
Under review as a conference paper at ICLR 2023

TOWARDS DYNAMIC SPARSIFICATION BY ITERATIVE
PRUNE-GROW LOOKAHEADS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model sparsification aims to accelerate and compress models by removing
redundant connections. Most methods relied on estimating parameter importance
on pretrained models, which is computationally intensive to train. Other
approaches try to reduce training cost through sparse training either by producing
sparsified models early in training or randomly and greedily explore new
sparse architecture during training by prune and grow. The early weak feature
representation and greediness of the unreliable exploration strategy limit the
quality of such methods. In this work, we propose a simple, novel, and
effective model sparsification method called LookAhead and directly address
the shortcomings of previous methods by enforcing an iterative exploitation-
exploration process into dynamic sparsity pursuit through training. The
exploitation phase assumes stability of current sparse architecture and trains it to
maximize performance. Whereas the exploration phase challenges the assumption
by reactivating pruned parameters, quickly updating them while freezing existing
ones, and updating the sparse architecture. We demonstrate the effectiveness and
efficiency of LookAhead with extensive experiments covering both unstructured
and structured latency sparsity on ImageNet and CIFAR-10 for classification and
PASCAL VOC for object detection across multiple configurations. Not only do
we observe state-of-art accuracy of LookAhead surpassing multiple latest weight
and channel pruning methods but also tremenduous training cost saving. We
also design metrics to study the effectiveness of sparsity architecture exploration
strategy.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) (LeCun et al., 1998) have constituted the modern
cornerstone for fundamental computer vision tasks such as image classification, object detection,
and segmentation. As the literature progresses for improved performance, so do the model size,
computation, and latency. Modern networks may contain billions of parameters (Brown et al., 2020)
for competitive advantages but the associated huge costs hinder deployment to applications that
suffer stringent resources, e.g., edge device applications. Therefore, effectively compressing CNNs
through removing redundant parameters for efficient storage and computation has been a very active
research area. Despite the diversity in the compression schemes proposed in recent years, chasing
sparsity via pruning, either in a structured (removing channels) or unstructured manner (removing
weights), has been one of the central topics with initial solutions dated back to (Hassibi & Stork,
1992; LeCun et al., 1990). A plethora of pruning methods has yielded profound progresses in model
compression (LeCun et al., 1990; Han et al., 2015; Louizos et al., 2018; Gale et al., 2019; Zhou et al.,
2021), providing practical speedup and memory benefits (Li et al., 2017; Molchanov et al., 2019;
He et al., 2020; Lin et al., 2020a; Yuan et al., 2021) through hardware-friendly sparsity (Wu et al.,
2020; Yang et al., 2018; Li et al., 2020; Shen et al., 2022b) that trades off accuracy and performance
via FLOPs/latency. Despite noticeable progresses, the majority of literature focuses on pruning
pretrained models, causing unnecessary initial training costs when (i) knowingly trains a full model
that is redundant for final inference, (ii) but, seemingly important, with sufficient connections and
high enough degree-of-freedoms to support exploration with optimizer.

The recent trend of exploring model sparsity without dense model pretraining (Frankle & Carbin,
2018; Lee et al., 2018; Wang et al., 2019; Tanaka et al., 2020; Wimmer et al., 2020; Liu et al.,

1

Under review as a conference paper at ICLR 2023

0.5 1 1.5 2 2.5 3 3.5

 FLOPs (G)

64

66

68

70

72

74

76

78

 T
op

1
A

cc
(%

)

Unstructured Pruning

1000 2000 3000 4000 5000 6000 7000 8000 9000

 FPS (im/s)

66

68

70

72

74

76

78

 T
op

1
A

cc
(%

)

0 0.5 1 1.5

 Train Cost

64

66

68

70

72

74

76

78

RigL (ICML'20) Static DSR (ICML'19) SNIP (ICLR'18) GraSP (ICLR'19) LookAhead (Ours)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

 Train Cost

72

73

74

75

76

77

Structured Pruning

EagleEye (ECCV'20) AutoSlim (NeurIPS'19) MetaPruning (ICCV'19) GReg (ICLR'21)

HALP (NeurIPS'22) ResNet50 ResNet18 LookAhead (Ours)

Figure 1: LookAhead unstructured and structured pruning results on ImageNet. Left: Unstructured weight
sparsity with different pruning ratios as a function of FLOPs and train cost, the top-left is better; Right:
Structured pruning targeting various latency constraints, as a function of frame per second during inference
where the top-right is better, and train cost the top-left is better.

2021; Alvarez & Salzmann, 2016; Shen et al., 2022a) has gained attention for promising efficient
sparse training paradigms. Such methods generate a sparse model right at the initialization or early
in the training stage. Yet one noticeable challenge for the trend remains - a sharp performance drop
caused by (i) a limited number of data samples processed before pruning, and (ii) the inability of
network capacity to recover once pruned. The former causes difficulty in model exploration and
potential lacks proper guidance as the rich feature manifold is not learned yet, whereas the latter
prevents the network from regaining the capacity to learn the needed richer manifold. Addressing
these challenges for early pruning methods will make them more compelling.

We solve (i) and (ii) simultaneously by formulating model sparsification as an iterative exploitation-
exploration process to pursue dynamic sparsity during training. The exploitation phase assumes that
the sparse model at hand has the final structure thus performs training on it for better exploitation
of the convergence space. The exploration phase challenges the quality of the current sparse
architecture and explores the space of the previously removed weights for a fresh and higher-quality
sparse structure via growth-and-prune. Several previous works (Mocanu et al., 2018; Bellec et al.,
2018; Dettmers & Zettlemoyer, 2019; Dai et al., 2019; Wortsman et al., 2019; Evci et al., 2020;
Ma et al., 2021) including the popular RigL (Evci et al., 2020), mostly referred to as dynamic
sparse training, have considered the idea of such growth-and-prune scheme to search better sparsity
structure through training. Though yielding promising results, these methods are based on random or
greedy exploration to search new sparsity architecture, leading to limited coverage of sparse patterns
and potentially sub-optimal model quality. For more effective exploration to directly address those
issues, we draw some insights from Optimistic Initialization approaches (Machado et al., 2015;
Lobel et al., 2022), which are usually used to deal with the random nature of greedy exploration
in tasks like Reinforcement Learning. We show that the resulting solution, named as LookAhead,
effectively overcome the shortcomings of the previous solutions. It can be easily embedded into
training in a naturally iterative fashion, bringing the dynamic adjustment capability throughout the
entire training and constituting a new pruning efficacy Pareto front.

We conduct extensive experiments and ablation studies to demonstrate the effectiveness and
efficiency of LookAhead. Our results demonstrate state-of-the-art in a wide range of settings,
covering (i) both structured and unstructured sparsity on (ii) CIFAR-10 (Krizhevsky et al., 2009)
and ImageNet (Deng et al., 2009) for classification and PASCAL VOC (Everingham et al., 2010)
for object detection with (iii) four widely-used model architectures: ResNet50 (He et al., 2016),
WideResNet (Zagoruyko & Komodakis, 2016), MobileNet-V1 (Howard et al., 2017), and SSD(Liu
et al., 2016) across pruning targets including (iv) weight sparsity and latency. Figure 1 offers
a glimpse of our comprehensive experiments. We do not only observe superior state-of-the-art
results of LookAhead, but also tremendous training cost saving. Moreover, to validate LookAhead
indeed improves upon previous random and greedy methods, we design metrics to directly evaluate
exploration effectiveness of LookAhead and explicitly compare with them. Our contributions can
be summarized as follows:

• We propose LookAhead, a simple, novel, and effective dynamic network sparsification method
with an iterative exploitation-exploration scheme.

• We design new metrics to evaluate effectiveness of sparsity structure exploration strategy and
empirically demonstrate ours is more performant than previous solutions.

2

Under review as a conference paper at ICLR 2023

Figure 2: An overview of LookAhead. In each LookAhead update step, we first train the kept weights ΘK

for H steps then prune a number of connections in the existing architecture. We later train the weights just
selected for J steps for better exploiting the current architecture. For exploration of a potentially better sparse
architecture, we temporarily activate all of the removed weights ΘP and train them for K steps while freezing
ΘK . We then evaluate the importance scores of the activated ΘP to grow the top-ranked weights. This
completes one full LookAhead update step, and it is repeated until the update period ends.

• We demonstrate that the method outperforms previous state-of-the-art sparsification methods
by large margin across multiple datasets, model architectures, target compactness, pruning
criterion, for both structured and unstructured sparsity.

• We further instantiate the method with a hardware-aware compression scheme taking latency
into account for hardware-friendly sparsity, setting the new state-of-the-art for latency pruning.

2 RELATED WORKS

In general, our work can be categorized into the field of model compression, or model sparsification
and pruning in particular. We will provide recap of three popular schemes below. LookAhead is
closest to the family of Dynamic Sparse Training works but differs from them in that we explicitly
address the randomness or greedy nature of the exploration to discover enhanced sparse structure
more solidly and effectively during the training.
Pruning from Pretrained Networks The majority of pruning methods evaluate parameters weight
magnitude as their importance scores on well-performed pretrained dense weights and remove the
lower-ranked ones in an either one-shot (Thimm & Fiesler, 1995; Ström, 1997) or iterative (Han
et al., 2015; Narang et al., 2017; Zhu & Gupta, 2017; Gale et al., 2019) fashion, followed by an
additional finetuning session to recover the accuracy. In addition to the magnitude-based indicator,
there have been other importance criterion proposed such as Hessian-based scores (LeCun et al.,
1990; Hassibi & Stork, 1992) and probability-based scores (Zhou et al., 2021; Srinivas et al., 2017;
Molchanov et al., 2017). In this paper, we focus on weight magnitude metric as the saliency score
for unstructured sparsity.

Some works, targetting structured sparsity, aim to prune convolutional filters (Li et al., 2017) or
attention heads (Michel et al., 2019), thus enjoy immediate memory and latency benefit without
specialized hardware and library support (Han et al., 2016). Exemplary channel importance criterion
relied on metrics like weight norm (Li et al., 2017; Chin et al., 2020; He et al., 2020; 2018a; Yang
et al., 2018), Taylor expansion (Lin et al., 2018; Molchanov et al., 2019; You et al., 2019), geometric
median (He et al., 2019), and feature maps rank (Lin et al., 2020a). Other works (Chen et al., 2018;
Shen et al., 2022b) including the very recent HALP consider channel pruning under a latency or
FLOPs constraint, aiming for more hardware-friendly structured sparse architecture with practical
speed-up. In our latency-constrained structured sparsity experiment, we build upon the pruning
scheme developed in HALP, exploring better sparse structure in terms of both accuracy and inference
latency.

Static Sparse Training Albeit the decent performance of pruning on pretrained models, the dense
model pretraining is usually computationally demanding and redundant. To address this, a group of
works (Frankle & Carbin, 2018; Lee et al., 2018; Wang et al., 2019; Tanaka et al., 2020; Wimmer
et al., 2020; Liu et al., 2021; van Amersfoort et al., 2020; Verdenius et al., 2020; Shen et al., 2022a)

3

Under review as a conference paper at ICLR 2023

trained sparse networks generated from scratch or early in training. This is also referred to as zero-
shot pruning or pruning at early stage. Despite the reduced computation, the performance of these
methods are notably worse than pruning from the pretrained since they compress models based
on a limited number of data samples which usually can’t represent the rich features in large-scale
datasets.

Dynamic Sparse Training Another group of works (Mocanu et al., 2018; Dettmers & Zettlemoyer,
2019; Mostafa & Wang, 2019; Kusupati et al., 2020; Wortsman et al., 2019; Dai et al., 2019; Evci
et al., 2020; Lin et al., 2020b; Ma et al., 2021; Yuan et al., 2021) have considered the idea of
repeated alternating prune-grow sessions to dynamically configure the sparsity structure through
training from scratch, giving the model more flexibility. This scheme is also referred to as iterative
prune-grow or neural rewiring. SET (Mocanu et al., 2018) prunes weights according to the standard
magnitude criterion then adds weights back at random. DeepR (Bellec et al., 2018) augments
Stochastic Gradient Descent (SGD) with a random walk in parameter space. SNFS (Dettmers &
Zettlemoyer, 2019) uses momentum of each parameter as the growing criterion. NeST (Dai et al.,
2019) and RigL (Evci et al., 2020) employ magnitude-based pruning and grow greedily based on
instantenious gradients on a small data-batch, achieving promising results. PC-GAP (Ma et al.,
2021) iteratively prune and grow in a schedule by breaking the model into several partitions. Though
decent in accuracy the method needs 1.2K training epochs on ImageNet. DPF (Lin et al., 2020b)
and DCIL (Kim et al., 2021) dynamically train the model with soft masking techniques estimating
gradients on sparse parameters. Very few dynamic sparse training works consider structured sparsity
mainly due to the difficultly of estimating pruned channel gradients. SCS (Yuan et al., 2021)
formulates the model growing into the optimization problem and utilizes continuous structured
sparsification.

3 ITERATIVE PRUNE-GROW LOOKAHEAD(S)

We now introduce the details of our approach. Without loss of generalizability, we focus on
unstructured pruning to describe the algorithm and leave the structured sparsity formulation for
the Supplemental material.

We iteratively run LookAhead step during training to update the sparse architecture on-the-fly until
reaching the total number of LookAhead update steps needed. The new sparse architecture is defined
concretely by a prune stage which removes a fraction of parameters based on the saliency metric and
a grow stage which activates a selected portion of pruned parameters. The novelty of LookAhead lies
in how we select the pruned weights to grow back and how we schedule each prune and grow session
with interleaved training stages to enforce exploitation-exploration. As mentioned, we explicitly
improve upon the random and greedy heuristic in previous solutions (Mocanu et al., 2018; Dai et al.,
2019; Evci et al., 2020) with insights drawn from Optimistic Initialization approaches(Machado
et al., 2015; Lobel et al., 2022). With this strategy, all the actions are first deemed to be optimal
and then are explored at least multiple times to challenge the assumption. We perform this by first
temporarily activating all of the weights to be explored then training those connections quickly for
a few iterations while freezing the currently selected architecture to look ahead the performance if
growing those parameters back to the currently selected sparse weights. We evaluate importance
scores of the temporarily activated weights which will unveil what parameters are worth continued
exploration and grow the top-ranked ones. We discuss next the details of the approach.

Notation. Let us consider a neural network with weights Θ = {Θ(l)}L1 , where L is the number
of layers in the network, Θ(l) is the set of parameters for the layer l and ml is the number of
parameters of that layer, with m =

∑L
l=1 m

l the total number of parameters in the network. We
also define a binary mask B = {Bi}m1 ,Bi ∈ {0, 1} to identify the parameters of the network that
are meant to be kept ΘK = {Θi;Bi = 1}, and those to be removed ΘP = {Θi;Bi = 0}, such
that Θ = ΘK ∪ ΘP . Also suppose our target sparsity is S. Given a training set D consisting of N
input-output pairs {(xi, yi)}Ni=1 , we can formulate the learning and sparsification of the network as
solving an optimization problem of the form

min
Θ,B

1

N

N
|B|∑
i=1

ℓ(f(Θ⊙ B;xi),yi), (1)

s.t.||B||0 ≤ (1− S) ·m,

4

Under review as a conference paper at ICLR 2023

where ⊙ is the element-wise multiplication, ∥ · ∥0 is the L0-norm, and ℓ(·) is the training loss over
a batch (xi,yi) = {(xj , yj)}(i+1)·|B|

i·|B| of size |B| sampled from the training set D. We next describe
the LookAhead steps, the core components of the algorithm.

3.1 LOOKAHEAD

Algorithm 1 LookAhead Pseudocode
Input:Θ, D, S, fdecay, α, T , H , J , K

1: ΘK ,ΘP ,B ← Sparsify Θ using S
2: ∆T ← H + J +K
3: t, f lag ← 0, 0
4: for i← 1 to |D| do
5: if (i+ J +K) mod ∆T = 0 and t < T then
6: for l← 1 to L do
7: IlK ← Importance(Θl

K)
8: nl ← fdecay(t;α, T) ·ml · (1− Sl)

9: Ip ← ArgTopK(−IlK , nl)
10: //Prune Connections
11: Update ΘK ,ΘP ,B with Ip
12: end for
13: else if (i+K) mod ∆T = 0 and t < T then
14: flag ← 1
15: else if i mod ∆T = 0 and t < T then
16: for l← 1 to L do
17: IlP ← Importance(Θl

P)
18: Ig ← ArgTopK(IlP , n

l)
19: //Grow Connections
20: Update ΘK ,ΘP ,B with Ig
21: end for
22: t← t+ 1
23: flag ← 0
24: end if
25: if flag then
26: //Reactivate&Explore
27: ℓi ← ℓ(f(ΘP ∪ΘK ;xi), yi)
28: ΘP ← lr · ∇ΘP li
29: else
30: //Importance Estimation
31: //Accuracy Improvement
32: ℓi ← ℓ(f(Θ⊙ B;xi), yi)
33: ΘK ← lr · ∇ΘK li
34: end if
35: end for

LookAhead is an iterative approach where
each step consists of five stages: Importance
Estimation, Prune, Accuracy Improvement,
Reactivate & Explore, and Grow. The overview
of the method is shown in Figure 2 and the
algorithmic description in Algorithm 1.

IMPORTANCE ESTIMATION. The process
starts with an initial training stage to exploit the
current selected architecture ΘK that has the
target sparisty of S. In short, we train the kept
weights ΘK for H iterations and accumulate
the pruning importance score while updating
the network weights. In this paper, without
loss of generality, we consider magnitude
importance (Han et al., 2015) for unstructured
sparsity and Taylor importance (Molchanov
et al., 2019) for structured sparsity to compute
Importance(·).
PRUNE. In the second stage, we remove a
fraction of currently active parameters ΘK . For
each layer l, we prune the parameters given by
ArgTopK(−I(Θl

K), nl), where ArgTopK(·, k)
gives the indices of the top-k elements of its
input. After pruning, we set the mask elements
for the pruned parameters in B to 0, and ΘK ,
ΘP are also updated accordingly. Notice that
we do not zero out the actual weight values,
but rather keep them and mask weights during
forward pass as f(Θ ⊙ B;xi). To determine
nl, the number of parameters to be selected
each time, we follow the prior work (Evci et al.,
2020; Ma et al., 2021) and use a cosine decay
function fdecay (Evci et al., 2020), such that the
number of neurons to be pruned is defined as:

nl = fdecay(t;α, T)m
l(1− Sl), (2)

where T is the total number of LookAhead update steps, ml is the number of parameters in layer l,
and α is the initial update ratio.

ACCURACY IMPROVEMENT. With the newly selected set of ΘK , we carry out another training
stage for J iterations on ΘK with the goal to stabilize and fully exploit the architecture just selected
to improve its performance. We show in ablation that this further exploitation step is crucial to the
performance of LookAhead.

REACTIVATE & EXPLORE. We now explore the pruned weights ΘP for an updated better sparse
architecture. In reactivate, we temporarily activate all of the pruned connections ΘP by setting all
elements in B to 1 then quickly update them for K iterations in Reactivate & Explore for a solid
exploration. Notice that in the previous Prune stage, we do not zero out the weight values Θ but
only the mask B. When reactivated, the previously pruned connections ΘP inherit their MRU (i.e.,
Most Recently Used values) before they were turned off. Importantly, we freeze the previously
selected architecture ΘK and only update ΘP here. We later show in ablation that this freezing is
curcial to the performance of LookAhead by preserving the current selected architecture for a stable

5

Under review as a conference paper at ICLR 2023

METHOD SPARSITY TOTAL SPARSITY RATIO 80% SPARSITY RATIO 90%
DISTRIBUTION EPOCHS TOP-1 ACC(%)↑ FLOPS(×e9)↓ TRAIN FLOPS(×e18)↓ TOP-1 ACC(%)↑ FLOPS(×e9)↓ TRAIN FLOPS(×e18)↓

DENSE (Li et al., 2020) 77.2 8.2 ×1(w.r.t.3.2) 77.2 8.2 ×1(w.r.t.3.2)
STATIC UNIFORM 100 70.6 1.7 ×0.23 65.8 0.8 ×0.10
SNIP (Lee et al., 2018) UNIFORM 100 72.0 1.7 ×0.23 67.2 0.8 ×0.10
SET (Mocanu et al., 2018) UNIFORM 100 72.9 1.7 ×0.23 69.6 0.8 ×0.10
RIGL (Evci et al., 2020) UNIFORM 100 74.6 1.7 ×0.23 72.0 0.8 ×0.10
LOOKAHEAD(OURS) UNIFORM 100 75.6 1.7 ×0.26 73.0 0.8 ×0.16
STATIC ERK 100 72.1 3.4 ×0.42 67.7 2.0 ×0.24
SNIP (Lee et al., 2018) NON-UNIFORM 100 69.7 2.8 ×0.34 61.9 1.9 ×0.23
GRASP (Wang et al., 2019) NON-UNIFORM 100 72.1 2.8 ×0.34 68.1 1.9 ×0.23
DSR (Mostafa & Wang, 2019) NON-UNIFORM 100 73.3 3.3 ×0.41 71.6 2.5 ×0.30
RIGL (Evci et al., 2020) ERK 100 75.1 3.4 ×0.42 73.0 2.0 ×0.24
SNFS (Dettmers & Zettlemoyer, 2019) ERK 100 75.2 3.4 ×0.61 72.9 2.0 ×0.50
LOOKAHEAD(OURS) ERK 80 75.6 3.4 ×0.37 73.6 2.0 ×0.24
LOOKAHEAD(OURS) ERK 100 76.2 3.4 ×0.45 74.3 2.0 ×0.30
IP-FT (Wimmer et al., 2022) NON-UNIFORM 200 77.2 − ×1.55∗ 75.8 − ×1.38∗

DCIL (Kim et al., 2021) NON-UNIFORM 100 76.2 − ×1.80∗ 75.3 − ×1.75∗

LOOKAHEAD(OURS) ERK 200 77.1 3.4 × 0.92 75.7 2.0 ×0.60
RIGL (Evci et al., 2020) ERK 500 77.1 3.4 ×2.10 76.4 2.0 ×1.23
LOOKAHEAD(OURS) ERK 500 77.8 3.4 ×2.30 76.8 2.0 ×1.50

Table 1: ImageNet1K unstructured sparsity results using ResNet50 for 80% and 90% sparsity. Averaged
results over two runs. ∗ sign indicates estimated cost with an ERK sparse forward pass.

exploration. This training stage with ΘK frozen can be formulated as:

min
ΘP

1

K

K∑
i=1

ℓ(f(ΘP ∪ΘK ;xi),yi). (3)

GROW. During the previous stage, Reactivate & Explore, the importance scores for ΘP have been
computed. These solid importance scores are used to choose which connections in ΘP are worth
exploring. For each layer l, we grow the parameters given by ArgTopK(I(Θl

P), n
l) and set the

corresponding mask elements in B to 1. The sets ΘK and ΘP are also updated accordingly. Also
notice that nl is the same as Eqn.2 here so model sparsity remains the same after one prune-grow.
We then cycle back to Importance Estimation for another LookAhead step.

4 EXPERIMENTS

We next demonstrate the effectiveness of our approach across a comprehensive set of scenarios.
We first focus on unstructured sparsity and compare our results to other approaches in the
literature on ResNet50 (He et al., 2016) and WideResNet22-2 (Zagoruyko & Komodakis, 2016) for
ImageNet (Deng et al., 2009) and CIFAR10 (Krizhevsky et al., 2009). Then, we focus on structured
sparsity using MobileNet-V1 (Howard et al., 2017) and ResNet50 on ImageNet. In order to show the
generability of LookAhead, we also include object detection results on PASCAl VOC (Everingham
et al., 2010). Finally, we ablate our method and analyze the effectiveness of LookAhead growing
strategy. We run the experiments on 8 Nvidia Tesla V100 GPUs for ImageNet and 1 GPU for
CIFAR-10. We include more details in supplementary material.

4.1 UNSTRUCTURED SPARSITY

We first compare our results with several state-of-the-art methods on unstructured sparsity on
ImageNet and CIFAR-10 datasets. We show results using different sparsity levels and distributions
for models trained with a different number of epochs. In our experiments, we aim for a specific final
FLOP budget given a sparsity level. The sparsity level of every layers is predefined and set to be
either Uniform or ERK, and we avoid redistributing the sparsity across layers throughout training
for a fair comparison with methods like RigL (Evci et al., 2020). In the former, the sparsity of each
layer Sl is equal to the total sparsity S, i.e., S = Sl. In the latter, we use the Erdős-Rényi-Kernel
(ERK) formulation (Mocanu et al., 2018; Evci et al., 2020) to set sparsity for each layer, which
means higher sparsity is assigned to those layers with more parameters i.e., Sli > Slj if mli > mlj .

Results on ImageNet. For this experiment, we used ResNet50 (He et al., 2016) and set the update
period of our approach as (H = J = K = 150). Table 1 compares the top-1 accuracy and the
performance of LookAhead with prior works in the literature using different sparsity distributions,
training lengths, and sparsity levels. As shown, our approach consistently outperforms all the other
methods by a significant margin. For instance, compared to RigL (Evci et al., 2020) under 100
training epochs, our approach yields an improvement of 1.0% top-1 accuracy at both 80% and 90%
uniform sparsity levels. The improvement is even more significant when using a non-uniform ERK
sparsity distribution: 1.1% and 1.3% at 80% and 90% sparsity levels, respectively. Importantly, our
approach at 80% sparsity level trained for 500 epochs yields a 0.6% top-1 accuracy improvement
compared to the dense ResNet50 baseline. Compared with the latest work IP-FT (Wimmer et al.,

6

Under review as a conference paper at ICLR 2023

METHOD SPARSITY TOTAL SPARSITY RATIO 80% SPARSITY RATIO 90%
DISTRIBUTION EPOCHS TOP-1 ACC(%)↑ FLOPS(×e8)↓ TOP-1 ACC(%)↑ FLOPS(×e8)↓

DENSE (Zagoruyko & Komodakis, 2016) 94.6 3.2 94.6 3.2

PRUNING (Gale et al., 2019) NON-UNIFORM 250 93.5 0.5 93.3 1.1
STATIC ERK 250 92.9 0.5 91.6 1.1
RIGL (Evci et al., 2020) ERK 250 93.5 0.5 92.9 1.1
LOOKAHEAD (OURS) ERK 250 93.8 0.5 93.6 1.1

STATIC ERK 500 93.2 0.5 91.8 1.1
RIGL(Evci et al., 2020) ERK 500 93.7 0.5 93.3 1.1
LOOKAHEAD (OURS) ERK 500 94.5 0.5 93.8 1.1

Table 2: CIFAR-10 unstructured sparsity results using WideResNet22-2 for 80% and 90% sparsity. Averaged
results over three runs.

METHOD TOP-1 ACC(%)↑ TOP-5 ACC(%)↑ FLOPS(×e9)↓ FPS(IM/S)↑ EPOCHS TRAIN FLOPS(×e18)↓ PRETRAINED

DENSE (Li et al., 2020) 77.2 92.9 4.1 1019 90 ×1 (w.r.t.1.6) –

EAGLEEYE-2G(Li et al., 2020) 76.4 92.9 2.1 1471 90 + 120 ×1.68 ✓
GREG-2(Wang et al., 2021) 75.4 – 1.8 1414 90 + 90 ×1.44 ✓
SCOP(Tang et al., 2020) 76.0 2.2 – 90 + 140 ×1.83 ✓
GBN(You et al., 2019) 76.2 92.8 2.4 – 90 + 260 ×2.69 ✓
HALP-55%(Shen et al., 2022b) 76.6 93.2 2.1 1672 90 + 90 ×1.51 ✓
LOOKAHEAD-55%-PRETRAINED 77.0 93.2 2.0 1554 90 + 130 ×1.71 ✓
DSA(Ning et al., 2020) 74.7 92.1 2.0 – 120 ×1.11 ✗
SCS(Yuan et al., 2021) 75.2 – 2.1 – 120 ×1.12 ✗
TAS(Dong & Yang, 2019) 76.2 93.1 2.3 – 240 ×1.50∗ ✗
LOOKAHEAD-55% (OURS) 76.6 93.1 2.1 1654 130 ×0.71 ✗

EAGLEEYE-1G(Li et al., 2020) 74.2 91.8 1.0 2429 90 + 120 ×1.33 ✓
GREG-2(Wang et al., 2021) 73.9 – 1.3 1514 90 + 90 ×1.32 ✓
DSNET(Li et al., 2021) 74.6 – 1.2 – 90 + 150 ×1.49 ✓
POLARIZE(Zhuang et al., 2020) 74.2 – 1.2 – 90 + 158 ×1.51 ✓
HALP-30%(Shen et al., 2022b) 74.5 91.8 1.2 2597 90 + 90 ×1.29 ✓
LOOKAHEAD-30%-PRETRAINED 74.8 92.2 1.1 2621 90 + 130 ×1.39 ✓
METAPRUNING(Liu et al., 2019) 73.4 – 1.0 2381 160 ×0.43∗ ✗
DMCP(Guo et al., 2020) 74.1 – 1.1 – 150 ×0.45∗ ✗
LOOKAHEAD-30% (OURS) 74.6 92.1 1.0 2736 130 ×0.39 ✗

Table 3: ImageNet1K structured sparsity results using ResNet-50 for different pruning ratios. We use
LookAhead-X% to refer to the percentage of parameters remaining in the model at the end of training. Averaged
results over two runs. Detailed training flops calculation provided in supplementary material. "∗" sign indicates
lower-bound train cost for sparse training only for NAS-based methods.

2022) and DCIL (Kim et al., 2021), LookAhead achieves better or comparable accuracy with much
less training cost needed as also demonstrated in Figure 1 (left).

Results on CIFAR10. We additionally evaluate our approach using WideResNet22-2 on CIFAR-10.
In this case, we set the update periods to 65 and 150 for 250 and 500 training epochs, respectively.
We detail the rest of the experimental settings in the supplementary material. As shown in Table 2,
our approach outperforms the existing approaches while using only half the training time. In
addition, as also happened for ImageNet, our approach with 80% sparsity and 500 training epochs
achieves competitive performance compared to the dense model baseline. The results show the
efficacy of LookAhead extends to small dataset as well, performing much better than other random
exploration strategies like RigL (Evci et al., 2020).

4.2 STRUCTURED SPARSITY

We next move to the more challenging structured sparsity task, where we focus on latency-aware
structured sparsity (Shen et al., 2022b). To this end, we modify the LookAhead Prune-Grow stages
to consider network channels rather than single parameters. We follow HALP (Shen et al., 2022b)
but impose the dynamic regime of LookAhead into the knapsack process. First, we formulate the
pruning step as a global cost-constraint importance maximization problem, where we take into
account the latency benefits incurred every time we remove a channel from one of the layers of
the network. Similarly, the growing step can also be formulated as a cost-constraint importance
maximization problem where, in this case, we consider the latency increase for every additional
channel added to a layer of the network. We provide the detailed formulation, and the experimental
setup used in our experiments in the supplementary material.

Most structured sparsity approaches in the literature start from a pretrained model. Whereas in our
approach, we start training the model from scratch and use an exponential scheduler to gradually
increase the pruning ratio until we reach the target constraint. This leads to a significant reduction in
the training costs. For additional insights and comprehensive comparison, we also consider the case
where we start from a pretrained model in our experiments. In addition, we compare with prior art
on resource or hardware-aware pruning covering a wider range of algorithms like (Li et al., 2020;
Liu et al., 2019; Shen et al., 2022b), standard channel pruning methods like (Tang et al., 2020;
Zhuang et al., 2020), the structured dynamic sparse training method SCS (Yuan et al., 2021), and

7

Under review as a conference paper at ICLR 2023

4000 5000 6000 7000 8000 9000

 Inference FPS (im/s)

66

67

68

69

70

71

72

 T
o

p
1

 A
c
c
(%

)

1 1.5 2 2.5 3 3.5 4

 Train Cost

66

67

68

69

70

71

72

EagleEye (Li et al. ECCV'20) AutoSlim (Yu et al. NeurIPS'19) AMC (He et al. ECCV'18)

MetaPruning (Liu et al. ICCV'19) HALP (Shen et al. NeurIPS'22) LookAhead Scratch (Ours)

Figure 3: MobileNet-V1 on ImageNet1K structured
sparsity results as a function of frames per second
(left, top-right is better) and train cost (right, top-left
is better).

40 60 80 100 120 140 160 180
 FPS

75.5

76

76.5

77

77.5

78

78.5

79

 m
A

P
(%

) SSD512-RN50-SMCP

SSD512-RN50-HALP

LookAhead (Ours)

SSD300-VGG16

SSD512-RN50

RetinaNet-RN50

SSD300-RN50
SSD512-RN50-slim

Figure 4: The mAP and inference FPS trade-off for
pruning SSD512-RN50 on PASCAL VOC dataset.

results for AutoML and NAS-based methods such as AutoSlim (Yu & Huang, 2019) and AMC (He
et al., 2018b).

Results on ImageNet. We show results for two different architectures: ResNet50 and MobileNet-
V1 on ImageNet dataset. Results for these two experiments are shown in Table 3 and Figure 3. Our
approach consistently outperforms all the referenced methods, including the very recently proposed
state-of-the-art latency pruning method HALP (Shen et al., 2022b). For ResNet50, compared to
other dynamic sparse training methods such as SCS (Yuan et al., 2021) our approach yields up
to 1.4% (76.7% v.s. 75.2%) accuracy improvement with a 2.1G-FLOPs model. We can observe
similar patterns for the more efficient architecture MobileNet-V1, with LookAhead obtaining much
more superior latency-accuracy tradeoff as clearly shown in Figure 3. Moreover, our approach
trains networks from scratch yielding significant training cost saving compared with HALP which
performs on a dense pretrained model, as shown in Figure 1 (right). We included detailed training
FLOPs cost and epochs in the table to demonstrate the computation saving by LookAhead. We show
the high efficacy of a dynamic sparsification method in-training is now made viable to offer similar
or enhanced compact models compared to the literature.
Generalization to Object Detection We further demonstrate the generalizability of our approach
to object detection task. The experimental settings and hyperparameters for this experiment are
detailed in the supplemental material. We report our results of pruning a SSD512 (Liu et al., 2016)
using a ResNet50 backbone on the popular PASCAL VOC dataset (Everingham et al., 2010) in
Figure. 4. As shown, LookAhead clearly outperforms other methods in the literature with higher
accuracy and/or a faster FPS, and even surpass the dense model while reducing the latency in half.

4.3 ABLATION STUDIES Grow Criterion Init Freeze Accuracy Improvement
Update Period Sparsity 90% ERK

H=J=K Top1 Acc(%)↑

Magnitude Trained ✓ ✓ 100 73.9
Magnitude Trained ✓ ✓ 150 74.3
Magnitude Trained ✓ ✓ 200 74.0

Magnitude Trained ✗ ✓ 150 73.6

Magnitude Trained ✓ ✗ 150 73.4

Random Trained ✓ ✓ 150 NaN
Magnitude ZeroInit ✓ ✓ 150 74.0

Figure 5: Performance of our approach as a function of
the update period, grown initialization, weight freezing,
and inclusion of Accuracy Improvement stage. Results
obtained using unstructured weight sparsity on Imagenet
using ResNet50 with 90% ERK weight sparsity trained for
100 epochs.

0 20000 40000 60000 80000
Steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IoU

(a)

Mask IoU after Pruning
Mask IoU after Growing

0 20000 40000 60000 80000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iva
l R

at
e

(b)

LookAhead
RigL

Figure 6: (a) Architecture convergence using mask IoU after
pruning and growing; (b) Grown Neurons Survival Rate for
our approach and RigL (Evci et al., 2020).

In this section, we perform ablations and
conduct additional analysis to validate our
design choices and provide observations
for (i) the update period, (ii) freezing
parameters (see Reactivate & Explore in
Section3.1), (iii) the effect of the Accuracy
Improvement stage, (iv) growing criterion
of the neurons, and (v) initialization of the
grown neurons. For these experiments, we
use a ResNet50 with 90% ERK sparsity
trained for 100 training epochs from
scratch on ImageNet.

Sensitivity to the update period. We
first study the effect of the update period
H,J,K, which controls the balance
between exploration and exploitation.
A longer update period leads to more
exploitation of the current selected sparse
structure but fewer explorations. As
shown in Table 5, we observe intuitive

8

Under review as a conference paper at ICLR 2023

degradation in performance given
emphasis towards either end and observe 150 batches as a reliable amount.

Freezing ΘK in Reactivate & Explore and inclusion of the Accuracy Improvement stage. We
mentioned in Sec.3.1 that the inclusion of Accuracy Improvement stage and freezing currently
selected architecture ΘK in Reactivate & Explore are crucial to the performance with more thorough
exploitation and stable exploration. The ablation results are demonstrated in Table 5. We observe
a significant drop in performance when we do not enable these features. This demonstrates that
explicitly forcing exploitation and exploration stages offers noticeable benefits.

Growing criterion and initialization. We further study the sensitivity of our algorithm to the
growing criterion and the initialization of the grown neurons. As shown in Table 5, random growing
the connections as in SET (Mocanu et al., 2018)(v.s. growing by magnitude criterion after Reactivate
& Explore) leads to NaN with overflowed gradients after a few epochs. If we use ZeroInit, that is,
initializing the grown neurons to 0 as in RigL (Evci et al., 2020), the performance also drops. We
achieve the best results when we grow neurons using the weight magnitude criterion and initialize
the grown ones using the trained values obtained after the Reactivate & Explore stage.

4.4 DISCUSSIONS

Architecture convergence. We also analyze the convergence of the sparse architecture of our
proposed method. To this end we report the mask IoU of the model mask B between two consecutive
LookAhead update steps as training progresses. In particular we express the binary mask at the t–th
LookAhead update step as Bt and measure the mask IoU between the t–th and (t+1)–th LookAhead
step as IoU = |Bt∩Bt+1|

|Bt∪Bt+1| . Bt can either be the binary mask immediately after pruning, denoted as
Bt
p, or immediately after growing, denoted as Bt

g .

Figure 6(a) shows the evolution of the mask IoU as the training progresses as a proxy for architecture
convergence. As we can see, for both pruning and growing mask IoU there is a clear convergence
towards IoU = 1, indicating that the discovered sparse architecture becomes more stable towards
the end of the training process.

Effectiveness of the exploration strategy. To demonstrate the effectiveness of LookAhead
exploration strategy compared to the previous random and greedy exploration approaches,
RigL(Evci et al., 2020) as the representative, we propose a new metric named as the neuron growth
survival rate. The main idea is to gauge the fraction of newly grown neurons that is still active
after the subsequent pruning step, indicating its reliability and usability once grown, joint with
a side benefit to hint on architectural stability. This quantifiable metric is formally defined as
|(Bt

g−Bt
p)∩Bt+1

p |
|Bt

g−Bt
p|

. Intuitively, a high survival rate suggests an effective growth step as those newly
grown parameters persist in the architecture for future training. As shown in Figure 6(b), the survival
rate of our approach is significantly higher than RigL (Evci et al., 2020) for all exploration steps,
demonstrating the effectiveness of our solid growing strategy.

Limitations As demonstrated in Sec.3, LookAhead requires additional hyperparameters like
H,J,K which may need tuning effort for different datasets. Furthermore, our exploration step
Reactivate&Explore introduce additional small amount of overhead as demonstrated in our tables
and explained in the supplementary material.

5 CONCLUSIONS

In this paper, we re-formulate network sparsification as an iterative exploitation-exploration
process to dynamically configure the network sparse structure through training. We introduce a
novel LookAhead prune-grow scheme to balance both kept and removed parameters to discover
enhanced sparse architecture while directly addressing the random and greedy nature of previous
exploration solutions. We conduct extensive experiments with two different datasets and three model
architectures on both unstructrued and structrued sparsity and demonstrate our method beats prior
arts by a clear margin in various configurations. We also conduct a rigorous ablation study and
design metrics to directly evaluate the effectiveness of our growing criterion.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In
Advances in Neural Information Processing Systems, pp. 2270–2278, 2016.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. ICLR, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 33:1877–1901, 2020.

Changan Chen, Frederick Tung, Naveen Vedula, and Greg Mori. Constraint-aware deep neural
network compression. In ECCV, pp. 400–415, 2018.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient model
compression via learned global ranking. In CVPR, pp. 1518–1528, 2020.

Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural network synthesis tool based on a
grow-and-prune paradigm. IEEE Transactions on Computers, 68(10):1487–1497, 2019.

Pau de Jorge, Amartya Sanyal, Harkirat S Behl, Philip HS Torr, Gregory Rogez, and Puneet K
Dokania. Progressive skeletonization: Trimming more fat from a network at initialization. ICLR,
2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255. Ieee, 2009.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. NeurIPS, 32,
2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In ICML, pp. 2943–2952. PMLR, 2020.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2018.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan. Dmcp: Differentiable markov channel
pruning for neural networks. In CVPR, pp. 1539–1547, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. SIGARCH, 44(3):
243–254, 2016.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. NeurIPS, 5, 1992.

10

Under review as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In IJCAI, 2018a.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In CVPR, pp. 4340–4349, 2019.

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter
pruning criteria for deep convolutional neural networks acceleration. In CVPR, pp. 2009–2018,
2020.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In ECCV, pp. 784–800, 2018b.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian
Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy trade-offs for
modern convolutional object detectors. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7310–7311, 2017.

Ryan Humble, Maying Shen, Jorge Albericio Latorre, Eric Darve, and Jose Alvarez. Soft masking
for cost-constrained channel pruning. In European Conference on Computer Vision, pp. 641–657.
Springer, 2022.

Jangho Kim, Jayeon Yoo, Yeji Song, KiYoon Yoo, and Nojun Kwak. Dynamic collective intelligence
learning: Finding efficient sparse model via refined gradients for pruned weights. arXiv preprint
arXiv:2109.04660, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
ICML, pp. 5544–5555. PMLR, 2020.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In NeurIPS, pp. 598–605,
1990.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In ICLR, 2018.

Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for efficient
neural network pruning. In ECCV, pp. 639–654, 2020.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In CVPR, pp. 8607–8617, 2021.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In ICLR, 2017.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In CVPR, pp. 1529–1538, 2020a.

Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang.
Accelerating convolutional networks via global & dynamic filter pruning. In IJCAI, volume 2,
pp. 8. Stockholm, 2018.

11

Under review as a conference paper at ICLR 2023

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. ICLR, 2020b.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Ning Liu, Geng Yuan, Zhengping Che, Xuan Shen, Xiaolong Ma, Qing Jin, Jian Ren, Jian Tang,
Sijia Liu, and Yanzhi Wang. Lottery ticket preserves weight correlation: Is it desirable or not? In
ICML, pp. 7011–7020. PMLR, 2021.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, pp. 21–37. Springer, 2016.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In ICCV, pp.
3296–3305, 2019.

Sam Lobel, Omer Gottesman, Cameron Allen, Akhil Bagaria, and George Konidaris. Optimistic
initialization for exploration in continuous control. In AAAI, volume 36, pp. 7612–7619, 2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l_0 regularization. In ICLR, 2018.

Xiaolong Ma, Minghai Qin, Fei Sun, Zejiang Hou, Kun Yuan, Yi Xu, Yanzhi Wang, Yen-Kuang
Chen, Rong Jin, and Yuan Xie. Effective model sparsification by scheduled grow-and-prune
methods. In ICLR, 2021.

Marlos C Machado, Sriram Srinivasan, and Michael Bowling. Domain-independent optimistic
initialization for reinforcement learning. In AAAI, 2015.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? NeurIPS,
32:14014–14024, 2019.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature communications, 9(1):1–12, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In ICML, pp. 2498–2507. PMLR, 2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In CVPR, pp. 11264–11272, 2019.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In ICML, pp. 4646–4655. PMLR, 2019.

Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring sparsity in recurrent
neural networks. ICLR, 2017.

Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, and Huazhong Yang. Dsa: More
efficient budgeted pruning via differentiable sparsity allocation. In ECCV, pp. 592–607. Springer,
2020.

NVIDIA. Nvidia. convolutional networks for image classification in pytorch.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. NeurIPS Workshop, 2017.

12

Under review as a conference paper at ICLR 2023

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 115(3):211–252, 2015.

Maying Shen, Hongxu Yin, Pavlo Molchanov, and Jose M Alvarez. When to prune? a policy towards
early structural pruning. CVPR, 2022a.

Maying Shen, Hongxu Yin, Pavlo Molchanov, Lei Mao, Jianna Liu, and Jose Alvarez. Structural
pruning via latency-saliency knapsack. In Advances in Neural Information Processing Systems,
2022b.

Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural networks.
In CVPR workshops, pp. 138–145, 2017.

Nikko Ström. Sparse connection and pruning in large dynamic artificial neural networks. In Fifth
European Conference on Speech Communication and Technology. Citeseer, 1997.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. NeurIPS, 33:6377–6389, 2020.

Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu. Scop:
Scientific control for reliable neural network pruning. NeurIPS, 33:10936–10947, 2020.

Georg Thimm and Emile Fiesler. Evaluating pruning methods. In ICANN, pp. 20–25. Citeseer,
1995.

Joost van Amersfoort, Milad Alizadeh, Sebastian Farquhar, Nicholas Lane, and Yarin Gal. Single
shot structured pruning before training. arXiv preprint arXiv:2007.00389, 2020.

Stijn Verdenius, Maarten Stol, and Patrick Forré. Pruning via iterative ranking of sensitivity
statistics. arXiv preprint arXiv:2006.00896, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In ICLR, 2019.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. In
ICLR, 2021.

Paul Wimmer, Jens Mehnert, and Alexandru Condurache. Freezenet: Full performance by reduced
storage costs. In ACCV, 2020.

Paul Wimmer, Jens Mehnert, and Alexandru Condurache. Interspace pruning: Using adaptive filter
representations to improve training of sparse cnns. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 12527–12537, 2022.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. NeurIPS,
32, 2019.

Yu-Cheng Wu, Chih-Ting Liu, Bo-Ying Chen, and Shao-Yi Chien. Constraint-aware importance
estimation for global filter pruning under multiple resource constraints. In CVPR Workshops, pp.
686–687, 2020.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
ECCV, pp. 285–300, 2018.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks. NeurIPS, 32, 2019.

Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture search for channel numbers.
NeurIPS Workshop, 2019.

Xin Yuan, Pedro Savarese, and Michael Maire. Growing efficient deep networks by structured
continuous sparsification. ICLR, 2021.

13

Under review as a conference paper at ICLR 2023

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC. British Machine
Vision Association, 2016.

Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural networks
with global sparsity constraint. In CVPR, pp. 3599–3608, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. NeurIPS, 33:9865–9877, 2020.

A APPENDIX

A.1 FORMULATION OF LOOKAHEAD WITH LATENCY-CONSTRAINED STRUCTURED
SPARSITY

We now present LookAhead with latency-constrained structured sparsity setting. Specifically, we
will highlight the different parts from our formulation with unstructured sparsity setting presented
in Section 3.

A.1.1 NOTATION

For the neural network with L layers in total, we represent its parameters as Θ =
⋃L

l=1 Θ
l, s.t. Θl ∈

RCl
out×Cl

in×Kl×Kl

. For the binary mask B indicating pruned and kept parameters, we now have
B =

⋃L
l=1 Bl,Bl ∈ RCl

out ,Bl ∈ {0, 1}Cl
out . , where Cl

out represents the number of output channels
of layer l. We briefly denote Cl

out as ml for simplicity. Unlike the element-wise multiplication of
model parameters and corresponding binary mask, we now represent the model masking producing
sparse model weights as follows:

Θ • B =

L⋃
l=1

Θl ⊙ diag(Bl), (4)

where diag is a diagonalization operator broadcasting Bl to the same shape as Θl. In PyTorch, this
would simply be:

Θ • B =

L⋃
l=1

Θl ⊙ Bl.view(−1, 1, 1, 1), (5)

Moreover, ΘK represents kept channels, expressed as ΘK = {
⋃L

l=1

⋃ml

i=1 Θ
l
i;Bl

i = 1}, and ΘP

represents pruned channels, expressed as ΘP = {
⋃L

l=1

⋃ml

i=1 Θ
l
i;Bl

i = 0}. Finally, we use pl to
define the active number of channels at layer l, expressed as pl = ∥Bl∥0.

A.1.2 RECAP OF HALP AND LATENCY-CONSTRAINED PRUNING

For our latency-constrained structured sparsification, we follow the latest resource-constrained
pruning method HALP (Shen et al., 2022b) but impose the dynamic regime of LookAhead. Same as
HALP, we formulate the pruning step as a global cost-constraint importance maximization problem,
where we take into account the latency benefits incurred every time we remove a channel from one of
the layers of the network. Similarly, we also formulate our unique growing part as a cost-constraint
importance maximization problem. In this section, we will provide a brief recap of HALP and how
it’s used for the pruning step in our LookAhead iterative prune-and-grow setup. Given a global
resource constraint C defining the maximum amount of resource we could use, HALP aims to find
a sets of channels defining a sub-network achieving the best performance under the constraint C.
In this case, C represents the inference latency for a target hardware platform. With the structured

14

Under review as a conference paper at ICLR 2023

latency constraint, learning of the network sparsification (Eqn.1) now becomes:

min
Θ,B

1

N

N
|B|∑
i=1

ℓ(f(Θ • B;xi),yi), (6)

s.t.
L∑

l=1

T l(pl−1, pl) ≤ C,

where T l(pl−1, pl) defines the layer latency at layer l with pl−1 active input channels and pl active
output channels. In order to obtain the layer latency T l(pl−1, pl), HALP uses a pre-built layer-wise
look-up table recording the latency at certain channel number and kernel dimension configuration.
With this latency look-up table, HALP associates a potential latency reduction value Rl

j to each jth
channel of layer l, computed as follows:

Rl
j = T l(pl−1, j)− T l(pl−1, j − 1), 1 ≤ j ≤ pl (7)

Rl
j estimates the potential latency saving if we prune the corresponding channel. Now, in

order to estimate the performance of the selected sub-newtwork, HALP measures the importance
score Il

j for each jth channel of layer l. The importance score metric adopted here is Taylor
importance (Molchanov et al., 2019), which is evaluated as follows:

Il
j = |gγl

j
γl
j + gβl

j
βl
j |, (8)

where γ and β are the BatchNorm layer’s weight and bias. With R and I calculated, HALP
formulates the channel pruning as a Knapsack problem where we try to maximize the total
importance but under the latency constraint C:

max

L∑
l=1

pl∑
j=1

I lj , s.t.
L∑

l=1

pl∑
j=1

Rl
j ≤ C, 0 ≤ pl ≤ ml, I l1 ≥ I l2 ≥ . . . I lpl (9)

Notice here the ranking of channels by the importance, in practice, HALP rank channels globally by
importance and then consider their latency contribution. Concretely, if we prune the least important
channel at layer l, the number of active channels will change from pl to pl − 1, leading to a latency
reduction Rl

pl assigned as this channel’s importance score. For solving Eqn.9, HALP developed
an augmented Knapsack solver Knapsack(V,W,C) , where V and W are lists of values and
weights for each item and C is the global resource contraint. Knapsack(V,W,C) returns the items
achieving maximum value while the accumulated weight is below the global constraint C.

A.1.3 LATENCY-CONSTRAINED GROWING

Each LookAhead update step consists of alternative prune-and-grow to fully explore the sparse
architecture. With a structured latency-constrained setting, during growing, we also want to take
the model latency into account to prevent some latency-costly channels getting added back. We
now present a latency-constrained growing step based on the Knapsack scheme developed in
HALP (Shen et al., 2022b) and summarized in Sec.A.1.2. Similarly, we first use the latency look-up
table to associate a potential latency addition value Al

j to each jth channel of layer l, computed as
follows:

Al
j = T l(pl−1, j)− T l(pl−1, j − 1), (pl + 1) ≤ j ≤ ml (10)

Al
j estimates the potential latency increase if we grow the corresponding channel. We then estimate

the importance of the grown channel I similarly using a Taylor importance metric. With A and
I calculated, we also treat the channel growing as a Knapsack problem to maximize the regrown
importance but under the assigned growing latency budget G:

max

L∑
l=1

pl+gl∑
j=pl+1

I lj , s.t.
L∑

l=1

pl+gl∑
j=pl+1

Al
j ≤ G, 0 ≤ pl + gl ≤ ml, I lpl+1 ≥ I lpl+2 ≥ . . . I lpl+gl

Here, gl would be the number we choose to grow back for layer l. Similarly, we impose a ranking
on the channels based on the importance for channel latency assignment. During growing, if we

15

Under review as a conference paper at ICLR 2023

grow the most important channel from ΘP , the number of active channels will change from pl to
pl+1, leading to a latency addition Al

pl assigned as this channel’s importance score. The augmented
Knapsack solver Knapsack(V,W,C) is also used here to solve this constrained optimization
problem.

A.1.4 UPDATE SCHEDULE

Given C as our final targeted latency, we gradually decrease the total latency of the model using
exponential scheduler (de Jorge et al., 2021) similar to HALP (Shen et al., 2022b). Suppose the total
number of update steps is T , we have the latency target at each step t as C1 > C2 > · · · > CT = C.
We also assign a latency budget to the model at each update step to grow an amount of connections.
The grown latency budget at update step t could also be determined by an exponential scheduler or
cosine annealing scheduler. However, we notice that a latency budget given by Gt = α·(Ct−Ct−1)
yields good performance. In practice, we set α = 0.75.

A.1.5 PROCEDURE

To recap, in the prune step, we apply the Knapsack latency-constrained pruning as described in
Sec.A.1.2 on the kept parameters ΘK ; and in the grow step, we apply the Knapsack latency-
constrained growing as described in Sec.A.1.3 on the removed parameters ΘP . We use the scheduled
{C1, . . . , CT } and {G1, . . . , GT } to control the amount we prune and grow latency-wise at each
LookAhead step. The other parts and the overall procedure is the same as the scheme we present in
Sec.3 for the unstructured sparsity setting.

We provide an algorithmic description of the latency-constrained LookAhead dynamic sparse
training scheme in Algo.2 for completeness.

A.2 DETAILED EXPERIMENT HYPERPARAMETER AND OPTIMIZATION SETTINGS

The large-scale image classification dataset ImageNet (Deng et al., 2009) is of version
ILSVRC2012 (Russakovsky et al., 2015), which consists of 1.3M images of 1000 classes. We
run all experiments on ImageNet and PASCAL VOC with eight NVIDIA Tesla V100 GPUs.
Experiments on CIFAR10 (Krizhevsky et al., 2009) are conducted with a single NVIDIA Tesla V100
GPU. All experiments are conducted with PyTorch (Paszke et al., 2017) V1.4.0. For experiments
that require pretrained model weights, we take the ones provided by the official PyTorch model zoo.

A.2.1 UNSTRUCTURED WEIGHT SPARSITY ON RESNET50-IMAGENET

We use an individual batch size of 128 per GPU and follow NVIDIA’s recipe (NVIDIA) with
mixed precision and Distributed Data Parallel training. The learning rate is warmed up linearly in
the first 8 epochs reaching its highest learning rate then follows a cosine decay (Loshchilov & Hutter,
2016) over the remaining epochs. While reproducing the results of RigL (Evci et al., 2020), similar
to PC-GAP (Ma et al., 2021), we found that the original optimization settings provided by RigL
does not yield stable results particularly in the longer training with 500 epochs. However, with our
hyperparameters and optimization setting, we’re able to reproduce RigL (Evci et al., 2020) and even
obtain better results than theirs, ensuring a fair comparison. Moreover, in main paper, we mentioned
that for unstructured weight sparsity experiments, we leveraged a cosine decay function expressed
as nl = fdecay(t;α, T)m

l(1 − Sl) to determine the number of neurons to update at each step. In
practice, we set α as 0.3 and choose T to be the 3/4 of the entire training duration. For example, if
we train the model for 100 epochs, the LookAhead update step will repeat until the 75th epoch.

A.2.2 UNSTRUCTURED WEIGHT SPARSITY ON WIDERESNET22-2-CIFAR10

In our experiments section, we also include results of WideResNet22-2, which is Wide Residual
Network (Zagoruyko & Komodakis, 2016) with 22 layers using a width multiplier of 2. We use an
individual batch size of 128, an initial learning rate of 0.1 decaying by a factor of 5 every 30000
iterations, an L2 regularization coefficient of 5e − 4, and a SGD momentum of 0.9. Similarly,
results of RigL are reproduced using the same hyperparameters and optimization settings as ours,
ensuring a fair comparison. Choices of α and T are similar to the above ImageNet settings.

16

Under review as a conference paper at ICLR 2023

A.2.3 LATENCY CONSTRAINED STRUCTURED SPARSITY

Algorithm 2 LookAhead Pseudocode with
Latency-Constrained Structured Sparsity
Input:Θ, D, T ,
{C1, C2, . . . , CT },{G1, G2, . . . , GT }, H , J ,
K

1: ΘK ,ΘP ,B ← Θ, {},1
2: ∆T ← H + J +K
3: t, f lag ← 0, 0
4: for i← 1 to |D| do
5: if (i+ J +K) mod ∆T = 0 and t < T then
6: IK ←= {

⋃L
l=1

⋃ml

i=1 I
l
i ; Θ

l
i ∈ ΘK}

7: R←= {
⋃L

l=1

⋃pl

i=0 R
l
i}

8: Ip ← Knapsack(IK , R, Ct)
9: //Prune Connections

10: Update ΘK ,ΘP ,B with Ip
11: else if (i+K) mod ∆T = 0 and t < T then
12: flag ← 1
13: else if i mod ∆T = 0 and t < T then
14: IP ←= {

⋃L
l=1

⋃ml

i=1 I
l
i ; Θ

l
i ∈ ΘP }

15: A←= {
⋃L

l=1

⋃ml

i=pl+1 A
l
i}

16: Ip ← Knapsack(IP , A,Gt)
17: //Grow Connections
18: Update ΘK ,ΘP ,B with Ig
19: t← t+ 1
20: flag ← 0
21: end if
22: if flag then
23: //Reactivate & Explore
24: ℓi ← ℓ(f(ΘP ∪ΘK ;xi), yi)
25: ΘP ← lr · ∇ΘP li
26: else
27: //Importance Estimation
28: //Accuracy Improvement
29: ℓi ← ℓ(f(Θ⊙ B;xi), yi)
30: ΘK ← lr · ∇ΘK li
31: end if
32: end for

ImageNet We follow HALP (Shen et al.,
2022b) for setting the hyperparameters and
optimization settings of experiments on latency
constrained structured sparsity with ResNet50
and MobileNet-V1. They are also similar to
the recipe described in A.2.1. We set T , the
total number of updates, as 45 and H,J,K
as 50. Total number of training epochs is
set to 110. We also follow HALP (Shen
et al., 2022b) for constructing the latency
lookup table, which is pre-generated targetting
the NVIDIA TITAN V GPU inference by
iteratively reducing the number of channels
in a layer and characterize the corresponding
latency with NVIDIA cuDNN (Chetlur et al.,
2014) V7.6.5. The latency measurement is
conducted 100 times to avoid randomness.
We also refer to HALP for some special
implementation detail such as how to deal
with the group convolution in MobileNet-V1,
negative latency contribution, pruning of the
first model layer, which are all described in
detail in HALP.

PASCAL VOC We follow the "07 + 12"
setting as in (Liu et al., 2016) and use the
union of VOC2007 and VOC2012 trainval as
our training set and VOC2007 test as test
set. Our SSD model, similar to HALP (Shen
et al., 2022b), is based on (Liu et al., 2016).
Following (Huang et al., 2017), for efficiency,
we remove the last stage of convolution layers,
last avgpool, and fc layers from the original
ResNet50 classification structure. Also, all
strides in the third stage of ResNet50 layer
are set to 1 × 1. We train our models for
900 epochs with SGD optimizer and learning
rate schedule same as (Shen et al., 2022b)
with an initial learning rate of 8e − 3 which
warms up in the first 50 epochs then decays by
3/8, 1/3, 2/5, 1/10 at the 700, 800, 840, 870th
epoch

A.3 MAGNITUDE RANK VARIATION

Within one LookAhead step, we included three training stages, namely Importance Estimation,
Accuracy Improvement, Reactivate Explore. To further analyze and understand LookAhead,
we track and visualize the magnitude rank variation of the removed neurons in the prune step
across one LookAhead update step. We conduct this study with the ResNet50-ImageNet 90%
ERK unstructured weight sparsity setting. Concretely, same as 4.4, we denote the binary mask
immediately after pruning at the tth update step as Bt

p and the binary mask immediately after
growing at the tth update step as Bt

g . We express the active neurons at the tth update step before
pruning as:

Θt
α = {Θi;Bt−1

gi = 1} (11)

17

Under review as a conference paper at ICLR 2023

Figure 7: Magnitude rank of |Θt
γ | and |Θt

α − Θt
γ |

among |Θt
α| after Importance Estimation, Accuracy

Improvement, and Reactivate & Explore respectively.
Some of the neurons originally lower ranked in
magnitude and pruned get updated significantly and
higher ranked through one LookAhead update step.

Figure 8: LookAhead without freezing in Reactivate
& Explore. Magnitude rank of |Θt

γ | and |Θt
α − Θt

γ |
among |Θt

α| after Importance Estimation, Accuracy
Improvement, and Reactivate & Explore respectively.
Compared to Fig.7, magnitude of pruned neurons get
much less updated through one LookAhead update
step, illustraing the effectiveness of our freezing ΘK .

0 10 20 30 40 50

0.15

0.16

0.17

0.18

0.19

Avg(Rank ′(| t |)) after Imp. Est.
Avg(Rank ′(| t |)) after Acc. Impr.

Avg(Rank ′(| t |)) after Re. Expl.
0 10 20 30 40 50

0.26

0.28

0.30

0.32

0.34

0.36

0.38

Avg(Rank ′(|Bot(t t)25%|)) after Imp. Est.
Avg(Rank ′(|Top(t)25%|)) after Imp. Est.
Avg(Rank ′(|Bot(t t)25%|)) after Acc. Impr.

Avg(Rank ′(|Top(t)25%|)) after Acc. Impr.
Avg(Rank ′(|Bot(t t)25%|)) after Re. Expl.
Avg(Rank ′(|Top(t)25%|)) after Re. Expl.

0 10 20 30 40 50

0.037

0.038

0.039

0.040

0.041

0.042

0.043

Avg(Rank ′(|Bot(t)25%|)) after Imp. Est.
Avg(Rank ′(|Bot(t)25%|)) after Acc. Impr.

Avg(Rank ′(|Bot(t)25%|)) after Re. Expl.
0 10 20 30 40 50

0.9090

0.9095

0.9100

0.9105

0.9110

0.9115

0.9120

0.9125

0.9130

Avg(Rank ′(|Top(t t)25%|)) after Imp. Est.
Avg(Rank ′(|Top(t t)25%|)) after Acc. Impr.

Avg(Rank ′(|Top(t t)25%|)) after Re. Expl.

Layer Number

Av
er

ag
e

Sc
al

ed
 M

ag
ni

tu
de

 R
an

k

Figure 9: Variation of average magnitude ranking of |Θt
γ | and |Θt

α − Θt
γ | among |Θt

α| after Importance
Estimation(Imp.Est.), Accuracy Improvement(Acc.Impr.), and Reactivate & Explore(Re.Expl.) for different
portions respectively.

Moreover, the newly pruned neurons at the tth update step Θt
γ can be expressed as:

Bt
γ = Bt−1

g − Bt
p (12)

Θt
γ = {Θi;Bt

γi = 1} (13)

Obviously, we have Θt
γ ⊂ Θt

α. The set of neurons that survive the Prune stage of the tth LookAhead
update step can thus be expressed as Θt

α−Θt
γ . Within one LookAhead update step which consists of

18

Under review as a conference paper at ICLR 2023

Importance Estimation, Prune, Accuracy Improvement, Reactivate & Explore, and Grow, we track
the magnitude of the pruned |Θt

γ | and the survived portions |Θt
α − Θt

γ | respectively after each one
of the three train sessions (Importance Estimation, Accuracy Improvement, Reactivate & Explore).
In other words, we sorted and ranked all neurons in Θt

α and inspected how those newly pruned
neurons Θt

γ change in magnitude by Accuracy Improvement and Reactivate & Explore compared
with those survived neurons Θt

α − Θt
γ . Visualization is provided in Fig. 7. As expected, we see

Θt
γ get ranked in the bottom after Importance Estimation since our pruning importance score is

directly the magnitude of neurons. Then, after Accuracy Improvement when only the kept neurons
Θt

α − Θt
γ get trained, the magnitude rank of |Θt

γ | and |Θt
α − Θt

γ | get barely altered as visualized
in the middle subplot. Finally, after Reactivate & Explore when we freeze Θt

α − Θt
γ and only train

the pruned sub-network containing Θt
γ for exploration, we see quite a few neurons in Θt

γ get much
higher ranked and even surpass those in Θt

α − Θt
γ . The Grow step following Reactivate & Explore

will then bring those neurons back to the model. To further understand the influence of freezing we
conduct in Reactivate & Explore, we also show the magnitude rank variation diagram of LookAhead
without freezing in Fig. 8. We can see that the magnitude rank of Θt

γ get barely changed, and Θt
γ

remains ranked in the bottom after Reactivate & Explore.

To gain more understanding of which portion of Θt
γ and Θt

α − Θt
γ get updated significantly by

LookAhead, we calculated and visualize the average magnitude rank of Θt
γ in different portions.

First, we use Top(Θt
γ)25% to denote the subset of neurons originally ranked in the top 25% of Θt

γ

after Importance Estimation. Similarly, we use Bot(Θt
γ)25% to denote the bottom 25% of Θt

γ .
Top(Θt

α−Θt
γ)25% and Bot(Θt

α−Θt
γ)25% thus denote the top and bottom 25% portion of Θt

α−Θt
γ

after Importance Estimation. Moreover, we use Avg(Rank(|Θt
γ |)) to denote the average magnitude

rank of Θt
γ . Since the number of neurons differs a lot for each layer, we scale the rank by the

inverse of number of active parameters of each layer. Specifically, for each layer l, we compute
Rank′(|Θtl

γ |) = Rank(|Θtl
γ |)/∥Θtl

α∥0. The visualization is provided in Fig. 9. From the figure, we
could see that the magnitude ranks that vary the most within one LookAhead update step are mostly
in Top(Θt

γ)25% and Bot(Θt
α −Θt

γ)25%. At some layer, Reactivate & Explore increase the average
scaled magnitude rank of Top(Θt

γ)25% by 13% from 26% to 39%. On the other hand, the neurons
which originally already rank pretty high Top(Θt

α − Θt
γ)25% or low in magnitude Bot(Θt

γ)25%
after Importance Estimation barely get their values changed much as visualized. The maximum of
increase in the average scaled magnitude rank of Bot(Θt

γ)25% by Reactivate & Explore is around
0.005, much smaller compared to the change in Top(Θt

γ)25%.

A.4 TRAINING FLOPS COST COMPUTATION

In tables presented in the paper, we demonstrate the training cost of LookAhead as well as other
methods. FLOPs needed for a single forward pass inference of sparse model is computed by
counting the total number of multiplications and additions. However, during training, the FLOPs
computation would be slightly different due to different usage of the back-propagation gradients.
In summary, training a neural network consists of 2 main steps which are forward pass and the
backward pass. During the forward pass, we calculate the loss of the given batch of data using the
current set of model parameters. Activations of each layer are stored in memory for the following
backward pass. During the backward pass, we use the loss value as the initial error signal and
back-propagate the error signal to calculate the gradients of parameters. We calculate respectively
the gradient of the activations of the previous layer and the gradient of its parameters. Roughly, the
FLOPs needed for backward pass will be twice the FLOPs needed for forward pass. Suppose a given
dense architecture has forward pass FLOPs represented as ζD and its pruned or sparsified model has
FLOPs ζP . Training a sample with dense model can be expressed as 3 · ζD.
LOOKAHEAD Each LookAhead step consists of three training stages, namely: Importance
Estimation, Accuracy Improvement, and Reactivate & Explore. For each Importance Estimation
and Accuracy Improvement, we need 3× ζP FLOPs for both sparse forward and backward pass. For
Reactivate & Explore, since we are training with temporarily reactivated ΘP , we need 2× ζP + ζD
FLOPs to take care of the dense forward pass. We still use sparse gradients for updating due to the
frozen ΘK . After the entire update period, the FLOPs needed would simply be 3 × ζP . Since the
update period ends at 3/4 of the entire training epochs, the average training cost can be calculated

19

Under review as a conference paper at ICLR 2023

as:
3

4
· (H + J) · 3 · ζP +K · (2 · ζP + ζD)

H + J +K
+

1

4
· 3 · ζP

With H = J = K, the cost would be:
11 · ζP + ζD

4
This would be slightly higher than completely training a sparse model from scratch which is 3 · ζP
but still substantially lower than dense model training cost (3 · ζD).
Also notice that, according to our above description of LookAhead with structured sparsity, we
follow the exponential scheduler of HALP (Shen et al., 2022b), and the update period ends much
earlier than 3/4 of the total training epochs. The update with LookAhead for latency-constrained
structured sparsity will instead end at 45× (50× 3) = 6750, which roughly corresponds to the 5th
epoch. The average training cost of LookAhead will also be much lower. With 130 training epochs
in total, according to the calculation we provide above, it will instead be:

5

130
· (H + J) · 3 · ζP +K · (2 · ζP + ζD)

H + J +K
+

125

130
· 3 · ζP

With H = J = K, the cost would approximately be:
388.3 · ζP + 1.7 · ζD

130

SOFT MASKING Now for the family of soft masking methods like SNFS (Dettmers & Zettlemoyer,
2019), DPF (Lin et al., 2020b), and DCIL (Kim et al., 2021), training cost vary based on
different methods. Since these methods typically maintain dense gradients during backpropagation,
training cost would usually be noticeably higher than typical sparse training approaches. For
SNFS (Dettmers & Zettlemoyer, 2019), the total number of training FLOPs scales with 2 · ζP + ζD.
For DCIL (Kim et al., 2021), the work requires two forward and backward passes each time to
measure two sets of gradients(one with dense weight and one with sparse weight) for weights update,
and the total number of training FLOPs scales with 5 ·ζD+ζP , which is nearly doubled dense model
training cost (6 · ζD).
ZERO-SHOT PRUNING For the family of static sparse training or zero-shot pruning, the cost can be
expressed as 3 · ζP .
PRUNING FROM PRETRAINED Most of the pruning from pretrained methods nowadays employed
iterative pruning. For simplicity here, we estimate a very loose theoretical lowerbound with one-
shot pruning and no further gradients calculation on the pruned parameters during finetuning. The
training cost of pretrained dense model scales with 3 · ζD as discussed. In the later finetuning stage,
the cost would scale with 3 · ζP since the model deals with a sparse model now.
RIGL (EVCI ET AL., 2020) For the representative state-of-the-art dynamic sparse training work
RigL, iterations with no connections updates need 3 · ζP FLOPs. At every ∆T iteration, RigL
calculates the dense gradients. The averaged FLOPs for RigL is given by 3·ζP+2·ζP+ζD

∆T+1 .
INTERSPACE PRUNING For the very latest interspace pruning work (Wimmer et al., 2022), authors
use FB convolution layers which introduce additional forward and backward overhead. Given the
information provided in the paper, for a particular convolution layer with size cout × cin ×K ×K,
the relative increase of forward pass would be K2/cout times the dense forward pass. Notice that
this is a constant overhead independent of the pruning rate and sparsity of the model. Similarly, the
authors provide that the backward pass would introduce an additional constant overhead of K2/cin
times the dense computation of gradients. Since authors provide no exact FLOPs of the model,
we also estimate a lower bound of K2/cout and K2/cin as 32/128 ≈ 0.07 for ResNet-50. This
is a lower bound since as identified in many works before the spatial size is the largest in the early
layers with a large K and small cout and cin processing large-sized feature maps and dominating the
overall FLOPs of the model. Now we could calculate the FLOPs needed to train a single example
as ζP + 0.07 · ζD + 2 · (ζP + 0.07 · ζD) which is approximately 3 · ζP + 0.21 · ζD.
NAS-BASED METHODSWe also demonstrate the results of some NAS-based methods (Liu et al.,
2019; Dong & Yang, 2019; Guo et al., 2020) in the main paper for comparison. Since the searching
involved is very hard to quantify the training cost estimation, we only report the estimated training
cost of the discovered pruned model (3 · ζP). Now notice that this is a very loose lower bound, and
the actual cost could be much higher with the architecture search.

A.5 ABLATION ON CIFAR-10

20

Under review as a conference paper at ICLR 2023

METHOD MAP↑ FLOPS(×e9)↓ TRAIN FLOPS(×e18)↓ FPS(BS=1)↑ FPS(BS=32)↑
SSD512-RN50, BASE MODEL 77.98 65.56 ×1.00(w.r.t.2.60) 68.24 103.48

SSD512-RN50-SLIM 75.83 46.09 ×0.70 76.49 114.80
SSD300-RN50 75.69 16.23 ×0.25 128.85 309.32

SSD300-VGG16 Liu et al. (2016) 76.72 31.44 ×0.48 122.28 262.93
RETINANET-RN50 Lin et al. (2017) 77.27 106.50 ×1.62 36.92 -

SSD512-RN50-HALP Shen et al. (2022b) 77.42 15.38 ×1.23 132.57 323.36
SSD512-RN50-SMCP Humble et al. (2022) 77.72 10.02 ×1.75 139.30 -

LOOKAHEAD (OURS) 78.62 16.41 ×0.29 132.46 318.46

Table 5: PASCAL VOC structured sparsity results on SSD512-RN50.

40 60 80 100 120 140 160 180

 FPS

75.5

76

76.5

77

77.5

78

78.5

79

 m
A

P
(%

)

0 0.5 1 1.5 2 2.5
75.5

76

76.5

77

77.5

78

78.5

79

RetinaNet-RN50 (ICCF'17)
SSD300-VGG16 (ECCV'16)
SSD300-RN50 (ECCV'16)
SSD-RN50-slim
SSD512-RN50-HALP (NeurIPS'22)
SSD512-RN50-SMCP (ECCV'22)
SSD512-RN50 (ECCV'16)
LookAhead (Ours)

RetinaNet-RN50

SSD512-RN50-slim

Train Cost

SSD512-RN50-HALP

SSD512-RN50-SMCP

LookAhead (Ours)

SSD512-RN50

SSD300-RN50

SSD300-VGG16

SSD512-RN50

LookAhead (Ours)

SSD300-VGG16

SSD300-RN50
SSD512-RN50-slim

RetinaNet-RN50
SSD512-RN50-HALP

SSD512-RN50-SMCP

Figure 10: PASCAL VOC structured sparsity results on SSD512-RN50 as a function of frames per second
(left figure, top-right is better) and train cost (right figure, top-left is better).

Total Epochs Update Period (H=J=K) Top1 Acc(%)
250 50 93.1± 0.03
250 65 93.6± 0.02
250 80 93.2± 0.03

500 135 93.4± 0.03
500 150 93.8± 0.01
500 165 93.4± 0.02

Table 4: CIFAR-10 unstructured sparsity results using
WideResNet-22 for 90% sparsity ratios. Ablation on
LookAhead update period. Averaged results over three
runs.

Update period is an important factor in our
algorithm as it controls how much we exploit
and explore. As mentioned in the main paper,
the update period we use for WideResNet22-
2 training on CIFAR-10 dataset is different for
250 and 500 epochs training. We demonstrate
the ablation results on the update period (H =
J = K) in Table 4. The results suggest that
LookAhead with more training epochs enjoy
longer update period.

A.6 DETAILED RESULTS OF OBJECT DETECTION

As shown in Table 5, we demonstrate the detailed results of object detection on the PASCAL
VOC Everingham et al. (2010) dataset compared with several strong baselines. Concretely, we
compared with the base SSD model Liu et al. (2016) with different backbone architecture including
our adopted ResNet-50 and VGG-16 without any pruning, RetinaNet Lin et al. (2017) for improved
detection performance without pruning, and the same SSD model latency-pruned by HALP Shen
et al. (2022b). The superiority of the proposed LookAhead method is clearly observed. We
significantly surpassed the mAP achieved by the latest HALP pruned model (78.62 v.s.77.42)
with comparable latency. Moreover, LookAhead is much better than the other methods in terms
of training cost, indicating that LookAhead can achieve superior performance while also saving
tremendous computation cost. The comparison of training cost is also presented in detail in
Figure 10.

21

	Introduction
	Related Works
	Iterative Prune-Grow LookAhead(s)
	LookAhead

	Experiments
	Unstructured Sparsity
	Structured Sparsity
	Ablation Studies
	Discussions

	Conclusions
	Appendix
	Formulation of LookAhead with Latency-Constrained Structured Sparsity
	Notation
	Recap of HALP and Latency-Constrained Pruning
	Latency-Constrained Growing
	Update Schedule
	Procedure

	Detailed Experiment Hyperparameter and Optimization Settings
	Unstructured Weight Sparsity on ResNet50-ImageNet
	Unstructured Weight Sparsity on WideResNet22-2-CIFAR10
	Latency Constrained Structured Sparsity

	Magnitude Rank Variation
	Training FLOPs Cost Computation
	Ablation on CIFAR-10
	Detailed Results of Object Detection

