005 006

007 008

009

Prioritized Experience Replay for Continual Learning

Anonymous Authors¹

Abstract

Human can learn and accumulate knowledge throughout their lifespan. Similarly, the paradigm 012 of continual learning (CL) in artificial intelligence 013 requires that the machine learning model can p-014 reserve consolidated knowledge if new task is 015 adapted. However, to overcome catastrophic for-016 getting, a destructive issue in continual learning, memory-based approaches, replaying old expe-018 riences with experience drawn from novel task 019 or constraining on old experiences, need a large memory to prevent them from decreasing consolidated knowledge, it is inefficiency and impractical. 022 To improve the efficiency of old experiences and keep memory small, we introduce prioritized ex-024 perience replay, which uses feature margin and 025 classification margin to prioritize representative 026 experiences. Feature margin is a cosine similarity between original experience and average experi-028 ence, and classification margin is the correctness 029 of model to predict experience. Experiment results show that prioritized experiences have a positive impact on alleviating *catastrophic forgetting*, and replaying prioritized experiences stored in 033 tiny reservoir relieves over-fitting and outperform-034 s state-of-the-art continual learning approaches in 035 a training pass. 036

1. Introduction

037

038

039

052

Human have the ability to acquire knowledge throughout their lifespan. Similarly, the paradigm of lifelong learning (also dubbed continual learning) in artificial intelligence requires that the machine learning model can preserve previously learned knowledge while acquiring novel knowledge (Ring, 1994; Hassabis et al., 2017; Thrun & M.Mitchell, 1995; Parisi et al., 2019).

 $_{048}$ Currently, deep neural network (DNN) learning models

achieve excellent performance on a number of classification tasks. The assumption is that the models train all experiences as a single and complete entity, and the models can retrain to adapt to the distribution of experiences. The same as human who seldom see an experience twice, conventional neural network model train on sequential tasks one time, the learned knowledge decreases significantly while training novel task.

The destructive issue in CL is *catastrophic forgetting* (L.McClelland & L.McNaughton, 1995; Mccloskey & Cohen, 1989), which leads an abrupt performance decrease on consolidated knowledge in sequential learning tasks. To overcome *catastrophic forgetting*, the model must be (i) plastic to integrate novel information rapidly from novel task, and (ii) stable to preserve consolidated knowledge, which is known as *stability-plasticity dilemma* as well.

There are four ways to mitigate *catastrophic forgetting*, i.e. (i) imposing regularizer or optimization constraints on network weights which correlate with consolidated knowledge; (ii) expanding network architecture to acquire novel information dynamically; (iii) applying dual-memory system which uses two networks, one is fast inspired by the hippocampus and another one is slowly inspired by the neocortex; (iv) integrating with memory that stores previous experiences and replaying old experiences with experiences drawn from new task.

In this paper, we investigate how replayed prioritized experiences efficient and effective. The key idea is that the model can preserve consolidated knowledge by replaying old prioritized representative experiences and acquire novel knowledge efficient. Two prioritized measures are introduced to choose prioritized experiences which are supposed to reflect the feature of model. Feature margin is a cosine similarity between original experience and average experience, and classification margin is the correctness of model to predict experience.

We evaluate three memory-based CL approaches integrated with prioritized experiences in writing mechanisms on three sequential learning tasks in a training pass. Compared with state-of-the-art CL approaches, the results of average accuracy and maximum forgetting show that prioritized experiences have a positive impact to alleviate *catastrophic forgetting*, and replaying prioritized experiences stored in

 ¹Anonymous Institution, Anonymous City, Anonymous Region,
 Anonymous Country. Correspondence to: Anonymous Author
 <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

tiny reservoir, which fully utilize the memory, relieves overfitting and outperforms other state-of-the-art CL approaches
in a training pass.

2. Related Work

059

060

061 The main challenge in continual learning is to prevent catas-062 trophic forgetting from learning a sequence of tasks. The 063 cause of catastrophic forgetting is that artificial neural net-064 work (ANN) learning approaches are based on concurrent 065 learning, where the whole population of training experi-066 ences are presented and trained as a single and complete 067 entity (Lecun et al., 1998; He et al., 2016). Therefore, the 068 ANNs training on novel experiences cause alteration on es-069 tablished parameters representing consolidated knowledge, and invoke *catastrophic forgetting*.

Some works have attempted to mitigate catastrophic forgetting. Most of them focuses on minimizing updated parameters correlated with consolidated knowledge. It is suggested 074 that regularization methods such as dropout, L2 regulariza-075 tion and activation function, help to reduce forgetting of 076 previous tasks (Goodfellow et al., 2014). Furthermore, Elas-077 tic weight consolidation (EWC) (Kirkpatrick et al., 2017) 078 has used a fisher information matrix based on regularizer to constrain important parameters to stay close to consolidated knowledge. MAS (Aljundi et al., 2018) estimated 081 importance weights for all the network parameters in an 082 unsupervised and online manner. RWALK (Chaudhry et al., 083 2018) introduced a distance in Riemannian manifold as reg-084 ularizer. Regularization on parameters is computationally 085 expensive because it requires computing the regularizer for 086 every novel experience. 087

088 To overcome instability caused by EWC, (Jones & Sprague, 089 2018) introduced a per-parameter dynamic learning rate 090 and automatically expanded the network to expand capac-091 ity of network. Progressive neural networks (PNN)(Rusu 092 et al., 2016) proposed to train individual model on each 093 task, retain a pool of pre-trained models and learn lateral 094 connections from these to extract useful features for the new 095 task. (Li et al., 2019) presented a learn-to-grow framework 096 that explicitly separates the learning of model structures and 097 the estimation of model parameters to search optimal struc-098 ture for each task. However, the architectural complexity is 099 growing with the number of tasks by expanding the network 100 architecture.

Dual-memory approaches attempt to imitate hippocampuscortex duality. (Parisi et al., 2018) proposed a dual-memory self-organizing architecture for lifelong learning scenarios. The architecture comprises two growing recurrent networks with the complementary tasks of learning object instances and categories. IL2M (Belouadah & Popescu, 2019) used a fixed DNN architecture and a bounded memory of the past

109

which stores initial class statistics in a very compact format.

Another works are addressed by memory-based approaches, where old experiences regarding learned task were stored to help retaining consolidated knowledge of the learned tasks. Experience Replay (ER) is a vanilla. Meta-Experience Replay (MER) (Riemer et al., 2019) combined experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. iCarl (Rebuffi et al., 2017) replayed the experiences from memory, while Gradient Episodic Memory (GEM) (Lopez-Paz et al., 2017) and Average-GEM (A-GEM) (Chaudhry et al., 2019a) used episodic memory to restrain gradient update. However, memory-based approaches need a large capacity memory to preserve consolidated knowledge, it is impractical and inefficient.

3. Prioritized Experience Replay

3.1. Definition of Continual Learning

In this paper, we introduce the continual learning protocol described in (Chaudhry et al., 2019a). Consider that the sequential learning task is divided into two ordered sequential streams, i.e. $D^{CV} = \{D_1, ..., D_{T^{CV}}\}$ and $D^{EV} = \{D_{T^{CV}+1}, ..., D_T\}$, where $D_k = (\mathbf{x}_i^k, t_k, y_i^k)_{i=1}^{n_k}$ is the dataset of the k-th task, $T^{CV} < T$. The tuple $(\mathbf{x}_i^k, t_k, y_i^k)$ is an experience drawn from the dataset of the k-th task, the experience contains an input vector $\mathbf{x}_i^k \in \mathcal{X}$, a target $y_i^k \in \{0, 1, 2, ..., t - 1\} = \mathcal{Y}$, and a task identifier $t_k \in \{1, 2, ..., T\} = \mathcal{T}$. (\mathbf{x}_i^k, y_i^k) is drawn from distributed $P_{t_k}(\mathcal{X}, \mathcal{Y})$.

The goal of machine learning algorithm is to train a predictor $f_{\theta} = (w \circ \phi) : \mathcal{X} \times \mathcal{T} \to \mathcal{Y}$, where θ is composed by a feature extractor $\phi : \mathcal{X} \to \mathcal{H}$ and a classifier $w : \mathcal{H} \to \mathcal{Y}$. The objective of continual learning is as follows:

$$\underset{\theta}{\arg\min} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{(\mathbf{x},y) \sim P_t}[l(f(\mathbf{x},t;\theta),y)], \qquad (1)$$

where $l : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is a loss function.

3.2. Metrics of Continual Learning

Following (Lopez-Paz et al., 2017; Chaudhry et al., 2018), we introduce two metrics of stability and plasticity of model, (i) Average Accuracy A_m of all tasks after the *m*-th sequential task learned, which indicates the balance of stability and plasticity of model, and (ii) Maximum Forgetting F_m , which indicates the stability of model to preserve knowledge of previous tasks. First, average accuracy A_m is defined as:

 $A_m = \frac{1}{m} \sum_{j=1}^m a_{m,j}$ (2)

where $a_{i,j}$ denotes test accuracy on task j after the model has trained experiences from task $i, j \leq i$. A_T is average accuracy after last task learned.

Secondly, maximum forgetting is defined as:

$$F_m = \frac{1}{m-1} \sum_{j=1}^{m-1} \max_{l \in \{1,\dots,m-1\}} (a_{l,j} - a_{m,j})$$
(3)

 F_T is maximum forgetting after last task learned.

3.3. Prioritized Experience

We introduce two measures to identify prioritized experience.

Feature Margin (Rebuffi et al., 2017) After training the kth task, the model calculates a prototype vector for each class, and acquires $\{\mu_0, \mu_1, \mu_2, ..., \mu_{t-1}\}$, where $\mu_y = \frac{1}{|P_{t_k}(\mathcal{X}, \mathcal{Y}=y)|} \sum_{(\mathbf{x}, y) \in P_{t_k}(\mathcal{X}, \mathcal{Y}=y)} \phi(\mathbf{x})$ is average feature of class y, where $P_{t_k}(\mathcal{X}, \mathcal{Y}=y)$ is distribution of class y in the k-th task. The feature margin of class y is:

$$d_y = \operatorname{diff}(\phi(\mathbf{x}, y), \mu_y) \tag{4}$$

where diff is a cosine similarity of two vectors in this paper. Mean of Features (MoF) uses feature margin to identify prioritized experiences, the priority is in ascending order.

Classification Margin (Toneva et al., 2019) Classification margin manifests the correctness of classifying experiences. The margin m_y is defined as the difference between the logit of the correct class y and largest logit among the other classes:

$$m_y = \sigma(f(\mathbf{x};\theta))_q - \operatorname*{arg\,max}_{q' \neq q} \sigma(f(\mathbf{x};\theta))_{q'}$$
(5)

where q is the index corresponding to the correct class y, and σ is a sigmoid (softmax) activation function. **Unforgettable** uses classification margin to identify prioritized experiences, the priority is in descending order.

3.4. Episodic Memory Writing Mechanism

Two episodic memory write mechanisms, ring buffer and reservoir, are introduced and the parameters of memory \mathcal{M} are defined in *Table 1*.

Table 1. Definition of parameters of episodic memory \mathcal{M}

n	number of experiences to preserve per class per task
t	classes per task
T	number of tasks
B	experiences of task to preserve
k	the identifier of tasks
N	the number of experiences seen so far
\mathcal{M}_{max}	capacity of $\mathcal{M}, \mathcal{M}_{max} = n * t * T$
\mathcal{M}_{size}	current size of $\mathcal M$ to preserve experiences

Ring buffer: Similar to (Lopez-Paz et al., 2017; Chaudhry et al., 2019b), the limited storage allocated to the class is a FIFO buffer of size *n* for each task, as shown in *Algorithm 1*. The experiences in ring buffer do not replace throughout an entire training. Replaying experiences from a small constant ring buffer leads strong over-fitting, we choose prioritized experiences to relieve over-fitting, which are **MoF_Ring** (*Algorithm 2*) and **Unforgettable_Ring** (*Algorithm 3*) in this paper. Additionally, the slot of classes in tasks has been allocated since the training starts. Thus the ring buffer is not fully occupied at early stage of training.

Reservoir: Unlike ring, the buffer is not occupied fully at early stage of training, reservoir ensures the experiences stored with the probability of $\frac{\mathcal{M}_{max}}{N}$, where \mathcal{M}_{max} is the capacity of memory \mathcal{M} and N is the number of experiences observed so far(Vitter, 1985). Thus the reservoir will be occupied fully at early stage of training, the details shown in *Algorithm 4*. Combine with MoF and UnForgettable respectively, the details are shown in **MoF_Reservoir**(*Algorithm 5*) and **UnForgettable_Reservoir**(*Algorithm 6*). MoF_Reservoir and UnForgettable_Reservoir are hybrid memories, in which prioritized experiences obey the ring writing mechanism and the remaining memory is in reservoir and stores experiences from old tasks randomly.

Algorithm 1 Ring($\mathcal{M}, \mathcal{M}_{max}, \mathcal{M}_{size}, B, n, t, k, T$)	
1: task_offset $\leftarrow n * t * k$	
2: count_cls[t] $\leftarrow 0$	
3: for $(\mathbf{x}, y) \in B$ do	
4: class_offset $\leftarrow n * y$	
5: $m_{index} \leftarrow \text{count_cls}[y] + \text{class_offset} + \text{task_offset}$	
6: $\mathcal{M}[m_{index}] \leftarrow (\mathbf{x}, y)$	
7: $\operatorname{count_cls}[y] \leftarrow (\operatorname{count_cls}[y] + 1) \% n$	
8: end for	
9: $\mathcal{M}_{size} \leftarrow \mathcal{M}_{size} + t * n$	

There is a slight difference between MoF_Reservoir and reservoir. N is reset to zero in each task, because it may be store experiences in reservoir from the next tasks with extremely low probability when number of experiences in tasks is huge, and capacity of memory is small. The memory is occupied by experiences from early tasks.

Finally, Algorithms 1, 2, 3, 4, 5 and 6 are writing mecha-

1:	$\hat{B} \leftarrow []$
2:	for $c \in \{0, 1,, t - 1\}$ do
3:	$B_c \leftarrow B_{y=c}$
4:	$\mu_c \leftarrow \frac{1}{ B_c } \sum_{(\mathbf{x}, y) \in B_c} \phi(\mathbf{x})$
5:	$d_c \leftarrow [$]
6:	for $(\mathbf{x}, y) \in B_c$ do
7:	$f \leftarrow \phi(\mathbf{x})$
8:	d_c .append(diff (f, μ_c))
9:	end for
10:	$indices \leftarrow argsort(d_c)$ % a ascending order
11:	\hat{B} .append($B_c[indices][:n]$)
12:	end for
13:	$\operatorname{Ring}(\mathcal{M}, \mathcal{M}_{max}, \mathcal{M}_{size}, \hat{B}, t, k, T)$

Algorithm 3 UnForgettable_Ring($\mathcal{M}, \mathcal{M}_{max}, \mathcal{M}_{size}, B$, 181 n, t, k, T) 182 183 1: $\hat{B} \leftarrow []$ 2: for $c \in \{0, 1, ..., t - 1\}$ do 184 $B_c \leftarrow B_{y=c}$ 185 3: $m_c \leftarrow []$ 4: 186 for $(\mathbf{x}, y) \in B_c$ do 5: 187 $m \leftarrow \sigma(f(\mathbf{x}; \theta))_q - \arg \max_{q' \neq q} \sigma(f(\mathbf{x}; \theta))_{q'}$ 6: 188 7: $m_c.append(m)$ 189 8: end for $indices \leftarrow argsort(m_c)$ % a descending order 190 9: 10: \hat{B} .append($B_c[indices][:n]$) 191 11: end for 12: Ring($\mathcal{M}, \mathcal{M}_{max}, \mathcal{M}_{size}, \hat{B}, n, t, k, T$)

193 194 195

179

180

196 Algorithm 4 Reservoir($\mathcal{M}, \mathcal{M}_{max}, \mathcal{M}_{size}, B, n, t, k, T$, 197 N) 198 1: for $(\mathbf{x}, y) \in B$ do 199 if $\mathcal{M}_{size} < \mathcal{M}_{max}$ then 2: $\mathcal{M}[\mathcal{M}_{size}] \leftarrow (\mathbf{x}, y)$ 3: 200 $\mathcal{M}_{size} \leftarrow \mathcal{M}_{size} + 1$ 4: 201 5: else 202 6: $j \leftarrow \operatorname{randint}(N)$ 203 7: if $j < \mathcal{M}_{max}$ then 204 8: $\mathcal{M}[j] \leftarrow (\mathbf{x}, y)$ 9: end if 205 10: end if 206 $N \gets N + 1$ 11: 12: end for 208 209

210 **Algorithm 5** MoF_Reservoir($\mathcal{M}, \mathcal{M}_{max}, \mathcal{M}_{size}, B, n, t$, 211 k, T, N212 1: MoF_Ring($\mathcal{M}, \mathcal{M}_{max}, \mathcal{M}_{size}, B, n, t, k, T$) 213 2: $\hat{\mathcal{M}} \leftarrow \mathcal{M}[n * t * k :]$ 214 3: $\hat{\mathcal{M}}_{max} \leftarrow \mathcal{M}_{max} - n * t * k$ 215 4: $\hat{\mathcal{M}}_{size} \leftarrow \mathcal{M}_{size} - n * t * k$ 216 5: N = 0217 6: Reservoir($\hat{\mathcal{M}}, \hat{\mathcal{M}}_{max}, \hat{\mathcal{M}}_{size}, B, n, t, k, T, N$) 218

Algorithm 6 UnForgettable_Reservoir($\mathcal{M}, \mathcal{M}_{max}, \mathcal{M}_{size}, B, n, t, k, T, N$)

- 1: UnForgettable_Ring($\mathcal{M}, \mathcal{M}_{max}, \mathcal{M}_{size}, B, n, t, k, T$)
- 2: $\hat{\mathcal{M}} \leftarrow \mathcal{M}[n * t * k :]$
- 3: $\hat{\mathcal{M}}_{max} \leftarrow \mathcal{M}_{max} n * t * k$
- 4: $\mathcal{M}_{size} \leftarrow \mathcal{M}_{size} n * t * k$ 5: N = 0
- 6: Reservoir($\hat{\mathcal{M}}, \hat{\mathcal{M}}_{max}, \hat{\mathcal{M}}_{size}, B, n, t, k, T, N$)

nisms of episodic memory \mathcal{M} after the k-th task in sequential learning tasks has been trained. Sampling experiences from memory is random.

4. Experiments

4.1. Sequential Learning Tasks

In this section, three supervised data streams are considered:

(1) **Permuted MNIST** (Kirkpatrick et al., 2017) is a standard sequential learning task. It is a variant of MNIST (Lecun et al., 1998) handwritten digit database, where the pixel of images are shuffled by a fix random permutation sequential and 1000 shuffled experiences are chosen in each task. In Permuted MNIST, we cross validate on first 3 tasks in order to estimate the parameters of the model, and then evaluate the metrics on the remaining 20 tasks in a single training pass over each task in sequence, which means $T^{CV} = 3$ and T = 23.

(2) **Split CIFAR** (Zenke et al., 2017) is splitting the original CIFAR-100 (Krizhevsky & Hinton, 2009) dataset into 20 disjoint subsets where every 5 classes randomly sampling from 100 classes without overlapping. $T^{CV} = 3$ and T = 20 in Split CIFAR.

(3) **SVHN-CIFAR** is a sequential learning task which trains on SVHN (Netzer et al., 2011) and CIFAR sequentially without sharing any information. Street View House Number (SVHN) is a benchmark dataset which cropped from Street View images, and CIFAR is CIFAR-10 for short. $T^{CV} = 0$ and T = 2 in SVHN-CIFAR, .

In the setting of experiments, the model is trained in a single pass which is suitable to human who seldom see an experience twice, and the setting of model architecture is described in *Table 2*.

Table 2.	The	setting	of	model	archi	tecture	on	dataset
----------	-----	---------	----	-------	-------	---------	----	---------

	6	
datasets	architecture	setting
Permuted MNIST	Fully-connected network	two hidden layers of 256 Re-
		LU units.
Split CIFAR	Reduced ResNet18	same as the model described
		in (Lopez-Paz et al., 2017).
SVHN-CIFAR	Reduced ResNet18	same as the model described
		in (Lopez-Paz et al., 2017).

4.2. Baselines

The state-of-the-art baselines are classified into (i) Training the model without regularization and memory. The parameters of current task are initialized from the parameters of the previous task. such as Vanilla, VAN for short; (ii) Expanding network architecture to acquire new information dynamically, such as PNN (Rusu et al., 2016); (iii) Imposing regularizer or optimization constraints on network weights which correlate with consolidated knowledge. EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018) and RWALK (Chaudhry et al., 2018) are included; and (iv) Integrating with memory that stores previous experiences and replays old experiences with experiences drawn from new task. We evaluate Experience Replay (ER), A-GEM (Chaudhry et al., 2019a) and MER (Riemer et al., 2019), and combine them with prioritized experience replay.

SINGLE-TASK is trained in a single pass over experiences from each task in sequential learning tasks independently, and it can be seen as an upper bound performance for every single task. **MULTI-TASK** is trained in a single pass over shuffled experiences and it can be seen as an upper bound performance for CL approaches.

4.3. Compare with baselines

To test the efficacy of prioritized experiences in writing mechanisms used in memory-based approaches, we compare them with baselines described in *section 4.2* for supervised sequential learning tasks described in *section 4.1*.

(1) Memory-based approaches with storing prioritized experiences on supervised continual learning tasks: The approaches with memory storing prioritized experiences, prefixing with 'MoF' or 'UnForgettable', outperform other continual learning approaches in Permuted MNIST (*Figure 1* and *Table 3*), Split CIFAR (*Figure 2* and *Table 4*) and SVHN-CIFAR (*Table 5*) except PNN which carries out a new stage of training new task and preserve all information it learned on previous tasks. However, PNN has a terrible memory problem because the size of parameters increases superlinearly with the number of tasks. It will run out of memory during training due to larger size of model. Therefore, PNN failed to 'OoM' in SVHN-CIFAR which used reduced ResNet18 in *Table 5*.

(2) **Prioritized experiences to alleviate catastrophic forgetting:** Compared the approaches which store the experiences from old tasks randomly such as ring and reservoir with the ones which store prioritized experiences, we can conclude that the prioritized experiences have a positive impact to alleviate *catastrophic forgetting*.

(3) **Prioritized experiences in different memory system approaches:** We list 3 memory-based approaches, Experience Replay (ER), Average GEM (A-GEM) and Meta-

Figure 1. Permuted MNIST, evolution of average accuracy A_m with 1 experience per class per task to store (average over 5 runs).

Figure 2. Split CIFAR, evolution of average accuracy A_m with 1 experience per class per task to store (average over 5 runs).

Table 3. Permuted MNIST, the episodic memory contains up to 1 experience per class per task (average over 5 runs).

	Methods							
Episodic Memory	ER		A-GEM		MER			
	$A_T(\%)$	F_T	$A_T(\%)$	F_T	$A_T(\%)$	F_T		
Ring	70.8	0.126	63.6	0.183	67.9	0.148		
Reservoir	69.2	0.142	62.3	0.190	70.1	0.116		
MoF_Ring	72.4	0.111	65.2	0.166	71.9	0.110		
MoF_Reservoir	72.7	0.116	65.6	0.166	75.1	0.077		
UnForgettable_Ring	71.4	0.119	65.0	0.185	70.7	0.120		
UnForgettable_Reservoir	72.1	0.118	66.5	0.155	74.5	0.083		
VAN	57.8	0.241	EWC		62.5	0.176		
MAS	64.2	0.180	RWALK		62.9	0.201		
PNN	77.9	0.000	-		-	-		
SINGLE-TASK	81.9	-	MULTI-	TASKS	80.7	-		

Table 4. Split CIFAR, the episodic memory contains up to 1 experience per class per task (average over 5 runs).

	Methods							
Episodic Memory	ER		A-G	EM	MER			
	$A_T(\%)$	F_T	$A_T(\%)$	F_T	$A_T(\%)$	F_T		
Ring	56.4	0.132	54.4	0.157	51.0	0.096		
Reservoir	52.7	0.188	50.4	0.176	39.5	0.248		
MoF_Ring	60.4	0.096	56.8	0.132	51.8	0.117		
MoF_Reservoir	58.6	0.128	56.9	0.136	48.2	0.148		
UnForgettable_Ring	60.1	0.100	57.8	0.117	53.5	0.108		
UnForgettable_Reservoir	59.6	0.117	57.7	0.129	48.6	0.145		
VAN	41.4	0.269	EW	С	43.3	0.260		
MAS	44.0	0.252	RWA	LK	41.2	0.288		
PNN	59.7	0.000	-		-	-		
SINGLE-TASK	68.6	-	MULTI-	TASK	68.5	-		

Experience Replay (MER). They perform much different on
3 sequential learning tasks. MER-MoF_Reservoir has best
performance on Permuted MNIST, but MER performs worst
at Split CIFAR and SVHN-CIFAR among 3 approaches. ER
performs best on Split CIFAR and SVHN-CIFAR, and A-GEM is in the middle. There is a large gap between MER
and SINGLE-TASK evaluated on CIFAR shown in *Table 5*,
MER has bad capacity to integrate novel information from
different distribution without sharing information.

(4) **Memory writing mechanisms:** We use ring and reservoir writing mechanisms to store experiences. Reservoir with prioritized experiences achieves the best performance. The reason is that memory is fully utilized in reservoir at early stage of training. Meanwhile, the reservoir with prioritized experiences guarantees a minimum number of prioritized experiences for each class.

(5) Prioritized experience measures: The results of MoF
and UnForgettable in ring and reservoir writing mechanism
show that feature margin is superior to classification margin
in most of cases. The reason is that MoF is based on all
experiences in task and prioritized experiences chosen in
MoF is more representative than UnForgettable.

(6) **Episodic memory size:** In some cases, it may be impractical to store numbers of experiences in replay buffer. We consider two small buffers storing 3 and 5 experiences per class per task respectively. From the results in *Table 6*,

Table 5. SVHN-CIFAR, the episodic memory contains up to 1 experience per class per task (average over 5 runs). $a_{1,0}$ and $a_{1,1}$ are test accuracy of SVHN and CIFAR after CIFAR is trained. The 'OoM' in table means that the model is running out of memory and the 'NaN' means the model failed to train in the setting.

	Methods						
Episodic Memory	ER		A-GEN	1	MER		
	$a_{1,0}, a_{1,1}$	F_T	$a_{1,0}, a_{1,1}$	F_T	$a_{1,0}, a_{1,1}$	F_T	
Ring	56.8, 67.0	0.334	42.5, 67.5	0.480	54.1, 41.2	0.361	
Reservoir	37.7, 66.8	0.524	NaN	NaN	19.6, 70.0	0.717	
MoF_Ring	63.1, 67.6	0.271	55.0, 63.7	0.355	58.9, 39.3	0.309	
MoF_Reservoir	71.6, 67.3	0.171	62.4, 65.4	0.279	65.1, 45.8	0.252	
UnForgettable_Ring	50.0, 66.4	0.414	43.9, 67.7	0.468	55.6, 47.3	0.347	
UnForgettable_Reservoir	66.9, 67.8	0.231	55.6, 65.5	0.345	63.3, 40.9	0.265	
VAN	25.6, 69.2	0.651	EWC		72.2, 51.3	0.186	
MAS	71.8, 49.0	0.188	RWALK		51.4, 59.5	0.393	
PNN	OoM	-	-		-	-	
SINGLE-TASKS	90.6, 69.0	-	MULTI-TA	ASK	88.1, 64.3	-	

Table 6. Permuted MNIST, the episodic memory stores 3 and 5 experiences per class per task respectively (average over 5 runs).

	Methods							
Enisodic Memory	ER		A-GEM		MER			
Episoure Weinory		600						
	$A_T(\%)$	F_T	$A_T(\%)$	F_T	$A_T(\%)$	F_T		
Ring	74.1	0.091	65.8	0.162	76.3	0.067		
Reservoir	74.9	0.084	63.5	0.180	75.4	0.056		
MoF_Ring	75.0	0.085	67.2	0.147	76.7	0.071		
MoF_Reservoir	76.1	0.085	64.6	0.174	78.4	0.047		
UnForgettable_Ring	73.7	0.095	67.0	0.149	74.7	0.080		
UnForgettable_Reservoir	75.2	0.089	65.5	0.163	76.8	0.063		
	Methods							
Enisodic Memory	ER A-GEM MER							
Episoure memory	1000							
	$A_T(\%)$	F_T	$A_T(\%)$	F_T	$A_T(\%)$	F_T		
Ring	75.7	0.080	65.3	0.168	77.5	0.056		
Reservoir	76.5	0.070	64.5	0.189	77.0	0.043		
MoF_Ring	75.7	0.080	66.0	0.161	77.4	0.064		
MoF_Reservoir	77.1	0.075	65.8	0.162	79.9	0.035		
UnForgettable_Ring	74.1	0.096	66.7	0.152	75.1	0.083		
UnForgettable_Reservoir	75.7	0.083	63.5	0.185	77.7	0.057		

Table 7. Split CIFAR, the episodic memory stores 3 and 5 experiences per class per task (average over 5 runs).

	Methods							
Enisodic Memory	ER		A-GEM		MER			
Episoure memory	255							
	$A_T(\%)$	F_T	$A_T(\%)$	F_T	$A_T(\%)$	F_T		
Ring	61.7	0.090	58.8	0.118	54.4	0.077		
Reservoir	60.9	0.113	55.5	0.155	47.1	0.153		
MoF_Ring	64.0	0.066	60.5	0.097	54.6	0.109		
MoF_Reservoir	65.2	0.067	60.7	0.098	50.7	0.114		
UnForgettable_Ring	60.9	0.091	60.4	0.093	53.5	0.113		
UnForgettable_Reservoir	63.4	0.080	60.5	0.102	49.7	0.116		
	Methods							
Enisodic Memory	ER A-GEM				MER			
Episoure Weinory	425							
	$A_T(\%)$	F_T	$A_T(\%)$	F_T	$A_T(\%)$	F_T		
Ring	62.7	0.066	59.9	0.101	54.2	0.070		
Reservoir	65.5	0.077	58.5	0.156	50.7	0.104		
MoF_Ring	65.2	0.054	61.7	0.081	55.6	0.096		
MoF_Reservoir	67.5	0.051	61.1	0.099	51.2	0.110		
UnForgettable_Ring	61.9	0.079	62.0	0.081	51.9	0.134		
UnForgettable_Reservoir	66.7	0.062	59.6	0.114	49.2	0.116		

Table 8. SVHN-CIFAR, the episodic memory store 3 and 5 experiences per class per task respectively (average over 5 runs). $a_{1,0}$ and $a_{1,1}$ are test accuracy of SVHN and CIFAR after CIFAR is trained. The 'NaN' means the model failed to train in the setting.

			Mathad	la.					
		Miculous Min							
Enisodic Memory	ER		A-GEN	4	MER				
Episodic Mellory	60								
	$a_{1,0}, a_{1,1}$	F_T	$a_{1,0}, a_{1,1}$	F_T	$a_{1,0}, a_{1,1}$	F_T			
Ring	68.2, 67.2	0.221	58.5, 65.7	0.321	62.2, 40.9	0.273			
Reservoir	35.4, 66.3	0.550	NaN	NaN	24.9, 69.2	0.652			
MoF_Ring	71.4, 66.7	0.188	65.2, 66.3	0.252	68.2, 43.3	0.221			
MoF_Reservoir	78.5, 67.3	0.109	70.5, 65.1	0.198	70.6, 40.5	0.188			
UnForgettable_Ring	60.1,67.8	0.306	52.6, 67.6	0.377	56.8, 46.5	0.333			
UnForgettable_Reservoir	77.5, 67.1	0.128	67.2, 63.2	0.230	69.8, 42.2	0.200			
	Methods								
Enicodia Momory	ER		A-GEN	1	MER				
Episouic Memory	100								
	$a_{1,0}, a_{1,1}$	F_T	$a_{1,0}, a_{1,1}$	F_T	$a_{1,0}, a_{1,1}$	F_T			
Ring	71.9, 67.6	0.185	62.1, 67.2	0.280	64.4, 45.2	0.256			
Reservoir	30.0, 65.9	0.599	NaN	NaN	26.2, 69.4	0.645			
MoF_Ring	75.5, 67.0	0.152	67.9,65.7	0.223	67.5, 43.5	0.226			
MoF_Reservoir	81.3, 68.5	0.089	72.7, 65.9	0.174	72.0, 45.6	0.179			
UnForgettable_Ring	63.2, 66.7	0.274	55.9, 67.1	0.346	59.9, 47.9	0.302			
UnForgettable_Reservoir	79.8, 66.9	0.103	69.5, 65.9	0.201	70.2, 44.6	0.195			

7, 8, we find that all buffers perform well except reservoir in SVHN-CIFAR. The benefits of memory system seem to grow as the buffer becomes larger. The failure of reservoir may be due to over-fitting, where limited experiences presented in the buffer. However, replaying prioritized experiences in tiny reservoir relieves over-fitting.

5. Conclusion

Unlike human's acquirement and accumulation of knowledge throughout their lifespan, *catastrophic forgetting* in continual learning of deep neural network is a destructive issue which decreases the performance of preserving learned knowledge.

Different from traditional memory-based approaches storing experiences from old tasks randomly, we introduce prioritized experience replay, which uses feature margin and classification margin to identify prioritized experiences, and stores them in ring and reservoir writing mechanisms. The results of experiments show that (i) prioritized experience replay outperforms other state-of-the-art CL approaches in a training pass except PNN which failed in large-size model, and (ii) replaying prioritized experience in tiny reservoir relieves over-fitting which happened in memory-based approaches and alleviates *catastrophic forgetting*.

References

- Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and Tuytelaars, T. Memory aware synapses: Learning what (not) to forget. In *European Conference on Computer Vision 2018 (ECCV 2018)*, Munich, German, 2018. Springer, Cham.
- Belouadah, E. and Popescu, A. IL2M: class incremental

learning with dual memory. In 2019 International Conference on Computer Vision (ICCV 2019), pp. 583–592, Seoul, Korea (South), 2019. IEEE.

- Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H. S. Riemannian walk for incremental learning: Understanding forgetting and intransigence. In *European Conference* on Computer Vision 2018 (ECCV 2018), Munich, German, 2018. Springer, Cham.
- Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny, M. Efficient lifelong learning with A-GEM. In *International Conference on Learning Representations 2019* (*ICLR 2019*), 2019a.
- Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H. S., and Ranzato, M. Continual learning with tiny episodic memories. *arXiv*, abs/1902.10486, 2019b.
- Goodfellow, I. J., Mirza, M., Da, X., Courville, A. C., and Bengio, Y. An empirical investigation of catastrophic forgeting in gradient-based neural networks. In *Proceedings* of International Conference on Learning Representations 2014 (ICLR 2014), 2014.
- Hassabis, D., Kumargan, D., Summerfield, C., and Botvinick, M. Neuroscience-inspired artificial intelligence. *Neuron Review*, 95(2):245–258, 2017.
- He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–778, 2016.
- Jones, A. and Sprague, N. Continual learning through expandable elastic weight consolidation. In *32nd Conference on Neural Information Processing System 2018* (*NIPS 2018*), Montréal, Canada, 2018.
- Kirkpatrick, J., Pascanu, R., Rabinowitz, N. C., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., and Hadsell, R. Overcoming catastrophic forgetting in neural networks. In *Proceedings of the National Academy of Sciences of the United States of America*, volume 114 13, pp. 3521–3526, 2017.
- Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images. Technical report, Computer Science Department, University of Toronto, Toronto, Ontario, Canada, 2009.
- Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradientbased learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

- Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C. Learn
 to grow: A continual structure learning framework for
 overcoming catastrophic forgetting. In *Proceedings of the 36th Internatioal Conference on Machine Learning*(*PMLR 97*), Long Beach, CA, USA, 2019.
 - L.McClelland, J. and L.McNaughton, B. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. *Psychnlogical Review*, 102(3):419–457, 1995.
 - Lopez-Paz, David, Ranzato, and Aurelio, M. Gradient
 episodic memory for continual learning. In *31st Conference on Neural Information Processing System (NIPS* 2017), Long Beach, CA, USA, 2017.
 - Mccloskey, M. and Cohen, N. J. Catastrophic interference in connectionist networks: The sequential learning problem. *Psychology of Learning and Motivation*, 24:109– 165, 1989.
 - Netzer, Y., Tao, W., Coates, A., Bissacco, A., Bo, W., and
 Ng, A. Y. Reading digits in natural images with unsupervised feature learning. In *NIPS 2011 workshop on deep learning and unsupervised feature learning*, 2011.
 - Parisi, G. I., Tani, J., Weber, C., and Wermter, S. Lifelong learning of spatiotemporal representations with dualmemory recurrent self-organization. *Front. Neurorobot*, 12, 2018.
 - Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. Continual lifelong learning with neural networks: A review. *Neural Network*, 113:54–71, 2019.
 - Rebuffi, S.-A., Kolesnikov, A., and Lampert, C. H. icarl: Incremental classifier and representation learning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 5533–5542, 2017.
 - Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., and Tesauro, G. Learning to learn without forgetting by maximizing transfer and minimizing interference. In *Proceedings of International Conference on Learning Representations 2019 (ICLR 2019)*, 2019.
 - Ring, M. B. Continual learning in reinforcement environments. PhD thesis, University of Texas at Austin, 1994.
 - Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsell, R. Progressive neural networks. *arXiv*, abs/1606.04671, 2016.
 - Thrun, S. and M.Mitchell, T. Lifelong robot learning. *Robotics and Autonomous System*, 15(1-2):25–46, 1995.

- Toneva, M., Sordoni, A., Combes, R. T. d., Trischler, A., Bengio, Y., and Gordon, G. J. An empirical study of example forgetting during deep neural network learning. In *Proceedings of International Conference on Learning Representations 2019 (ICLR 2019)*, 2019.
- Vitter, J. S. Random sampling with a reservoir. *ACM Trans. Math. Softw.*, 11(1):37–57, 1985.
- Zenke, F., Poole, B., and Ganguli, S. Continual learning through synaptic intelligence. In *Proceedings of the 34th International Conference on Machine Learning (ICML 17)*, volume 70, pp. 3987–3995, 2017.