer these questions, we assemble, from three diverse sources with different
inclusion biases, 105 tabular learning datasets containing text. We conduct a large-scale empirical
study, comparing, in a controlled setting, knowledge-rich representations from both LLMs and KG
embedding models of varying sizes. We also study the impact of refining LLMs on KGs, to assess
whether this hybrid approach combines the strengths of both modalities. Our findings are threefold:

1. Bringing knowledge-rich representations into tabular learning matters: both LLM
and KG embeddings improve upon standard encoding techniques such as TF-IDF, bringing
more gains on text features than SOTA tabular learners developed for numerical tables.
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2. Entity linking is the key bottleneck: when all entities in a table are already linked to a
KG, LLMs and KG models of comparable size perform similarly, suggesting that the main
advantage of LLMs is their ability to implicitly solve the entity linking problem.

3. Current table foundation models struggle with rich embeddings: state-of-the-art tab-
ular learners are consistently outperformed by simple linear models on high-dimensional,
knowledge-rich representations, revealing a critical limitation.

2 RELATED WORK

2.1 TABULAR LEARNING WITH TEXT FEATURES

From tree-based models to foundation models Historically, tabular learning has been dom-
inated by gradient-boosted decision trees (GBDTs) (Chen & Guestrin, 2016; Ke et al., 2017;
Prokhorenkova et al., 2018), which remain strong baselines due to their inductive biases for het-
erogeneous features (Grinsztajn et al., 2022). Recently, deep learning approaches (Ye et al., 2024;
Holzmiiller et al., 2024; Gorishniy et al., 2024), including table foundation models pretrained on
synthetic data (Hollmann et al., 2022; 2025; Ma et al., 2024; Qu et al., 2025), now markedly outper-
form GBDTs (Erickson et al., 2025). However, a shared limitation of these methods is that they lack
a dedicated mechanism for text features. Instead, they typically rely on simple string preprocessing
turning these entries to numerical vectors, and then treat them as any other numerical feature. In
practice, this vectorization step often ignores the semantics of string entries, relying on surface-level
representations such as TF-IDF or character n-grams that bear no external knowledge.

Leveraging external knowledge from LLMs and KGs To address this gap, recent work has
explored using external knowledge sources. One prominent approach is to leverage LLMs. Methods
like TabLLM (Hegselmann et al., 2023) and Tabula-8B (Gardner et al., 2024) serialize table rows
into text and fine-tune an LLM for classification and regression. These works put forward the benefit
of in-context learning of LLMs, that brings their excellent few-shot performance to tabular learning,
but cannot scale to the size of typical tables. Other work, such as TabStar (Arazi et al., 2025),
adapt smaller, efficient text encoders with specialized architectures for tabular data. An alternative
paradigm uses KGs as the source of external knowledge. For instance, CARTE (Kim et al., 2024)
and TARTE (Kim et al., 2025) pretrain tabular models on KGs, but rely on the simple FastText
(Bojanowski et al., 2017) model to process strings.

Prior comparative studies A few studies have begun to analyze the benefits of these knowledge-
rich representations. Grinsztajn et al. (2023) demonstrated that embeddings from language models
outperform traditional substring-based encoders, particularly for columns with diverse text entries.
Similarly, Kasneci & Kasneci (2024) showed on 9 datasets that integrating embeddings from models
like RoBERTa and GPT-2 into GBDTs often improves performance, especially in low-data regimes.
While these works sketch out the value of using language models for text in tables, they do not
inform of the relative merits of knowledge sourced from unstructured text (via LLMs) and structured
graphs (via KG models).

2.2 LEARNING ON KGs

Structure-based KG models A long-standing line of research learns representations from KGs
by focusing solely on the graph structure. Early models operate in a transductive setting, learning
low-dimensional embeddings for a fixed set of entities and relations. Such methods, that include
TransE (Bordes et al., 2013), DistMult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), and
RotatE (Sun et al., 2019b), model the relations as geometric transformations in the embedding space
and define a scoring function to measure the plausibility of triples. To overcome the limitations
of transductive learning, subsequent work has focused on inductive models that can generalize to
unseen entities (Zhu et al., 2021; Galkin et al., 2021). More recently, this has led to the development
of KG foundation models that operate in a fully inductive setting, reasoning on the graph’s topology
to predict new links on entirely unseen graphs (Galkin et al., 2023; Lee et al., 2023; Huang et al.,
2025a;b; Zhang et al., 2025b; Du et al., 2025; Arun et al., 2025). Their application to tables remains
however open, as it requires extracting from a table a relational graph rich-enough to enable the
inductive setting.
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Text-based KG models A parallel approach leverages the textual information associated with
entities and relations, such as their names and descriptions. These models typically use a pretrained
language model to create text-aware representations, bridging the gap between symbolic knowledge
and natural language. One common strategy is to fine-tune a pretrained model such as BERT or
RoBERTa using an objective that combines a masked language modeling loss with a KG-specific
loss (Wang et al., 2021b;a; Youn & Tagkopoulos, 2022). Other methods frame link prediction as
a textual task, either by scoring text sequences representing triples (Yao et al., 2019; Wang et al.,
2022b) or by treating it as a sequence-to-sequence problem where the model generates the missing
entity’s name (Chen et al., 2022; Xie et al., 2022). A prominent example of the latter is KGT5
(Saxena et al., 2022), which verbalizes triples and fine-tunes TS5 (Raffel et al., 2020) to predict the
missing elements. These text-based approaches enable embedding entities that were not seen during
training, a crucial feature for downstream applications.

LLMs refined on knowledge Instead of training a model specifically for KG completion, an-
other line of research refines general-purpose LLMs with structured knowledge to enhance their
factual grounding. This approach aims to inject the high-quality, curated facts from KGs into the
broader world knowledge implicitly stored in LLMs. For example, the ERNIE line of work (Sun
et al., 2019a; 2020; 2021) refines language models like RoBERTa (Liu et al., 2019) by incorpo-
rating knowledge-base data into their pretraining objectives. More recently, the Knowledge Card
framework (Feng et al., 2023) demonstrated that fine-tuning a moderately-sized LLM such as OPT-
1.3B (Zhang et al., 2022) on KG triples can effectively plug factual knowledge into larger LLMs,
improving their performance on knowledge-intensive tasks. Retrieval-based methods (Lewis et al.,
2020) offer a complementary paradigm, dynamically fetching knowledge at inference time rather
than encoding it statically, and represent a promising alternative for knowledge integration.

3 METHODOLOGY: A BENCHMARK FOR TABLE BACKGROUND KNOWLEDGE

3.1 105 TABULAR DATASETS

Three diverse data sources To ensure Table 1: Task distribution across sources.
the robustness and generality of our find-  §ource b-cIf m-clf reg Total
ings, we assemble a diverse benchmark

of 105 tabular datasets from three sources TextTabBench 5 - 10 17
with distinct characteristics and inclusion CARTE 11 0 40 51
biases: TextTabBench (Mréz et al., 2025), _ WiKiDBs 1 21 15 3
CARTE (Kim et al., 2024), and WikiDBs  Total 17 23 65 105

(Vogel et al., 2024).

TextTabBench and CARTE are established
benchmarks for tabular learning, provid- Table 2: Aggregated features of tabular datasets across

ing real-world tables with varied text fea- sources. The cardinality is computed on 1,024 rows.

tures, from short entity names to longer TextTabBench CARTE WikiDBs
descriptions.  Each table is associated
with appredeﬁned prediction task (regres- # columns 15.65 6.76 6.73
- . . . - cardinality 286.36 371.44 463.70
sion, binary, or multi-class classification). .
WikiDBs is a large corpus of over 1.6 mil- string length 915.29 298.80 203.62
string similarity’ 0.16 0.10 0.08

lion semi-synthetic tables generated from
Wikidata. To create meaningful tasks from
this source, we first filtered for tables with
at least 1,200 rows, then manually curated a subset of 37 tables for which we could define a rele-
vant prediction problem. Table 1 summarizes the final distribution of tasks across the three sources.
Further details on each dataset are available in the Appendix (Table 8, Table 9, Table 10).

L cosine similarity of TF-IDF across rows

Data preprocessing We adopt the original preprocessing from TextTabBench and CARTE. For
WikiDBs, we apply a procedure similar to TextTabBench. We also ensure that multi-class classifi-
cation tasks have at most 10 classes, each with at least 105 samples. For all 105 datasets, we then
apply the following preprocessing pipeline: (1) we remove all numerical columns to focus our study
on text-based knowledge (expect in subsection 5.2); (2) we log-transform regression targets with
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artists | track_name track_genre featur target
atures arge
The Beatles| Let It Be rock
i EHED [[fEELREND Kiackoanis ializati the artists is The Beatles, the track_name is Let it
The Blinding . random serialization Be. What is track_genre?
Weeknd Lights PO¥ sampling The Beatles| Let It Be rock (model-specific) 5
. the artists is Nirvana, the track_name is Smells
- - Py
Justice D.AN.C.E electronic N Smells Like rock Like Teen Spirit. What is track_genre?
Teen Spirit the artists is Coolio;L.V., the track_name is
\ Smells Like . ' Gangsta's Paradise. What is track_genre?
Nivana | qeen spirit rock CoolioiL.V. GPZ?SZS: hip-hop 9 ad] is track_genr
Sangsta's . .
CoolioL.v, | ©angsta hip-hop train table row embedding
Paradis Yy with model
preprocessed table l
artists | track_name |track_genre 01 -06 -03 .. 04 03
The Blinding oy estimator training
Weeknd Lights <—I—— . — -04 -02 08 03 -0.1
evaluation = f
. = f(X)
Justice | DAN.CE 22 on test set Yy . 07 03 01 .. 02 -02
test table < >

Figure 1: An overview of our evaluation pipeline. For each dataset, we sample training and test sets.
We then serialize the rows and use the embedding model to generate a vector representation for each
row. Finally, we train a tabular learning estimator to evaluate these embeddings.

wide-ranging distributions; (3) we downsample majority classes in multi-class problems to create
balanced datasets; and (4) we discard any table with fewer than 1,050 rows post-processing to en-
sure sufficient data for evaluation. We also exclude one dataset from TextTabBench with excessively
long text entries that exceed the context limits of some of our baselines.

Linked tables for controlled comparison Table 3: Knowledge graph datasets. Smaller versions
To isolate the contribution of knowledge of Wikidata5M are created by filtering entities by de-
from the challenge of entity linking, we cre- gree (“deg.”). All graphs use the same 822 relations.
ate a specialized subset of 15 tables where
text entries are unambiguously linked to en-

# entities # triples  deg.

tities in WikidataSM (Wang et al., 2021b), WikidataSM 4.6M  20.6M -
a large-scale KG derived from Wikidata. Wikidata3M 329M 15.5M 3
These tables are selected from our main Wikidata2M 2.1M 11.5M 4
benchmark if they contain at least 1,050 WikidatalM 1L.IM 6.8M 6
rows with entities that can be matched to the Wikidata500k 0.5M 31M 9

KG. For this subset, we retain only the en-
tity column and the prediction target, and remove all unlinked rows. This setup allows for a direct
comparison of pure KG models with LLMs in a scenario where entity linking is solved.

To analyze the impact of KG size, we generate four smaller KGs by progressively filtering out low-
degree entities and retaining the largest connected component of the induced subgraph. The statistics
of these graphs are presented in Table 3.

3.2 EVALUATION PIPELINE

Our evaluation pipeline, summarized in Figure 1, assesses the quality of representations from various
knowledge sources for downstream tabular tasks. For each dataset, we generate row-wise embed-
dings from a given model and then train a tabular predictor to predict the target variable from them.

Experimental setup To simulate small-data scenarios where external knowledge is most critical,
we sample training sets of varying sizes, ng., € {64,256,1024}. The test set consists of 1,024
held-out samples (or all remaining samples if fewer are available). To ensure robust evaluation, we
repeat this process 10 times with different random seeds for each configuration.

Embedding models We evaluate a wide range of models to generate representations:

* Non-pretrained baseline: As a simple baseline without external knowledge, we use a
TF-IDF vectorizer followed by a Truncated SVD with 30 components per column, imple-
mented in the Skrub library.
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e Pure LLMs: To study the effect of model scale and architecture, we include a diverse set
of pretrained language models: the Llama-3.1 family (1B, 3B, 8B) (Dubey et al., 2024), the
Qwen3 Embedding series (0.6B to 8B) (Zhang et al., 2025a) which performs well on the
Massive Text Embedding Benchmark (Muennighoff et al., 2022), RoBERTa (base, large),
TS5 (small, base), e5-v2 (small, base) (Wang et al., 2022a), and OPT-1.3B. We also include
FastText as a representative of shallow, non-transformer text models.

* Hybrid LLM+KG models: To assess the benefit of structured knowledge, we evaluate
models that refine LLMs on relational data. This includes ERNIE 2.0, KGTS5, Knowledge
Card, Tabula-8B, and TARTE. Each model is compared against its corresponding LLM.

* Pure KG models: For the subset of 15 linked tables, we evaluate classic KG embedding
models: DistMult, TransE, ComplEx, and RotatE. We train these models on WikidataSM
and its subsets, using an embedding dimension of d = 300.

Table serialization and downstream estimators To generate embeddings from LLMs, we seri-
alize each row into a natural language prompt. Following Gardner et al. (2024), we use the format:
“The <col_a> is <val_a>. The <col_b> is <val_b>. What is the value of <target>?".
For KGT5, we adapt the prompt to better match its pretraining format: “<col_a> | <val_a>.
<col b>|<val b>. Predict: <target>". Constructing the embeddings across multiple columns
(as opposed to Grinsztajn et al. (2023)) enables the context (column name, other entries on the
same row) to inform the representation, e.g. leading to disambiguate “Cambridge; UK” from
“Cambridge; Massachusetts”in atable with columns “city; country”.

The resulting high-dimensional embeddings are then fed into three representative tabular learners:

» Ridge regression: A simple and efficient linear model.

* XGBoost: A powerful GBDT model. To manage computational cost, we first reduce the
embedding dimensionality to 300 using PCA. We then perform hyperparameter optimiza-
tion via a randomized search (see Table 6).

* TabPFNv2: A transformer-based table foundation model, doing in-context learning. We
use PCA to reduce dimensionality to 500, the maximum supported by the model.

4 RESULTS: KNOWLEDGE REPRESENTATIONS FOR TABULAR LEARNING

4.1 KNOWLEDGE-RICH REPRESENTATIONS BOOST TABULAR LEARNING

More gains from knowledge representations than advanced tabular learning Figure 2 shows
that, for text features, improving the quality of the representations leads to more gains than using
advanced tabular learning methods. Indeed, the best performance across the 105 datasets is obtained
by a simple predictor, Ridge, applied on good representations, such as those created via modern
LLMs, outperforming sophisticated tabular learning methods XGBoost and TabPFNv2 (Figure 2a).
In addition, more sophisticated tabular-learning models benefit less from advanced representations.
This could be either because their flexibility enables them to fill-in for a less rich representation, or
because the representations do not match their implicit inductive biases, tailored for tabular learning.
Indeed, unlike typical tabular data, these representations are high-dimensional and closer to being
rotationally-invariant Grinsztajn et al. (2022). Moreover, these advanced tabular learners cannot be
applied as such to the knowledge-rich representations, as they have too many features. Thus we need
to reduce the input dimensions with PCA (see subsection 5.1), following Grinsztajn et al. (2023).

A complementary observation is that the benefit of adding knowledge-rich representations to a sim-
ple tabular learner is larger than the benefit of using a sophisticated tabular learner on simpler rep-
resentations: Figure 2b shows that TabPFNv2 achieves only half of the performance gains of Ridge
combined with a good LLM-based representation.

Benefits for a wide variety of tables, from multiple sources Figure 2b shows that, for the Ridge
learner, knowledge-rich representations bring an improvement over non-pretrained string represen-
tation across methods, and larger models benefit consistently across the three different sources (Fig-
ure 16 gives source-specific results). These datasets are varied (Table 2), and the different sources
represent different selections of tables with text. This diversity suggests that knowledge-rich rep-
resentations help tabular learning in general, when the tables have text columns. The benefit is, on
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Tabula-8B Tabula-8B -
Llama-3.1-8B Llama-3.1-8B -
Llama-3.2-3B Llama-3.2-3B -
Llama-3.2-1B Llama-3.2-1B -
Qwen3-8B Qwen3-8B -
Qwen3-4B Qwen3-4B -
Qwen3-0.6B Qwen3-0.6B -
Knowledge-card Knowledge-card -
OPT-1.3B OPT-1.3B -
ERNIE-large ERNIE-large -
RoBERTa-large RoBERTa-large -
ERNIE-base ERNIE-base -
RoBERTa-base RoBERTa-base -
. 'ZGTS KGTS5 -
-base
KGT5-small Tabular learner To-base 7 IZM:)dlj_lI::ype
T5-<mall = Ridge KGT5-small - S LLM + KG
s TabPFNv2 T5-small - .
e = g
Non-pretrained Fastext] {1 = Ridge
0.50 0.55 0.60 0.65 0.70 0.0 0.1 0.2 0.3

Average scores

a. PR . b. Normalized performance gain for Ridge
(AUC for classification tasks, R2 for regression)

over non-pretrained representations

Figure 2: Performance gain of the various knowledge-rich representations compared to a non
pretrained baseline — @. Comparisons including three tabular learners: Ridge, XGBoost, and
TabPFNvV2; absolute scores. — b. Relative improvements to non-pretrained string representations,
when using a Ridge model as a tabular learner; normalized scores (0 is 10% worse, 1 is best score
observed). — Appendix Figure 15 gives critical difference diagrams across all methods and datasets.

average, quite marked: going from non-pretrained string representation to the best LLM-based ones
gives a .2 average boost in AUC or R2 to Ridge (though only a .05 boost to TabPFNv2).

4.2 LARGER LLMS BRING MORE VALUE
+ Model family

o
o

%]
e
,_'% 0.3F =@ Llama-3
Figure 3 shows the performance gain as a func-  $ 2 + —#- Qwen-3
. . °q e Opt-1.3B
tion of the LLM size (number of parameters), ¢ 4 + o t5
focusing only on pure LLM representations. It &g 0-2F + ¥ e5v2
: : U = —@— RoBERTa
reveals that the benefit increases as a function ¢ 3 Fosttoxt
of size, for transformer-based representations E% 0.1F * + .
(thus excluding FastText, which is a big model & = + '\‘°”"’Tre“a'”5d
. . . Pl abPFNv2
but very wide and shallow). This benefit of size & ¢ * * + + * XGB
Z 00k
o
c

is very clear in a given model family (compar- Ridge

ing various sizes of e5, Qwen, or Llama-3). We 108 109 Tow
hypothesize that this general scaling is driven
by larger representational capacities brought by
the increased number of parameters that en-
ables the storage of more prior knowledge.

Number of parameters

Figure 3: Effect of the size of the model, for pure-
LLM representations.

4.3 REFINING LLMS ON KGS BOOSTS LANGUAGE MODELS SLIGHTLY

Figure 4 compares the benefit brought by each method that has refined an LLM on a knowledge
graph or knowledge base to the corresponding non-refined base LLM, as a function of size.
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Model-type
® LM

, LLM + KG
X FastText
[ J
Non-pretrained
TabPFNv2
[
® X

We estimate the scaling of the performance as a 2
function of the number of parameters withalin-  _ % 0.3r
ear regression for both families of approaches % =
—LLMs with and without KG refinement. Both  £¢ 5[
families show the same scaling, but refiningon 2 ¢
KGs brings an offset: it enables reaching the =3
same performance with a model with a number g £ 01r
of parameters smaller by a factor of 2/3d, e *E,

Qs
Note that the data points with the largest model * = 0.01
correspond to the pair Tabula/Llama3 (Gard- <

ner et al., 2024), which refines on tabular data
rather than a rich KG. This pair also displays
a comparatively smaller benefit of the refine-
ment, which may result from the limited rich-
ness of the corresponding data.

XGB
1 1 ]
108 10° 1010

Ridge
Number of parameters

Figure 4: Comparison of LLM and their matched
counterpart refined on knowledge bases.

The observed benefit of refining LLMs on KGs raises the question: what do knowledge graphs add

to LLMs? How important is a rich knowledge graph?

4.4 TEASING OUT KNOWLEDGE FROM ENTITY MATCHING: TESTING PURE KG SOLUTIONS

Under automatic and noisy entity linking To compare
LLMs with pure KG models, we use BLINK (Wu et al.,
2020) for automatic entity linking (subsection A.4), allow-
ing us to incorporate KG embeddings. On 33 datasets
where text entries are linked to WikidataSM, LLMs con-
sistently outperform KG embeddings (Figure 5). However,
the noisy entity linking confounds the comparison, making
it unclear if the performance gap primarily comes from bet-
ter knowledge representation or from linking failures.

Indeed, LLMs are more than pure knowledge engineering
objects: applied to embed texts, as we do here, they also
bring in a form of fuzzy matching of entities (technically
related to recontextualizing the tokens) and language un-
derstanding. This is to be contrasted with KGs, which are
pure knowledge engineering objects (arguably with crisper
knowledge), but 1) require entity matching and 2) do not
bring language understanding.

Idealistic setting: perfect entity linking To
tease out the role of background knowledge, we
investigate a subset of tables for which the en-
tity matching problem is solved, and each entry
is linked to an entity in WikidataSM.

o
o

o
N

In such an ideal scenario, pure KG embed-
ding approaches provide features for the tables
entries (Grover & Leskovec, 2016; Cvetkov-
Iliev et al., 2023; Robinson et al., 2024). Fig-
ure 6 compares the benefits of LLM-based
approaches with KG embedding approaches,
varying the size of the models. For KG embed-
ding, the size of the model is varied by varying
the size of the KG used to build the embeddings
(see Table 3): a smaller KG represents fewer
entities, and thus has fewer parameters. When

o
o
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non-pretrained representations
o
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Figure 5: Comparing LLMs to KG
embeddings after automatic entity
linking with BLINK.
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Figure 6: Comparing pure KG to pure LLM ap-
proaches on perfectly matched tables.

we reduce the size of the KG, it only provides representations for a fraction of the entities of the
downstream table, and thus the downstream performance. This decrease is sharper than for LLMs,
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because smaller KGs face a hard failure (entity is not matched) while language models face a soft
failure: they give an embedding whatever the query is. This embedding can be of varying quality,
sometimes extrapolating beyond the knowledge of the LLMs, which corresponds to hallucination.
However, an extrapolation that is only partly correct can still help downstream tabular learning.

Without entity-matching challenges, KG embedding is on par with LLMs For the largest, non-
reduced KG, all table entries are matched, and good KG embedding models perform as well as LLMs
of the same size (Figure 6). Interestingly, this suggests that for the same number of parameters, KG
embeddings do not store crispier knowledge than LLMs.

Driven by knowledge, rather than language understanding On the converse, when all entities
are matched to the KG, similarly-sized LLMs bring no benefit. This suggests that their language-
understanding features are not critical for these tasks. However, the selection of tables with entities
all represented in KGs may introduce a bias towards more knowledge-centric tasks.

5 ABLATION STUDIES: PCA AND NUMERICAL FEATURES

5.1 STUDY OF THE IMPACT OF PCA

Llama-3.1-8B
Is Ridge outperforming XGBoost and
TabPFNv2 because of PCA? To determine
whether the lower performance of XGBoost Qwen3-8B
and TabPFNv2 stems from dimensionality
reduction or from the estimators themselves,
we evaluate Ridge regression on PCA-reduced T5-base
embeddings. This ensures a controlled com-
parison, since all three estimators (Ridge,
XGBoost, TabPFNv2) share identical input
vectors. Figure 7 presents the results with PCA 04 05 06 0.7
dimension d = 300. We observe that Ridge Average scores
still outperforms XGBoost and TabPFNv2 (AUC for classification tasks, R2 for regression)
even when restricted to the same reduced
inputs. This suggests that the performance gap  Figure 7: Comparing downstream estimators on
is not an artifact of PCA, but rather reflects the same PCA-reduced embeddings (d = 300).
the inability of these tabular learners to fully =~ Grey bars represent Ridge without PCA. For non-
leverage the embeddings. pretrained representations, there is no PCA.

Tabular learner
s Ridge(Full)
I Ridge
 TabPFNv2
s XGB

Non-pretrained

Does PCA hurt performance? To assess the impact of dimensionality reduction, we compare the
performance on the original embeddings versus PCA-reduced versions of different sizes. Figure 8a
shows that PCA incurs only a small performance drop for Ridge. However, for TabPFNv2, decreas-
ing the input dimensionality from 500 to 300 surprisingly improves performance (Figure 8b). This
shows that TabPFNvV2 struggles with high-dimensional inputs, hindering its ability to leverage rich

Llama-3.1-8B Llama-3.1-8B

TabPFNv2 (Dim.)
. Full

mmm Dim. = 500
s Dim. = 300
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(AUC for classification tasks, R2 for regression) (AUC for classification tasks, R2 for regression)

Figure 8: Effect of PCA on performance. a. Comparing Ridge with and without PCA. The grey
bar represents the performance of Ridge without PCA. b. Comparing TabPFNv2 on PCA-reduced
embeddings with d = 300 and d = 500.
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embeddings. This limitation may stem from challenges that large contexts pose to transformers. By
providing a more compact representation, PCA ultimately aids TabPFNv2, despite information loss.

5.2 RE-INTRODUCING NUMERICAL FEATURES

Llama-3.1-8B

) ) . (Num+5Str)

To assess how findings generalize to tables with Llama-3.1-8B
mixed data types, we reintroduce numerical features (Str)

and evaluate performance on three settings: text-
only, numerical-only, and combined. Our key obser-
vations hold (Figure 9). First, combining numerical
and textual features markedly outperforms using ei-
ther modality alone, demonstrating that they bring
complementary information. Second, text-only fea-
tures are more predictive than numerical-only fea-
tures on these datasets, underscoring the importance
of text representation. Third, the relative ranking
of text encoders remains consistent when numerical
features are included. Finally, while knowledge-rich
representations bring substantial gains to a simple
linear model like Ridge, they offer only marginal

Qwen3-8B
(Num+Str)

Qwen3-8B
(Str)
T5-Base
(Num+Str)

T5-Base
(Str)

Non-pretrained
(Num+Str)

Non-pretrained
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Tabular learner
s Ridge
s TabPFNv2

—--=- Num-only

0.4
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Average scores (AUC and R2)

0.6 0.7

improvements for a table foundation model like
TabPFNV2, highlighting its difficulty in leveraging

high-dimensional, knowledge-rich embeddings. Figure 9: Average performance when us-

ing text-only (Str), numerical-only (dashed
lines), or combined (Num+Str) features.
6 DISCUSSION AND CONCLUSION

External knowledge is a powerful, yet underleveraged, ingredient for tabular learning Our
large-scale study demonstrates that representations from knowledge sources, whether LLMs or KGs,
consistently improve prediction over standard text encodings, and bring predictive information com-
plementary to numerical features. For text features, gains from using better representations with a
simple linear model surpass those from applying state-of-the-art tabular learners on less informative
representations, suggesting that for tables with text, the primary bottleneck lies in representing text
well, rather than in the tabular learning algorithm. Research is needed on privacy and robustness for
these new settings, as external knowledge may introduce side channels or adversarial attacks.

LLMs solve symbol grounding, KGs provide curated knowledge Direct applications of KG
embeddings are hindered by the difficult entity linking step. Using automatic linking solutions incurs
substantial computational costs, and results in lower performance than LLMs, which are directly
applicable to any text. Yet, when entities are pre-linked, KG embeddings match LLMs of similar
size. This implies that the main advantage of LLMs is not superior knowledge, but rather their
ability to solve the symbol grounding problem. Our findings point to a promising synergy: refining
LLMs on KGs improves performance, making models more parameter-efficient, with refined models
achieving the performance of pure LLMs roughly 1.5 times their size, while whether dynamic,
retrieval-based approaches could further boost performance remains an open question.

Current table foundation models struggle with rich representations While state-of-the-art ta-
ble foundation models like TabPFNv2 excel with numerical features, they falter when facing high-
dimensional embeddings. On these rich inputs, they are consistently outperformed by simple linear
models. More strikingly, their performance improves when the embeddings are further compressed
via PCA, revealing a core inability to process rich, high-dimensional information. As text is a key
component of many tables, future work should develop architectures that can effectively integrate
both rich textual representations and numerical features to realize their combined predictive power.

Scaling up: larger LLMs and broader knowledge Our results highlight the critical role of scale,
yet current tabular methods rely on small language models (Kim et al., 2024; 2025; Arazi et al.,
2025). Future foundation models should leverage larger LLMs combined with massive knowledge
bases. Resources like Wikidata, with over 100M entities, remain largely underexploited, represent-
ing a major opportunity for pretraining powerful, knowledge-grounded tabular learners.

10
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Figure 10: Statistics distribution across sources.

A MORE DETAILS ON THE EXPERIMENTS

A.1 DATASETS

More statistics on datasets Figure 10 gives statis-
tics about table sizes, proportion of missing values,
and mean column cardinality.

Table 8, Table 9 and Table 10 provide details on each
individual dataset.

Experiments on linked tables We have 15 linked
tables, 4 for classification and 11 for regression. De-
tails on these tables are provided in Table 4.

A.2 MODELS

Extracting embeddings from LLMs We gener-
ated sentence-level embeddings from the serialized
rows using the SentenceTransformer frame-
work (Reimers & Gurevych, 2019), which provides
a unified interface for a wide range of transformer-
based models. We used it to extract representa-
tions from the following models: Llama, Qwen,
RoBERTa, T5, e5-v2, OPT, Tabula, ERNIE, Knowl-
edge Card, and KGT5 families, using pretrained
checkpoints available on the Hugging Face Hub
(Wolf et al., 2020).

Embedding dimensions Table 5 reports the em-
bedding dimensions for the different baseline mod-
els used.

Incorporating KG embeddings in tables For the
KG embedding models (DistMult, TransE, Com-
plEx and RotatE), we use d = 300 for the embed-
ding dimension, and train them for 100 epochs with
a batch size of 8192 and a learning rate of 103, and
use the default parameters of their PYKEEN imple-
mentation (Ali et al., 2021).

For KGs smaller than WikidataSM (see Table 3),
some rows of the linked tables are not matched to

Table 4: Task distribution across sources,
for linked tables.

Source b-clf m-clf reg Total

CARTE 0 0 3 3
WikiDBs 1 3 8 12
Total 1 3 11 15

Table 5: Embedding dimensions for the dif-
ferent baseline models.

Model Dimension
TF-IDF + SVD 30 per column
FastText 300
TARTE 768
Llama-3.2-1B 2048
Llama-3.2-3B 3072
Llama-3.1-8B 4096
TabuLa-8B 4096
Qwen3-0.6B 1024
Qwen3-4B 2560
Qwen3-8B 4096
RoBERTa (base, large) 768, 1024
ERNIE 2.0 (base, large) 768, 1024
e5-v2 (small, base) 384, 768
TS5 (small, base) 512,768
KGTS5 (small, base) 512,768
OPT-1.3B 2048
Knowledge-card 2048

the KG. In that case, after embedding the rows corresponding to matched entities, we impute miss-
ing values using the mean along each column. If no row at all is matched in a table, we simply

replace the missing values with zeros.
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XGBoost hyperparameter tuning Table 6: Search space for XGBoost hyperparameters.
For the XGBoost estimator, we per-

> ek Hyperparameter Distribution Range

form hyperparameter optimization
via a randomized search with 100 n-estimators Integer [50, 1000]
iterations. We use 5-fold cross- max.depth Integer (2, 6]
validation, repeated 5 times on the =~ min.child.weight Log-uniform (1, 100]
training set, to evaluate each hyperpa- ~ subsample Uniform [0.5, 1.0]
rameter configuration. The detailed learning.rate Log-uniform [1075, 1]
search space is provided in Table 6. colsample bylevel Uniform (0.5, 1.0]
colsample bytree Uniform [0.5, 1.0]
gamma Log-uniform [10-8, 7]
A.3  RESULT REPORTING reg_lambda Log-uniform [1, 4]
alpha Log-uniform [10~8, 100]

Metrics and score normalization
We evaluate performance using the
R2 score for regression and the ROC-
AUC score for classification. To aggregate results across datasets of varying difficulty, we normalize
scores for each dataset and random seed. Following Grinsztajn et al. (2022), we establish a normal-
ized scale where the best-performing model scores 1 and the model at the 10th performance per-
centile scores 0. Other models’ scores are mapped to this [0, 1] range via an affine transformation.
For regression, we clip scores at 0 to mitigate the impact of poor-performing outliers.

However, to showcase real effect sizes, we also report original, non-normalized scores in some
figures. Figures with non-normalized results are labeled with metric names ("AUC and R2”), while
those with normalization are labeled "normalized score”.

Uncertainty estimation To account for statistical variability, we repeat each experiment 10 times
with different random seeds. The error bars in our result figures represent the standard error of the
mean across these runs.

A.4 USING BLINK FOR AUTOMATIC ENTITY LINKING

BLINK (Wu et al., 2020) is a BERT-based entity linking tool that matches entity mentions within
texts to Wikipedia entities. It uses a bi-encoder to retrieve candidates by embedding mention con-
texts and entity descriptions, and a cross-encoder to re-rank them.

Since BLINK requires a textual context (left context, mention, and right context) not natively present
in tables, we need to transform tabular data into the required input format. To do so, we implement
the following pipeline:

1. Column selection: We first manually identify the columns in each dataset in which we
expect to find Wikipedia entity mentions to be linked. For instance in the Fifa22
Players dataset (Table 12), we exclude the work_rate and body_type columns.

2. Context generation: Each table row is converted into a sentence using the template: “The
dataset is <dataset_name>. The <col_a> is <val_a>. The <col b> is <val_b>.
...”. Compared to the serialization of our main study, we add the dataset name, and remove
the target name.

3. Applying BLINK: For each value in the selected columns, we treat the value as the “men-
tion” and the rest of the generated sentence as its context. We then use BLINK to retrieve
the top two Wikipedia entity candidates.

4. Filtering matches: To improve linking-quality, we discard the candidites for which the
model is not confident. Specifically, we consider a match successful only if the score of
the top candidate is greater than the second candidate’s score by a margin of at least 1,
indicating high confidence.

5. Mapping and embedding: We map the successfully linked Wikipedia entities to their
WikidataSM counterparts using mapping files from Wikimedia®>. The linked columns are
then represented by their corresponding KG embeddings pre-computed on WikidataSM.
For all other text columns, we use a non-pretrained TF-IDF + SVD representation.

Mttps://dumps.wikimedia.org/enwiki/latest/
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6. Prediction: Finally, we concatenate the embeddings from all columns and use them as
input for Ridge. We report the results in Figure 5.

To manage the computational cost of BLINK, we conducted this experiment only on a subset of
33 tables, each containing fewer than 10,000 rows. The entire process for these datasets took ap-
proximately 16 hours. Table 7 provides further details, including the specific columns selected for
linking, the proportion of entries for which a match was found, and the runtime of BLINK for each
dataset.

B ADDITIONAL ANALYSIS

B.1 STUDYING THE EFFECT OF TRAIN SIZES BEYOND 1,024 SAMPLES

To broaden the scope of our

study, we extend our analysis to 1 Tabular learner: Ridge ¢ Models
larger train sizes. On a sub- f (ordered at n =10, 000)

set of 49 datasets with more g --@- Tabula-8B
than 10,000 rows (8 from Text- 9 —@— Llama-3.1-8B
TabBench, 27 from CARTE,and —4= Qwen3-88

14 from WikiDBs; see Table 8, Y ':' gPT—1|.3dB g
Table 9, Table 10) we plot learn- 5 E;Evlina?ge:ar
ing curves ranging from 64 to g ROBERTa-large
10,000 samples, for several rep- [®) —v— T5-base
resentative models. As shown < .-V KGT5-base
for Ridge in Figure 11, the ben- —x— Non-pretrained
efits of knowledge-rich repre- 64 256 1024 10

sentations persist as the train- L

ing size increases. While larger Number of training samples

training sets improve perfor-
mance for all models, their rela-
tive ranking remains largely un-
changed.

Figure 11: Learning curves on datasets with more than 10,000
rows. The results are shown for Ridge.

B.2 DOES COLUMN CONTEXT ACTUALLY BRING VALUE?

To study the importance of column context
in our pipeline, we run the experiments with
a different serialization that does not incor-
porate the column names. Specifically, each
row is now serialized into the following sen-
tence: “The value is <val_a>. The value is
<val_b>. What is the value of target?”.

p-value = 7.49e-6

Ridge

Figure 12 compares the performance with  Tz3ppFENV2

p-value = 6.09e-6 ﬂ
and without column context, for a few rep-
resentative text encoding models (LLaMA-

3.1-8B, Qwen3-8B, and T5-base). We see
that on average, the effect of adding column
context is positive, but small. However, the
p-values of a one-sided t¢-test show that for

both TabPFNv2 and Ridge, this effect is sta- Figure 12: Impact of column context in serialization.
tistica]]y signiﬁcant‘ Interestingly, we also The violin plOtS show the distribution of the differ-

see that, while for most datasets adding the ~ence in normalized scores (with context vs. without).
column context helps, for some others it de- Positive values indicate that adding column context
teriorates the performance. improved performance. Outlier datasets are repre-

sented with dots, and the mean with a vertical bar.

To better understand these results, we con-  p_yajyes of a one-sided t-test are reported for Ridge
duct a qualitative study of these datasets in ., 4 TabPENV2.

subsection C.2.

1
-06 -0.4 -02 00 02 04 06
Improvement with Column Info.
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B.3 EFFECT OF MODEL SIZE ON TABLES WITH NUMBERS

In Figure 13, we analyze the effect of model size on
datasets that contain both numerical and textual features. Llama-3.1-8B
We observe a clear and consistent scaling trend: larger

models within each class outperform smaller ones. Inter- Llama-3.2-38
estingly, incorporating numerical features alongside text Liama-3.2-18
embeddings yields similar improvements across all text
encoders, suggesting that the information captured by Qwen3-8B
richer models is complementary to, rather than redundant
with, numerical features. Qwen3-4B

Qwen3-0.6B
C QUALITATIVE EXAMPLES

Opt-6.7B

C.1 EXAMPLES FOR LLMs vs KGS Opt-2.78
To illustrate the distinct advantages of pure LLMs ver- Opt-1.38
sus KG-refined models, we examine two representative Data-modality

B3 With Num.
| =1 str. Only
04 0.5 0.6 0.7
Average scores with Ridge Learner
(AUC for classification, R2 for regression)

datasets from our benchmark. Non-pretrained

Table 11 displays a snippet from the Customer
Complaints dataset, where pure LLMs perform very
well. The table includes columns with free-form text,
such as the Issue column. LLMs, trained on open-
ended text, are well-suited to process such unstructured Figure 13: Effect of model size when
language. In contrast, models refined on KGs, like KGT5, using both numerical and textual fea-
may struggle as their pretraining focuses on structured tures. The results are shown for Ridge.
facts and short canonical entity names, making them less

suited for open text.

Conversely, Table 12 presents an excerpt from the Fifa22 Players dataset, where KG-refined
models demonstrate strong performance. The task is to predict a player’s wage, which is highly
knowledge-intensive. By injecting structured factual knowledge during pretraining, KG-refined
models gain an advantage for such tasks, leveraging external information to make more accurate
predictions.

C.2 EXAMPLES FOR COLUMN CONTEXT

We present two datasets to illustrate the impact of column context in the serialization.

First, in the Registered Ships dataset (Table 13), adding column context is beneficial. Infor-
mative headers like ShipName and Shipbuilder provide crucial information about the type of
data in each column, and help the model disambiguate entities. For instance, the string "Otto Hahn”
alone typically refers to the German chemist, but when prefixed with ShipName, it can be correctly
identified as a ship.

Conversely, in the Company Employees dataset (Table 14), column context degrades perfor-
mance. Here, generic column names such as name and domain do not provide valuable additional
information. Including them in the serialization may distract the model from the more informative
cell content, leading to a drop in performance.

D ADDITIONAL RESULTS

D.1 RUNTIME ANALYSIS

The benefits of leveraging external knowledge come at a computational cost. Table 15 details the
average runtimes for embedding generation and estimator fitting (Ridge) across different embed-
ding models and training sizes. As expected, larger models introduce a significant computational
overhead. For instance, generating embeddings with an 8-billion-parameter LLM is, on average,
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over 100 times slower than using the non-pretrained baseline. This highlights the trade-off between
predictive performance and the computational resources required for knowledge integration.

D.2 RAW RESULTS

Table 16, Table 17 and Table 18 provide the raw results for regression and classification on Text-
TabBench, CARTE and WikiDBs datasets respectively, aggregated over 10 random seeds and for
train Size Ny, = 1, 024.

D.3 COMPARISON WITH TARTE-FT

To benchmark our modular approach, Num+Str
combining knowledge-rich represen- Llama-3.1-8B
tations with downstream learners,
against end-to-end baselines capable
of jointly modeling heterogeneous
data (strings and numbers), we evalu-
ate TARTE-FT (Kim et al., 2025) on TARTE-FT
the 51 CARTE datasets, using both Non-pretrained
numerical and text features. TARTE

is pretrained on a large knowledge

corpus derived from Wikidata, and

can operate either as (i) a frozen ta-

ble featurizer (as in our main exper- Figure 14: Comparison of TARTE-FT with modular ap-
iments) or (ii) a fine-tuned model on  proaches combining pretrained representations and down-
a specific downstream task (TARTE-  stream estimators. Results are shown on the CARTE

FT), for enhanced performance. Be-  datasets, using both textual and numerical features.
cause TARTE was originally devel-

oped for mixed tables, its weaker performance in our string-only experiment (Figure 2) could be
expected. Its base text encoder is FastText, whereas our strongest baselines rely on modern LLMs.

Qwen3-8B

T5-Base Tabular learner

Em Ridge
I TabPFNv2
Bl TARTE-FT

0.5 0.6 0.7
Average scores (AUC and R2)

Figure 14 shows that, on tables with both numerical and text features, TARTE-FT is competitive with
TabPFNV2 operating on non-pretrained representations. However, it is outperformed by knowledge-
rich embeddings from Llama-3.1-8B, used as inputs for Ridge or TabPFNv2. Once again, for tabular
learning with text, the largest gains come from knowledge-rich text representations, rather than ar-
chitectural sophistication alone, highlighting the need for future table foundation models that lever-
age LLM-based text representations.

D.4 OVERALL MODEL RANKING

Figure 15 presents a critical difference diagram comparing the mean ranks of all embedding methods
when paired with a Ridge predictor. It also includes the performance of more advanced estimators
on non-pretrained representations for context.

D.5 PERFORMANCE ANALYSIS BY DATA SOURCE

Figure 16 illustrates the relative improvements of knowledge-rich representations over non-
pretrained ones, broken down by data source. The benefits of external knowledge vary with dataset
characteristics; tables from WikiDBs and CARTE, which are more knowledge-intensive, gain more
from these representations than those from TextTabBench.

Figure 17 details the effect of LLM size on performance for each data source, confirming the scaling
trend across different types of tables.

Figure 18 compares the performance of base LLMs to their counterparts refined on KGs. The
benefits of refinement are most pronounced for the WikiDBs datasets, which are inherently more
knowledge-centric as they are derived from a knowledge base.
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Figure 15: Critical difference diagram across all data sources and methods.

DECLARATION OF LLLM USAGE

LLMs were used to polish the writing of some parts of this paper.
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Figure 16: Relative improvements to non-pretrained string representations, when using a Ridge
model as a tabular learner. For each source, larger models consistently yield better performances: a.
TextTabBench b. CARTE ¢. WikiDBs.
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Table 7: Details of the datasets used for automatic entity linking with BLINK, including the columns
that were linked, the proportion of entries linked, and the total time taken for linking.

Dataset Columns linked (proportion linked) Time
. neighbourhood (85%), property_type (99%),
Airbnb smart_location (100%) 38m
Customer
Complaints Company (93%), State (88%) 8m
Gender (100%), City (100%), Position (72%),
Seniority level (95%),
IT Salary Your main technology/programming language (97%), 2lm
Company type (98%)
Mercari category_name (60%), brand_name (68%) 1h 8m
Osha Accidents Nature of Injury (50%), Part of Body (81%) 23m
Wi Grape (99%), Closure (66%), Country (100%), 23
e Type (100%), Region (92%), Appellation (74%) m
Babies R Us company_struct (49%) 14m
Bikedekho bike_name (85%), city_posted (100%) 27m
Bikewale bike_name (91%), city_posted (100%) 52m
Chocolate Bar Company- (Manufacturer) (63%), Company-Location (95%), 19
Ratings Country_of Bean Origin (100%) m
Coftee Ratings roaster (35%), location (94%), origin (87%) 14m
. department_name (81%), division (50%),
Eanipl s Salnties employee_position_title (58%) 1hi16m
Michelin Name (59%), Location (96%), Cuisine (87%) 56m
NBA Draft team (62%), player (97%), college (74%) 12m
. Brand (70%), Variety (67%), Style (91%),
Ramen Ratings Country (100%) 40m
Rotten Tomatoes Name (91%), Director (90%), Country (98%), 1h 20m
Genre (72%)
Used Cars 24 Car_Brand (77%), Model (70%) 32m
UsedCars.com brand (98%), model (88%) 21m
Used Cars .
Saudi Arabia Region (98%), Model (96%) 29m
Artist Copyrights ArtistName (50%), ArtistCountryOfCitizenship (79%) 10m
Forward Players PLAYER_LABEL (82%), NATIONALITY (98%) Tm
MuseumLocation (94%), ArtistName (78%),
Artworks Catalog ArtistCountry (100%) Im
G h Full_Name (55%), Professional_Role (100%), 1
cographers Birth_Location (69%), Nationality (85%) m
Research Articles re;earch,toplc (79%), author_full_name (39%), 1h 5m
primary_author (30%)
Sculptures Collection_Name (74%), Artist _Name (78%) 20m
Spring Locations SpringName (43%), AdministrativeEntity (95%) 31m
Geopolitical Regions region_name (98%) 2m
Kindergarten .
Locations cakisy (El7) e
Sub Post Offices SUB_POST_OFFICE_NAME (68%), POSTAL_DIVISION (70%) 8m
State Schools SchoolName (56%), AdministrativeRegion (93%) 14m
Parish Churches ChurchName (61%), AdministrativeEntity (95%) Tm
. . ShipName (57%), ShipType (100%), Shipbuilder (84%),
Registered Ships RegistryCountry (100%), HomePort (95%) 3%m
Philosophers FullName (69%), BirthPlace (91%), 34m

Profession (99%)
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Table 8: Overview of TextTabBench datasets used in our benchmark. Table statistics after prepro-
cessing.

Dataset Task #rows #columns #classes #linked BLINK
cat. num.
Diabetes b-clf 17,000 4 12 2 - -
Job Frauds b-clf 1,732 11 3 2 - -
Kickstarter b-clf 18,720 9 8 2 - -
Lending Club b-clf 11,254 12 15 2 - -
Osha Accidents b-clf 3,598 15 3 2 - v
Customer Complaints ~ m-clf 1,384 8 2 4 - v
Spotify m-clf 10,000 3 15 10 - -
Airbnb reg 3,818 32 23 - - v
Beer reg 2914 5 15 - - -
California Houses reg 11,349 13 16 - - -
Covid Trials reg 1,165 13 2 - - -
Insurance Complaints  reg 37,484 8 2 - - -
IT Salary reg 1,253 16 2 - - v
Mercari reg 12,000 4 2 - - v
San Francisco Permits  reg 183,794 12 16 - - -
Stack Overflow reg 19,427 89 13 - - -
Wine reg 1,281 12 3 - - v
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Table 9: Overview of CARTE datasets used in our benchmark. Table statistics after preprocessing.

Dataset Task  #rows #columns #classes #linked BLINK
cat.  num.

Chocolate Bar Ratings b-clf 2,218 6 5 2 - v
Coftee Ratings b-clf 1,670 8 - 2 - v
Michelin b-clf 6,774 5 2 2 - v
NBA Draft b-clf 1,550 4 5 2 - v
Ramen Ratings b-clf 3,726 4 - 2 - v
Roger Ebert b-clf 2,668 5 5 2 - -
Spotity b-clf 41,096 7 11 2 - -
US Accidents Severity b-clf 20,930 9 4 2 -
Whisky b-clf 1,788 6 - 2 - -
Yelp b-clf 60,088 8 4 2 - -
Zomato b-clf 60,302 7 1 2 - -
Movies reg 7,224 7 9 - 7,095 -
US Accidents Counts reg 22,623 6 - - 14,697 -
US Presidential reg 19,857 6 - - 13,221 -
Anime Planet reg 14,391 6 10 - - -
Babies R Us reg 5,085 4 - - - v
Beer Ratings reg 3,197 5 14 - - -
Bikedekho reg 4,786 5 5 - - v
Bikewale reg 8,992 5 5 - - v
Buy Buy Baby reg 10,718 4 - - - -
Cardekho reg 37,813 13 6 - -

Clear Corpus reg 4,724 10 19 - - -
Company Employees reg 10,941 7 - - - -
Employee Remuneration reg 35,396 2 5 - - -
Employee Salaries reg 9,211 6 8 - - v
Fifa22 Players reg 18,085 9 18 - - -
Filmtv Movies reg 41,205 6 6 - - -
Journal JCR reg 9,615 4 5 - - -
Journal SJR reg 27,931 9 - - - -
Japanese Anime reg 15,535 11 5 - - -
K-Drama reg 1,239 8 4 - - -
ML/DS Salaries reg 10,456 7 4 - - -
Museums reg 11,467 14 2 - - -
Mydramalist reg 3400 10 3 - - -
Prescription Drugs reg 1,714 5 5 - - -
Rotten Tomatoes reg 7,158 10 6 - - v
Used Cars 24 reg 5,918 6 5 - - v
Used Cars Benz Italy reg 16,391 5 2 - - -
UsedCars.com reg 4,009 8 5 - - v
Used Cars Pakistan reg 72,655 4 6 - - -
Used Cars Saudi Arabia  reg 5,507 7 6 - - v
Videogame Sales reg 16,410 4 4 - - -
Wikiliq Beer reg 13,461 7 2 - - -
Wikiliq Spirit reg 12,275 5 2 - -

Wina Poland reg 2,247 12 6 - - -
Wine.com Prices reg 15,254 6 3 - - -
Wine.com Ratings reg 4,095 6 3 - - -
WineEnthusiasts Prices reg 120,975 8 1 - - -
WineEnthusiasts Ratings  reg 129,971 8 1 - - -
WineVivino Price reg 13,834 5 2 - - -
WineVivino Rating reg 13,834 6 2 - - -
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Table 10: Overview of WikiDBs datasets used in our benchmark. Table statistics after preprocessing.

Dataset Task #rows #columns #classes #linked BLINK
cat. num.
CC Authors b-clf 16,224 7 1 2 1,302 -
Defenders m-clf 18,610 10 - 10 8,700 -
Philosophers m-clf 4,230 8 - 10 1,656 v
US Music Albums m-clf 3,270 10 1 10 2,180 -
Artist Copyrights m-clf 2,000 9 1 10 - v
Artworks Catalog m-clf 1,210 8 2 10 - v
Forward Players m-clf 1,400 10 - 10 - v
Geographers m-clf 1,130 9 - 10 - v
Historic Buildings m-clf 27,980 6 3 10 - -
Island m-clf 19,650 3 2 10 - -
Kindergarten Locations m-clf 2,790 6 - 3 - v
Magic Narratives m-clf 1,062 4 - 9 - -
Museums m-clf 9,550 4 2 10 - -
Noble Individuals m-clf 1,400 9 - 10 - -
Notable Trees m-clf 1,408 4 2 8 - -
Parish Churches m-clf 1,350 4 2 10 - v
Sculptures m-clf 3,720 6 - 10 - v
Spring Locations m-clf 5,930 2 2 10 - v
State Schools m-clf 2,800 3 2 10 - v
Scientific Articles m-clf 2,760 13 1 10 - -
Sub Post Offices m-clf 1,530 3 1 10 - v
Transport Stations m-clf 4,640 8 2 10 - -
Business Locations reg 16,821 4 4 - 16,438 -
Dissolved Municipalities reg 13,462 6 2 - 1,656 -
Geopolitical Regions reg 1,114 6 3 - 1,066 v
Historical Figures reg 11,260 11 - - 2,134 -
Municipal District Capitals  reg 1,658 5 3 - 1,267 -
Poets reg 60,240 10 - - 21,564 -
Territorial Entities reg 36,717 7 4 - 34,189 -
WWI Personnel reg 30,675 11 - - 16,227 -
Artworks Inventory reg 10,635 5 1 - - -
Drawings Catalog reg 63,130 8 1 - - -
Eclipsing Binary Stars reg 297,934 6 2 - - -
Registered Ships reg 4,644 6 3 - - v
Research Articles reg 6,962 6 2 - - v
Research Article Citations  reg 4,115 9 - - - -
Ukrainian Villages reg 21,355 3 3 - - -

Table 11: A snippet from the Customer Complaints dataset, where LLMs perform well. The
task is to predict the "Company response to consumer” (shortened to ”’Company response” here for
space reasons). Some columns were removed to fit the table in the paper.

Issue Product Company Submitted State Company

. response
via

Incorrect information  Credit reporting  Experian Information Web CcO 0

on credit report Solutions Inc.

Written notification  Debt collection Associated Credit Ser- Web NY 0

about debt vices, Inc.

Struggling to pay mort- Mortgage RoundPoint Mortgage Web NY 0

gage Servicing Corporation
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Table 12: A snippet from the Fifa22 Players dataset, where LLMs refined on KGs perform
well. The task is to predict the player’s wage. Some columns were removed to fit the table in the

paper.

name club_name player_positions nationality_ name work_ rate body_type wage_eur
L. Cass Port Vale CB.RB England High/Medium Lean 3.602060
(185+)
Judson San Jose CDM Brazil Medium/High Normal 3.778151
Earthquakes (170-)
E.Gyasi  Spezia RW, LW, ST Ghana High/Low Lean 3.845098
(170-
185)
Z. Yukatel RB, CAM, RM Bosnia and Medium/Medit Lean 3.477121
Kvrzié Kayserispor Herzegovina (170-
185)

Table 13: A snippet from the Registered Ships dataset, where column-context brings value.
The task is to predict the gross tonnage.

RegistryCountry HomePort  ShipName Shipbuilder ShipType GrossTonnage
Liberia Monrovia A Whale Hyundai Heavy ore-bulk-oil 5.230242
Industries carrier
Liberia Nassau Adventure of Kvaerner Masa-  cruise ship 5.137595
the Seas Yards
Liberia Monrovia IMO Hanwha Ocean container ship 4.878464
9225615
Norway NaN Serenissima Trondhjems motor ship 3.414639
mekaniske
Verksted
Liberia NaN Otto Hahn Howaldtswerke-  ship 4.211948
Deutsche Werft

Table 14: A snippet from the Company Employees dataset, where column-context hurts perfor-
mance. The task is to predict the current employee estimate.

industry locality name domain current_employee_estimate
information new york, new york, ibm ibm.com 5.437825
technology and  united states

services

information bombay, maharash- tata consul- tcs.com 5.280512
technology and tra, india tancy services

services

information dublin, dublin, ire- accenture accenture.com 5.280326
technology and land

services

accounting london, greater lon- ey ey.com 5.199654

don, united kingdom
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Table 15: Average runtimes (in seconds) for embedding extraction and Ridge fitting, for varying
train set sizes.

Train size

64 256 1,024
TabuLa-8B 124 141 145 +166 216 +258
Llama-3.1-8B 119 +133 140 +157 209 +247
Llama-3.2-3B 43 +51 51 +60 76 +93
Llama-3.2-1B 18 +20 21 +24 32 +37
Qwen3-8B 120 +144 140 +169 210 +262
Qwen3-4B 65 +82 76 +96 114 +150
Qwen3-0.6B 12 +13 14 +15 21 +22
Knowledge-card 25 +29 30 +34 45 +53
OPT-1.3B 23 +29 27 +34 40 +53
ERNIE-large 8 +6 10 +7 15 +9
RoBERTa-large 8 +6 10 +7 14 +9
ERNIE-base 5 +4 6 +4 8 +6
RoBERTa-base 4 +3 5 +3 T +4
KGT5 543 6 +4 8 +5
T5-base 5 +6 T +7 9411
KGTS5-small 3 +3 4 43 6 +4
T5-small 4 +3 4 +3 6 +4
TARTE 4 44 545 8 +6
FastText 2 44 3 +4 4 +6
Non-pretrained 0.5 +o0.7 1+1 2 +2

Table 16: Raw results on TextTabBench datasets. Mean and standard error over 17 datasets and 10
random seeds, for train size N, = 1, 024.

\ Regression (R2) \ Classification (ROC AUC)
. TabPFNv2 XGBoost . TabPFNv2 XGBoost
Ridge Ridge

(PCA d = 500)  (PCA d = 300) (PCA d = 500)  (PCA d = 300)
TabuLa-8B 0.409 +.024 0404 £.023 0358 +.021 | 0.813 £.017 0.789 £.018  0.792 + 018
LLaMA-3.1-8B 0.398 £.024 0392 +.023 0349 + 020 | 0.807 £.017 0.782 +.018 0.782 + 018
LLaMA-3.2-3B 0396 £.023 0393 +.02 0350+.020 | 0.802+.07 0.783 +.08 0.783 +.018
LLaMA-3.2-1B 0.366 +.021 0359 +.020 0.321 +.018 | 0.803 £.016 0.779 £.018  0.786 + .017
Qwen3-8B 0.411 +.018 0.383 +.019 0.345 + 016 | 0.800 £.017 0.775 £.018  0.780 + 018
Qwen3-4B 0.397 .07 0367 018  0.330+.017 | 0.797 +.016  0.774 £ 018 0.777 + 018
Qwen3-0.6B 0.303 £.015 0280 +.015 0256 +.013 | 0.776 £ 015  0.750 £ 018  0.760 + 017
Knowledge-card | 0.333 £.019 0332 +.019 0.291 +.016 | 0.804 +.016 0.780 +.018  0.784 + 018
OPT-1.3B 0350 £.019 0347 +.017 0304 +.016 | 0.798 £ .07  0.777 018 0.781 + 018
ERNIE-large 0323 £017 0312 +.05 0270 +.013 | 0.790 £.016  0.766 £ .019  0.770 + 018
RoBERTa-large | 0.265 +.016 0.300 +.018 0.262 +.016 | 0.789 016 0.770 +.018  0.774 + 018
ERNIE-base 0.307 £.017 0299 + 014 0264 +.013 | 0.785 £ 016 0.762 +.018  0.766 + 017
RoBERTa-base 0279 017 0279 +.017 0238 +.015 | 0783 £ 016 0.762 £.018 0.766 + 018
KGT5 0270 £.017 0258 £.017 0228 +.014 | 0773 £ 016 0.759 £.018  0.755 + 018
T5 0312 +.017 0315+.016 0273 +.014 | 0787 015  0.765 £ 018  0.767 + 018
E5-v2 0314 015 0295 +.016 0271 +.014 | 0789 015 0.762 £.018  0.769 + 018
KGT5-small 0.242 + 015 0223 +.015  0.209 +.013 | 0.766 £ 015 0.751 £.018  0.754 + 017
T5-small 0.260 £.017 0265 £.016 0227 +.014 | 0778 £ 015  0.756 £.017  0.761 + .017
E5-small-v2 0.278 +.015 0281 +.016 0244 + 014 | 0.776 £ 016  0.770 £ 018  0.754 + 019
TARTE 0320 +.017 0314+ .08 0278 +.016 | 0.778 £ 014  0.758 £ 017  0.758 + 016
FastText 0278 017 0320 +.016 0278 +.015 | 0.770 £ 016  0.775 017  0.766 + 018
Non-pretrained 0379 £ 018  0.452 +.020 0.440 +.020 | 0.781 £ .05 0.804 +.016 0.800 + .015

29



Under review as a conference paper at ICLR 2026

Table 17: Raw results on CARTE datasets. Mean and standard error over 51 datasets and 10 random
seeds, for train size N, = 1,024.

\ Regression (R2) \ Classification (ROC AUC)
. TabPFNv2 XGBoost . TabPFNv2 XGBoost
Ridge Ridge

(PCA d = 500)  (PCAd = 300) (PCAd = 500)  (PCA d = 300)
TabuLa-8B 0.608 +.009 0.587 £.000 0.550 +.000 | 0.824 +.008 0.797 +.009 0.793 + 008
LLaMA-3.1-8B 0.609 +.008 0.587 +.009 0.550 +.008 | 0.823 +.008 0.796 +.000  0.793 + .008
LLaMA-3.2-3B 0.582 +.000 0.564 +.010 0.529 +.009 | 0.812 +.008 0.783 £.000 0.780 + .008
LLaMA-3.2-1B 0.552 +.000 0.541 010  0.505 +.009 | 0.806 +.008 0.777 000 0.776 + .008
Qwen3-8B 0.546 £ 000 0.513 010 0.480 +.009 | 0.799 £.008 0.767 £.000 0.769 + .008
Qwen3-4B 0.525 +.000  0.503 £.010 0.472 +.010 | 0.782 +.007 0.748 £.008  0.754 + 008
Qwen3-0.6B 0.460 +.010 0432 +.011 0413 +.010 | 0.743 008 0.711 £.008  0.717 + .008
Knowledge-card | 0.531 +.010 0.512+.010 0482 +.009 | 0.793 £.007 0.761 +.008  0.762 =+ .008
OPT-1.3B 0.533 £.000 0514 +010 0482 +.00 | 0.800+.008 0.768 +.000 0.773 + .008
ERNIE-large 0.509 +.000  0.503 +.010  0.468 +.009 | 0.782 +£.008 0.744 +£.000  0.750 + .008
RoBERTa-large | 0.429 +.008 0.497 +.010 0.463 +.009 | 0.774 £ 008  0.745 +.000  0.752 + .008
ERNIE-base 0487 +.000 0484 + 011 0453 +.010 | 0.772 £ 008  0.734 £ 000  0.740 + 009
RoBERTa-base 0.458 000 0479 011 0447 010 | 0771 £ 008  0.740 £ 000 0.746 + 008
KGT5 0.480 £.010 0469 011 0438 010 | 0.761 £.008 0.725 £.000  0.732 + .008
T5 0.503 £ 010 0486 +.011 0454 + 010 | 0771 £.000 0.733 £ 010  0.741 + 009
E5-v2 0.488 010 0476 011 0448 010 | 0.774 £ 007  0.737 £.008  0.752 + 008
KGT5-small 0.458 +.010 0450+ 011 0419 +.010 | 0.752 £ 008 0.717 000  0.724 + 008
T5-small 0476 010 0461 012 0434 £ 010 | 0759 £ 000 0.720 £.000  0.729 + 008
E5-small-v2 0.467 010 0471 011 0433 + 010 | 0.761 £.008 0.751 £.008  0.737 + .008
TARTE 0.451 £ 010 0449 + 012 0417 + 010 | 0.746 £ 008 0.714 £ 008  0.726 + .008
FastText 0.464 010 0496 +.011 0471 +.010 | 0763 £ 008 0.754 £ 008  0.753 + .008
Non-pretrained 0.430 £.011 0526 011 0519 +.010 | 0.766 £.008 0.773 +.008  0.768 + .008
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Table 18: Raw results on WikiDBs datasets. Mean and standard error over 37 datasets and 10
random seeds, for train size N, = 1, 024.

\ Regression (R2) \ Classification (ROC AUC)
. TabPFNv2 XGBoost . TabPFNv2 XGBoost
Ridge Ridge

(PCAd = 500)  (PCA d = 300) (PCAd = 500)  (PCA d = 300)
TabuLa-8B 0.552 +.018 0.546 +.019 0.492 +.017 | 0954 +.005 0951 +.006 0.947 + .006
LLaMA-3.1-8B 0.542 + 017 0530 +.08 0480 +.017 | 0950 £.006 0.946 +.006 0.942 + 006
LLaMA-3.2-3B 0.516 £.018 0504 £.020 0459 +.018 | 0951 £.005 0948 +.006 0.944 + 006
LLaMA-3.2-1B 0.486 +.016 0479 +.018 0431 +.016 | 0945 006 0942 + 006 0.938 + .006
Qwen3-8B 0.468 +.018 0.456 £.020 0.404 +.017 | 0946 +.006 0.943 £.007  0.937 + 007
Qwen3-4B 0.439 + 018 0432 +.019 0386 +.017 | 0942 006 0.940 £.007 0.936 + 007
Qwen3-0.6B 0.376 +.014  0.356 £ 016 0320 +.014 | 0927 007  0.926 £.007  0.920 + .007
Knowledge-card | 0.476 +.015 0470 .06 0.428 + 014 | 0.945 +.006 0.944 +.006 0.940 + .006
OPT-1.3B 0.465 +.016 0456 +.017 0409 +.015 | 0943 £ 006 0940 +.006 0.936 + .006
ERNIE-large 0.475 016 0475 +.017 0425 +.015 | 0942 £ 006 0940 £.006 0.935 + .006
RoBERTa-large | 0.381 +.014 0442 +.016 0.396 + 014 | 0.937 £.006 0.939 +.007  0.934 + 007
ERNIE-base 0.449 + 016 0455 +.017 0406 +.015 | 0937 006 0936 +.006 0.931 + 007
RoBERTa-base 0.403 £ 014 0418 £.016 0374 +.014 | 0935 £ 006 0.935+.007 0.930 % .007
KGT5 0423 £ 014 0426 +.016 0383 +.014 | 0937 006 0.935+.007 0.929 + 007
T5 0.426 +.015 0423 +.016 0379 +.014 | 0937 006 0934 +.007 0.929 + 007
E5-v2 0.416 016 0406 £.018 0368 +.015 | 0933 006 0931 £.007 0.927 + 007
KGT5-small 0380 +.013 0389 +.015 0346 +.013 | 0.929 £ 007 0928 +.007  0.922 + 007
T5-small 0383 +.014 0386 +.015 0342 +.013 | 0930 006 0.926 £.007 0.920 + .007
E5-small-v2 0374 + 013 0381 £.015 0328 +.013 | 0926 007 0929 +.007  0.921 + 007
TARTE 0.356 +.013 0362 +.05 0319 +.03 | 0927 007 0927 007  0.920 + .007
FastText 0383 +.014 0416 +.015 0385 +.014 | 0929 006 0932 +.007 0.926 + .007
Non-pretrained 0.364 +.014 0460 +.016 0435 +.015 | 0924 £007 0941 £.006  0.934 + 006
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