
MCTS-Judge: Test-Time Scaling in LLM-as-a-Judge for
Code Correctness Evaluation

Anonymous ACL submission

Abstract

The LLM-as-a-Judge paradigm shows promise001
for evaluating generative content but lacks re-002
liability in reasoning-intensive scenarios, such003
as programming. Inspired by recent advances004
in reasoning models and shifts in scaling laws,005
we pioneer bringing test-time computation into006
LLM-as-a-Judge, proposing MCTS-Judge, a007
resource-efficient, System-2 thinking frame-008
work for code correctness evaluation. MCTS-009
Judge leverages Monte Carlo Tree Search010
(MCTS) to decompose problems into sim-011
pler, multi-perspective evaluations. Through012
a node-selection strategy that combines self-013
assessment based on historical actions in the014
current trajectory and the Upper Confidence015
Bound for Trees based on prior rollouts, MCTS-016
Judge balances global optimization and refine-017
ment of the current trajectory. We further de-018
signed a high-precision, unit-test-level reward019
mechanism to encourage the Large Language020
Model (LLM) to perform line-by-line analy-021
sis. Extensive experiments on three bench-022
marks and five LLMs demonstrate the effec-023
tiveness of MCTS-Judge, which improves the024
base model’s accuracy from 41.0% to 80.0%,025
surpassing the o1-series models with 3× fewer026
tokens. Further evaluations validate the supe-027
riority of its reasoning trajectory in logic, ana-028
lytics, thoroughness, and overall quality, while029
revealing the test-time scaling law of the LLM-030
as-a-Judge paradigm.031

1 Introduction032

LLM-as-a-Judge, wherein Large Language Models033

(LLMs) serve as the golden rule for evaluation cri-034

teria (Gu et al., 2024), has been proposed for appli-035

cations such as generative content assessment (Li036

et al., 2024b), and data captioning (Chen et al.,037

2024), serving as a cost-effective solution com-038

pared to human expert evaluators. Among those,039

LLM-as-a-Judge has revolutionized code evalua-040

tion by automating judgment (Yang et al., 2024),041

repair (Liu et al., 2024), and explanation (Weyssow042

o1-preview

o1-mini

Qwen-QwQ-32B

DeepSeek-Coder-V2-16B-Instruct

Ours (16B)

(Base Model)

Sy
st

em
-2

 T
hi

nk
in

g
2

×
 A

cc
ur

ac
y

3 × Token
Efficiency

1 3 5 7

80

70

60

50

40

Number of Total Tokens (1 × 103)

A
ccuracy (％

)

Figure 1: With test-time scaling, our MCTS-Judge
method doubles the accuracy of DeepSeek-Coder-V2-
16B-Instruct on the APPS benchmark, surpassing o1-
series models and Qwen-QwQ-32B, while using 3×
fewer tokens and a smaller model. The circle sizes indi-
cates the relative sizes of the models.

et al., 2024), replacing inaccurate similarity-based 043

execution-free methods (Ren et al., 2020; Tran 044

et al., 2019), and expensive execution-based meth- 045

ods reliant on manually-crafted test cases (Zheng 046

et al., 2023; Zhuo et al., 2024). 047

Despite its growing adoption, recent studies 048

highlight critical challenges in the LLM-as-a-Judge 049

paradigm, including bias (Gu et al., 2024), mis- 050

alignment (Ye et al., 2024), and fairness con- 051

cerns (Li et al., 2024a), questioning its reliability 052

for accurate, human-like judgments. To address 053

these issues, researchers have focused on pretrain- 054

ing (Hui et al., 2024), fine-tuning (Wang et al., 055

2024a), and in-context learning (Wei et al., 2022) 056

to improve reasoning capabilities, which are highly 057

demanded in programming scenarios. Unfortu- 058

nately, as LLMs near the upper bounds imposed by 059

scaling laws, further advancements involve increas- 060

ing costs in training with diminishing returns (Snell 061

et al., 2024). 062

To address these limitations, inspired by the 063

shift of scaling laws from training to test time (Xu 064

et al., 2025) and recent breakthroughs in Reason- 065

ing LLMs, such as OpenAI’s o-series (Jaech et al., 066

2024), we introduce the first framework that in- 067

1

tegrates test-time computation into the LLM-as-a-068

Judge paradigm. We target code correctness evalua-069

tion and propose MCTS-Judge, a resource-efficient070

LLM-as-a-Judge framework with System-2 think-071

ing, offering human-like reasoning for more re-072

liable evaluations. It achieves State-Of-The-Art073

(SOTA) performance compared to prior LLM-as-074

a-Judge methods, which rely on rapid and super-075

ficial System-1 thinking (Tong and Zhang, 2024;076

Zhuo, 2023). MCTS-Judge leverages a tailored077

Monte Carlo Tree Search (MCTS) to decompose078

problems into simpler, multi-perspective evalua-079

tion tasks. In the selection phase of MCTS, we in-080

troduce a global-local node selection strategy that081

combines self-assessment based on historical ac-082

tions in the current trajectory, and the Upper Confi-083

dence Bound for Trees (UCT) algorithm, guided by084

prior rollouts, to balance the optimization of high-085

value regions in the global search space with local086

reasoning trajectories. We further designed a high-087

precision simulated execution reward mechanism.088

This mechanism combines cost-effective automatic089

test case synthesis with LLM-as-an-interpreter ex-090

ecution, prompting line-by-line analysis for unit-091

test-level reliability.092

Extensive experiments on five LLMs093

across three challenging code bench-094

marks—BigCodeBench (Zhuo et al., 2024),095

HumanEval-X (Zheng et al., 2023), and096

APPS (Hendrycks et al., 2021)—with varying code097

complexity and languages, highlight the reliability098

of MCTS-Judge powered by test-time computation.099

As shown in Fig. 1, our approach elevates the100

accuracy of DeepSeek-Coder-Lite-16B (Zhu et al.,101

2024) from 41.0% to 80.0%, surpassing o1-series102

models (Jaech et al., 2024) and open-source Qwen-103

QwQ-32B (Qwen, 2024), while using only 3×104

fewer tokens and a smaller model. Furthermore,105

we achieve SOTA performance on all experiments106

compared to previous System-1 thinking-based107

LLM-as-a-judge frameworks, with up to 32%108

improvement on APPS, and demonstrate strong109

robustness in generalizable scenarios without code110

references. Case studies on HumanEval-X further111

showcase MCTS-Judge’s superior reasoning112

across four fine-grained dimensions, such as logic113

and analytics, achieving a higher win rate over114

o1-series models. Finally, we validated that scaling115

test-time computation, including tree depth and116

rollouts, further enhances MCTS-Judge’s accuracy,117

shedding light into the test-time scaling law for118

LLM-as-a-judge paradigms.119

2 Related Work 120

2.1 Code Correctness Evaluation 121

Code correctness evaluation can be broadly bro- 122

ken down into two paradigms. Execution-free 123

methods, such as BLEU (Papineni et al., 2002), 124

ROUGE-L (Lin, 2004), METEOR (Denkowski and 125

Lavie, 2014), ChrF (Popović, 2015), RUBY (Tran 126

et al., 2019), and CodeBLEU (Ren et al., 2020), 127

assess code based on textual or code-specific fea- 128

ture similarity to reference code. In this paper, 129

we refer to them as similarity-based evaluation 130

methods. However, reference code is often un- 131

available in practice, and these methods struggle 132

to distinguish semantically equivalent but syntac- 133

tically different code, leading to low accuracy, as 134

shown in Appendix B. In contrast, execution-based 135

methods, commonly used in code generation bench- 136

marks (Zheng et al., 2023; Zhuo et al., 2024), assess 137

code correctness by executing it against test cases. 138

However, this approach demands comprehensive 139

handcrafted test cases and isolated environments, 140

making it costly and operationally complex (Zhang 141

et al., 2022). To address these limitations, recent 142

efforts have explored LLM-as-a-Judge paradigms 143

with in-context learning. ICE-Score (Zhuo, 2023) 144

integrates evaluation criteria into prompts, while 145

CODEJUDGE (Tong and Zhang, 2024) employs 146

a two-stage prompting approach. However, these 147

methods rely on System-1 thinking (Kahneman, 148

2011), leading to rapid, superficial decisions that 149

are constrained by the inherent uncertainties of 150

LLMs, resulting in limited reliability. 151

2.2 Test-time Computation Boost Reasoning 152

Recent studies highlight a shift in scaling laws 153

from train-time to test-time (Ji et al., 2025; Xu 154

et al., 2025), as pretrained models approach data 155

scale limits (Snell et al., 2024), while reasoning 156

models leverage test-time computation, demon- 157

strating remarkable performance improvements, 158

exemplified by OpenAI’s o-series models (Jaech 159

et al., 2024). To advance human-like System-2 160

thinking, key innovations include chain-of-thought 161

data curation (Wang et al., 2022, 2024b), reinforce- 162

ment learning (DeepSeek-AI, 2025; Qwen, 2024), 163

and reward models (Guan et al., 2025; Yu et al., 164

2024). As a core support, search paradigms like 165

beam search and MCTS dynamically select diverse 166

reasoning trajectories, significantly enhancing ac- 167

curacy in large search spaces. Examples include 168

ReST-MCTS (Zhang et al., 2024a), rStar (Qi et al., 169

2

2024), MCTSr (Zhang et al., 2024b), and (Xie et al.,170

2024), which integrate MCTS with reinforced self-171

training, self-play mutual reasoning, and prefer-172

ence optimization, driving advancements in reason-173

ing tasks such as math and code problem-solving.174

Building on this remarkable improvement in relia-175

bility, we pioneeringly integrate test-time computa-176

tion into the LLM-as-a-Judge paradigm, proposing177

a novel framework, MCTS-Judge, which leverages178

System-2 thinking to generate reliable, human-like179

reasoning trajectories for comprehensive, multi-180

perspective code correctness evaluation.181

3 MCTS-Judge182

In this section, we first introduce the overview of183

MCTS-Judge for code evaluation (Sec.3.1), then184

detail its MCTS architecture (Sec.3.2) and reward185

mechanism (Sec. 3.3).186

3.1 Overview187

The code correctness evaluation task determines188

whether a code snippet c correctly implements the189

functionality described in a problem statement p,190

expressed as x = (c, p). In MCTS-Judge, we de-191

compose this task into subtasks, each prompting192

the LLM to verify a specific requirement. The193

action space of our MCTS consists of these sub-194

tasks and a null action representing no evalua-195

tion. At each node in the search tree, the sub-196

action space includes one non-repeating subtask197

and the null action. Each action in MCTS pro-198

duces an output si ∈ S with state transitions de-199

fined as si = L
(
x, s1, . . . , si−1

)
, where L repre-200

sents an LLM. This forms a reasoning trajectory201

t = x ⊕ s1 ⊕ · · · ⊕ sk, where k is the maximum202

depth of the search tree. The prediction for a tra-203

jectory is computed as f(t,g), where f aggregates204

the subtask outcomes in t along with a global evalu-205

ation g. A task-specific terminal reward is assigned206

based on the agreement between f(t,g) and the207

simulated execution result. We perform multiple208

rollouts, yielding a set of reasoning trajectories209

T =
{
t1, t2, . . . , tn

}
. The cumulative rewards210

R(ti) =
∑

s∈ti r(s) for these trajectories are used211

for weighted sampling to select the optimal tra-212

jectory tb. The final prediction for x is given by213

f(tb,g).214

3.2 Architecture Design215

We chose MCTS to implement System-2 think-216

ing essential for code evaluation for two reasons:217

First, MCTS breaks down the overall code eval- 218

uation task into simpler subtasks, reducing the 219

task complexity compared to other System-2 meth- 220

ods like Best-of-N (Brown et al., 2024) and self- 221

consistency (Wang et al., 2022), which require gen- 222

erating complete solutions in a single inference. 223

Second, our MCTS introduces rewards to guide 224

the search and select the optimal trajectory, further 225

improving the reliability of the LLM-as-a-Judge 226

paradigm. As shown in Fig. 2, our tailored MCTS 227

follows four key stages: selection, expansion, sim- 228

ulation, and backpropagation. 229

1) Selection. The selection process begins at 230

the root node and progresses hierarchically until 231

it reaches a node that has not been fully expanded 232

yet. We propose a selection strategy that combines 233

global and local information to balance the opti- 234

mization of high-value regions in the search space 235

with the current trajectory, resulting in a more co- 236

herent evaluation. Specifically, we employ a two- 237

level approach: a global-level UCT algorithm (Koc- 238

sis and Szepesvári, 2006), leveraging insights from 239

previous rollouts, and a local-level LLM-driven 240

self-assessment, which evaluates historical actions 241

within the current trajectory. The final selection is 242

obtained through weighted sampling, with the UCT 243

result weighted by wu and the self-assessment re- 244

sult weighted by wl. The UCT algorithm selects 245

the node with the highest UCT value, computed as: 246

UCT (s) =
Q(s)

N(s)
+ α ·

√
lnNparent(s)

N(s)
, (1) 247

248where Q(s) represents the cumulative reward of 249

node s, N(s) is the visit count of s, Nparent(s) 250

the visit count of s’s parent node, and α is a con- 251

stant that helps balance exploration and exploita- 252

tion. The LLM self-assessment result is obtained 253

by prompting the LLM whether including this sub- 254

task enhances code evaluation completeness based 255

on the completed subtasks in the current trajectory. 256

2) Expansion. If the maximum depth has not 257

been reached, a new child node is added to the 258

selected node by randomly sampling an unused 259

action and executing it. If the action is not null, 260

a subtask outcome is obtained by prompting the 261

LLM to carefully analyze c and p (optionally with 262

reference code) from a specific perspective and 263

then summarize the analysis into a binary decision. 264

3) Simulation. During the simulation process, 265

MCTS-Judge consistently selects non-null actions 266

to execute until the maximum depth is reached. 267

At this point, a complete reasoning trajectory t = 268

x ⊕ s1 ⊕ · · · ⊕ sk that evaluates the code across 269

3

1. Selection 4. Backpropagation3. Simulation2. Expansion

a1

s1

x x

s1

s2

s�

x
s1

s2

s�

a2

a1

s1

s2

x

Q: Based on history,
would choosing �1
improve the
completeness of
code evaluation ?
A: Yes

LLM

Generate Reasoning Trajectories through Monte Carlo Tree Search Final Answer Selection

Local: Self-Assessment

Global: Upper Confidence Bound

Q: Carefully read the code snippet and focus on
analyzing the code logic.
A: The code ⋯ <omitted>
Q: Based on the analysis, output 'Yes' if the
code snippet is correct; otherwise, output 'No':
A: No

LLM

Problem Defination

Does the code
snippet cover all the
required functionalities
of the problem?

Code Correctness
 Evaluation

Problem Statement:
Check if two words have the same
characters.

Code Snippet:
def same_chars(s0: str, s1: str):

LLM

Final answer:
The code snippet does not
implement the required
functionality described in the
problem statement.

Final Answer

Sample

…

…

…
…

s1 s2

s1 s2

s�

s1 s2 s�

s�

LLM

h (x)

f (t, g)

.Py

Reward

x
x

x

return sorted(s0) == sorted(s1)

Figure 2: MCTS-Judge generates reasoning trajectories with multi-dimensional evaluations using Monte-Carlo
Tree Search (MCTS). Each trajectory is iteratively constructed through selection, expansion, simulation, and
backpropagation. Our node selection strategy combines LLM-driven self-assessment, based on historical actions in
the current trajectory, with the Upper Confidence Bound for Tree (UCT) algorithm based on prior rollouts. This
strategy effectively integrates global and local information, balancing the optimization of high-value regions in the
search space with the refinement of the current trajectory. Moreover, we introduce a high-precision, unit-test-level
reward mechanism, encouraging the LLM to perform line-by-line analysis. This simulated execution reward guides
the search process and selects the final answer from candidate trajectories.

multiple dimensions is generated. The prediction270

of this trajectory (i.e. f(t,g)) is determined by a271

consistency check using the majority vote across272

all binary subtask outcomes, combined with an273

additional global evaluation g.274

4) Backpropagation. Once the maximum depth275

is reached, a terminal reward is calculated for276

the trajectory and propagated upward through the277

search tree. Each node in the trajectory updates its278

Q(s) by adding the terminal reward and increment-279

ing its N(s) by one.280

3.3 Reward Mechanism281

Reward is crucial in MCTS to guide the search to-282

ward promising paths while minimizing suboptimal283

exploration. Moreover, cumulative rewards directly284

determine the final answer in MCTS-Judge, further285

underscoring the importance of reward accuracy.286

However, verifying the correctness of predictions287

without ground truth labels is challenging. Ap-288

proaches like M∗ (Kang et al., 2024) and LLaMA-289

Berry (Zhang et al., 2024c) attempted to address290

this issue by training a reward model, but these291

methods often struggle with data collection and292

risk overfitting. RAP (Hao et al., 2023) introduced293

a self-evaluation mechanism where rewards are de-294

rived by asking the LLM to identify errors in its295

reasoning within a single completion. However,296

this mechanism may perform close to random if297

the LLM’s capabilities are limited (Qi et al., 2024).298

Therefore, inspired by execution-based evalua-299

tion methods (Liu et al., 2024; Xia et al., 2024;300

Zhang et al., 2024d) and the recently established301

Test Case Generation

Test Case Execution Simulation

Analyze

f(t, g)

Analysis

Reorganize Validate

Execute

h(x)
RewardCheck Check

Problem

Storage

Interpreter

Test Case

.py .py

Figure 3: Flowchart of the fully LLM-driven Simulated
Execution Reward Mechanism. f(t,g) represents the
prediction of the trajectory, and h(x) represents the
simulated execution result.

success of commercial models, represented by 302

GPT-4o, in code-related tasks and applications (Ma 303

et al., 2025; Liu et al., 2025; Anysphere, 2024), we 304

propose a fully LLM-powered simulated execution 305

reward mechanism that requires no training and im- 306

proves reliability through cross-checking and step- 307

by-step, in-depth analysis. As illustrated in Fig.3, 308

the mechanism comprises two key phases: test case 309

generation and execution simulation. The test case 310

generation phase occurs prior to the MCTS process 311

and requires only the problem statement p. GPT- 312

4o(OpenAI, 2024) is used to construct, validate, 313

and store diverse test cases. The execution sim- 314

ulation phase is invoked once MCTS reaches its 315

maximum depth and is carried out using the same 316

LLM as in the search phase. Each test case is repre- 317

sented as an input-output pair, where the evaluated 318

code must produce the correct output correspond- 319

ing to a given input. 320

1) Recipe for Test Case Generation. In the 321

test case generation phase, we instructe GPT-4o to 322

4

analyze the problem statement thoroughly, identi-323

fying key requirements, constraints, boundary con-324

ditions, and special cases. Based on this analysis,325

the model generates low-complexity test cases that326

span a range of scenarios, each with a brief expla-327

nation. These cases are organized into structured328

input-output pairs. To ensure correctness, each pair329

undergoes a validation process in which the LLM330

is prompted β times to self-evaluate whether the331

output aligns with the input and the intended behav-332

ior. Test cases that consistently pass this validation333

are retained, while those that do not are discarded.334

2) LLM-driven Execution Simulation. When335

the MCTS search reaches its maximum depth, the336

test case execution simulation phase begins. We337

randomly select γ stored test cases, mask their out-338

puts, and provide the inputs to the LLM one by one.339

We instruct the LLM to simulate a code interpreter,340

executing the code line by line while tracking vari-341

able changes, and then determining the expected342

output for the given input based on this execution343

trace. This process repeats δ times per test case,344

and the generated outputs are compared with the345

originally stored outputs. The majority vote from346

the δ repetitions finally determines whether a test347

case passes. The reward mechanism predicts that348

the code is correct only if all sampled test cases349

pass, and the result is expressed by h(x). This de-350

sign mirrors practical test case evaluation: if a code351

passes all test cases, it may be correct; however, if352

it fails any test case, it is definitively incorrect. Fi-353

nally, if the trajectory’s prediction f(t,g) matches354

h(x), the trajectory receives a terminal reward ϵ.355

In doing so, our reward mechanism is both cau-356

tious and reliable, leveraging the characteristics of357

the code evaluation task to establish a systematic,358

cross-checking evaluation process that effectively359

minimizes errors. Additionally, by simulating an in-360

terpreter that executes the code line by line, our ap-361

proach encourages LLMs to perform fine-grained362

deductive reasoning, considering code flow, vari-363

able updates, and logical branches. This detailed364

analysis helps uncover potential errors that might365

otherwise go unnoticed with a superficial “general366

impression”, ensuring that final conclusions are367

grounded in concrete and verifiable evidence.368

4 Experiments369

4.1 Setup370

Following previous work (Tong and Zhang, 2024),371

we evaluated MCTS-Judge on three challeng-372

ing benchmarks: HumanEval-X (Zheng et al., 373

2023), APPS (Hendrycks et al., 2021), and Big- 374

CodeBench (Zhuo et al., 2024). HumanEval-X 375

includes 164 introductory coding tasks across five 376

programming languages. APPS consists of Python 377

coding tasks of three different difficulty levels, 378

from which we randomly selected 100 competition- 379

level tasks. BigCodeBench contains 1,140 practical 380

and challenging Python programming tasks, cov- 381

ering 723 function calls from 139 libraries. For 382

tasks in BigCodeBench that lack meaningful input- 383

output pairs, such as drawing or compressing, we 384

shift the reward mechanism from simulated exe- 385

cution to simulated discussions, granting rewards 386

only when all reasoning steps yield positive signals 387

that enhance generalizability. 388

MCTS-Judge is a general framework compatible 389

with various LLMs. To assess its effectiveness and 390

generalizability, we employed five different LLMs 391

as base models, including code-specialized LLMs: 392

Qwen2.5-Coder-14B (Hui et al., 2024), DeepSeek- 393

Coder-V2-16B-Instruct (Zhu et al., 2024) and 394

Mistralai-Codestral-22B (team, 2024), as well 395

as general LLMs: Llama-3.1-8B-Instruct (Tou- 396

vron et al., 2023) and GPT-4o-mini (Achiam 397

et al., 2023). We compare MCTS-Judge with 398

three System 2 thinking LLMs, including Ope- 399

nAI o1-preview (Jaech et al., 2024), o1-mini (Jaech 400

et al., 2024), and Qwen-QwQ-32B (Qwen, 2024), 401

as well as two LLM-as-a-Judge paradigms de- 402

signed for code evaluation with System 1 think- 403

ing: CodeJudge (Tong and Zhang, 2024) and ICE- 404

Score (Zhuo, 2023).1 We further introduce a 405

Vanilla baseline, which prompts the LLM directly 406

for code correctness, reflecting its native evalua- 407

tion capability. Additionally, we also include a 408

test-case-only verification baseline using GPT-4o, 409

demonstrating that the MCTS-Judge’s effective- 410

ness derives from its architecture rather than model- 411

specific advantages. BigCodeBench is excluded 412

here as it’s evaluated with non-test-case-based ap- 413

proach. More details such as hyperparameters and 414

prompts are included in Appendix A. 415

4.2 Main Results 416

Table 1 presents the comparison results between 417

MCTS-Judge and baselines. We highlight three 418

key observations: (1) MCTS-Judge significantly 419

enhances the code evaluation capabilities of all 420

1ICE-Score produces ratings ranging from 0 to 4. Follow-
ing the approach in (Tong and Zhang, 2024), only a rating of
4 is considered correct.

5

Table 1: Accuracy (%) of MCTS-Judge and baselines on BigCodeBench, APPS, and HumanEval-X. MCTS-Judge
significantly improves the accuracy of base models and achieves the highest accuracy among existing LLM-as-a-
Judge methods across all benchmarks and five LLMs (highlighted in bold). It also surpasses larger reasoning model,
Qwen-QwQ-32B in most tasks and outperforms o1-series models in certain tasks (highlighted with underlines).

Method Approach BigCodeBench APPS HumanEval-X

Python Java C++ JavaScript Go Average

Test-case Verification
GPT-4o System-1 - 55.00 59.09 53.79 60.61 62.12 65.91 60.30

Commercial Reasoning LLMs
GPT-o1-preview System-2 82.02 75.00 82.58 89.39 87.12 86.36 83.33 85.76
GPT-o1-mini System-2 75.70 78.00 95.45 92.42 94.70 90.91 88.64 92.42

Open-sourced Reasoning LLMs
Qwen-QwQ-32B System-2 50.96 60.00 72.73 75.00 75.00 64.39 78.03 73.03

Code-Specialized Base Model: Qwen2.5-Coder-14B-Instruct
Vanilla System-1 63.33 62.00 62.12 64.39 68.94 64.39 73.48 66.66
ICE-Score System-1 70.44 65.00 72.73 74.24 71.97 72.73 78.79 74.09
CodeJudge System-1 63.33 68.00 86.36 81.06 79.55 82.58 75.75 81.06
MCTS-Judge (Ours) System-2 71.23 79.00 90.15 85.61 84.09 84.85 81.06 85.15

Code-Specialized Base Model: DeepSeek-Coder-V2-16B-Instruct
Vanilla System-1 51.75 41.00 73.48 64.39 63.64 66.67 60.61 65.76
ICE-Score System-1 57.89 48.00 71.21 76.52 69.70 70.45 74.24 72.42
CodeJudge System-1 52.45 62.00 73.48 69.70 67.42 69.70 66.67 69.39
MCTS-Judge (Ours) System-2 62.46 80.00 80.30 77.27 80.30 78.79 82.58 79.85

Code-Specialized Base Model: Mistralai-Codestral-22B
Vanilla System-1 42.81 62.00 82.58 68.18 70.45 62.88 66.67 70.15
ICE-Score System-1 51.93 56.00 82.58 68.18 60.61 63.64 61.36 67.27
CodeJudge System-1 49.04 54.00 85.61 69.70 68.94 71.21 66.67 72.43
MCTS-Judge (Ours) System-2 68.77 72.00 87.78 75.76 77.27 73.48 75.76 78.01

General Base Model: Llama-3.1-8B-Instruct
Vanilla System-1 43.16 56.00 65.91 63.64 64.39 62.12 70.45 65.30
ICE-Score System-1 45.88 42.00 72.73 64.39 62.88 56.82 54.55 62.27
CodeJudge System-1 63.86 53.00 73.48 73.48 75.76 70.45 67.42 72.12
MCTS-Judge (Ours) System-2 71.84 62.00 74.24 79.55 77.27 70.45 71.97 74.70

Commercial General Base Model: GPT-4o-mini
Vanilla System-1 72.37 65.00 86.36 82.58 85.61 86.36 84.85 85.15
ICE-Score System-1 77.37 72.00 84.85 78.79 86.36 83.33 85.61 83.79
CodeJudge System-1 70.70 72.00 87.12 83.33 87.88 86.36 84.09 85.76
MCTS-Judge (Ours) System-2 79.12 76.00 87.88 86.36 88.64 88.64 85.61 87.43

base models. When using open-source LLMs with421

substantially smaller model sizes, its performance422

can match or even surpass o1-series models. This423

phenomenon is illustrated more clearly in Fig. 4.424

On average, MCTS-Judge achieves a 14.34% accu-425

racy improvement across five different base mod-426

els on three benchmarks. In particular, DeepSeek-427

Coder-V2-16B-Instruct, originally at 41% accuracy428

on the APPS benchmark, improved dramatically429

to 80% with MCTS-Judge, surpassing both o1-430

preview and o1-mini. (2) Any base model we evalu-431

ated, when powered by MCTS-Judge, outperforms432

the open-source reasoning model Qwen-QwQ-32B433

on most tasks. For instance, MCTS-Judge based434

on Llama-3.1-8B-Instruct, with a model size only435

a quarter of Qwen-QwQ-32B, outperforms it in all436

tasks except those using the Go language, achiev- 437

ing up to a 20.88% higher accuracy. (3) Com- 438

pared to previous LLM-as-a-Judge paradigms with 439

System 1 thinking, MCTS-Judge demonstrates sig- 440

nificantly superior performance in all tasks. For 441

example, MCTS-Judge with DeepSeek-Coder-V2- 442

16B-Instruct achieved 18% higher accuracy than 443

CodeJudge and 32% higher than ICE-Score on the 444

APPS benchmark. 445

4.3 Inference Efficiency 446

To evaluate the test-time computational efficiency 447

of MCTS-Judge, we analyzed the average num- 448

ber of reasoning tokens generated on the APPS 449

benchmark. As presented in Table 2, when us- 450

ing DeepSeek-Coder-V2-16B-Instruct as the base 451

6

BigCodeBench

APPS

HumanEval-X

Ac
cu

ra
cy

 (
%

)
Ac

cu
ra

cy
 (

%
)

GPT-4o-mini
Qwen2.5-Coder-14B-
Instruct
DeepSeek-Coder-V2-
16B-Instruct
Mistralai-Codestral-
22B
Llama-3.1-8B-
Instruct

o1-previw o1-previw

o1-previw

79.12

72.37
71.23

62.46

68.77
71.84

63.33

51.75

42.8143.16

76
79 80

72

62

87.43 85.15

79.8578.01
74.70

85.15

66.6665.76

70.15

65.30

65
62

41

62
56

Figure 4: MCTS-Judge (darker colors) significantly
enhances LLMs’ inherent code evaluation capabilities
(lighter colors) across three benchmarks.

model, MCTS-Judge outperforms o1-preview in452

accuracy, while only consuming one third as many453

reasoning tokens, with an additional 20% equiv-454

alent token consumption for simulation in paral-455

lelization indicated by the superscript, and main-456

taining a model size that is 19 times smaller2.457

Methods Model Size
Reasoning

Acc
Tokens

o1-preview ~300B 5631 75.0
o1-mini ~100B 3755 78.0

Qwen-QwQ-32B 32B 2559 60.0
Ours w/ Deepseek 16B 2065+412 80.0

Table 2: Compared to advanced reasoning LLMs,
MCTS-Judge is cost-effective. With DeepSeek-Coder-
V2-16B-Instruct on the APPS benchmark, it achieves
the highest accuracy using the fewest tokens and the
smallest model size.

4.4 Fine-grained Quality Assessment458

MCTS-Judge demonstrated superior code correct-459

ness evaluation ability, while simultaneously gen-460

erating multi-perspective analyses during reason-461

ing trajectory construction. We believe that this462

may offer developers deeper insights into the code,463

providing a distinct advantage over both similarity-464

based and execution-based evaluation methods. To465

evaluate the quality of meta-analysis and reasoning466

capabilities, we compared the reasoning trajecto-467

ries generated by MCTS-Judge with three reason-468

ing models—o1-preview, o1-mini, and Qwen-QwQ-469

32B across four critical dimensions: thoroughness,470

logic, analysis, and overall reasoning quality, with471

GPT-4o assessing the win rate. As shown in Ta-472

2The model sizes of o1-preview, o1-mini, and GPT-4o-
mini are referenced from this paper (Abacha et al., 2024).

ble 3, MCTS-Judge with Deepseek-Coder-V2-16B- 473

Instruct and Qwen2.5-Coder-14B-Instruct consis- 474

tently achieves higher win rates, particularly ex- 475

celling at thoroughness and depth of analysis. 476

Dimensions

Deepseek-Coder-
V2-16B-Instruct

Qwen2.5-Coder-
14B-Instruct

o1-preview Ours o1-preview Ours

Thoroughness 35.6% 64.4% 28.8% 71.2%
Logic 51.5% 48.5% 49.2% 50.8%
Analysis 33.3% 66.7% 34.8% 65.2%
Overall 54.5% 45.5% 52.3% 47.7%

o1-mini Ours o1-mini Ours

Thoroughness 25.8% 74.2% 14.4% 85.6%
Logic 40.9% 59.1% 22.7% 77.3%
Analysis 16.7% 83.3% 15.9% 84.1%
Overall 46.2% 53.8% 47.0% 53.0%

QwQ Ours QwQ Ours

Thoroughness 28.0% 72.0% 31.1% 68.9%
Logic 25.8% 74.2% 43.2% 56.8%
Analysis 38.6% 61.4% 40.1% 59.9%
Overall 49.2% 50.8% 43.9% 56.1%

Table 3: Comparison of MCTS-Judge’s reasoning tra-
jectories with advanced reasoning LLMs across thor-
oughness, logic, analysis, and overall reasoning quality,
with GPT-4o assessing the win rate.

4.5 Extensions to General Scenarios 477

Reference code is crucial for similarity-based eval- 478

uation but is often unavailable in practice. While it 479

aids LLMs in understanding problems, LLM-as-a- 480

Judge methods should adapt to more generalizable 481

settings without it. We evaluated MCTS-Judge 482

and baselines on three benchmarks without refer- 483

ence code (full results in Appendix C). As shown 484

in Table 4, the absence of reference code signifi- 485

cantly degrades the performance of existing LLM- 486

as-a-Judge frameworks. In contrast, our MCTS- 487

Judge demonstrates exceptional robustness, with 488

only minimal performance drop, highlighting its 489

promising generalization capabilities.

Method BigCode- APPS Human
Bench Eval-X

ICE-Score 45.9 42.0 62.3
w/o reference 34.5 (-11.4%) 46.0 (+4%) 52.3 (-10.0%)

CodeJudge 63.9 53.0 72.1
w/o reference 41.4 (-22.5%) 47.0 (-6.0%) 57.4 (-14.7%)

Ours 71.8 62.0 74.7
w/o reference 65.8 (-6%) 62.0 (+0.0%) 69.5 (-5.2%)

Table 4: In the absence of reference code, MCTS-Judge
with Llama-3.1-8B-Instruct demonstrates robustness
with minimal performance drop, while other baselines
degrade significantly. 490

7

Test Cases # Execution Times

 Maximum Tree Depth # Rollouts

Ours w/DeepSeek-Coder-V2-16B-Instruct
Ours w/Qwen2.5-Coder-14B-Instruct o1-preview

o1-mini

Figure 5: Increasing test cases (α), executions per case
(δ), tree depth, and rollouts improves MCTS-Judge’s
accuracy on APPS, revealing a test-time scaling law.

4.6 Scaling Test-time Computation491

We explore the relationship between test-time com-492

putational scale and performance gains under our493

LLM-as-a-Judge framework. MCTS-Judge relies494

on simulated execution of test cases to determine495

the terminal reward, thereby providing more accu-496

rate guidance for MCTS and final prediction selec-497

tion. Intuitively, increasing the number of test cases498

(α) reduces the likelihood of misjudging incorrect499

code as correct, while increasing the execution500

times per test case (δ) further enhances accuracy.501

Furthermore, extending the maximum tree depth502

provides a more comprehensive evaluation, and503

more rollouts enable broader exploration. Fig. 5504

demonstrates the impact of these key hyperparam-505

eters on the APPS benchmark using DeepSeek-506

Coder-V2-16B-Instruct and Qwen2.5-Coder-14B-507

Instruct as base models. MCTS-Judge bene-508

fits from increased test-time computation, though509

the gains vary with specific hyperparameters and510

models. These results align with OpenAI’s find-511

ings (Openai, 2024), highlighting the potential of512

test-time scaling for LLM-as-a-Judge frameworks.513

4.7 Ablation Studies514

Table 5 presents ablation results evaluating the515

key components of MCTS-Judge. Under System-516

1 thinking, the Vanilla baseline reflects the base517

model’s intrinsic evaluation capability, while Ma-518

jority Vote executes all subtasks and selects the519

most frequent answer. Majority Vote improves ac-520

curacy by 13% over Vanilla, highlighting the value521

of incorporating multi-perspective evaluation.522

Under System-2 thinking, driven by MCTS, re-523

ward mechanisms are further analyzed. RMSC 524

assigns rewards based on self-consistency majority 525

voting (Qi et al., 2024), while RMSE incorporates 526

self-evaluation rewards (Hao et al., 2023). Our pro- 527

posed simulated execution reward, closely aligned 528

with ground truth, surpasses RMSC and RMSE by 529

13% in accuracy. Moreover, a variant using pure 530

UCT-based node selection is outperformed by the 531

full MCTS-Judge, highlighting the benefit of our 532

global-local-aware node selection strategy. 533

Method Reward Node AccModel Selection

System-1 Thinking
Vanilla - - 41.0
Majority Vote - - 54.0

System-2 Thinking

Monte Carlo
Tree Search

RMSC UCT 65.0
RMSE UCT 65.0
RMOurs UCT 78.0
RMOurs UCT+LLM 80.0

Table 5: Ablation of System-2 thinking, reward mech-
anism, and node selection strategy on APPS with
DeepSeek-Coder-V2-16B-Instruct highlights the effec-
tiveness of our designed components. The grey line
represents the complete MCTS-Judge, improving from
41.0% to 80.0% over Vanilla.

5 Conclusion 534

In this work, we propose MCTS-Judge, a novel 535

resource-efficient, test-time computation LLM-as- 536

a-Judge framework with System-2 thinking for 537

code correctness evaluation. Powered by a fully 538

LLM-driven MCTS, MCTS-Judge decomposes 539

problems into simpler, multi-perspective evalua- 540

tions. Through our global-local node selection 541

strategy, along with guidance from a simulated 542

execution reward mechanism, MCTS-Judge per- 543

forms line-by-line deep analysis. Experiments on 544

five LLMs and three benchmarks show that MCTS- 545

Judge significantly improves base model accu- 546

racy, surpassing o1-series models and Qwen-QwQ- 547

32B with one-third of the tokens and a smaller 548

model size. Compared to existing LLM-as-a-Judge 549

frameworks with System-1 thinking, MCTS-Judge 550

achieves SOTA performance while reducing depen- 551

dence on reference code. Moreover, its reasoning 552

trajectory shows superiority in logic, analytics, thor- 553

oughness, and overall quality. We further reveal 554

the test-time scaling law of MCTS-Judge, mark- 555

ing an important first step in integrating test-time 556

computation with the LLM-as-a-Judge paradigm. 557

8

6 Limitation558

In this work, we propose a System-2 thinking559

approach with a carefully designed architecture560

for code correctness evaluation. Our current re-561

ward mechanism leverages GPT-4o, one of the562

few models capable of producing reliable and563

well-formatted reward signals. In contrast, exist-564

ing open-source LLMs often struggle with accu-565

rate, line-by-line code execution using only pre-566

trained capabilities and frequently fail to generate567

structured, precise outputs for programming tasks.568

Looking forward, we aim to integrate future ad-569

vancements in open-source models to develop a570

more cost-effective and broadly deployable solu-571

tion. To ensure full and reliable reproducibility, we572

will release the complete codebase, data flywheel573

pipeline for test case generation, and comprehen-574

sive documentation upon acceptance. For review575

purposes, we have also included our source code576

in the Supplementary Materials.577

References578

Asma Ben Abacha, Wen-wai Yim, Yujuan Fu, Zhaoyi579
Sun, Meliha Yetisgen, Fei Xia, and Thomas Lin.580
2024. Medec: A benchmark for medical error detec-581
tion and correction in clinical notes. arXiv preprint582
arXiv:2412.19260.583

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama584
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,585
Diogo Almeida, Janko Altenschmidt, Sam Altman,586
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.587
arXiv preprint arXiv:2303.08774.588

Anysphere. 2024. Cursor: The ai-first code editor.589
https://www.cursor.so.590

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald591
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-592
seini. 2024. Large language monkeys: Scaling infer-593
ence compute with repeated sampling. arXiv preprint594
arXiv:2407.21787.595

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo596
Liu, Yaochen Wang, Huichi Zhou, Qihui Zhang,597
Yao Wan, Pan Zhou, and Lichao Sun. 2024. Mllm-598
as-a-judge: Assessing multimodal llm-as-a-judge599
with vision-language benchmark. arXiv preprint600
arXiv:2402.04788.601

DeepSeek-AI. 2025. Deepseek-r1: Advancing reason-602
ing in ai models. Technical report, DeepSeek-AI.603

Michael Denkowski and Alon Lavie. 2014. Meteor604
universal: Language specific translation evaluation605
for any target language. In Proceedings of the ninth606
workshop on statistical machine translation.607

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, 608
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, 609
Shengjie Ma, Honghao Liu, et al. 2024. A survey on 610
llm-as-a-judge. arXiv preprint arXiv:2411.15594. 611

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, 612
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. 613
2025. rstar-math: Small llms can master math reason- 614
ing with self-evolved deep thinking. arXiv preprint 615
arXiv:2501.04519. 616

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, 617
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. 618
Reasoning with language model is planning with 619
world model. arXiv preprint arXiv:2305.14992. 620

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 621
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 622
Samir Puranik, Horace He, Dawn Song, et al. 2021. 623
Measuring coding challenge competence with apps. 624
arXiv preprint arXiv:2105.09938. 625

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 626
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 627
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder 628
technical report. arXiv preprint arXiv:2409.12186. 629

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 630
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 631
Aleksander Madry, Alex Beutel, Alex Carney, et al. 632
2024. Openai o1 system card. arXiv preprint 633
arXiv:2412.16720. 634

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian 635
Mo, and Min Zhang. 2025. Test-time computing: 636
from system-1 thinking to system-2 thinking. arXiv 637
preprint arXiv:2501.02497. 638

Daniel Kahneman. 2011. Thinking, fast and slow. Far- 639
rar, Straus and Giroux. 640

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, 641
Qianyi Sun, Boxing Chen, Dong Li, Xu He, Quan 642
He, Feng Wen, et al. 2024. Mindstar: Enhancing 643
math reasoning in pre-trained llms at inference time. 644
arXiv preprint arXiv:2405.16265. 645

Levente Kocsis and Csaba Szepesvári. 2006. Bandit 646
based monte-carlo planning. In Proceedings of the 647
17th European Conference on Machine Learning 648
(ECML). 649

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yu- 650
jia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. 651
2024a. Llms-as-judges: A comprehensive survey 652
on llm-based evaluation methods. arXiv preprint 653
arXiv:2412.05579. 654

Lijun Li, Bowen Dong, Ruohui Wang, Xuhao Hu, Wang- 655
meng Zuo, Dahua Lin, Yu Qiao, and Jing Shao. 656
2024b. Salad-bench: A hierarchical and compre- 657
hensive safety benchmark for large language models. 658
arXiv preprint arXiv:2402.05044. 659

Chin-Yew Lin. 2004. Rouge: A package for automatic 660
evaluation of summaries. In Text summarization 661
branches out. 662

9

https://www.cursor.so
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf

Rundong Liu, Andre Frade, Amal Vaidya, Maxime663
Labonne, Marcus Kaiser, Bismayan Chakrabarti,664
Jonathan Budd, and Sean Moran. 2025. On iterative665
evaluation and enhancement of code quality using666
gpt-4o. arXiv preprint arXiv:2502.07399.667

Yizhou Liu, Pengfei Gao, Xinchen Wang, Jie Liu,668
Yexuan Shi, Zhao Zhang, and Chao Peng. 2024.669
Marscode agent: Ai-native automated bug fixing.670
arXiv preprint arXiv:2409.00899.671

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Si-672
jia Luo, and Jie Tang. 2025. Dynamic scaling of673
unit tests for code reward modeling. arXiv preprint674
arXiv:2501.01054.675

OpenAI. 2024. Gpt-4o system card. OpenAI.676

Openai. 2024. Learning to reason with llms.677

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-678
Jing Zhu. 2002. Bleu: a method for automatic evalu-679
ation of machine translation. In Proceedings of the680
40th annual meeting of the Association for Computa-681
tional Linguistics.682

Maja Popović. 2015. chrf: character n-gram f-score for683
automatic mt evaluation. In Proceedings of the tenth684
workshop on statistical machine translation.685

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,686
Fan Yang, and Mao Yang. 2024. Mutual reasoning687
makes smaller llms stronger problem-solvers. arXiv688
preprint arXiv:2408.06195.689

Qwen. 2024. Qwen2.5 technical report. arXiv preprint690
arXiv:2412.15115.691

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,692
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio693
Blanco, and Shuai Ma. 2020. Codebleu: a method694
for automatic evaluation of code synthesis. arXiv695
preprint arXiv:2009.10297.696

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-697
mar. 2024. Scaling llm test-time compute optimally698
can be more effective than scaling model parameters.699
arXiv preprint arXiv:2408.03314.700

Mistral AI team. 2024. Codestral: Hello, world!701

Weixi Tong and Tianyi Zhang. 2024. Codejudge: Eval-702
uating code generation with large language models.703
arXiv preprint arXiv:2410.02184.704

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier705
Martinet, Marie-Anne Lachaux, Timothée Lacroix,706
Baptiste Rozière, Naman Goyal, Eric Hambro,707
Faisal Azhar, et al. 2023. Llama: Open and effi-708
cient foundation language models. arXiv preprint709
arXiv:2302.13971.710

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and711
Tien Nguyen. 2019. Does bleu score work for code712
migration? In 2019 IEEE/ACM 27th International713
Conference on Program Comprehension (ICPC).714

Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, 715
Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou 716
Zhu, Lewei Lu, Yu Qiao, et al. 2024a. Enhancing 717
the reasoning ability of multimodal large language 718
models via mixed preference optimization. arXiv 719
preprint arXiv:2411.10442. 720

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 721
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 722
Denny Zhou. 2022. Self-consistency improves chain 723
of thought reasoning in language models. arXiv 724
preprint arXiv:2203.11171. 725

Yu Wang, Shiwan Zhao, Zhihu Wang, Heyuan Huang, 726
Ming Fan, Yubo Zhang, Zhixing Wang, Haijun Wang, 727
and Ting Liu. 2024b. Strategic chain-of-thought: 728
Guiding accurate reasoning in llms through strategy 729
elicitation. arXiv preprint arXiv:2409.03271. 730

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 731
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 732
et al. 2022. Chain-of-thought prompting elicits rea- 733
soning in large language models. Advances in neural 734
information processing systems. 735

Martin Weyssow, Aton Kamanda, and Houari Sahraoui. 736
2024. Codeultrafeedback: An llm-as-a-judge dataset 737
for aligning large language models to coding prefer- 738
ences. arXiv preprint arXiv:2403.09032. 739

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and 740
Lingming Zhang. 2024. Agentless: Demystify- 741
ing llm-based software engineering agents. arXiv 742
preprint arXiv:2407.01489. 743

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen 744
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and 745
Michael Shieh. 2024. Monte carlo tree search boosts 746
reasoning via iterative preference learning. arXiv 747
preprint arXiv:2405.00451. 748

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, 749
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui 750
Gong, Tianjian Ouyang, Fanjin Meng, et al. 2025. 751
Towards large reasoning models: A survey of rein- 752
forced reasoning with large language models. arXiv 753
preprint arXiv:2501.09686. 754

Jian Yang, Jiaxi Yang, Ke Jin, Yibo Miao, Lei Zhang, 755
Liqun Yang, Zeyu Cui, Yichang Zhang, Binyuan 756
Hui, and Junyang Lin. 2024. Evaluating and align- 757
ing codellms on human preference. arXiv preprint 758
arXiv:2412.05210. 759

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, 760
Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer, 761
Chao Huang, Pin-Yu Chen, et al. 2024. Justice 762
or prejudice? quantifying biases in llm-as-a-judge. 763
arXiv preprint arXiv:2410.02736. 764

Yue Yu, Zhengxing Chen, Aston Zhang, Liang Tan, 765
Chenguang Zhu, Richard Yuanzhe Pang, Yundi Qian, 766
Xuewei Wang, Suchin Gururangan, Chao Zhang, 767
et al. 2024. Self-generated critiques boost reward 768
modeling for language models. arXiv preprint 769
arXiv:2411.16646. 770

10

https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2412.15115
https://mistral.ai/news/codestral/

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,771
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm772
self-training via process reward guided tree search.773
arXiv preprint arXiv:2406.03816.774

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang775
Li, and Wanli Ouyang. 2024b. Accessing gpt-4776
level mathematical olympiad solutions via monte777
carlo tree self-refine with llama-3 8b. arXiv preprint778
arXiv:2406.07394.779

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong780
Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco781
Pavone, Yuqiang Li, et al. 2024c. Llama-berry: Pair-782
wise optimization for o1-like olympiad-level mathe-783
matical reasoning. arXiv preprint arXiv:2410.02884.784

Yue Zhang, Shuoyang Wang, and Xinyun Zhang. 2022.785
Codet: Code generation with generated tests. arXiv786
preprint arXiv:2207.10397.787

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik788
Roychoudhury. 2024d. Autocoderover: Autonomous789
program improvement. In Proceedings of the 33rd790
ACM SIGSOFT International Symposium on Soft-791
ware Testing and Analysis.792

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan793
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,794
Yang Li, et al. 2023. Codegeex: A pre-trained model795
for code generation with multilingual evaluations on796
humaneval-x. arXiv preprint arXiv:2303.17568.797

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,798
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo799
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:800
Breaking the barrier of closed-source models in code801
intelligence. arXiv preprint arXiv:2406.11931.802

Terry Yue Zhuo. 2023. Ice-score: Instructing large803
language models to evaluate code. arXiv preprint804
arXiv:2304.14317.805

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,806
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani807
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.808
2024. Bigcodebench: Benchmarking code genera-809
tion with diverse function calls and complex instruc-810
tions. arXiv preprint arXiv:2406.15877.811

A Experiment Settings 812

Table 6 details the hyperparameter settings of 813

MCTS-Judge employed to generate the results pre- 814

sented in this paper. These settings encompass 815

various aspects of the MCTS architecture, includ- 816

ing maximum tree depth, number of rollouts, ex- 817

ploration constant α, LLM sample weight wl, and 818

UCT sample weight wu. Additionally, the reward 819

mechanism parameters include the number of test 820

case validations β, number of test cases used γ, 821

number of test case simulations δ, and reward scal- 822

ing factor ϵ. Hyperparameters related to the LLM 823

configuration, such as temperature, top_p, top_k, 824

and maximum output tokens, are also specified. All 825

experiments were executed on a single H100 GPU 826

with 80GB of memory, ensuring consistency and 827

reproducibility in computational performance. 828

Hyperparameter Value
Maximum tree depth 9
Number of rollouts 8
Constant α 3
LLM sample weight wl 0.1
UCT sample weight wu 0.9
Number of test case validations β 5
Number of test cases used γ 3
Number of test case simulations δ 7
Reward ϵ 1.1
Temperature 0.4
Top_p 0.95
Top_k 40
Maximum tokens 2048

Table 6: Hyperparameters of MCTS-Judge.

B Limitations of Execution-Free Methods 829

In this experiment, we evaluate whether similarity- 830

based execution-free metrics, which do not require 831

test cases and isolated environments, can be used to 832

accurately assess code correctness. We evaluated 833

six representative metrics on the APPS benchmark: 834

BLEU, ROUGE-L, METEOR, ChrF, CodeBLEU, 835

and RUBY. Fig. 6 shows that the score distributions 836

for incorrect and correct code differ only slightly 837

for these metrics. This further highlights the impor- 838

tance of developing high-precision execution-free 839

methods for assessing code correctness. 840

C Evaluation without References 841

As discussed in Sec.4.5, we present the complete 842

results for extending to more general scenarios, 843

11

Figure 6: Score distributions of six execution-free met-
rics on the APPS benchmark show negligible distinction
between correct and incorrect code, indicating a lack of
reliability.

specifically in the absence of reference data. Ta-844

ble7 compares the performance of MCTS-Judge845

with baselines across three benchmarks and five846

LLMs. The results highlight MCTS-Judge’s greater847

robustness and generalization ability, as evidenced848

by reduced performance decay compared to other849

LLM-as-a-Judge methods, aligning with the con-850

clusions drawn in the main paper’s analysis.851

D Case Study852

We demonstrated the superiority of analysis meta-853

data from reasoning chains generated by MCTS-854

Judge across four key dimensions in Section 4.4. To855

further highlight MCTS-Judge’s advantages over856

the System-1 thinking approach in terms of accu-857

racy and comprehensive analysis, we present a case858

study comparing the vanilla Deepseek-Coder-V2-859

16B-Instruct model with the one integrated with860

MCTS-Judge.861

As shown in Fig. 7, at each step, MCTS-Judge862

provides evaluations from diverse perspectives,863

such as verifying whether requirements are met864

(Step 2) and assessing the correctness of the code865

logic (Step 5). In contrast, the vanilla model gener-866

ates an incorrect answer with only superficial anal-867

ysis, demonstrating a lack of deeper understanding.868

Reasoning trajectory of MCTS-Judge:
Step 1：
Analysis: Objectively, we're determining if two strings share the same
characters. The given code sorts both strings and compares them. This is
effective if the goal is to check whether the two strings are anagrams (i.e.,
identical characters with identical frequencies). However, for checking
only the presence of the same unique characters, frequency doesn't matter,
so this code may not align with the exact requirement.
Decision (�1): True

Step 2：
Analysis: The formal requirement states: 'Check if two words have the
same UNIQUE characters, ignoring frequency and order.' The sorting-
based code compares frequency and order. Thus, it does not satisfy the
exact requirement of ignoring frequency. A set-based comparison would
do that correctly
Decision (�2): False

Step 3：
Analysis: According to the specification, we need to identify unique
characters in each string and compare those sets. Sorting compares ordered
characters, including duplicates. Hence, it goes beyond just checking
presence of characters. The specification is not fully met by the provided
code.
Decision (�3): False

Step 4：
Analysis: We can declare the code as correct for an anagram check, since
sorting ensures that same-frequency characters appear in identical
positions. But for the stated requirement—comparing only unique
characters—it falls short.
Decision (�4): True

Step 5：
Analysis: Logically, sorting each string and comparing them is a sound
approach for determining if they have the same characters AND the same
counts. But since the problem only requires checking for unique-character
presence, there's a logical mismatch between the solution and the stated
requirement.
Decision (�5): False

Step 6：
Analysis: Functionality demands ignoring frequency and order. The
sorting solution goes beyond that by implicitly matching frequencies.
Hence, for THIS functionality (unique characters only), the code is not
correct. But for an anagram check, it would be correct.
Decision (�6): False

Step 7：
Analysis: From an algorithmic standpoint, sorting is O(n log n), set
comparison is typically O(n). For ignoring frequency, sets are both more
appropriate and more efficient. Still, sorting is a valid algorithm for
verifying anagrams, but not for simply checking shared unique characters.
Decision (�7): True

Step 8：
Analysis: Revalidating the initial problem: it asks to see if two words share
the same set of unique characters. Sorting inevitably measures frequency
as well. Therefore, for the EXACT requirement, the sorting solution is
inadequate.
Decision (�8): False

Summary:
Some of the 8 agents evaluated the problem and concluded that the
provided sorting-based code does not meet the problem's requirements.
Final consensus from all agents: False

Answer from Vanilla:
This method efficiently checks for anagrams, which are words or phrases
created by rearranging the letters of another word or phrase, utilizing all
original letters exactly once. It's a concise and effective approach for
comparing the characters between two strings. Final Answer: True

Problem Statement:
Check if two words have the same characters.
Code Snippet:
def same_chars(s0: str, s1: str):

return sorted(s0) == sorted(s1)

Ground Truth: False

Figure 7: Case Study: System-2 Thinking vs. System-
1 Thinking. MCTS-Judge leads with comprehensive
evaluations, while vanilla fails with superficial analysis.

12

Method Approach BigCodeBench APPS HumanEval-X

Python Java C++ JavaScript Go Average

Commercial Reasoning LLMs
GPT-o1-mini System-2 71.14 78.00 93.18 86.36 86.36 89.39 87.88 88.63

Open-sourced Reasoning LLMs
Qwen-QwQ-32B System-2 51.05 69.00 61.36 68.18 66.67 67.42 77.27 68.18

Code-Specialized Base Model: Qwen2.5-Coder-14B-Instruct
Base Model System-1 46.84 61.00 60.61 62.88 68.94 65.91 76.52 66.97
ICE-Score System-1 66.23 69.00 75.00 66.67 71.21 72.73 75.00 72.12
CodeJudge System-1 47.02 62.00 87.12 75.76 79.55 81.06 73.48 79.40
MCTS-Judge (Ours) System-2 70.35 74.00 86.36 87.12 80.30 82.58 82.58 83.79

Code-Specialized Base Model: DeepSeek-Coder-V2-16B-Instruct
Base Model System-1 35.09 49.00 69.70 58.33 53.79 53.79 56.06 58.33
ICE-Score System-1 47.19 56.00 74.24 69.70 71.21 66.67 69.70 70.30
CodeJudge System-1 35.44 62.00 75.76 66.67 63.64 66.67 66.67 67.89
MCTS-Judge (Ours) System-2 51.58 71.00 82.58 72.73 84.85 75.00 81.82 79.40

Code-Specialized Base Model: Mistralai-Codestral-22B
Base Model System-1 32.63 43.00 75.76 58.33 58.33 57.58 58.33 61.67
ICE-Score System-1 31.05 41.00 76.52 57.58 53.03 59.09 53.79 60.00
CodeJudge System-1 35.44 48.00 78.79 59.09 59.09 60.61 63.64 64.24
MCTS-Judge (Ours) System-2 52.37 74.00 79.55 72.73 75.76 65.91 77.27 74.24

General Base Model: Llama-3.1-8B-Instruct
Base Model System-1 33.95 58.00 59.85 60.61 62.88 64.39 67.42 63.30
ICE-Score System-1 34.47 46.00 62.12 51.52 50.76 54.55 42.42 52.27
CodeJudge System-1 41.40 47.00 61.36 60.61 58.33 54.55 52.27 57.42
MCTS-Judge (Ours) System-2 65.79 62.00 71.21 69.70 65.15 68.18 73.48 69.54

Commercial General Base Model: GPT-4o-mini
Base Model System-1 71.05 61.00 81.82 80.30 83.33 83.33 83.33 82.42
ICE-Score System-1 58.60 62.00 78.03 75.00 75.76 81.06 82.58 78.49
CodeJudge System-1 57.46 70.00 81.06 82.58 85.61 84.85 83.33 83.49
MCTS-Judge (Ours) System-2 73.68 72.00 82.58 83.33 87.12 87.12 85.61 85.15

Table 7: Accuracy (%) of MCTS-Judge and baselines without reference code on BigCodeBench, APPS, and
HumanEval-X. Compared to existing LLM-as-a-Judge methods, MCTS-Judge without reference code still achieves
the highest accuracy across all benchmarks and five LLMs (highlighted in bold). MCTS-Judge without reference
code maintains its advantage over advanced reasoning LLMs, with superior accuracy compared to the o1-series
models highlighted with underlines.

E Prompts869

We present the key prompt designs utilized870

in MCTS-Judge, including the vanilla baseline871

(Fig. 8), the test-case verification baseline (Fig. 9),872

the LLM-driven self-assessment (Fig. 10), the logic873

assessment action (Fig. 11), the test case genera-874

tion and validation (Fig. 12), and the simulated875

execution (Fig. 13).876

13

Vanilla
<|system|>:Determine the correctness of the code snippet. Output Yes or No.
<|user|>: Problem Statement:{problem}
Example:{example}
Reference Solution ({language}):{reference code}
Code Snippet ({language}):{code}
<|assistant|>:Answer (Yes or No only):

Table 8: Prompt of the baseline named Vanilla.

Test Cases Generation
<|system|>:You are an AI assistant specialized in analyzing Python functions and generating test cases.
You will be provided with a problem statement and its solution to evaluate the correctness of the code.
<|user|>: Full Code:{language}{code}
Public Test Case for the Main
Function:{example}
Instructions: Please analyze how the {function name} function is used within the main function and how
it contributes to the expected outputs in the gold test case. For each test case, you should analyze
step-by-step based on both the input and the expected output of the main function, and then provide the
corresponding input and expected output for the {function name} function. Ensure that the generated test
cases are consistent with the behavior expected in the public test cases.
<|assistant|>:Let’s break down the code and give the input and expected output of the {function name}
function step-by-step for each given gold test case ignoring any discrepancie between the function’s logic
and the expected outputs of public test case:
Test Case Validation
<|system|>: You are an AI assistant specializing in test case validation. Your task is to assess the
correctness of a given test case based on the problem description, which consists of four parts: the
problem statement, input description, output description, and several input-output pair examples.
<|user|>: Problem:{problem}
Test Cases:{test_cases}
Instructions: Validate the correctness of the test case and determine if it aligns with the expected
behavior outlined in the problem description. Do not provide a corrected version. Return PASS or FAIL
to indicate the accuracy of the given test case.
<|assistant|>: Let’s validate the correctness of the test case step-by-step:
Simulated Execution
<|system|>: You are an AI assistant skilled in executing {language} scripts.
<|user|>:Execute the following {language} script. Analyze the code and run each subfunction in the test
case step-by-step.
Code:{code}
Test Case: {test case}
Instruction: Act as a {language} interpreter to execute the code line-by-line, tracking changes in each
variable throughout the process. Based on this execution trace, determine the output of the unit test case.
<|assistant|>:Let’s execute the code step-by-step, analyzing the input test case:

Table 9: Prompt for the test-case verification baseline.

14

LLM-drive Self-Assessment for Node Selection
<|system|>: You are a code evaluation planning expert. Your task is to assess whether the suggested
evaluator agent should proceed based on the provided problem statement, code snippet, and evaluation
history. Determine if this evaluator will enhance coverage or completeness of the assessment.
<|user|>: Problem Statement: {problem}
Code Snippet:{language}{code}
Proposed Next Evaluator: {agent}
Evaluation History: Agents previously used: {history}
Instruction: Skip the evaluation only if it very negatively affect the assessment. Otherwise, please
respond ’Yes’ to include the evaluator.
<|assistant|>: Decision: (Yes or No only)

Table 10: Prompt for LLM-driven self-assessment in MCTS node selection.

Code Logic Evaluation
<|system|>: You will be provided with a problem statement, a code snippet that supposedly addresses
the problem in {language}, and a reference solution in {language}. Your task is to check if the code
snippet covers the required functionalities. Do not provide a corrected version.
Evaluation Steps:1. Read the problem statement carefully and identify the required functionalities of the
implementation. You can refer to the example and reference answer to understand the problem better.
2. Read the code snippet and analyze its logic. Check if the code snippet covers all the required
functionalities of the problem. 3. Finally, conclude your evaluation.
<|user|>:Problem Statement:{problem}
Example:{example}
Reference Solution ({language}):{reference code}
Code Snippet ({language}):{code}
<|assistant|>:Evaluation (Code Logic Analysis):
Analysis Summarization
<|system|>: You will be provided with an analysis result of a code snippet. If the analysis believes that
the code snippet is correct, output: "Yes". Otherwise, output: "No".
<|user|>: Analysis Result:{analysis}
<|assistant|>: Final Answer (Yes or No only):

Table 11: Example of subtasks: prompt focused on logic assessment

15

Initial Test Cases Generation
<|system|>: You are an AI assistant specializing in problem analysis and test case generation, with
particular expertise in {difficulty} test cases. Your task is to generate comprehensive test cases based
on the given problem description.
<|user|>: Problem:{problem}
Instructions: Please analyze the problem statement carefully and create five well-rounded test
cases. The test cases should be at {difficulty} difficulty level. Your test cases should: 1. Cover a
variety of scenarios to thoroughly validate code correctness 2. Avoid excessively large computations
3. Avoid extreme edge cases unless specifically required 4. Include common use cases and reasonable
boundary conditions 5. Focus on practical, real-world scenarios
For each test case, please provide:- Input values - Expected output- Brief explanation of what the
test case verifies.
<|assistant|>:I’ll analyze the problem systematically and create carefully curated test cases.
Analysis Approach:1. First, I’ll identify the key requirements and constraints 2. Then, I’ll
determine important edge cases and boundary conditions 3. Finally, I’ll design test cases that
progressively increase in complexity
Let’s examine each test case:
JSON Reformation
<|system|>: You are an AI assistant specializing in test case reformatting. Your task is to extract
and reformat the test cases based on the examples provided.
<|user|>: Problem:{problem}
Test Cases:{test_cases}
Instructions:Reformat the test cases and return them in a list of JSON format, where each test
case is structured as follows:
{{"<root_function_name>": {{ "input": "<input>" (as a string), "expected_output": "<expected_
output>" (as a string)}}}}
Use the main function name identified in each test case as the key. Retain the original input and
output formats, ensuring that all provided test cases are included.
<|assistant|>: Reformatted Test Cases only, without explanation:
Test Case Validation
<|system|>: You are an AI assistant specializing in test case validation. Your task is to assess the
correctness of a given test case based on the problem description.
<|user|>: Problem:{problem}
Test Case:{test_case}
Instructions: Validate the correctness of the test case and determine if it aligns with the
expected behavior outlined in the problem description. Do not provide a corrected version. Return
PASS or FAIL to indicate the accuracy of the given test case.
<|assistant|>: Let’s validate the correctness of the test case step-by-step:

Table 12: Prompt for test case generation and validation.

16

Simulated Execution
<|system|>: You are an AI assistant skilled in executing {language} scripts.
<|user|>: Execute the following {language} script. Analyze the code and run each subfunction in the
test case step-by-step.
Code:{code}
Test Case:{test_case}
Instruction: Act as a {language} interpreter to execute the code line-by-line, tracking changes in each
variable throughout the process. Based on this execution trace, determine the output of the unit test case.
<|assistant|>: Let’s execute the code step-by-step, analyzing the input test case:
Compare Execution Results with Expected Outputs of Test Cases
<|system|>: You are an expert in code validation with a focus on comparing code execution outputs.
Your goal is to determine if the actual output matches the expected behavior, being flexible about
formatting and minor differences that don’t affect correctness.
<|user|>: Problem: {problem}
Test Case:{test_case}
Actual Output:{answer}
Instruction: 1. Extract the final execution result from the actual output. Compare this result with
the expected answer, focusing on correctness rather than specific formatting. Note: Do not judge
the code; simply validate whether the results match.
<|assistant|>: Let’s check the results, and conclude with **MATCH** or **NOT MATCH** after
the comparison.

Table 13: Prompt for simulated execution and verify whether the execution results match the expected answers.

17

	Introduction
	Related Work
	Code Correctness Evaluation
	Test-time Computation Boost Reasoning

	MCTS-Judge
	Overview
	Architecture Design
	Reward Mechanism

	Experiments
	Setup
	Main Results
	Inference Efficiency
	Fine-grained Quality Assessment
	Extensions to General Scenarios
	Scaling Test-time Computation
	Ablation Studies

	Conclusion
	Limitation
	Experiment Settings
	Limitations of Execution-Free Methods
	Evaluation without References
	Case Study
	Prompts

