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Abstract

Human can learn and accumulate knowledge
throughout their lifespan. Similarly, the paradigm
of continual learning (CL) in artificial intelligence
requires that the machine learning model can p-
reserve consolidated knowledge if new task is
adapted. However, to overcome catastrophic for-
getting, a destructive issue in continual learning,
memory-based approaches, replaying old expe-
riences with experience drawn from novel task
or constraining on old experiences, need a large
memory to prevent them from decreasing consoli-
dated knowledge, it is inefficiency and impractical.
To improve the efficiency of old experiences and
keep memory small, we introduce prioritized ex-
perience replay, which uses feature margin and
classification margin to prioritize representative
experiences. Feature margin is a cosine similarity
between original experience and average experi-
ence, and classification margin is the correctness
of model to predict experience. Experiment re-
sults show that prioritized experiences have a pos-
itive impact on alleviating catastrophic forgetting,
and replaying prioritized experiences stored in
tiny reservoir relieves over-fitting and outperform-
s state-of-the-art continual learning approaches in
a training pass.

1. Introduction

Human have the ability to acquire knowledge throughout
their lifespan. Similarly, the paradigm of lifelong learning
(also dubbed continual learning) in artificial intelligence
requires that the machine learning model can preserve previ-
ously learned knowledge while acquiring novel knowledge
(Ring, 1994; Hassabis et al., 2017; Thrun & M.Mitchell,
1995; Parisi et al., 2019).

Currently, deep neural network (DNN) learning models
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achieve excellent performance on a number of classification
tasks. The assumption is that the models train all experi-
ences as a single and complete entity, and the models can
retrain to adapt to the distribution of experiences. The same
as human who seldom see an experience twice, conventional
neural network model train on sequential tasks one time, the
learned knowledge decreases significantly while training
novel task.

The destructive issue in CL is catastrophic forgetting
(L.McClelland & L.McNaughton, 1995; Mccloskey & Co-
hen, 1989), which leads an abrupt performance decrease
on consolidated knowledge in sequential learning tasks. To
overcome catastrophic forgetting, the model must be (i)
plastic to integrate novel information rapidly from novel
task, and (ii) stable to preserve consolidated knowledge,
which is known as stability-plasticity dilemma as well.

There are four ways to mitigate catastrophic forgetting, i.e.
(i) imposing regularizer or optimization constraints on net-
work weights which correlate with consolidated knowledge;
(i1) expanding network architecture to acquire novel informa-
tion dynamically; (iii) applying dual-memory system which
uses two networks, one is fast inspired by the hippocampus
and another one is slowly inspired by the neocortex; (iv)
integrating with memory that stores previous experiences
and replaying old experiences with experiences drawn from
new task.

In this paper, we investigate how replayed prioritized ex-
periences efficient and effective. The key idea is that the
model can preserve consolidated knowledge by replaying
old prioritized representative experiences and acquire novel
knowledge efficient. Two prioritized measures are intro-
duced to choose prioritized experiences which are supposed
to reflect the feature of model. Feature margin is a cosine
similarity between original experience and average experi-
ence, and classification margin is the correctness of model
to predict experience.

We evaluate three memory-based CL approaches integrat-
ed with prioritized experiences in writing mechanisms on
three sequential learning tasks in a training pass. Compared
with state-of-the-art CL approaches, the results of average
accuracy and maximum forgetting show that prioritized ex-
periences have a positive impact to alleviate catastrophic
forgetting, and replaying prioritized experiences stored in
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tiny reservoir, which fully utilize the memory, relieves over-
fitting and outperforms other state-of-the-art CL approaches
in a training pass.

2. Related Work

The main challenge in continual learning is to prevent catas-
trophic forgetting from learning a sequence of tasks. The
cause of catastrophic forgetting is that artificial neural net-
work (ANN) learning approaches are based on concurrent
learning, where the whole population of training experi-
ences are presented and trained as a single and complete
entity (Lecun et al., 1998; He et al., 2016). Therefore, the
ANN s training on novel experiences cause alteration on es-
tablished parameters representing consolidated knowledge,
and invoke catastrophic forgetting.

Some works have attempted to mitigate catastrophic forget-
ting. Most of them focuses on minimizing updated parame-
ters correlated with consolidated knowledge. It is suggested
that regularization methods such as dropout, L2 regulariza-
tion and activation function, help to reduce forgetting of
previous tasks (Goodfellow et al., 2014). Furthermore, Elas-
tic weight consolidation (EWC) (Kirkpatrick et al., 2017)
has used a fisher information matrix based on regularizer
to constrain important parameters to stay close to consol-
idated knowledge. MAS (Aljundi et al., 2018) estimated
importance weights for all the network parameters in an
unsupervised and online manner. RWALK (Chaudhry et al.,
2018) introduced a distance in Riemannian manifold as reg-
ularizer. Regularization on parameters is computationally
expensive because it requires computing the regularizer for
every novel experience.

To overcome instability caused by EWC, (Jones & Sprague,
2018) introduced a per-parameter dynamic learning rate
and automatically expanded the network to expand capac-
ity of network. Progressive neural networks (PNN)(Rusu
et al., 2016) proposed to train individual model on each
task, retain a pool of pre-trained models and learn lateral
connections from these to extract useful features for the new
task. (Li et al., 2019) presented a learn-to-grow framework
that explicitly separates the learning of model structures and
the estimation of model parameters to search optimal struc-
ture for each task. However, the architectural complexity is
growing with the number of tasks by expanding the network
architecture.

Dual-memory approaches attempt to imitate hippocampus-
cortex duality. (Parisi et al., 2018) proposed a dual-memory
self-organizing architecture for lifelong learning scenarios.
The architecture comprises two growing recurrent networks
with the complementary tasks of learning object instances
and categories. IL2M (Belouadah & Popescu, 2019) used a
fixed DNN architecture and a bounded memory of the past

which stores initial class statistics in a very compact format.

Another works are addressed by memory-based approaches,
where old experiences regarding learned task were stored to
help retaining consolidated knowledge of the learned tasks.
Experience Replay (ER) is a vanilla. Meta-Experience Re-
play (MER) (Riemer et al., 2019) combined experience
replay with optimization based meta-learning. This method
learns parameters that make interference based on future
gradients less likely and transfer based on future gradients
more likely. iCarl (Rebuffi et al., 2017) replayed the ex-
periences from memory, while Gradient Episodic Memo-
ry (GEM) (Lopez-Paz et al., 2017) and Average-GEM (A-
GEM) (Chaudhry et al., 2019a) used episodic memory to
restrain gradient update. However, memory-based approach-
es need a large capacity memory to preserve consolidated
knowledge, it is impractical and inefficient.

3. Prioritized Experience Replay
3.1. Definition of Continual Learning

In this paper, we introduce the continual learning proto-
col described in (Chaudhry et al., 2019a). Consider that
the sequential learning task is divided into two ordered
sequential streams, i.e. DY = {Di,..., Dycv} and
DEV = {Drev iy, ...,Dr}, where Dy = (x¥,t), yF)i*,
is the dataset of the k-th task, 7€V < T. The tuple
(xF, tx,yF) is an experience drawn from the dataset of the
k-th task, the experience contains an input vector xf cX,
a target yf €{0,1,2,...,t — 1} = Y, and a task identifier
tr € {1,2,....,T} = T. (x¥,y¥) is drawn from distributed
Py (X, D).

The goal of machine learning algorithm is to train a predictor
fo=(wog): X xT — ), where 6 is composed by a
feature extractor ¢ : X — 7 and a classifier w : H — ).
The objective of continual learning is as follows:

T
1
argemlnfZE<x,y>~Pt[l(f(x,t;9)71/)}7 Q)
t=1

where [ : ) x Y — R is a loss function.

3.2. Metrics of Continual Learning

Following (Lopez-Paz et al., 2017; Chaudhry et al., 2018),
we introduce two metrics of stability and plasticity of model,
(i) Average Accuracy A,, of all tasks after the m-th sequen-
tial task learned, which indicates the balance of stability
and plasticity of model, and (ii) Maximum Forgetting F,,,
which indicates the stability of model to preserve knowledge
of previous tasks.
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First, average accuracy A,, is defined as:

1 m
Am — E j;am,j (2)

where a; ; denotes test accuracy on task j after the model
has trained experiences from task i, j < i. Ap is average
accuracy after last task learned.

Secondly, maximum forgetting is defined as:

-1

1
Fo= g 2 el —amg) )

j=1
Fr is maximum forgetting after last task learned.

3.3. Prioritized Experience

We introduce two measures to identify prioritized experi-
ence.

Feature Margin (Rebuffi et al., 2017) After training the k-
th task, the model calculates a prototype vector for each
class, and acquires {(o, pt1, ft2, ..., fte—1}, where p, =
WM E(x,y)ePtk (x.y=y) O(x) is average feature of
class y, where P;, (X, Y = y) is distribution of class y in
the k-th task. The feature margin of class y is:

dy = diff (¢(x,y), py) )

where diff is a cosine similarity of two vectors in this paper.
Mean of Features (MoF) uses feature margin to identify
prioritized experiences, the priority is in ascending order.

Classification Margin (Toneva et al., 2019) Classification
margin manifests the correctness of classifying experiences.
The margin m, is defined as the difference between the
logit of the correct class y and largest logit among the other
classes:

my = o(f(x;0)), —argmaxo(f(x;0)), (5
q' #q

where ¢ is the index corresponding to the correct class ¥, and
o is a sigmoid (softmax) activation function. Unforgettable
uses classification margin to identify prioritized experiences,
the priority is in descending order.

3.4. Episodic Memory Writing Mechanism

Two episodic memory write mechanisms, ring buffer and
reservoir, are introduced and the parameters of memory M
are defined in Table 1.

Table 1. Definition of parameters of episodic memory M

n  |number of experiences to preserve per class per task

t classes per task

T number of tasks

B experiences of task to preserve

k the identifier of tasks

N the number of experiences seen so far
Mmaz capacity of M, Minae =mxtxT
Mesize current size of M to preserve experiences

Ring buffer: Similar to (Lopez-Paz et al., 2017; Chaudhry
et al., 2019b), the limited storage allocated to the class is a
FIFO buffer of size n for each task, as shown in Algorithm 1.
The experiences in ring buffer do not replace throughout an
entire training. Replaying experiences from a small constant
ring buffer leads strong over-fitting, we choose prioritized
experiences to relieve over-fitting, which are MoF_Ring
(Algorithm 2) and Unforgettable_Ring (Algorithm 3) in
this paper. Additionally, the slot of classes in tasks has been
allocated since the training starts. Thus the ring buffer is not
fully occupied at early stage of training.

Reservoir: Unlike ring, the buffer is not occupied ful-
ly at early stage of training, reservoir ensures the ex-
periences stored with the probability of MX;‘”, where
Mpnaz 1 the capacity of memory M and N is the num-
ber of experiences observed so far(Vitter, 1985). Thus
the reservoir will be occupied fully at early stage of
training, the details shown in Algorithm 4. Combine
with MoF and UnForgettable respectively, the details are
shown in MoF _Reservoir(Aigorithm 5) and UnForget-
table_Reservoir(Algorithm 6). MoF _Reservoir and UnFor-
gettable_Reservoir are hybrid memories, in which priori-
tized experiences obey the ring writing mechanism and the
remaining memory is in reservoir and stores experiences
from old tasks randomly.

Algorithm 1 Rlng(M7 Mmawa Msizea B7 n7 t; k7 T)
: task_offset «— nxt*k
count_cls[t] - 0
: for (x,y) € Bdo
class_offset «+— n x y
Mindes — count_cls[y] + class_offset + task_offset
Mmindex] < (X, y)
count_cls[y] + (count_cls[y] + 1) % n
end for
: Msize — Msize +txn

AR A A N

There is a slight difference between MoF_Reservoir and
reservoir. NN is reset to zero in each task, because it may
be store experiences in reservoir from the next tasks with
extremely low probability when number of experiences in
tasks is huge, and capacity of memory is small. The memory
is occupied by experiences from early tasks.

Finally, Algorithms 1, 2, 3, 4, 5 and 6 are writing mecha-
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Algorithm 2 MoF _Ring(M, M40, Mgize, B,n,t, k,T)

I: B+ ]

2: force {0,1,....,t — 1} do

3: B. + By—.

4 pe ﬁ Z(x,y)EBC B(x)
50 de+ ]

6: for (x,y) € Bcdo

7: [ o(x)

8: dc.append(diff (f, pc))

9:  end for

10:  indices < argsort(d.) % a ascending order
11:  B.append(B.[indices][:n])

12: end for .

13: Ring(M, Mmaz, Msize, B, t, k,T)

Algorithm 3 UnForgettable Ring(M, M a0z, Msize, B,
n,t, k,T)

1: B+ []

2: force {0,1,....,t — 1} do

3: B¢+ By—c

4 me <+ ]

5: for (x,y) € Bcdo

6: m < o(f(x;0)), —argmax_ o(f(x;0)),
7: me.append(m)

8:  end for

9:  indices < argsort(m.) % a descending order

10:  B.append(B.[indices|[:n)])
11: end for .
12: Ring(M,MmazwMsizeyBynvt:k7T)

Algorithm 4 Reservoir(M, M40, Msize, By, t,k, T,
N)

1: for (x,y) € B do

2 if Msize < Minao then
3: M[Msize] — (X, y)
4: Msize — Msize + 1
5: else

6: j « randint(N)

7: if] < Mmaz then

8: Mj] < (x,9)

9: end if

10:  endif

11: N+ N+1

12: end for

Algorithm 5 MoF _Reservoir(M, M, a0z, Msize, B,n, t,
k, T, N)

. MoF,Ring(M, M’rna(l;y Msize7 B7 m, t7 k7 T)
M Mn*tx*k:]

Mmaz — Mmaz -
. Msize — Msize -
N=0 o R
N Reservoir(/\/l, Mma:c, Msiz€7 37 n, t7 k7 T7 N)

nxtxk
nxtxk

AR

Algorithm 6 UnForgettable_Reservoir(M, M a4, Mize,
B,n,t,k,T,N)
1: UnForgettable_Ring(M, M0z, Msize, B,n, t, k,T)
M Mlnxtxk:
: /\Etmax <_Mmaa: —nxtxk
N Msize %Msizefn*t*k
N=0 o R
: Reservoir(M, Mpmaz, Msize, B,n,t, k, T, N)

nisms of episodic memory M after the k-th task in sequen-
tial learning tasks has been trained. Sampling experiences
from memory is random.

4. Experiments
4.1. Sequential Learning Tasks

In this section, three supervised data streams are considered:

(1) Permuted MNIST (Kirkpatrick et al., 2017) is a stan-
dard sequential learning task. It is a variant of MNIST
(Lecun et al., 1998) handwritten digit database, where the
pixel of images are shuffled by a fix random permutation
sequential and 1000 shuffled experiences are chosen in each
task. In Permuted MNIST, we cross validate on first 3 tasks
in order to estimate the parameters of the model, and then
evaluate the metrics on the remaining 20 tasks in a sin-
gle training pass over each task in sequence, which means
TV =3and T = 23.

(2) Split CIFAR (Zenke et al., 2017) is splitting the original
CIFAR-100 (Krizhevsky & Hinton, 2009) dataset into 20
disjoint subsets where every 5 classes randomly sampling

from 100 classes without overlapping. 7¢V = 3 and T =
20 in Split CIFAR.

(3) SVHN-CIFAR is a sequential learning task which trains
on SVHN (Netzer et al., 2011) and CIFAR sequentially with-
out sharing any information. Street View House Number
(SVHN) is a benchmark dataset which cropped from Street
View images, and CIFAR is CIFAR-10 for short. TV =0
and T' = 2 in SVHN-CIFAR, .

In the setting of experiments, the model is trained in a
single pass which is suitable to human who seldom see
an experience twice, and the setting of model architecture is
described in Table 2.

Table 2. The setting of model architecture on datasets

datasets architecture setting
Permuted MNIST | Fully-connected network | two hidden layers of 256 Re-
LU units.
Split CIFAR Reduced ResNet18 same as the model described
in (Lopez-Paz et al., 2017).
SVHN-CIFAR Reduced ResNet18 same as the model described
in (Lopez-Paz et al., 2017).
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4.2. Baselines

The state-of-the-art baselines are classified into (i) Train-
ing the model without regularization and memory. The
parameters of current task are initialized from the param-
eters of the previous task. such as Vanilla, VAN for short;
(i) Expanding network architecture to acquire new infor-
mation dynamically, such as PNN (Rusu et al., 2016); (iii)
Imposing regularizer or optimization constraints on net-
work weights which correlate with consolidated knowledge.
EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018)
and RWALK (Chaudhry et al., 2018) are included; and (iv)
Integrating with memory that stores previous experiences
and replays old experiences with experiences drawn from
new task. We evaluate Experience Replay (ER), A-GEM
(Chaudhry et al., 2019a) and MER (Riemer et al., 2019),
and combine them with prioritized experience replay.

SINGLE-TASK is trained in a single pass over experiences
from each task in sequential learning tasks independently,
and it can be seen as an upper bound performance for every
single task. MULTI-TASK is trained in a single pass over
shuffled experiences and it can be seen as an upper bound
performance for CL approaches.

4.3. Compare with baselines

To test the efficacy of prioritized experiences in writing
mechanisms used in memory-based approaches, we com-
pare them with baselines described in section 4.2 for super-
vised sequential learning tasks described in section 4.1.

(1) Memory-based approaches with storing prioritized
experiences on supervised continual learning tasks: The
approaches with memory storing prioritized experiences,
prefixing with "MoF’ or *UnForgettable’, outperform other
continual learning approaches in Permuted MNIST (Figure
1 and Table 3), Split CIFAR (Figure 2 and Table 4) and
SVHN-CIFAR (Table 5) except PNN which carries out a
new stage of training new task and preserve all information
it learned on previous tasks. However, PNN has a terrible
memory problem because the size of parameters increases
superlinearly with the number of tasks. It will run out of
memory during training due to larger size of model. There-
fore, PNN failed to ’OoM’ in SVHN-CIFAR which used
reduced ResNet18 in Table 5.

(2) Prioritized experiences to alleviate catastrophic for-
getting: Compared the approaches which store the experi-
ences from old tasks randomly such as ring and reservoir
with the ones which store prioritized experiences, we can
conclude that the prioritized experiences have a positive
impact to alleviate catastrophic forgetting.

(3) Prioritized experiences in different memory system
approaches: We list 3 memory-based approaches, Expe-
rience Replay (ER), Average GEM (A-GEM) and Meta-

—— VAN EWC —A— MAS
—e— RWALK —— PNN SINGLE
ER_Reservoir  —#&—  A-GEM_Reservoir MER _Reservoir

ER-MoF Reservoir —{fii— A-GEM-MoF_Reservoir —{jf}— MER-MoF Reservoir

9 0 1T "T1T T T 17T 7T 7T 7 7 17 7T 7 7 7T T T 1
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Figure 1. Permuted MNIST, evolution of average accuracy A,
with 1 experience per class per task to store (average over 5 runs).
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Figure 2. Split CIFAR, evolution of average accuracy A, with 1
experience per class per task to store (average over 5 runs).



Submission and Formatting Instructions for ICML 2020

[

Table 3. Permuted MNIST, the episodic memory contains up to
experience per class per task (average over 5 runs).

Methods
Episodic Memory ER A-GEM MER
Ar (%) Fr |Ar(%)| Fr [Ar(%)| Fr

Ring 70.8 [0.126| 63.6 |0.183| 67.9 [0.148
Reservoir 69.2 |0.142| 62.3 |0.190| 70.1 |0.116
MoF _Ring 72.4 |0.111| 65.2 |0.166| 71.9 |0.110
MoF_Reservoir 72.7 |0.116| 65.6 |0.166| 75.1 |0.077
UnForgettable_Ring 71.4 [0.119| 65.0 |0.185| 70.7 |0.120
UnForgettable_Reservoir| 72.1 |0.118| 66.5 [0.155| 74.5 |0.083
VAN 57.8 [0.241 EWC 62.5 [0.176
MAS 64.2 |0.180 RWALK 62.9 ]0.201

PNN 77.9 10.000 - - -

SINGLE-TASK 81.9 - MULTI-TASKS | 80.7 -

Table 4. Split CIFAR, the episodic memory contains up to 1 expe-
rience per class per task (average over 5 runs).

Methods
Episodic Memory ER A-GEM MER
Ar(%)] Fr [Ar(%)| Fr [Ar(%)] Fr

Ring 56.4 [0.132] 54.4 [0.157| 51.0 [0.096
Reservoir 52.7 [0.188| 50.4 |0.176| 39.5 |0.248
MoF_Ring 60.4 |0.096| 56.8 |0.132| 51.8 |0.117
MoF_Reservoir 58.6 [0.128| 56.9 |0.136| 48.2 |0.148
UnForgettable_Ring 60.1 |0.100| 57.8 |0.117| 53.5 |0.108
UnForgettable_Reservoir| 59.6 [0.117| 57.7 |0.129| 48.6 |0.145
VAN 41.4 ]0.269 EWC 43.3 ]0.260
MAS 44.0 |0.252 RWALK 41.2 |0.288

PNN 59.7 [0.000 - - -

SINGLE-TASK 68.6 - MULTI-TASK | 68.5 -

Experience Replay (MER). They perform much different on
3 sequential learning tasks. MER-MoF_Reservoir has best
performance on Permuted MNIST, but MER performs worst
at Split CIFAR and SVHN-CIFAR among 3 approaches. ER
performs best on Split CIFAR and SVHN-CIFAR, and A-
GEM is in the middle. There is a large gap between MER
and SINGLE-TASK evaluated on CIFAR shown in Table 5,
MER has bad capacity to integrate novel information from
different distribution without sharing information.

(4) Memory writing mechanisms: We use ring and reser-
voir writing mechanisms to store experiences. Reservoir
with prioritized experiences achieves the best performance.
The reason is that memory is fully utilized in reservoir at
early stage of training. Meanwhile, the reservoir with priori-
tized experiences guarantees a minimum number of priori-
tized experiences for each class.

(5) Prioritized experience measures: The results of MoF
and UnForgettable in ring and reservoir writing mechanism
show that feature margin is superior to classification margin
in most of cases. The reason is that MoF is based on all
experiences in task and prioritized experiences chosen in
MOoF is more representative than UnForgettable.

(6) Episodic memory size: In some cases, it may be im-
practical to store numbers of experiences in replay buffer.
We consider two small buffers storing 3 and 5 experiences
per class per task respectively. From the results in Table 6,

Table 5. SVHN-CIFAR, the episodic memory contains up to 1
experience per class per task (average over 5 runs). ai,0 and a1,1
are test accuracy of SVHN and CIFAR after CIFAR is trained. The
’OoM’ in table means that the model is running out of memory
and the "NaN’ means the model failed to train in the setting.

Methods

Episodic Memory ER A-GEM MER
a1,0,a1,1 | Fr [ai0,a11 | Fr [a1,0,01,1 | 1
Ring 56.8,67.0 |0.334| 42.5,67.5 |0.480(| 54.1,41.2 |0.361
Reservoir 37.7,66.8 |0.524 NaN NaN | 19.6,70.0 |0.717
MoF _Ring 63.1,67.6 |0.271| 55.0,63.7 |0.355| 58.9,39.3 |0.309

MoF _Reservoir 71.6,67.3/0.171|62.4,65.4|0.279|65.1,45.8|0.252
UnForgettable_Ring 50.0,66.4 |0.414| 43.9,67.7 |0.468| 55.6,47.3 |0.347
UnForgettable_Reservoir| 66.9,67.8 |0.231| 55.6,65.5 |0.345| 63.3,40.9 |0.265

VAN 25.6,69.2 |0.651 EWC 72.2,51.3 |0.186
MAS 71.8,49.0 |0.188 RWALK 51.4,59.5 |0.393
PNN OoM - - - -

SINGLE-TASKS 90.6, 69.0 - MULTI-TASK 88.1,64.3 -

Table 6. Permuted MNIST, the episodic memory stores 3 and 5
experiences per class per task respectively (average over 5 runs).

Methods
Episodic Memory ER [ A-(%%M [ MER
Ar (%) Fr [Ar(%)| Fr [Ar(%)| Fr
Ring 74.1 [0.091| 65.8 [0.162| 76.3 |0.067
Reservoir 74.9 [0.084| 63.5 |0.180| 75.4 |0.056
MoF_Ring 75.0 [0.085| 67.2 |0.147| 76.7 |0.071
MoF_Reservoir 76.1 |0.085| 64.6 |0.174| 78.4 [0.047
UnForgettable_Ring 73.7 [0.095| 67.0 |0.149| 74.7 |0.080
UnForgettable_Reservoir| 75.2 |0.089| 65.5 [0.163| 76.8 |0.063
Methods
Episodic Memory ER [ Alg(l)ié\/l [ MER
Ar(%)] Fr [Ar (%) Fr [Ar(%)] Fr
Ring 75.7 [0.080| 65.3 |0.168| 77.5 |0.056
Reservoir 76.5 [0.070| 64.5 |0.189| 77.0 |0.043
MoF_Ring 75.7 [0.080| 66.0 |0.161| 77.4 |0.064
MoF_Reservoir 77.1 |0.075| 65.8 |0.162| 79.9 |0.035
UnForgettable_Ring 74.1 [0.096| 66.7 |0.152| 75.1 |0.083
UnForgettable_Reservoir| 75.7 |0.083| 63.5 |0.185| 77.7 |0.057

Table 7. Split CIFAR, the episodic memory stores 3 and 5 experi-
ences per class per task (average over 5 runs).

Methods
Episodic Memory ER [ A-2G5}éM [ MER
Ar ()] Fr [Ar (%) Fr [Ar(%)| Fr
Ring 61.7 [0.090| 58.8 |0.118| 54.4 |0.077
Reservoir 60.9 |0.113| 55.5 |0.155| 47.1 |0.153
MoF_Ring 64.0 |0.066| 60.5 |0.097| 54.6 |0.109
MoF_Reservoir 65.2 |0.067| 60.7 |0.098| 50.7 |0.114
UnForgettable_Ring 60.9 |0.091| 60.4 |0.093| 53.5 |0.113
UnForgettable_Reservoir| 63.4 |0.080| 60.5 [0.102| 49.7 [0.116
Methods
Episodic Memory ER [ A'ZggM [ MER
Ar (%) [ Fr [Ar(W)] Fr [Ar ()] Fr
Ring 62.7 [0.066| 59.9 [0.101| 54.2 [0.070
Reservoir 65.5 |0.077| 58.5 |0.156| 50.7 |0.104
MoF_Ring 65.2 |0.054| 61.7 |0.081| 55.6 |0.096
MoF_Reservoir 67.5 |0.051| 61.1 |0.099| 51.2 |0.110
UnForgettable_Ring 61.9 |0.079| 62.0 |0.081| 51.9 |0.134
UnForgettable_Reservoir| 66.7 |0.062| 59.6 [0.114| 49.2 |0.116
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Table 8. SVHN-CIFAR, the episodic memory store 3 and 5 expe-
riences per class per task respectively (average over 5 runs). a1,0
and aq,; are test accuracy of SVHN and CIFAR after CIFAR is
trained. The "NaN’ means the model failed to train in the setting.

Methods

Episodic Memory ER l A-(g(l)ZM l MER
ai,0,01,1 | Fr [ar0,a11 | Fp |a1,0,a1,1 | Fr

Ring 68.2,67.2 |10.221| 58.5,65.7 [0.321] 62.2,40.9 [0.273
Reservoir 35.4,66.3 |0.550 NaN NaN | 24.9,69.2 |0.652
MoF _Ring 71.4,66.7 |0.188| 65.2,66.3 |0.252| 68.2,43.3 |0.221
MoF _Reservoir 78.5,67.3(0.109|70.5,65.1|0.198|70.6,40.5|0.188
UnForgettable_Ring 60.1,67.8 |0.306| 52.6,67.6 |0.377| 56.8,46.5 |0.333
UnForgettable_Reservoir| 77.5,67.1 |0.128]| 67.2,63.2 [0.230| 69.8,42.2 [0.200

Methods

A-GEM I MER

100
a1,0,01,1 | Fr [ar0,a11 | Fp |a1,0,a1,1 | Fr

Ring 71.9,67.6 |0.185| 62.1,67.2 |0.280| 64.4,45.2 |0.256

Reservoir 30.0,65.9 |0.599 NaN NaN | 26.2,69.4 |0.645

MoF _Ring 75.5,67.0 |0.152| 67.9,65.7 |0.223| 67.5,43.5 |0.226

MoF _Reservoir 81.3,68.5|0.089(72.7,65.9|0.174|72.0,45.6|0.179

UnForgettable_Ring 63.2,66.7 |0.274| 55.9,67.1 |0.346| 59.9,47.9 [0.302

UnForgettable_Reservoir | 79.8, 66.9 |0.103| 69.5,65.9 [0.201| 70.2,44.6 [0.195

Episodic Memory ER l

7, 8, we find that all buffers perform well except reservoir
in SVHN-CIFAR. The benefits of memory system seem
to grow as the buffer becomes larger. The failure of reser-
voir may be due to over-fitting, where limited experiences
presented in the buffer. However, replaying prioritized ex-
periences in tiny reservoir relieves over-fitting.

5. Conclusion

Unlike human’s acquirement and accumulation of knowl-
edge throughout their lifespan, catastrophic forgetting in
continual learning of deep neural network is a destructive is-
sue which decreases the performance of preserving learned
knowledge.

Different from traditional memory-based approaches storing
experiences from old tasks randomly, we introduce prior-
itized experience replay, which uses feature margin and
classification margin to identify prioritized experiences, and
stores them in ring and reservoir writing mechanisms. The
results of experiments show that (i) prioritized experience
replay outperforms other state-of-the-art CL approaches in
a training pass except PNN which failed in large-size model,
and (ii) replaying prioritized experience in tiny reservoir
relieves over-fitting which happened in memory-based ap-
proaches and alleviates catastrophic forgetting.
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