

000 TABULAR LEARNING WITH BACKGROUND INFORMATION: LLMS, KNOWLEDGE GRAPHS, OR BOTH?

001
002
003
004
005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT

010
011 Tables have their own structure, calling for dedicated tabular learning methods
012 with the right inductive bias. These methods outperform language models. Yet,
013 many tables contain text that refers to real-world entities, and most tabular learn-
014 ing methods ignore the external knowledge that such strings could unlock. Which
015 knowledge-rich representations should tabular learning leverage? While large
016 language models (LLMs) encode implicit factual knowledge, knowledge graphs
017 (KGs) share the relational structure of tables and come with the promise of better-
018 controlled knowledge. Studying tables in the wild, we assemble 105 tabular
019 learning datasets comprising text. We find that knowledge-rich representations,
020 from LLMs or KGs, boost prediction, and combined with simple linear models
021 they markedly outperform strong tabular baselines. Larger LLMs provide greater
022 gains, and refining language models on a KG boosts models slightly. On datasets
023 where all entities are linked to a KG, LLMs and KG models of similar size per-
024 form similarly, suggesting that the benefit of LLMs over KGs is to solve the entity
025 linking problem. Our results highlight that external knowledge is a powerful but
026 underused ingredient for advancing tabular learning, with the most promising di-
027 rection lying in the combination of LLMs and KGs.

028 1 INTRODUCTION: BACKGROUND KNOWLEDGE FOR TABULAR LEARNING

029
030 **Tabular learning** Tabular data is central to machine-learning applications, powering applications
031 from healthcare to finance. Yet, tables have properties that set them apart from other modalities.
032 Cells may contain heterogeneous values: numbers, dates, categorical codes, or short texts. These
033 values often only gain meaning through relational context, via column headers and neighboring en-
034 tries. Tabular learning consists of making row-wise predictions, whether classification or regression,
035 from these heterogeneous features. This unique structure has long favored learning methods with
036 strong inductive biases for mixed-type features, such as gradient-boosted decision trees, over generic
037 deep learning approaches (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022). Recent progress
038 on table foundation models uses transformers with dedicated row-wise architectures, pretrained on
039 synthetic tables (Hollmann et al., 2022; 2025), that are however purely numerical, leaving aside
040 strings, dates, or categories. On the opposite, casting tables to text to readily apply large language
041 models (LLMs) for in-context learning gives excellent few-shot performance, but does not scale nor
042 benefit beyond a few dozen rows (Hegselmann et al., 2023; Gardner et al., 2024).

043
044 **Text in tabular learners** Tabular learners, unlike LLMs, leverage the specific repetitions of rows
045 and features for state-of-the-art predictions on tables (Chen & Guestrin, 2016; Hollmann et al.,
046 2025). Yet they also depart from LLMs in that they do not natively model text columns in tables.
047 Here, a particularly underexplored dimension is that these texts often correspond to real-world en-
048 tities, such as company names, drugs, or locations, that carry latent information far beyond the raw
049 string. Exploiting this background knowledge could substantially improve prediction, especially in
050 small-data regimes where tables themselves do not suffice to infer such knowledge from scratch.
051 For example, a table of clinical trials mentioning drug names could benefit from external knowledge
052 about drug classes, interactions, or approval status. However, state-of-the-art tabular learners are tai-
053 lored to numbers (Erickson et al., 2025), using pipelines that cast entity strings to opaque numbers:
categorical features are one-hot encoded, texts reduced to surface-level representations, e.g., from
character n-grams. Doing so discards the opportunity to ground table entries in external knowledge.

How can strings and entities bring background knowledge to tabular learning? A traditional answer would be to use data-integration and database techniques, augmenting tables with features obtained through joins with external databases (Doan et al., 2012; Cappuzzo et al., 2024). Yet, this approach faces well-known obstacles: discovering relevant tables, identifying joins, engineering relevant features while preventing their exponential growth across chained joins (Kanter & Veeramachaneni, 2015). A more scalable alternative enriches tables implicitly by mapping entity strings to vector representations pretrained on large-scale knowledge sources (Cvetkov-Iliev et al., 2023; Grinsztajn et al., 2023; Lefebvre & Varoquaux, 2025). Such embeddings provide compact summaries of factual and relational information from these sources, and can easily be injected into tabular models.

KGs and LLMs: two opposing philosophies of knowledge Pretraining embeddings from knowledge sources is shaped by two opposing philosophies of knowledge.

The *Knowledge Graph (KG) perspective* strives for pure, curated, knowledge. General-purpose KGs (Bollacker et al., 2008; Vrandečić & Krötzsch, 2014; Suchanek et al., 2024) gather facts in a structured, symbolic form, with a high signal-to-noise ratio: what they contain is largely correct. Their strength also lies in their explicit relational modeling, close to the relational nature of tabular data. Yet, their main weakness is their incompleteness: the number of true facts being potentially infinite, no KG can store them exhaustively.

By contrast, the *LLM perspective* treats knowledge as the statistical aggregation of written language. LLMs are probabilistic black-boxes trained on massive, weakly curated text corpora with no explicit notion of truth (Suchanek & Luu, 2023). They do not store curated facts, but model token co-occurrence statistics that implicitly encode fragments of factual knowledge (Petroni et al., 2019; Roberts et al., 2020; Jiang et al., 2020). Their power lies in breadth: scale enables coverage that far exceeds manually constructed KGs. This breadth comes at the price of reliability: LLMs are prone to hallucinations and factual drift (Ji et al., 2023; Tonmoy et al., 2024; Bang et al., 2025; Mallen et al., 2022), may produce confident but incorrect statements (Bender et al., 2021; Kadavath et al., 2022), and their internal reasoning remains opaque (Bender & Koller, 2020; Nanda et al., 2023). Raw application of LLMs to tabular learning also hits the wall of the size of their context window.

The knowledge integration bottleneck While LLMs can easily embed any string, the use of KGs in downstream tasks is hindered by a difficult knowledge integration step. Early KG embedding models operated in a transductive setting, learning representations for a fixed set of entities, primarily for internal tasks like link prediction (Bordes et al., 2013; Yang et al., 2014). Applying these embeddings to external data, such as tables, requires solving the challenging entity linking problem: mapping messy, real-world strings to canonical entities in the KG (Mendes et al., 2011; Delpeuch, 2019; Foppiano & Romary, 2020). This challenge is related to the broader “symbol grounding problem”, a central difficulty of symbolic AI (Wikipedia, 2025). Recent advances in KG embedding models strive to overcome this limitation via generalization to unseen entities. One line of work couples KG embedding with pretrained (or jointly trained) text encoders applied to entity names or descriptions, so that unseen entities can be embedded directly from their textual mentions (Wang et al., 2021b; Saxena et al., 2022). A parallel effort focuses on building KG foundation models that can operate in a fully inductive setting, generalizing to entirely new graph structures by reasoning on their topology (Galkin et al., 2023; Huang et al., 2025a). These developments open up new avenues for integrating structured knowledge into downstream applications, but their effectiveness in the context of tabular learning remains an open question.

Contributions We study how to bring background information to tabular learning. Which modality, KGs or open-ended texts, should be preferred to pretrain world-knowledge models? Are numerical table foundation models all we need? What basic components for future research on table foundation models? To answer these questions, we assemble, from three diverse sources with different inclusion biases, 105 tabular learning datasets containing text. We conduct a large-scale empirical study, comparing, in a controlled setting, knowledge-rich representations from both LLMs and KG embedding models of varying sizes. We also study the impact of refining LLMs on KGs, to assess whether this hybrid approach combines the strengths of both modalities. Our findings are threefold:

1. **Bringing knowledge-rich representations into tabular learning matters:** both LLM and KG embeddings improve upon standard encoding techniques such as TF-IDF, bringing more gains on text features than SOTA tabular learners developed for numerical tables.

108 2. **Entity linking is the key bottleneck:** when all entities in a table are already linked to a
 109 KG, LLMs and KG models of comparable size perform similarly, suggesting that the main
 110 advantage of LLMs is their ability to implicitly solve the entity linking problem.
 111 3. **Current table foundation models struggle with rich embeddings:** state-of-the-art tab-
 112 ular learners are consistently outperformed by simple linear models on high-dimensional,
 113 knowledge-rich representations, revealing a critical limitation.

114
 115 **2 RELATED WORK**
 116

117 **2.1 TABULAR LEARNING WITH TEXT FEATURES**
 118

119 **From tree-based models to foundation models** Historically, tabular learning has been dom-
 120 inated by gradient-boosted decision trees (GBDTs) (Chen & Guestrin, 2016; Ke et al., 2017;
 121 Prokhorenkova et al., 2018), which remain strong baselines due to their inductive biases for het-
 122 erogeneous features (Grinsztajn et al., 2022). Recently, deep learning approaches (Ye et al., 2024;
 123 Holzmüller et al., 2024; Gorishniy et al., 2024), including table foundation models pretrained on
 124 synthetic data (Hollmann et al., 2022; 2025; Ma et al., 2024; Qu et al., 2025), now markedly outper-
 125 form GBDTs (Erickson et al., 2025). However, a shared limitation of these methods is that they lack
 126 a dedicated mechanism for text features. Instead, they typically rely on simple string preprocessing
 127 turning these entries to numerical vectors, and then treat them as any other numerical feature. In
 128 practice, this vectorization step often ignores the semantics of string entries, relying on surface-level
 129 representations such as TF-IDF or character n-grams that bear no external knowledge.

130 **Leveraging external knowledge from LLMs and KGs** To address this gap, recent work has
 131 explored using external knowledge sources. One prominent approach is to leverage LLMs. Methods
 132 like TabLLM (Hegselmann et al., 2023) and Tabula-8B (Gardner et al., 2024) serialize table rows
 133 into text and fine-tune an LLM for classification and regression. These works put forward the benefit
 134 of in-context learning of LLMs, that brings their excellent few-shot performance to tabular learning,
 135 but cannot scale to the size of typical tables. Other work, such as TabStar (Arazi et al., 2025),
 136 adapt smaller, efficient text encoders with specialized architectures for tabular data. An alternative
 137 paradigm uses KGs as the source of external knowledge. For instance, CARTE (Kim et al., 2024)
 138 and TARTE (Kim et al., 2025) pretrain tabular models on KGs, but rely on the simple FastText
 139 (Bojanowski et al., 2017) model to process strings.

140 **Prior comparative studies** A few studies have begun to analyze the benefits of these knowledge-
 141 rich representations. Grinsztajn et al. (2023) demonstrated that embeddings from language models
 142 outperform traditional substring-based encoders, particularly for columns with diverse text entries.
 143 Similarly, Kasneci & Kasneci (2024) showed on 9 datasets that integrating embeddings from models
 144 like RoBERTa and GPT-2 into GBDTs often improves performance, especially in low-data regimes.
 145 While these works sketch out the value of using language models for text in tables, they do not
 146 inform of the relative merits of knowledge sourced from unstructured text (via LLMs) and structured
 147 graphs (via KG models).

148
 149 **2.2 LEARNING ON KGs**
 150

151 **Structure-based KG models** A long-standing line of research learns representations from KGs
 152 by focusing solely on the graph structure. Early models operate in a transductive setting, learning
 153 low-dimensional embeddings for a fixed set of entities and relations. Such methods, that include
 154 TransE (Bordes et al., 2013), DistMult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), and
 155 RotatE (Sun et al., 2019b), model the relations as geometric transformations in the embedding space
 156 and define a scoring function to measure the plausibility of triples. To overcome the limitations
 157 of transductive learning, subsequent work has focused on inductive models that can generalize to
 158 unseen entities (Zhu et al., 2021; Galkin et al., 2021). More recently, this has led to the development
 159 of KG foundation models that operate in a fully inductive setting, reasoning on the graph’s topology
 160 to predict new links on entirely unseen graphs (Galkin et al., 2023; Lee et al., 2023; Huang et al.,
 161 2025a;b; Zhang et al., 2025b; Du et al., 2025; Arun et al., 2025). Their application to tables remains
 162 however open, as it requires extracting from a table a relational graph rich-enough to enable the
 163 inductive setting.

162 **Text-based KG models** A parallel approach leverages the textual information associated with
 163 entities and relations, such as their names and descriptions. These models typically use a pretrained
 164 language model to create text-aware representations, bridging the gap between symbolic knowledge
 165 and natural language. One common strategy is to fine-tune a pretrained model such as BERT or
 166 RoBERTa using an objective that combines a masked language modeling loss with a KG-specific
 167 loss (Wang et al., 2021b;a; Youn & Tagkopoulos, 2022). Other methods frame link prediction as
 168 a textual task, either by scoring text sequences representing triples (Yao et al., 2019; Wang et al.,
 169 2022b) or by treating it as a sequence-to-sequence problem where the model generates the missing
 170 entity’s name (Chen et al., 2022; Xie et al., 2022). A prominent example of the latter is KGT5
 171 (Saxena et al., 2022), which verbalizes triples and fine-tunes T5 (Raffel et al., 2020) to predict the
 172 missing elements. These text-based approaches enable embedding entities that were not seen during
 173 training, a crucial feature for downstream applications.
 174

175 **LLMs refined on knowledge** Instead of training a model specifically for KG completion, an-
 176 other line of research refines general-purpose LLMs with structured knowledge to enhance their
 177 factual grounding. This approach aims to inject the high-quality, curated facts from KGs into the
 178 broader world knowledge implicitly stored in LLMs. For example, the ERNIE line of work (Sun
 179 et al., 2019a; 2020; 2021) refines language models like RoBERTa (Liu et al., 2019) by incor-
 180 porating knowledge-base data into their pretraining objectives. More recently, the Knowledge Card
 181 framework (Feng et al., 2023) demonstrated that fine-tuning a moderately-sized LLM such as OPT-
 182 1.3B (Zhang et al., 2022) on KG triples can effectively plug factual knowledge into larger LLMs,
 183 improving their performance on knowledge-intensive tasks. **Retrieval-based methods** (Lewis et al.,
 184 2020) offer a complementary paradigm, dynamically fetching knowledge at inference time rather
 185 than encoding it statically, and represent a promising alternative for knowledge integration.
 186

3 METHODOLOGY: A BENCHMARK FOR TABLE BACKGROUND KNOWLEDGE

3.1 105 TABULAR DATASETS

190 **Three diverse data sources** To ensure
 191 the robustness and generality of our find-
 192 ings, we assemble a diverse benchmark
 193 of 105 tabular datasets from three sources
 194 with distinct characteristics and inclusion
 195 biases: TextTabBench (Mráz et al., 2025),
 196 CARTE (Kim et al., 2024), and WikiDBs
 197 (Vogel et al., 2024).

198 TextTabBench and CARTE are established
 199 benchmarks for tabular learning, provid-
 200 ing real-world tables with varied text fea-
 201 tures, from short entity names to longer
 202 descriptions. Each table is associated
 203 with a predefined prediction task (regres-
 204 sion, binary, or multi-class classification).
 205 WikiDBs is a large corpus of over 1.6 mil-
 206 lion semi-synthetic tables generated from
 207 Wikidata. To create meaningful tasks from
 208 this source, we first filtered for tables with
 209 at least 1,200 rows, then manually curated a subset of 37 tables for which we could define a relevant
 210 prediction problem. **Table 1** summarizes the final distribution of tasks across the three sources.
 211 Further details on each dataset are available in the Appendix (**Table 8**, **Table 9**, **Table 10**).
 212

213 **Data preprocessing** We adopt the original preprocessing from TextTabBench and CARTE. For
 214 WikiDBs, we apply a procedure similar to TextTabBench. We also ensure that multi-class classifi-
 215 cation tasks have at most 10 classes, each with at least 105 samples. For all 105 datasets, we then
 216 apply the following preprocessing pipeline: (1) we remove all numerical columns to focus our study
 217 on text-based knowledge (expect in subsection 5.2); (2) we log-transform regression targets with

Table 1: Task distribution across sources.

Source	b-clf	m-clf	reg	Total
TextTabBench	5	2	10	17
CARTE	11	0	40	51
WikiDBs	1	21	15	37
Total	17	23	65	105

Table 2: Aggregated features of tabular datasets across sources. The cardinality is computed on 1,024 rows.

	TextTabBench	CARTE	WikiDBs
# columns	15.65	6.76	6.73
cardinality	286.36	371.44	463.70
string length	975.29	298.80	203.62
string similarity ¹	0.16	0.10	0.08

¹ cosine similarity of TF-IDF across rows

Figure 1: An overview of our evaluation pipeline. For each dataset, we sample training and test sets. We then serialize the rows and use the embedding **model** to generate a vector representation for each row. Finally, we train a tabular learning estimator to evaluate these embeddings.

wide-ranging distributions; (3) we downsample majority classes in multi-class problems to create balanced datasets; and (4) we discard any table with fewer than 1,050 rows post-processing to ensure sufficient data for evaluation. We also exclude one dataset from TextTabBench with excessively long text entries that exceed the context limits of some of our baselines.

Linked tables for controlled comparison
 To isolate the contribution of knowledge from the challenge of entity linking, we create a specialized subset of 15 tables where text entries are unambiguously linked to entities in Wikidata5M (Wang et al., 2021b), a large-scale KG derived from Wikidata. These tables are selected from our main benchmark if they contain at least 1,050 rows with entities that can be matched to the KG. For this subset, we retain only the entity column and the prediction target, and remove all unlinked rows. This setup allows for a direct comparison of pure KG models with LLMs in a scenario where entity linking is solved.

To analyze the impact of KG size, we generate four smaller KGs by progressively filtering out low-degree entities and retaining the largest connected component of the induced subgraph. The statistics of these graphs are presented in Table 3.

3.2 EVALUATION PIPELINE

Our evaluation pipeline, summarized in Figure 1, assesses the quality of representations from various knowledge sources for downstream tabular tasks. For each dataset, we generate row-wise embeddings from a given model and then train a tabular predictor to predict the target variable from them.

Experimental setup To simulate small-data scenarios where external knowledge is most critical, we sample training sets of varying sizes, $n_{train} \in \{64, 256, 1024\}$. The test set consists of 1,024 held-out samples (or all remaining samples if fewer are available). To ensure robust evaluation, we repeat this process 10 times with different random seeds for each configuration.

Embedding models We evaluate a wide range of models to generate representations:

- **Non-pretrained baseline:** As a simple baseline without external knowledge, we use a TF-IDF vectorizer followed by a Truncated SVD with 30 components per column, implemented in the Skrub library.

- **Pure LLMs:** To study the effect of model scale and architecture, we include a diverse set of pretrained language models: the Llama-3.1 family (1B, 3B, 8B) (Dubey et al., 2024), the Qwen3 Embedding series (0.6B to 8B) (Zhang et al., 2025a) which performs well on the Massive Text Embedding Benchmark (Muennighoff et al., 2022), RoBERTa (base, large), T5 (small, base), e5-v2 (small, base) (Wang et al., 2022a), and OPT-1.3B. We also include FastText as a representative of shallow, non-transformer text models.
- **Hybrid LLM+KG models:** To assess the benefit of structured knowledge, we evaluate models that refine LLMs on relational data. This includes ERNIE 2.0, KGT5, Knowledge Card, Tabula-8B, and TARTE. Each model is compared against its corresponding LLM.
- **Pure KG models:** For the subset of 15 linked tables, we evaluate classic KG embedding models: DistMult, TransE, ComplEx, and RotateE. We train these models on Wikidata5M and its subsets, using an embedding dimension of $d = 300$.

Table serialization and downstream estimators To generate embeddings from LLMs, we serialize each row into a natural language prompt. Following Gardner et al. (2024), we use the format: “The `<col_a>` is `<val_a>`. The `<col_b>` is `<val_b>`. What is the value of `<target>`?” For KGT5, we adapt the prompt to better match its pretraining format: “`<col_a> | <val_a>`. `<col_b> | <val_b>`. Predict: `<target>`”. Constructing the embeddings across multiple columns (as opposed to Grinsztajn et al. (2023)) enables the context (column name, other entries on the same row) to inform the representation, e.g. leading to disambiguate “Cambridge; UK” from “Cambridge; Massachusetts” in a table with columns “city; country”.

The resulting high-dimensional embeddings are then fed into three representative tabular learners:

- **Ridge regression:** A simple and efficient linear model.
- **XGBoost:** A powerful GBDT model. To manage computational cost, we first reduce the embedding dimensionality to 300 using PCA. We then perform hyperparameter optimization via a randomized search (see Table 6).
- **TabPFNv2:** A transformer-based table foundation model, doing in-context learning. We use PCA to reduce dimensionality to 500, the maximum supported by the model.

4 RESULTS: KNOWLEDGE REPRESENTATIONS FOR TABULAR LEARNING

4.1 KNOWLEDGE-RICH REPRESENTATIONS BOOST TABULAR LEARNING

More gains from knowledge representations than advanced tabular learning Figure 2 shows that, for text features, improving the quality of the representations leads to more gains than using advanced tabular learning methods. Indeed, the best performance across the 105 datasets is obtained by a simple predictor, Ridge, applied on good representations, such as those created via modern LLMs, outperforming sophisticated tabular learning methods XGBoost and TabPFNv2 (Figure 2a). In addition, more sophisticated tabular-learning models benefit less from advanced representations. This could be either because their flexibility enables them to fill-in for a less rich representation, or because the representations do not match their implicit inductive biases, tailored for tabular learning. Indeed, unlike typical tabular data, these representations are high-dimensional and closer to being rotationally-invariant Grinsztajn et al. (2022). Moreover, these advanced tabular learners cannot be applied as such to the knowledge-rich representations, as they have too many features. Thus we need to reduce the input dimensions with PCA (see subsection 5.1), following Grinsztajn et al. (2023).

A complementary observation is that the benefit of adding knowledge-rich representations to a simple tabular learner is larger than the benefit of using a sophisticated tabular learner on simpler representations: Figure 2b shows that TabPFNv2 achieves only half of the performance gains of Ridge combined with a good LLM-based representation.

Benefits for a wide variety of tables, from multiple sources Figure 2b shows that, for the Ridge learner, knowledge-rich representations bring an improvement over non-pretrained string representation across methods, and larger models benefit consistently across the three different sources (Figure 16 gives source-specific results). These datasets are varied (Table 2), and the different sources represent different selections of tables with text. This diversity suggests that knowledge-rich representations help tabular learning in general, when the tables have text columns. The benefit is, on

Figure 2: Performance gain of the various knowledge-rich representations compared to a non-pretrained baseline – **a.** Comparisons including three tabular learners: Ridge, XGBoost, and TabPFNv2; absolute scores. – **b.** Relative improvements to non-pretrained string representations, when using a Ridge model as a tabular learner; normalized scores (0 is 10% worse, 1 is best score observed). – Appendix [Figure 15](#) gives critical difference diagrams across all methods and datasets.

average, quite marked: going from non-pretrained string representation to the best LLM-based ones gives a .2 average boost in AUC or R2 to Ridge (though only a .05 boost to TabPFNv2).

4.2 LARGER LLMs BRING MORE VALUE

[Figure 3](#) shows the performance gain as a function of the LLM size (number of parameters), focusing only on pure LLM representations. It reveals that the benefit increases as a function of size, for transformer-based representations (thus excluding FastText, which is a big model but very wide and shallow). This benefit of size is very clear in a given model family (comparing various sizes of e5, Qwen, or Llama-3). We hypothesize that this general scaling is driven by larger representational capacities brought by the increased number of parameters that enables the storage of more prior knowledge.

4.3 REFINING LLMs ON KGs BOOSTS LANGUAGE MODELS SLIGHTLY

[Figure 4](#) compares the benefit brought by each method that has refined an LLM on a knowledge graph or knowledge base to the corresponding non-refined base LLM, as a function of size.

Figure 3: Effect of the size of the model, for pure-LLM representations.

378 We estimate the scaling of the performance as a
 379 function of the number of parameters with a linear
 380 regression for both families of approaches
 381 –LLMs with and without KG refinement. Both
 382 families show the same scaling, but refining on
 383 KGs brings an offset: it enables reaching the
 384 same performance with a model with a number
 385 of parameters smaller by a factor of 2/3rd.

386 Note that the data points with the largest model
 387 correspond to the pair Tabula/Llama3 (Gard-
 388 ner et al., 2024), which refines on tabular data
 389 rather than a rich KG. This pair also displays
 390 a comparatively smaller benefit of the refine-
 391 ment, which may result from the limited rich-
 392 ness of the corresponding data.

393 The observed benefit of refining LLMs on KGs raises the question: what do knowledge graphs add
 394 to LLMs? How important is a rich knowledge graph?

396 4.4 TEASING OUT KNOWLEDGE FROM ENTITY MATCHING: TESTING PURE KG SOLUTIONS

398 **Under automatic and noisy entity linking** To compare
 399 LLMs with pure KG models, we use BLINK (Wu et al.,
 400 2020) for automatic entity linking (subsection A.4), allow-
 401 ing us to incorporate KG embeddings. On 33 datasets
 402 where text entries are linked to Wikidata5M, LLMs con-
 403 sistently outperform KG embeddings (Figure 5). However,
 404 the noisy entity linking confounds the comparison, making
 405 it unclear if the performance gap primarily comes from bet-
 406 ter knowledge representation or from linking failures.

407 Indeed, LLMs are more than pure knowledge engineering
 408 objects: applied to embed texts, as we do here, they also
 409 bring in a form of fuzzy matching of entities (technically
 410 related to recontextualizing the tokens) and language un-
 411 derstanding. This is to be contrasted with KGs, which are
 412 pure knowledge engineering objects (arguably with crisper
 413 knowledge), but 1) require entity matching and 2) do not
 414 bring language understanding.

415 **Idealistic setting: perfect entity linking** To
 416 tease out the role of background knowledge, we
 417 investigate a subset of tables for which the
 418 entity matching problem is solved, and each entry
 419 is linked to an entity in Wikidata5M.

420 In such an ideal scenario, pure KG embed-
 421 ding approaches provide features for the tables
 422 entries (Grover & Leskovec, 2016; Cvetkov-
 423 iliev et al., 2023; Robinson et al., 2024). Fig-
 424 ure 6 compares the benefits of LLM-based
 425 approaches with KG embedding approaches,
 426 varying the size of the models. For KG embed-
 427 ding, the size of the model is varied by vary-
 428 ing the size of the KG used to build the embed-
 429 dings (see Table 3): a smaller KG represents
 430 fewer entities, and thus has fewer parameters. When
 431 we reduce the size of the KG, it only provides
 432 representations for a fraction of the entities of the
 433 downstream table, and thus the downstream per-
 434 formance. This decrease is sharper than for LLMs,

Figure 4: Comparison of LLM and their matched counterpart refined on knowledge bases.

Figure 5: Comparing LLMs to KG embeddings after automatic entity linking with BLINK.

Figure 6: Comparing pure KG to pure LLM ap-
 proaches on perfectly matched tables.

8

432 because smaller KGs face a hard failure (entity is not matched) while language models face a soft
 433 failure: they give an embedding whatever the query is. This embedding can be of varying quality,
 434 sometimes extrapolating beyond the knowledge of the LLMs, which corresponds to hallucination.
 435 However, an extrapolation that is only partly correct can still help downstream tabular learning.
 436

437 **Without entity-matching challenges, KG embedding is on par with LLMs** For the largest, non-
 438 reduced KG, all table entries are matched, and good KG embedding models perform as well as LLMs
 439 of the same size (Figure 6). Interestingly, this suggests that for the same number of parameters, KG
 440 embeddings do not store crispier knowledge than LLMs.
 441

442 **Driven by knowledge, rather than language understanding** On the converse, when all entities
 443 are matched to the KG, similarly-sized LLMs bring no benefit. This suggests that their language-
 444 understanding features are not critical for these tasks. However, the selection of tables with entities
 445 all represented in KGs may introduce a bias towards more knowledge-centric tasks.
 446

447 5 ABLATION STUDIES: PCA AND NUMERICAL FEATURES

449 5.1 STUDY OF THE IMPACT OF PCA

450 **Is Ridge outperforming XGBoost and**
 451 **TabPFNv2 because of PCA?** To determine
 452 whether the lower performance of XGBoost
 453 and TabPFNv2 stems from dimensionality
 454 reduction or from the estimators themselves,
 455 we evaluate Ridge regression on PCA-reduced
 456 embeddings. This ensures a controlled com-
 457 parison, since all three estimators (Ridge,
 458 XGBoost, TabPFNv2) share identical input
 459 vectors. Figure 7 presents the results with PCA
 460 dimension $d = 300$. We observe that Ridge
 461 still outperforms XGBoost and TabPFNv2
 462 even when restricted to the same reduced
 463 inputs. This suggests that the performance gap
 464 is not an artifact of PCA, but rather reflects
 465 the inability of these tabular learners to fully
 466 leverage the embeddings.
 467

Figure 7: Comparing downstream estimators on the same PCA-reduced embeddings ($d = 300$). Grey bars represent Ridge without PCA. For non-pretrained representations, there is no PCA.

468 **Does PCA hurt performance?** To assess the impact of dimensionality reduction, we compare the
 469 performance on the original embeddings versus PCA-reduced versions of different sizes. Figure 8
 470 shows that PCA incurs only a small performance drop for Ridge. However, for TabPFNv2, decreasing
 471 the input dimensionality from 500 to 300 surprisingly improves performance (Figure 8b). This
 472 shows that TabPFNv2 struggles with high-dimensional inputs, hindering its ability to leverage rich
 473

481 Figure 8: Effect of PCA on performance. **a.** Comparing Ridge with and without PCA. The grey
 482 bar represents the performance of Ridge without PCA. **b.** Comparing TabPFNv2 on PCA-reduced
 483 embeddings with $d = 300$ and $d = 500$.
 484

486 embeddings. This limitation may stem from challenges that large contexts pose to transformers. By
 487 providing a more compact representation, PCA ultimately aids TabPFNv2, despite information loss.
 488

489 5.2 RE-INTRODUCING NUMERICAL FEATURES

490 To assess how findings generalize to tables with
 491 mixed data types, we reintroduce numerical features
 492 and evaluate performance on three settings: text-
 493 only, numerical-only, and combined. Our key obser-
 494 vations hold (Figure 9). First, combining numerical
 495 and textual features markedly outperforms using ei-
 496 ther modality alone, demonstrating that they bring
 497 complementary information. Second, text-only fea-
 498 tures are more predictive than numerical-only fea-
 499 tures on these datasets, underscoring the impor-
 500 tance of text representation. Third, the relative rank-
 501 ing of text encoders remains consistent when num-
 502 erical features are included. Finally, while knowl-
 503 edge-rich representations bring substantial gains to a simple
 504 linear model like Ridge, they offer only marginal
 505 improvements for a table foundation model like
 506 TabPFNv2, highlighting its difficulty in leveraging
 507 high-dimensional, knowledge-rich embeddings.

508 6 DISCUSSION AND CONCLUSION

511 **External knowledge is a powerful, yet underleveraged, ingredient for tabular learning** Our
 512 large-scale study demonstrates that representations from knowledge sources, whether LLMs or KGs,
 513 consistently improve prediction over standard text encodings, and bring predictive information com-
 514plementary to numerical features. For text features, gains from using better representations with a
 515 simple linear model surpass those from applying state-of-the-art tabular learners on less informative
 516 representations, suggesting that for tables with text, the primary bottleneck lies in representing text
 517 well, rather than in the tabular learning algorithm. Research is needed on privacy and robustness for
 518 these new settings, as external knowledge may introduce side channels or adversarial attacks.

519 **LLMs solve symbol grounding, KGs provide curated knowledge** Direct applications of KG
 520 embeddings are hindered by the difficult entity linking step. Using automatic linking solutions incurs
 521 substantial computational costs, and results in lower performance than LLMs, which are directly
 522 applicable to any text. Yet, when entities are pre-linked, KG embeddings match LLMs of similar
 523 size. This implies that the main advantage of LLMs is not superior knowledge, but rather their
 524 ability to solve the symbol grounding problem. Our findings point to a promising synergy: refining
 525 LLMs on KGs improves performance, making models more parameter-efficient, with refined models
 526 achieving the performance of pure LLMs roughly 1.5 times their size, while whether dynamic,
 527 retrieval-based approaches could further boost performance remains an open question.

528 **Current table foundation models struggle with rich representations** While state-of-the-art ta-
 529 ble foundation models like TabPFNv2 excel with numerical features, they falter when facing high-
 530 dimensional embeddings. On these rich inputs, they are consistently outperformed by simple linear
 531 models. More strikingly, their performance improves when the embeddings are further compressed
 532 via PCA, revealing a core inability to process rich, high-dimensional information. As text is a key
 533 component of many tables, future work should develop architectures that can effectively integrate
 534 both rich textual representations and numerical features to realize their combined predictive power.

535 Figure 9: Average performance when us-
 536 ing text-only (Str), numerical-only (dashed
 537 lines), or combined (Num+Str) features.

538 **Scaling up: larger LLMs and broader knowledge** Our results highlight the critical role of scale,
 539 yet current tabular methods rely on small language models (Kim et al., 2024; 2025; Arazi et al.,
 540 2025). Future foundation models should leverage larger LLMs combined with massive knowledge
 541 bases. Resources like Wikidata, with over 100M entities, remain largely underexploited, represent-
 542 ing a major opportunity for pretraining powerful, knowledge-grounded tabular learners.

540 REFERENCES

542 Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh, Volker
 543 Tresp, and Jens Lehmann. Pykeen 1.0: a python library for training and evaluating knowledge
 544 graph embeddings. *Journal of Machine Learning Research*, 22(82):1–6, 2021.

545 Alan Arazi, Eilam Shapira, and Roi Reichart. Tabstar: A foundation tabular model with semantically
 546 target-aware representations. *arXiv preprint arXiv:2505.18125*, 2025.

547 Arvindh Arun, Sumit Kumar, Mojtaba Nayyeri, Bo Xiong, Ponnurangam Kumaraguru, Antonio
 548 Vergari, and Steffen Staab. Semma: A semantic aware knowledge graph foundation model. *arXiv
 549 preprint arXiv:2505.20422*, 2025.

550 Yejin Bang, Ziwei Ji, Alan Schelten, Anthony Hartshorn, Tara Fowler, Cheng Zhang, Nicola
 551 Cancedda, and Pascale Fung. Hallulens: Llm hallucination benchmark. *arXiv preprint
 552 arXiv:2504.17550*, 2025.

553 Emily M Bender and Alexander Koller. Climbing towards nlu: On meaning, form, and under-
 554 standing in the age of data. In *Proceedings of the 58th annual meeting of the association for
 555 computational linguistics*, pp. 5185–5198, 2020.

556 Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
 557 dangers of stochastic parrots: Can language models be too big? In *Proceedings of the 2021 ACM
 558 conference on fairness, accountability, and transparency*, pp. 610–623, 2021.

559 Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
 560 subword information. *Transactions of the association for computational linguistics*, 5:135–146,
 561 2017.

562 Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collab-
 563 oratively created graph database for structuring human knowledge. In *Proceedings of the 2008
 564 ACM SIGMOD international conference on Management of data*, pp. 1247–1250, 2008.

565 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
 566 Translating embeddings for modeling multi-relational data. *Advances in neural information pro-
 567 cessing systems*, 26, 2013.

568 Riccardo Cappuzzo, Aimee Coelho, Felix Lefebvre, Paolo Papotti, and Gael Varoquaux. Retrieve,
 569 merge, predict: Augmenting tables with data lakes. *arXiv preprint arXiv:2402.06282*, 2024.

570 Chen Chen, Yufei Wang, Bing Li, and Kwok-Yan Lam. Knowledge is flat: A seq2seq generative
 571 framework for various knowledge graph completion. *arXiv preprint arXiv:2209.07299*, 2022.

572 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the
 573 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
 574 2016.

575 Alexis Cvetkov-Iliev, Alexandre Allauzen, and Gaël Varoquaux. Relational data embeddings for
 576 feature enrichment with background information. *Machine Learning*, 112(2):687–720, 2023.

577 Antonin Delpuech. Opentapioca: Lightweight entity linking for wikidata. *arXiv preprint
 578 arXiv:1904.09131*, 2019.

579 AnHai Doan, Alon Halevy, and Zachary Ives. *Principles of data integration*. Elsevier, 2012.

580 Enjun Du, Siyi Liu, and Yongqi Zhang. Graphoracle: A foundation model for knowledge graph
 581 reasoning. *arXiv preprint arXiv:2505.11125*, 2025.

582 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 583 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 584 *arXiv e-prints*, pp. arXiv–2407, 2024.

585 Nick Erickson, Lennart Purucker, Andrej Tschalzev, David Holzmüller, Prateek Mutalik Desai,
 586 David Salinas, and Frank Hutter. Tabarena: A living benchmark for machine learning on tab-
 587 ular data. *arXiv preprint arXiv:2506.16791*, 2025.

594 Shangbin Feng, Weijia Shi, Yuyang Bai, Vidhisha Balachandran, Tianxing He, and Yulia Tsvetkov.
 595 Knowledge card: Filling llms' knowledge gaps with plug-in specialized language models. *arXiv*
 596 *preprint arXiv:2305.09955*, 2023.

597

598 Luca Foppiano and Laurent Romary. entity-fishing: a dariah entity recognition and disambiguation
 599 service. *Journal of the Japanese Association for Digital Humanities*, 5(1):22–60, 2020.

600

601 Mikhail Galkin, Etienne Denis, Jiapeng Wu, and William L Hamilton. Nodepiece: Compo-
 602 sitional and parameter-efficient representations of large knowledge graphs. *arXiv preprint*
 603 *arXiv:2106.12144*, 2021.

604

605 Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
 606 models for knowledge graph reasoning. *arXiv preprint arXiv:2310.04562*, 2023.

607

608 Josh Gardner, Juan C Perdomo, and Ludwig Schmidt. Large scale transfer learning for tabular data
 609 via language modeling. *Advances in Neural Information Processing Systems*, 37:45155–45205,
 610 2024.

611

612 Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning
 613 with parameter-efficient ensembling. *arXiv preprint arXiv:2410.24210*, 2024.

614

615 Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
 616 deep learning on typical tabular data? *Advances in neural information processing systems*, 35:
 617 507–520, 2022.

618

619 Léo Grinsztajn, Edouard Oyallon, Myung Jun Kim, and Gaël Varoquaux. Vectorizing string en-
 620 tries for data processing on tables: when are larger language models better? *arXiv preprint*
 621 *arXiv:2312.09634*, 2023.

622

623 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings*
 624 *of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining*,
 625 pp. 855–864, 2016.

626

627 Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
 628 Sontag. Tabllm: Few-shot classification of tabular data with large language models. In *Inter-
 629 national conference on artificial intelligence and statistics*, pp. 5549–5581. PMLR, 2023.

630

631 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
 632 that solves small tabular classification problems in a second. *arXiv preprint arXiv:2207.01848*,
 633 2022.

634

635 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
 636 Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
 637 foundation model. *Nature*, 637(8045):319–326, 2025.

638

639 David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps and
 640 boosted trees on tabular data. *Advances in Neural Information Processing Systems*, 37:26577–
 641 26658, 2024.

642

643 Xingyue Huang, Pablo Barceló, Michael M Bronstein, Ismail İlkan Ceylan, Mikhail Galkin, Juan L
 644 Reutter, and Miguel Romero Orth. How expressive are knowledge graph foundation models?
 645 *arXiv preprint arXiv:2502.13339*, 2025a.

646

647 Xingyue Huang, Mikhail Galkin, Michael M Bronstein, and İsmail İlkan Ceylan. Hyper: A
 648 foundation model for inductive link prediction with knowledge hypergraphs. *arXiv preprint*
 649 *arXiv:2506.12362*, 2025b.

650

651 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 652 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM*
 653 *computing surveys*, 55(12):1–38, 2023.

654

655 Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
 656 models know? *Transactions of the Association for Computational Linguistics*, 8:423–438, 2020.

648 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 649 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
 650 els (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

651

652 James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
 653 science endeavors. In *2015 IEEE international conference on data science and advanced analyt-
 654 ics (DSAA)*, pp. 1–10. IEEE, 2015.

655 Gjergji Kasneci and Enkelejda Kasneci. Enriching tabular data with contextual llm embeddings: A
 656 comprehensive ablation study for ensemble classifiers. *arXiv preprint arXiv:2411.01645*, 2024.

657

658 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
 659 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural
 660 information processing systems*, 30, 2017.

661 Myung Jun Kim, Leo Grinsztajn, and Gael Varoquaux. Carte: Pretraining and transfer for tabular
 662 learning. In *ICML*, 2024.

663

664 Myung Jun Kim, Félix Lefebvre, Gaëtan Brison, Alexandre Perez-Lebel, and Gaël Varoquaux.
 665 Table foundation models: on knowledge pre-training for tabular learning. *arXiv preprint
 666 arXiv:2505.14415*, 2025.

667

668 Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. Ingram: Inductive knowledge graph
 669 embedding via relation graphs. In *International Conference on Machine Learning*, pp. 18796–
 670 18809. PMLR, 2023.

671 Félix Lefebvre and Gaël Varoquaux. Scalable feature learning on huge knowledge graphs for down-
 672 stream machine learning. *Advances in Neural Information Processing Systems*, 38, 2025.

673

674 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 675 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 676 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 677 9459–9474, 2020.

678

679 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 680 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 681 approach. *arXiv preprint arXiv:1907.11692*, 2019.

682

683 Junwei Ma, Valentin Thomas, Rasa Hosseinzadeh, Hamidreza Kamkari, Alex Labach, Jesse C
 684 Cresswell, Keyvan Golestan, Guangwei Yu, Maksims Volkovs, and Anthony L Caterini. Tab-
 685 dpt: Scaling tabular foundation models. *arXiv preprint arXiv:2410.18164*, 2024.

686

687 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 688 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 689 memories. *arXiv preprint arXiv:2212.10511*, 2022.

690

691 Pablo N Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. Dbpedia spotlight: shedding
 692 light on the web of documents. In *Proceedings of the 7th international conference on semantic
 693 systems*, pp. 1–8, 2011.

694

695 Martin Mráz, Breenda Das, Anshul Gupta, Lennart Purucker, and Frank Hutter. Towards bench-
 696 marking foundation models for tabular data with text. *arXiv preprint arXiv:2507.07829*, 2025.

697

698 Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embed-
 699 ding benchmark. *arXiv preprint arXiv:2210.07316*, 2022.

700

701 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 702 for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.

702

703 Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
 704 and Sebastian Riedel. Language models as knowledge bases? *arXiv preprint arXiv:1909.01066*,
 705 2019.

702 Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
 703 Gulin. Catboost: unbiased boosting with categorical features. *Advances in neural information*
 704 *processing systems*, 31, 2018.

705 Jingang Qu, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. Tabicl: A tabular founda-
 706 tion model for in-context learning on large data. *arXiv preprint arXiv:2502.05564*, 2025.

708 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 709 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 710 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

711 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 712 networks. *arXiv preprint arXiv:1908.10084*, 2019.

714 Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
 715 parameters of a language model? *arXiv preprint arXiv:2002.08910*, 2020.

717 Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias
 718 Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark for deep
 719 learning on relational databases. *Advances in Neural Information Processing Systems*, 37:21330–
 720 21341, 2024.

721 Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. Sequence-to-sequence knowledge graph
 722 completion and question answering. *arXiv preprint arXiv:2203.10321*, 2022.

724 Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. *Information*
 725 *Fusion*, 81:84–90, 2022.

726 Fabian Suchanek and Anh Tuan Luu. Knowledge bases and language models: Complementing
 727 forces. In *International Joint Conference on Rules and Reasoning*, pp. 3–15. Springer, 2023.

729 Fabian M Suchanek, Mehwish Alam, Thomas Bonald, Lihu Chen, Pierre-Henri Paris, and Jules
 730 Soria. Yago 4.5: A large and clean knowledge base with a rich taxonomy. In *Proceedings of the*
 731 *47th international ACM SIGIR conference on research and development in information retrieval*,
 732 pp. 131–140, 2024.

733 Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu,
 734 Hao Tian, and Hua Wu. Ernie: Enhanced representation through knowledge integration. *arXiv*
 735 *preprint arXiv:1904.09223*, 2019a.

737 Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang. Ernie
 738 2.0: A continual pre-training framework for language understanding. In *Proceedings of the AAAI*
 739 *conference on artificial intelligence*, volume 34, pp. 8968–8975, 2020.

740 Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi
 741 Chen, Yanbin Zhao, Yuxiang Lu, et al. Ernie 3.0: Large-scale knowledge enhanced pre-training
 742 for language understanding and generation. *arXiv preprint arXiv:2107.02137*, 2021.

744 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
 745 by relational rotation in complex space. *arXiv preprint arXiv:1902.10197*, 2019b.

747 SMTI Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava
 748 Das. A comprehensive survey of hallucination mitigation techniques in large language models.
 749 *arXiv preprint arXiv:2401.01313*, 6, 2024.

750 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
 751 plex embeddings for simple link prediction. In *International conference on machine learning*, pp.
 752 2071–2080. PMLR, 2016.

754 Liane Vogel, Jan-Micha Bodenohn, and Carsten Binnig. Wikidbs: A large-scale corpus of relational
 755 databases from wikidata. *Advances in Neural Information Processing Systems*, 37:41186–41201,
 2024.

756 Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. *Communi-*
 757 *cations of the ACM*, 57(10):78–85, 2014.

758

759 Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang. Structure-augmented
 760 text representation learning for efficient knowledge graph completion. In *Proceedings of the Web
 761 Conference 2021*, pp. 1737–1748, 2021a.

762 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 763 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv
 764 preprint arXiv:2212.03533*, 2022a.

765

766 Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. Simkgc: Simple contrastive knowledge
 767 graph completion with pre-trained language models. *arXiv preprint arXiv:2203.02167*, 2022b.

768 Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and Jian
 769 Tang. Kepler: A unified model for knowledge embedding and pre-trained language representation.
 770 *Transactions of the Association for Computational Linguistics*, 9:176–194, 2021b.

771 Wikipedia. Symbol grounding problem — Wikipedia, the free encyclopedia. <http://en.wikipedia.org/w/index.php?title=Symbol%20grounding%20problem&oldid=1291979022>, 2025. [Online; accessed 25-September-2025].

772

773

774

775 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 776 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
 777 natural language processing. In *Proceedings of the 2020 conference on empirical methods in
 778 natural language processing: system demonstrations*, pp. 38–45, 2020.

779

780 Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. Scalable zero-
 781 shot entity linking with dense entity retrieval. In *Proceedings of the 2020 Conference on Empirical
 782 Methods in Natural Language Processing (EMNLP)*, pp. 6397–6407, 2020.

783

784 Xin Xie, Ningyu Zhang, Zhoubo Li, Shumin Deng, Hui Chen, Feiyu Xiong, Mosha Chen, and
 785 Huajun Chen. From discrimination to generation: Knowledge graph completion with generative
 786 transformer. In *Companion proceedings of the web conference 2022*, pp. 162–165, 2022.

787

788 Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
 789 relations for learning and inference in knowledge bases. *arXiv preprint arXiv:1412.6575*, 2014.

790

791 Liang Yao, Chengsheng Mao, and Yuan Luo. Kg-bert: Bert for knowledge graph completion. *arXiv
 792 preprint arXiv:1909.03193*, 2019.

793

794 Han-Jia Ye, Huai-Hong Yin, and De-Chuan Zhan. Modern neighborhood components analysis: A
 795 deep tabular baseline two decades later. *arXiv e-prints*, pp. arXiv–2407, 2024.

796

797 Jason Youn and Ilias Tagkopoulos. Kglm: Integrating knowledge graph structure in language models
 798 for link prediction. *arXiv preprint arXiv:2211.02744*, 2022.

799

800 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
 801 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
 802 language models. *arXiv preprint arXiv:2205.01068*, 2022.

803

804 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 805 An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
 806 reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025a.

807

808 Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. Trix: A more expressive
 809 model for zero-shot domain transfer in knowledge graphs. *arXiv preprint arXiv:2502.19512*,
 2025b.

810

811 Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
 812 works: A general graph neural network framework for link prediction. *Advances in neural infor-
 813 mation processing systems*, 34:29476–29490, 2021.

814

Figure 10: Statistics distribution across sources.

A MORE DETAILS ON THE EXPERIMENTS

A.1 DATASETS

More statistics on datasets Figure 10 gives statistics about table sizes, proportion of missing values, and mean column cardinality.

Table 8, Table 9 and Table 10 provide details on each individual dataset.

Experiments on linked tables We have 15 linked tables, 4 for classification and 11 for regression. Details on these tables are provided in Table 4.

A.2 MODELS

Extracting embeddings from LLMs We generated sentence-level embeddings from the serialized rows using the SentenceTransformer framework (Reimers & Gurevych, 2019), which provides a unified interface for a wide range of transformer-based models. We used it to extract representations from the following models: Llama, Qwen, RoBERTa, T5, e5-v2, OPT, Tabula, ERNIE, Knowledge Card, and KGT5 families, using pretrained checkpoints available on the Hugging Face Hub (Wolf et al., 2020).

Embedding dimensions Table 5 reports the embedding dimensions for the different baseline models used.

Incorporating KG embeddings in tables For the KG embedding models (DistMult, TransE, ComplEx and RotatE), we use $d = 300$ for the embedding dimension, and train them for 100 epochs with a batch size of 8192 and a learning rate of 10^{-3} , and use the default parameters of their PyKEEN implementation (Ali et al., 2021).

For KGs smaller than Wikidata5M (see Table 3), some rows of the linked tables are not matched to the KG. In that case, after embedding the rows corresponding to matched entities, we impute missing values using the mean along each column. If no row at all is matched in a table, we simply replace the missing values with zeros.

Table 4: Task distribution across sources, for linked tables.

Source	b-clf	m-clf	reg	Total
CARTE	0	0	3	3
WikiDBs	1	3	8	12
Total	1	3	11	15

Table 5: Embedding dimensions for the different baseline models.

Model	Dimension
TF-IDF + SVD	30 per column
FastText	300
TARTE	768
Llama-3.2-1B	2048
Llama-3.2-3B	3072
Llama-3.1-8B	4096
TabuLa-8B	4096
Qwen3-0.6B	1024
Qwen3-4B	2560
Qwen3-8B	4096
RoBERTa (base, large)	768, 1024
ERNIE 2.0 (base, large)	768, 1024
e5-v2 (small, base)	384, 768
T5 (small, base)	512, 768
KGT5 (small, base)	512, 768
OPT-1.3B	2048
Knowledge-card	2048

864 **XGBoost hyperparameter tuning**
 865 For the XGBoost estimator, we per-
 866 form hyperparameter optimization
 867 via a randomized search with 100
 868 iterations. We use 5-fold cross-
 869 validation, repeated 5 times on the
 870 training set, to evaluate each hyper-
 871 parameter configuration. The detailed
 872 search space is provided in [Table 6](#).

873 **A.3 RESULT REPORTING**

876 **Metrics and score normalization**

877 We evaluate performance using the
 878 R2 score for regression and the ROC-
 879 AUC score for classification. To aggregate results across datasets of varying difficulty, we normalize
 880 scores for each dataset and random seed. Following [Grinsztajn et al. \(2022\)](#), we establish a normalized
 881 scale where the best-performing model scores 1 and the model at the 10th performance per-
 882 centile scores 0. Other models’ scores are mapped to this [0, 1] range via an affine transformation.
 883 For regression, we clip scores at 0 to mitigate the impact of poor-performing outliers.

884 However, to showcase real effect sizes, we also report original, non-normalized scores in some
 885 figures. Figures with non-normalized results are labeled with metric names (“AUC and R2”), while
 886 those with normalization are labeled “normalized score”.

887 **Uncertainty estimation** To account for statistical variability, we repeat each experiment 10 times
 888 with different random seeds. The error bars in our result figures represent the standard error of the
 889 mean across these runs.

891 **A.4 USING BLINK FOR AUTOMATIC ENTITY LINKING**

893 **BLINK** ([Wu et al., 2020](#)) is a BERT-based entity linking tool that matches entity mentions within
 894 texts to Wikipedia entities. It uses a bi-encoder to retrieve candidates by embedding mention con-
 895 texts and entity descriptions, and a cross-encoder to re-rank them.

897 Since BLINK requires a textual context (left context, mention, and right context) not natively present
 898 in tables, we need to transform tabular data into the required input format. To do so, we implement
 899 the following pipeline:

- 900 **1. Column selection:** We first manually identify the columns in each dataset in which we
 901 expect to find Wikipedia entity mentions to be linked. For instance in the `Fifa22`
 902 `Players` dataset ([Table 12](#)), we exclude the `work_rate` and `body_type` columns.
- 903 **2. Context generation:** Each table row is converted into a sentence using the template: “The
 904 dataset is `<dataset_name>`. The `<col_a>` is `<val_a>`. The `<col_b>` is `<val_b>`.
 905 ...”. Compared to the serialization of our main study, we add the dataset name, and remove
 906 the target name.
- 907 **3. Applying BLINK:** For each value in the selected columns, we treat the value as the “men-
 908 tion” and the rest of the generated sentence as its context. We then use BLINK to retrieve
 909 the top two Wikipedia entity candidates.
- 910 **4. Filtering matches:** To improve linking-quality, we discard the candidates for which the
 911 model is not confident. Specifically, we consider a match successful only if the score of
 912 the top candidate is greater than the second candidate’s score by a margin of at least 1,
 913 indicating high confidence.
- 914 **5. Mapping and embedding:** We map the successfully linked Wikipedia entities to their
 915 Wikidata5M counterparts using mapping files from Wikimedia². The linked columns are
 916 then represented by their corresponding KG embeddings pre-computed on Wikidata5M.
 917 For all other text columns, we use a non-pretrained TF-IDF + SVD representation.

Table 6: Search space for XGBoost hyperparameters.

Hyperparameter	Distribution	Range
<code>n_estimators</code>	Integer	[50, 1000]
<code>max_depth</code>	Integer	[2, 6]
<code>min_child_weight</code>	Log-uniform	[1, 100]
<code>subsample</code>	Uniform	[0.5, 1.0]
<code>learning_rate</code>	Log-uniform	[10^{-5} , 1]
<code>colsample_bylevel</code>	Uniform	[0.5, 1.0]
<code>colsample_bytree</code>	Uniform	[0.5, 1.0]
<code>gamma</code>	Log-uniform	[10^{-8} , 7]
<code>reg_lambda</code>	Log-uniform	[1, 4]
<code>alpha</code>	Log-uniform	[10^{-8} , 100]

²<https://dumps.wikimedia.org/enwiki/latest/>

918 6. **Prediction:** Finally, we concatenate the embeddings from all columns and use them as
 919 input for Ridge. We report the results in Figure 5.
 920

921 To manage the computational cost of BLINK, we conducted this experiment only on a subset of
 922 33 tables, each containing fewer than 10,000 rows. The entire process for these datasets took ap-
 923 proximately 16 hours. Table 7 provides further details, including the specific columns selected for
 924 linking, the proportion of entries for which a match was found, and the runtime of BLINK for each
 925 dataset.

926 B ADDITIONAL ANALYSIS

929 B.1 STUDYING THE EFFECT OF TRAIN SIZES BEYOND 1,024 SAMPLES

931 To broaden the scope of our
 932 study, we extend our analysis to
 933 larger train sizes. On a sub-
 934 set of 49 datasets with more
 935 than 10,000 rows (8 from Text-
 936 TabBench, 27 from CARTE, and
 937 14 from WikiDBs; see Table 8,
 938 Table 9, Table 10) we plot learn-
 939 ing curves ranging from 64 to
 940 10,000 samples, for several re-
 941 presentative models. As shown
 942 for Ridge in Figure 11, the ben-
 943 efits of knowledge-rich repre-
 944 sentations persist as the train-
 945 ing size increases. While larger
 946 training sets improve perfor-
 947 mance for all models, their rela-
 948 tive ranking remains largely un-
 949 changed.

Figure 11: Learning curves on datasets with more than 10,000 rows. The results are shown for Ridge.

950 B.2 DOES COLUMN CONTEXT ACTUALLY BRING VALUE?

951 To study the importance of column context
 952 in our pipeline, we run the experiments with
 953 a different serialization that does not incor-
 954 porate the column names. Specifically, each
 955 row is now serialized into the following sen-
 956 tence: “The value is <val_a>. The value is
 957 <val_b>. What is the value of target?”.
 958

959 Figure 12 compares the performance with
 960 and without column context, for a few rep-
 961 resentative text encoding models (LLaMA-
 962 3.1-8B, Qwen3-8B, and T5-base). We see
 963 that on average, the effect of adding column
 964 context is positive, but small. However, the
 965 p-values of a one-sided t-test show that for
 966 both TabPFNv2 and Ridge, this effect is sta-
 967 tistically significant. Interestingly, we also
 968 see that, while for most datasets adding the
 969 column context helps, for some others it de-
 970 teriorates the performance.

971 To better understand these results, we con-
 972 duct a qualitative study of these datasets in
 973 subsection C.2.

Figure 12: Impact of column context in serialization. The violin plots show the distribution of the difference in normalized scores (with context vs. without). Positive values indicate that adding column context improved performance. Outlier datasets are represented with dots, and the mean with a vertical bar. P-values of a one-sided t-test are reported for Ridge and TabPFNv2.

972
973

B.3 EFFECT OF MODEL SIZE ON TABLES WITH NUMBERS

974
975
976
977
978
979
980
981
982

In Figure 13, we analyze the effect of model size on datasets that contain both numerical and textual features. We observe a clear and consistent scaling trend: larger models within each class outperform smaller ones. Interestingly, incorporating numerical features alongside text embeddings yields similar improvements across all text encoders, suggesting that the information captured by richer models is complementary to, rather than redundant with, numerical features.

983
984

C QUALITATIVE EXAMPLES

985

C.1 EXAMPLES FOR LLMs vs KGs

986
987
988
989
990

To illustrate the distinct advantages of pure LLMs versus KG-refined models, we examine two representative datasets from our benchmark.

991
992
993
994
995
996
997
998
999

Table 11 displays a snippet from the Customer Complaints dataset, where pure LLMs perform very well. The table includes columns with free-form text, such as the Issue column. LLMs, trained on open-ended text, are well-suited to process such unstructured language. In contrast, models refined on KGs, like KGT5, may struggle as their pretraining focuses on structured facts and short canonical entity names, making them less suited for open text.

1000
1001
1002
1003
1004

Conversely, Table 12 presents an excerpt from the Fifa22 Players dataset, where KG-refined models demonstrate strong performance. The task is to predict a player’s wage, which is highly knowledge-intensive. By injecting structured factual knowledge during pretraining, KG-refined models gain an advantage for such tasks, leveraging external information to make more accurate predictions.

1005
1006

C.2 EXAMPLES FOR COLUMN CONTEXT

1007
1008
1009
1010
1011
1012
1013

We present two datasets to illustrate the impact of column context in the serialization.

First, in the Registered Ships dataset (Table 13), adding column context is beneficial. Informative headers like ShipName and Shipbuilder provide crucial information about the type of data in each column, and help the model disambiguate entities. For instance, the string “Otto Hahn” alone typically refers to the German chemist, but when prefixed with ShipName, it can be correctly identified as a ship.

1014
1015
1016
1017

Conversely, in the Company Employees dataset (Table 14), column context degrades performance. Here, generic column names such as name and domain do not provide valuable additional information. Including them in the serialization may distract the model from the more informative cell content, leading to a drop in performance.

1018

D ADDITIONAL RESULTS

1019
1020

D.1 RUNTIME ANALYSIS

1021
1022
1023
1024
1025

The benefits of leveraging external knowledge come at a computational cost. Table 15 details the average runtimes for embedding generation and estimator fitting (Ridge) across different embedding models and training sizes. As expected, larger models introduce a significant computational overhead. For instance, generating embeddings with an 8-billion-parameter LLM is, on average,

Figure 13: Effect of model size when using both numerical and textual features. The results are shown for Ridge.

1026 over 100 times slower than using the non-pretrained baseline. This highlights the trade-off between
 1027 predictive performance and the computational resources required for knowledge integration.
 1028

1029 D.2 RAW RESULTS

1030 **Table 16, Table 17 and Table 18** provide the raw results for regression and classification on Text-
 1031 TabBench, CARTE and WikiDBs datasets respectively, aggregated over 10 random seeds and for
 1032 train size $n_{\text{train}} = 1,024$.
 1033

1034 D.3 COMPARISON WITH TARTE-FT

1035 To benchmark our modular approach, combining knowledge-rich representations with downstream learners,
 1036 against end-to-end baselines capable of jointly modeling heterogeneous data (strings and numbers), we evaluate
 1037 TARTE-FT (Kim et al., 2025) on the 51 CARTE datasets, using both numerical and text features. TARTE
 1038 is pretrained on a large knowledge corpus derived from Wikidata, and can operate either as (i) a frozen table
 1039 featurizer (as in our main experiments) or (ii) a fine-tuned model on a specific downstream task (TARTE-
 1040 FT), for enhanced performance. Because TARTE was originally developed for mixed tables, its weaker performance in our string-only experiment (Figure 2) could be
 1041 expected. Its base text encoder is FastText, whereas our strongest baselines rely on modern LLMs.
 1042

1043 **Figure 14** shows that, on tables with both numerical and text features, TARTE-FT is competitive with
 1044 TabPFNv2 operating on non-pretrained representations. However, it is outperformed by knowledge-
 1045 rich embeddings from Llama-3.1-8B, used as inputs for Ridge or TabPFNv2. Once again, for tabular
 1046 learning with text, the largest gains come from knowledge-rich text representations, rather than ar-
 1047 chitectural sophistication alone, highlighting the need for future table foundation models that lever-
 1048 age LLM-based text representations.
 1049

1050 D.4 OVERALL MODEL RANKING

1051 **Figure 15** presents a critical difference diagram comparing the mean ranks of all embedding methods
 1052 when paired with a Ridge predictor. It also includes the performance of more advanced estimators
 1053 on non-pretrained representations for context.
 1054

1055 D.5 PERFORMANCE ANALYSIS BY DATA SOURCE

1056 **Figure 16** illustrates the relative improvements of knowledge-rich representations over non-
 1057 pretrained ones, broken down by data source. The benefits of external knowledge vary with dataset
 1058 characteristics; tables from WikiDBs and CARTE, which are more knowledge-intensive, gain more
 1059 from these representations than those from TextTabBench.
 1060

1061 **Figure 17** details the effect of LLM size on performance for each data source, confirming the scaling
 1062 trend across different types of tables.
 1063

1064 **Figure 18** compares the performance of base LLMs to their counterparts refined on KGs. The
 1065 benefits of refinement are most pronounced for the WikiDBs datasets, which are inherently more
 1066 knowledge-centric as they are derived from a knowledge base.
 1067

1068 Figure 14: Comparison of TARTE-FT with modular approaches combining pretrained representations and downstream estimators. Results are shown on the CARTE datasets, using both textual and numerical features.
 1069

Figure 15: Critical difference diagram across all data sources and methods.

Figure 16: Relative improvements to non-pretrained string representations, when using a Ridge model as a tabular learner. For each source, larger models consistently yield better performances: **a.** TextTabBench **b.** CARTE **c.** WikiDBs.

Figure 17: Effect of the size of representations from pure-LLM models for each source: **a.** Text-TabBench **b.** CARTE **c.** WikiDBs.

Figure 18: Comparison of LLM and their matched counterpart refined on knowledge bases for each source: **a.** TextTabBench **b.** CARTE **c.** WikiDBs.

1242
 1243
 1244
 1245
 1246
 1247 **Table 7: Details of the datasets used for automatic entity linking with BLINK, including the columns**
 1248 **that were linked, the proportion of entries linked, and the total time taken for linking.**

1249 Dataset	1250 Columns linked (proportion linked)	1251 Time
1250 Airbnb	1251 neighbourhood (85%), property_type (99%), smart_location (100%)	1252 38m
1252 Customer Complaints	1253 Company (93%), State (88%)	1254 8m
1253 IT Salary	1254 Gender (100%), City (100%), Position (72%), Seniority_level (95%),	1255 21m
1254 Mercari	1255 Your_main_technology/programming_language (97%),	1256
1255 Osha Accidents	1256 Company_type (98%)	1257 1h 8m
1256 Wine	1257 category_name (60%), brand_name (68%)	1258 23m
1257 Babies_R_Us	1258 Nature_of_Injury (50%), Part_of_Body (81%)	1259 23m
1258 Bikedekho	1259 Grape (99%), Closure (66%), Country (100%), Type (100%), Region (92%), Appellation (74%)	
1259 Bikewale		
1260 Chocolate Bar	1261 company_struct (49%)	1262 14m
1261 Ratings	1262 bike_name (85%), city_posted (100%)	1263 27m
1262 Coffee Ratings	1263 bike_name (91%), city_posted (100%)	1264 52m
1263 Employee Salaries	1264 Company_(Manufacturer) (63%), Company_Location (95%),	1265 19m
1264 Michelin	1265 Country_of_Bean_Origin (100%)	1266
1265 NBA Draft	1266 roaster (35%), location (94%), origin (87%)	1267 14m
1266 Ramen Ratings	1267 department_name (81%), division (50%),	1268 1h 16m
1267 Rotten Tomatoes	1268 employee_position_title (58%)	1269
1268 Used Cars 24	1269 Name (59%), Location (96%), Cuisine (87%)	1270 56m
1269 UsedCars.com	1270 team (62%), player (97%), college (74%)	1271 12m
1270 Used Cars	1271 Ramen (70%), Variety (67%), Style (91%),	1272 40m
1271 Saudi Arabia	1272 Country (100%)	1273
1272 Artist Copyrights	1273 Name (91%), Director (90%), Country (98%),	1274 1h 20m
1273 Forward Players	1274 Genre (72%)	1275
1274 Artworks Catalog	1275 Car_Brand (77%), Model (70%)	1276 32m
1275 Geographers	1276 UsedCars.com (98%), model (88%)	1277 21m
1276 Research Articles	1277 Used Cars (98%), Model (96%)	1278 29m
1277 Sculptures		
1278 Spring Locations	1279 Artist_Copyrights (50%), Artist_CountryOfCitizenship (79%)	1280 10m
1279 Geopolitical Regions	1280 Forward_Players (82%), NATIONALITY (98%)	1281 7m
1280 Kindergarten	1281 Artworks_Catalog (94%), Artist_Name (78%),	1282 9m
1281 Locations	1282 Artist_Country (100%)	1283
1282 Sub Post Offices	1283 Geographers (55%), Professional_Role (100%),	1284 11m
1283 State Schools	1284 Birth_Location (69%), Nationality (85%)	1285
1284 Parish Churches	1285 Research_Articles (79%), author_full_name (39%),	1286 1h 5m
1285 Registered Ships	1286 primary_author (30%)	1287
1286 Philosophers	1287 Sculptures (74%), Artist_Name (78%)	1288 20m
1287	1288 Spring_Locations (43%), AdministrativeEntity (95%)	1289 31m
1288	1289 Geopolitical_Regions (98%)	1290 2m
1289	1290 Kindergarten (96%)	1291 7m
1290	1291 Locations	1292 8m
1291	1292 Sub_Post_Offices (68%), POSTAL_DIVISION (70%)	1293 14m
1292	1293 State_Schools (56%), AdministrativeRegion (93%)	1294 7m
1293	1294 Parish_Churches (61%), AdministrativeEntity (95%)	1295 59m
1294	1295 Registered_Ships (57%), ShipType (100%), Shipbuilder (84%),	
1295	1296 RegistryCountry (100%), HomePort (95%)	
	1296 Philosophers (69%), BirthPlace (91%),	
	1297 Profession (99%)	

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312

1313 Table 8: Overview of TextTabBench datasets used in our benchmark. Table statistics after prepro-
 1314 cessing.

Dataset	Task	# rows	# columns		# classes	# linked	BLINK
			cat.	num.			
Diabetes	b-clf	17,000	4	12	2	-	-
Job Frauds	b-clf	1,732	11	3	2	-	-
Kickstarter	b-clf	18,720	9	8	2	-	-
Lending Club	b-clf	11,254	12	15	2	-	-
Osha Accidents	b-clf	3,598	15	3	2	-	✓
Customer Complaints	m-clf	1,384	8	2	4	-	✓
Spotify	m-clf	10,000	3	15	10	-	-
Airbnb	reg	3,818	32	23	-	-	✓
Beer	reg	2,914	5	15	-	-	-
California Houses	reg	11,349	13	16	-	-	-
Covid Trials	reg	1,165	13	2	-	-	-
Insurance Complaints	reg	37,484	8	2	-	-	-
IT Salary	reg	1,253	16	2	-	-	✓
Mercari	reg	12,000	4	2	-	-	✓
San Francisco Permits	reg	183,794	12	16	-	-	-
Stack Overflow	reg	19,427	89	13	-	-	-
Wine	reg	1,281	12	3	-	-	✓

1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

Table 9: Overview of CARTE datasets used in our benchmark. Table statistics after preprocessing.

Dataset	Task	# rows	# columns		# classes	# linked	BLINK
			cat.	num.			
Chocolate Bar Ratings	b-clf	2,218	6	5	2	-	✓
Coffee Ratings	b-clf	1,670	8	-	2	-	✓
Michelin	b-clf	6,774	5	2	2	-	✓
NBA Draft	b-clf	1,550	4	5	2	-	✓
Ramen Ratings	b-clf	3,726	4	-	2	-	✓
Roger Ebert	b-clf	2,668	5	5	2	-	-
Spotify	b-clf	41,096	7	11	2	-	-
US Accidents Severity	b-clf	20,930	9	4	2	-	-
Whisky	b-clf	1,788	6	-	2	-	-
Yelp	b-clf	60,088	8	4	2	-	-
Zomato	b-clf	60,302	7	1	2	-	-
Movies	reg	7,224	7	9	-	7,095	-
US Accidents Counts	reg	22,623	6	-	-	14,697	-
US Presidential	reg	19,857	6	-	-	13,221	-
Anime Planet	reg	14,391	6	10	-	-	-
Babies R Us	reg	5,085	4	-	-	-	✓
Beer Ratings	reg	3,197	5	14	-	-	-
Bikedekho	reg	4,786	5	5	-	-	✓
Bikewale	reg	8,992	5	5	-	-	✓
Buy Buy Baby	reg	10,718	4	-	-	-	-
Cardekho	reg	37,813	13	6	-	-	-
Clear Corpus	reg	4,724	10	19	-	-	-
Company Employees	reg	10,941	7	-	-	-	-
Employee Remuneration	reg	35,396	2	5	-	-	-
Employee Salaries	reg	9,211	6	8	-	-	✓
Fifa22 Players	reg	18,085	9	18	-	-	-
Filmtv Movies	reg	41,205	6	6	-	-	-
Journal JCR	reg	9,615	4	5	-	-	-
Journal SJR	reg	27,931	9	-	-	-	-
Japanese Anime	reg	15,535	11	5	-	-	-
K-Drama	reg	1,239	8	4	-	-	-
ML/DS Salaries	reg	10,456	7	4	-	-	-
Museums	reg	11,467	14	2	-	-	-
Mydramalist	reg	3,400	10	3	-	-	-
Prescription Drugs	reg	1,714	5	5	-	-	-
Rotten Tomatoes	reg	7,158	10	6	-	-	✓
Used Cars 24	reg	5,918	6	5	-	-	✓
Used Cars Benz Italy	reg	16,391	5	2	-	-	-
UsedCars.com	reg	4,009	8	5	-	-	✓
Used Cars Pakistan	reg	72,655	4	6	-	-	-
Used Cars Saudi Arabia	reg	5,507	7	6	-	-	✓
Videogame Sales	reg	16,410	4	4	-	-	-
Wikiliq Beer	reg	13,461	7	2	-	-	-
Wikiliq Spirit	reg	12,275	5	2	-	-	-
Wina Poland	reg	2,247	12	6	-	-	-
Wine.com Prices	reg	15,254	6	3	-	-	-
Wine.com Ratings	reg	4,095	6	3	-	-	-
WineEnthusiasts Prices	reg	120,975	8	1	-	-	-
WineEnthusiasts Ratings	reg	129,971	8	1	-	-	-
WineVivino Price	reg	13,834	5	2	-	-	-
WineVivino Rating	reg	13,834	6	2	-	-	-

Table 10: Overview of WikiDBs datasets used in our benchmark. Table statistics after preprocessing.

Dataset	Task	# rows	# columns		# classes	# linked	BLINK
			cat.	num.			
CC Authors	b-clf	16,224	7	1	2	1,302	-
Defenders	m-clf	18,610	10	-	10	8,700	-
Philosophers	m-clf	4,230	8	-	10	1,656	✓
US Music Albums	m-clf	3,270	10	1	10	2,180	-
Artist Copyrights	m-clf	2,000	9	1	10	-	✓
Artworks Catalog	m-clf	1,210	8	2	10	-	✓
Forward Players	m-clf	1,400	10	-	10	-	✓
Geographers	m-clf	1,130	9	-	10	-	✓
Historic Buildings	m-clf	27,980	6	3	10	-	-
Island	m-clf	19,650	3	2	10	-	-
Kindergarten Locations	m-clf	2,790	6	-	3	-	✓
Magic Narratives	m-clf	1,062	4	-	9	-	-
Museums	m-clf	9,550	4	2	10	-	-
Noble Individuals	m-clf	1,400	9	-	10	-	-
Notable Trees	m-clf	1,408	4	2	8	-	-
Parish Churches	m-clf	1,350	4	2	10	-	✓
Sculptures	m-clf	3,720	6	-	10	-	✓
Spring Locations	m-clf	5,930	2	2	10	-	✓
State Schools	m-clf	2,800	3	2	10	-	✓
Scientific Articles	m-clf	2,760	13	1	10	-	-
Sub Post Offices	m-clf	1,530	3	1	10	-	✓
Transport Stations	m-clf	4,640	8	2	10	-	-
Business Locations	reg	16,821	4	4	-	16,438	-
Dissolved Municipalities	reg	13,462	6	2	-	1,656	-
Geopolitical Regions	reg	1,114	6	3	-	1,066	✓
Historical Figures	reg	11,260	11	-	-	2,134	-
Municipal District Capitals	reg	1,658	5	3	-	1,267	-
Poets	reg	60,240	10	-	-	21,564	-
Territorial Entities	reg	36,717	7	4	-	34,189	-
WWI Personnel	reg	30,675	11	-	-	16,227	-
Artworks Inventory	reg	10,635	5	1	-	-	-
Drawings Catalog	reg	63,130	8	1	-	-	-
Eclipsing Binary Stars	reg	297,934	6	2	-	-	-
Registered Ships	reg	4,644	6	3	-	-	✓
Research Articles	reg	6,962	6	2	-	-	✓
Research Article Citations	reg	4,115	9	-	-	-	-
Ukrainian Villages	reg	21,355	3	3	-	-	-

Table 11: A snippet from the Customer Complaints dataset, where LLMs perform well. The task is to predict the "Company response to consumer" (shortened to "Company response" here for space reasons). Some columns were removed to fit the table in the paper.

Issue	Product	Company	Submitted via	State	Company response
Incorrect information on credit report	Credit reporting	Experian Information Solutions Inc.	Web	CO	0
Written notification about debt	Debt collection	Associated Credit Services, Inc.	Web	NY	0
Struggling to pay mortgage	Mortgage	RoundPoint Mortgage Servicing Corporation	Web	NY	0

1458
1459
14601461 Table 12: A snippet from the `Fifa22_Players` dataset, where LLMs refined on KGs perform
1462 well. The task is to predict the player’s wage. Some columns were removed to fit the table in the
1463 paper.

name	club_name	player_positions	nationality_name	work_rate	body_type	wage_eur
L. Cass	Port Vale	CB, RB	England	High/Medium	Lean (185+)	3.602060
Judson	San Jose Earthquakes	CDM	Brazil	Medium/High	Normal (170-)	3.778151
E. Gyasi	Spezia	RW, LW, ST	Ghana	High/Low	Lean (170-185)	3.845098
Z. Kvržić	Yukatel Kayserispor	RB, CAM, RM	Bosnia and Herzegovina	Medium/Medit	Lean (170-185)	3.477121

1474
1475
1476
1477
14781479 Table 13: A snippet from the `Registered_Ships` dataset, where column-context brings value.
1480 The task is to predict the gross tonnage.

RegistryCountry	HomePort	ShipName	Shipbuilder	ShipType	GrossTonnage
Liberia	Monrovia	A Whale	Hyundai Heavy Industries	ore-bulk-oil carrier	5.230242
Liberia	Nassau	Adventure of the Seas	Kvaerner Masa-Yards	cruise ship	5.137595
Liberia	Monrovia	IMO 9225615	Hanwha Ocean	container ship	4.878464
Norway	NaN	Serenissima	Trondhjems mekaniske Værksted	motor ship	3.414639
Liberia	NaN	Otto Hahn	Howaldtswerke-Deutsche Werft	ship	4.211948

1492
1493
1494
1495
14961497 Table 14: A snippet from the `Company_Employees` dataset, where column-context hurts performance.
1498 The task is to predict the current employee estimate.

industry	locality	name	domain	current_employee_estimate
information technology and services	new york, new york, united states	ibm	ibm.com	5.437825
information technology and services	bombay, maharashtra, india	tata consultancy services	tcs.com	5.280512
information technology and services	dublin, dublin, ireland	accenture	accenture.com	5.280326
accounting	london, greater london, united kingdom	ey	ey.com	5.199654

1510
1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

Table 15: Average runtimes (in seconds) for embedding extraction and Ridge fitting, for varying train set sizes.

	Train size		
	64	256	1,024
TabuLa-8B	124 \pm 141	145 \pm 166	216 \pm 258
Llama-3.1-8B	119 \pm 133	140 \pm 157	209 \pm 247
Llama-3.2-3B	43 \pm 51	51 \pm 60	76 \pm 93
Llama-3.2-1B	18 \pm 20	21 \pm 24	32 \pm 37
Qwen3-8B	120 \pm 144	140 \pm 169	210 \pm 262
Qwen3-4B	65 \pm 82	76 \pm 96	114 \pm 150
Qwen3-0.6B	12 \pm 13	14 \pm 15	21 \pm 22
Knowledge-card	25 \pm 29	30 \pm 34	45 \pm 53
OPT-1.3B	23 \pm 29	27 \pm 34	40 \pm 53
ERNIE-large	8 \pm 6	10 \pm 7	15 \pm 9
RoBERTa-large	8 \pm 6	10 \pm 7	14 \pm 9
ERNIE-base	5 \pm 4	6 \pm 4	8 \pm 6
RoBERTa-base	4 \pm 3	5 \pm 3	7 \pm 4
KGT5	5 \pm 3	6 \pm 4	8 \pm 5
T5-base	5 \pm 6	7 \pm 7	9 \pm 11
KGT5-small	3 \pm 3	4 \pm 3	6 \pm 4
T5-small	4 \pm 3	4 \pm 3	6 \pm 4
TARTE	4 \pm 4	5 \pm 5	8 \pm 6
FastText	2 \pm 4	3 \pm 4	4 \pm 6
Non-pretrained	0.5 \pm 0.7	1 \pm 1	2 \pm 2

Table 16: Raw results on TextTabBench datasets. Mean and standard error over 17 datasets and 10 random seeds, for train size $n_{\text{train}} = 1,024$.

	Regression (R2)			Classification (ROC AUC)		
	Ridge	TabPFNv2 (PCA $d = 500$)	XGBoost (PCA $d = 300$)	Ridge	TabPFNv2 (PCA $d = 500$)	XGBoost (PCA $d = 300$)
TabuLa-8B	0.409 \pm .024	0.404 \pm .023	0.358 \pm .021	0.813 \pm .017	0.789 \pm .018	0.792 \pm .018
LLaMA-3.1-8B	0.398 \pm .024	0.392 \pm .023	0.349 \pm .020	0.807 \pm .017	0.782 \pm .018	0.782 \pm .018
LLaMA-3.2-3B	0.396 \pm .023	0.393 \pm .022	0.350 \pm .020	0.802 \pm .017	0.783 \pm .018	0.783 \pm .018
LLaMA-3.2-1B	0.366 \pm .021	0.359 \pm .020	0.321 \pm .018	0.803 \pm .016	0.779 \pm .018	0.786 \pm .017
Qwen3-8B	0.411 \pm .018	0.383 \pm .019	0.345 \pm .016	0.800 \pm .017	0.775 \pm .018	0.780 \pm .018
Qwen3-4B	0.397 \pm .017	0.367 \pm .018	0.330 \pm .017	0.797 \pm .016	0.774 \pm .018	0.777 \pm .018
Qwen3-0.6B	0.303 \pm .015	0.280 \pm .015	0.256 \pm .013	0.776 \pm .015	0.750 \pm .018	0.760 \pm .017
Knowledge-card	0.333 \pm .019	0.332 \pm .019	0.291 \pm .016	0.804 \pm .016	0.780 \pm .018	0.784 \pm .018
OPT-1.3B	0.350 \pm .019	0.347 \pm .017	0.304 \pm .016	0.798 \pm .017	0.777 \pm .018	0.781 \pm .018
ERNIE-large	0.323 \pm .017	0.312 \pm .015	0.270 \pm .013	0.790 \pm .016	0.766 \pm .019	0.770 \pm .018
RoBERTa-large	0.265 \pm .016	0.300 \pm .018	0.262 \pm .016	0.789 \pm .016	0.770 \pm .018	0.774 \pm .018
ERNIE-base	0.307 \pm .017	0.299 \pm .014	0.264 \pm .013	0.785 \pm .016	0.762 \pm .018	0.766 \pm .017
RoBERTa-base	0.279 \pm .017	0.279 \pm .017	0.238 \pm .015	0.783 \pm .016	0.762 \pm .018	0.766 \pm .018
KGT5	0.270 \pm .017	0.258 \pm .017	0.228 \pm .014	0.773 \pm .016	0.759 \pm .018	0.755 \pm .018
T5	0.312 \pm .017	0.315 \pm .016	0.273 \pm .014	0.787 \pm .015	0.765 \pm .018	0.767 \pm .018
E5-v2	0.314 \pm .015	0.295 \pm .016	0.271 \pm .014	0.789 \pm .015	0.762 \pm .018	0.769 \pm .018
KGT5-small	0.242 \pm .015	0.223 \pm .015	0.209 \pm .013	0.766 \pm .015	0.751 \pm .018	0.754 \pm .017
T5-small	0.260 \pm .017	0.265 \pm .016	0.227 \pm .014	0.778 \pm .015	0.756 \pm .017	0.761 \pm .017
E5-small-v2	0.278 \pm .015	0.281 \pm .016	0.244 \pm .014	0.776 \pm .016	0.770 \pm .018	0.754 \pm .019
TARTE	0.320 \pm .017	0.314 \pm .018	0.278 \pm .016	0.778 \pm .014	0.758 \pm .017	0.758 \pm .016
FastText	0.278 \pm .017	0.320 \pm .016	0.278 \pm .015	0.770 \pm .016	0.775 \pm .017	0.766 \pm .018
Non-pretrained	0.379 \pm .018	0.452 \pm .020	0.440 \pm .020	0.781 \pm .015	0.804 \pm .016	0.800 \pm .015

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579

1580
 1581 Table 17: Raw results on CARTE datasets. Mean and standard error over 51 datasets and 10 random
 1582 seeds, for train size $n_{\text{train}} = 1,024$.

	Regression (R2)			Classification (ROC AUC)		
	Ridge	TabPFNv2 (PCA $d = 500$)	XGBoost (PCA $d = 300$)	Ridge	TabPFNv2 (PCA $d = 500$)	XGBoost (PCA $d = 300$)
TabuLa-8B	$0.608 \pm .009$	$0.587 \pm .009$	$0.550 \pm .009$	$0.824 \pm .008$	$0.797 \pm .009$	$0.793 \pm .008$
LLaMA-3.1-8B	$0.609 \pm .008$	$0.587 \pm .009$	$0.550 \pm .008$	$0.823 \pm .008$	$0.796 \pm .009$	$0.793 \pm .008$
LLaMA-3.2-3B	$0.582 \pm .009$	$0.564 \pm .010$	$0.529 \pm .009$	$0.812 \pm .008$	$0.783 \pm .009$	$0.780 \pm .008$
LLaMA-3.2-1B	$0.552 \pm .009$	$0.541 \pm .010$	$0.505 \pm .009$	$0.806 \pm .008$	$0.777 \pm .009$	$0.776 \pm .008$
Qwen3-8B	$0.546 \pm .009$	$0.513 \pm .010$	$0.480 \pm .009$	$0.799 \pm .008$	$0.767 \pm .009$	$0.769 \pm .008$
Qwen3-4B	$0.525 \pm .009$	$0.503 \pm .010$	$0.472 \pm .010$	$0.782 \pm .007$	$0.748 \pm .008$	$0.754 \pm .008$
Qwen3-0.6B	$0.460 \pm .010$	$0.432 \pm .011$	$0.413 \pm .010$	$0.743 \pm .008$	$0.711 \pm .008$	$0.717 \pm .008$
Knowledge-card	$0.531 \pm .010$	$0.512 \pm .010$	$0.482 \pm .009$	$0.793 \pm .007$	$0.761 \pm .008$	$0.762 \pm .008$
OPT-1.3B	$0.533 \pm .009$	$0.514 \pm .010$	$0.482 \pm .009$	$0.800 \pm .008$	$0.768 \pm .009$	$0.773 \pm .008$
ERNIE-large	$0.509 \pm .009$	$0.503 \pm .010$	$0.468 \pm .009$	$0.782 \pm .008$	$0.744 \pm .009$	$0.750 \pm .008$
RoBERTa-large	$0.429 \pm .008$	$0.497 \pm .010$	$0.463 \pm .009$	$0.774 \pm .008$	$0.745 \pm .009$	$0.752 \pm .008$
ERNIE-base	$0.487 \pm .009$	$0.484 \pm .011$	$0.453 \pm .010$	$0.772 \pm .008$	$0.734 \pm .009$	$0.740 \pm .009$
RoBERTa-base	$0.458 \pm .009$	$0.479 \pm .011$	$0.447 \pm .010$	$0.771 \pm .008$	$0.740 \pm .009$	$0.746 \pm .008$
KGT5	$0.480 \pm .010$	$0.469 \pm .011$	$0.438 \pm .010$	$0.761 \pm .008$	$0.725 \pm .009$	$0.732 \pm .008$
T5	$0.503 \pm .010$	$0.486 \pm .011$	$0.454 \pm .010$	$0.771 \pm .009$	$0.733 \pm .010$	$0.741 \pm .009$
E5-v2	$0.488 \pm .010$	$0.476 \pm .011$	$0.448 \pm .010$	$0.774 \pm .007$	$0.737 \pm .008$	$0.752 \pm .008$
KGT5-small	$0.458 \pm .010$	$0.450 \pm .011$	$0.419 \pm .010$	$0.752 \pm .008$	$0.717 \pm .009$	$0.724 \pm .008$
T5-small	$0.476 \pm .010$	$0.461 \pm .012$	$0.434 \pm .010$	$0.759 \pm .009$	$0.720 \pm .009$	$0.729 \pm .008$
E5-small-v2	$0.467 \pm .010$	$0.471 \pm .011$	$0.433 \pm .010$	$0.761 \pm .008$	$0.751 \pm .008$	$0.737 \pm .008$
TARTE	$0.451 \pm .010$	$0.449 \pm .012$	$0.417 \pm .010$	$0.746 \pm .008$	$0.714 \pm .008$	$0.726 \pm .008$
FastText	$0.464 \pm .010$	$0.496 \pm .011$	$0.471 \pm .010$	$0.763 \pm .008$	$0.754 \pm .008$	$0.753 \pm .008$
Non-pretrained	$0.430 \pm .011$	$0.526 \pm .011$	$0.519 \pm .010$	$0.766 \pm .008$	$0.773 \pm .008$	$0.768 \pm .008$

1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633

1634 Table 18: Raw results on WikiDBs datasets. Mean and standard error over 37 datasets and 10
 1635 random seeds, for train size $n_{\text{train}} = 1,024$.

	Regression (R2)			Classification (ROC AUC)		
	Ridge	TabPFNv2 (PCA $d = 500$)	XGBoost (PCA $d = 300$)	Ridge	TabPFNv2 (PCA $d = 500$)	XGBoost (PCA $d = 300$)
TabuLa-8B	0.552 ± .018	0.546 ± .019	0.492 ± .017	0.954 ± .005	0.951 ± .006	0.947 ± .006
LLaMA-3.1-8B	0.542 ± .017	0.530 ± .018	0.480 ± .017	0.950 ± .006	0.946 ± .006	0.942 ± .006
LLaMA-3.2-3B	0.516 ± .018	0.504 ± .020	0.459 ± .018	0.951 ± .005	0.948 ± .006	0.944 ± .006
LLaMA-3.2-1B	0.486 ± .016	0.479 ± .018	0.431 ± .016	0.945 ± .006	0.942 ± .006	0.938 ± .006
Qwen3-8B	0.468 ± .018	0.456 ± .020	0.404 ± .017	0.946 ± .006	0.943 ± .007	0.937 ± .007
Qwen3-4B	0.439 ± .018	0.432 ± .019	0.386 ± .017	0.942 ± .006	0.940 ± .007	0.936 ± .007
Qwen3-0.6B	0.376 ± .014	0.356 ± .016	0.320 ± .014	0.927 ± .007	0.926 ± .007	0.920 ± .007
Knowledge-card	0.476 ± .015	0.470 ± .016	0.428 ± .014	0.945 ± .006	0.944 ± .006	0.940 ± .006
OPT-1.3B	0.465 ± .016	0.456 ± .017	0.409 ± .015	0.943 ± .006	0.940 ± .006	0.936 ± .006
ERNIE-large	0.475 ± .016	0.475 ± .017	0.425 ± .015	0.942 ± .006	0.940 ± .006	0.935 ± .006
RoBERTa-large	0.381 ± .014	0.442 ± .016	0.396 ± .014	0.937 ± .006	0.939 ± .007	0.934 ± .007
ERNIE-base	0.449 ± .016	0.455 ± .017	0.406 ± .015	0.937 ± .006	0.936 ± .006	0.931 ± .007
RoBERTa-base	0.403 ± .014	0.418 ± .016	0.374 ± .014	0.935 ± .006	0.935 ± .007	0.930 ± .007
KGT5	0.423 ± .014	0.426 ± .016	0.383 ± .014	0.937 ± .006	0.935 ± .007	0.929 ± .007
T5	0.426 ± .015	0.423 ± .016	0.379 ± .014	0.937 ± .006	0.934 ± .007	0.929 ± .007
E5-v2	0.416 ± .016	0.406 ± .018	0.368 ± .015	0.933 ± .006	0.931 ± .007	0.927 ± .007
KGT5-small	0.380 ± .013	0.389 ± .015	0.346 ± .013	0.929 ± .007	0.928 ± .007	0.922 ± .007
T5-small	0.383 ± .014	0.386 ± .015	0.342 ± .013	0.930 ± .006	0.926 ± .007	0.920 ± .007
E5-small-v2	0.374 ± .013	0.381 ± .015	0.328 ± .013	0.926 ± .007	0.929 ± .007	0.921 ± .007
TARTE	0.356 ± .013	0.362 ± .015	0.319 ± .013	0.927 ± .007	0.927 ± .007	0.920 ± .007
FastText	0.383 ± .014	0.416 ± .015	0.385 ± .014	0.929 ± .006	0.932 ± .007	0.926 ± .007
Non-pretrained	0.364 ± .014	0.460 ± .016	0.435 ± .015	0.924 ± .007	0.941 ± .006	0.934 ± .006

1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673