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Abstract

The LLM-as-a-Judge paradigm shows promise
for evaluating generative content but lacks re-
liability in reasoning-intensive scenarios, such
as programming. Inspired by recent advances
in reasoning models and shifts in scaling laws,
we pioneer bringing test-time computation into
LLM-as-a-Judge, proposing MCTS-Judge, a
resource-efficient, System-2 thinking frame-
work for code correctness evaluation. MCTS-
Judge leverages Monte Carlo Tree Search
(MCTS) to decompose problems into sim-
pler, multi-perspective evaluations. Through
a node-selection strategy that combines self-
assessment based on historical actions in the
current trajectory and the Upper Confidence
Bound for Trees based on prior rollouts, MCTS-
Judge balances global optimization and refine-
ment of the current trajectory. We further de-
signed a high-precision, unit-test-level reward
mechanism to encourage the Large Language
Model (LLM) to perform line-by-line analy-
sis. Extensive experiments on three bench-
marks and five LLMs demonstrate the effec-
tiveness of MCTS-Judge, which improves the
base model’s accuracy from 41.0% to 80.0%,
surpassing the ol-series models with 3 x fewer
tokens. Further evaluations validate the supe-
riority of its reasoning trajectory in logic, ana-
Iytics, thoroughness, and overall quality, while
revealing the test-time scaling law of the LLM-
as-a-Judge paradigm.

1 Introduction

LLM-as-a-Judge, wherein Large Language Models
(LLMs) serve as the golden rule for evaluation cri-
teria (Gu et al., 2024), has been proposed for appli-
cations such as generative content assessment (Li
et al., 2024b), and data captioning (Chen et al.,
2024), serving as a cost-effective solution com-
pared to human expert evaluators. Among those,
LILM-as-a-Judge has revolutionized code evalua-
tion by automating judgment (Yang et al., 2024),
repair (Liu et al., 2024), and explanation (Weyssow

Ours (16B)
80 * o
LN +)
Y A | s
w0 1 Vx> {0l-mini
00 B b lops
= 1, ey ey o ) =
£ 'é’ f‘llo ol-preview 8
= 'S F g
S8 g
60 121 ® =
1
g : X Qwen-QwQ-32B \O>c-
EAN
@
50 T
1
1
! DeepSeck-Coder-V2-16B-Instruct
40 4 (Base Model)

1 3 5 7
Number of Total Tokens (1 x 10%) -

Figure 1: With test-time scaling, our MCTS-Judge
method doubles the accuracy of DeepSeek-Coder-V2-
16B-Instruct on the APPS benchmark, surpassing ol-
series models and Qwen-Qw(Q-32B, while using 3x
fewer tokens and a smaller model. The circle sizes indi-
cates the relative sizes of the models.

et al., 2024), replacing inaccurate similarity-based
execution-free methods (Ren et al., 2020; Tran
et al., 2019), and expensive execution-based meth-
ods reliant on manually-crafted test cases (Zheng
et al., 2023; Zhuo et al., 2024).

Despite its growing adoption, recent studies
highlight critical challenges in the LLM-as-a-Judge
paradigm, including bias (Gu et al., 2024), mis-
alignment (Ye et al., 2024), and fairness con-
cerns (Li et al., 2024a), questioning its reliability
for accurate, human-like judgments. To address
these issues, researchers have focused on pretrain-
ing (Hui et al., 2024), fine-tuning (Wang et al.,
2024a), and in-context learning (Wei et al., 2022)
to improve reasoning capabilities, which are highly
demanded in programming scenarios. Unfortu-
nately, as LLMs near the upper bounds imposed by
scaling laws, further advancements involve increas-
ing costs in training with diminishing returns (Snell
et al., 2024).

To address these limitations, inspired by the
shift of scaling laws from training to test time (Xu
et al., 2025) and recent breakthroughs in Reason-
ing LLMs, such as OpenAlI’s o-series (Jaech et al.,
2024), we introduce the first framework that in-



tegrates test-time computation into the LLM-as-a-
Judge paradigm. We target code correctness evalua-
tion and propose MCTS-Judge, a resource-efficient
LLM-as-a-Judge framework with System-2 think-
ing, offering human-like reasoning for more re-
liable evaluations. It achieves State-Of-The-Art
(SOTA) performance compared to prior LLM-as-
a-Judge methods, which rely on rapid and super-
ficial System-1 thinking (Tong and Zhang, 2024;
Zhuo, 2023). MCTS-Judge leverages a tailored
Monte Carlo Tree Search (MCTS) to decompose
problems into simpler, multi-perspective evalua-
tion tasks. In the selection phase of MCTS, we in-
troduce a global-local node selection strategy that
combines self-assessment based on historical ac-
tions in the current trajectory, and the Upper Confi-
dence Bound for Trees (UCT) algorithm, guided by
prior rollouts, to balance the optimization of high-
value regions in the global search space with local
reasoning trajectories. We further designed a high-
precision simulated execution reward mechanism.
This mechanism combines cost-effective automatic
test case synthesis with LL.M-as-an-interpreter ex-
ecution, prompting line-by-line analysis for unit-
test-level reliability.

Extensive experiments on five LLMs
across three challenging code  bench-
marks—BigCodeBench (Zhuo et al., 2024),
HumanEval-X (Zheng et al.,, 2023), and
APPS (Hendrycks et al., 2021)—with varying code
complexity and languages, highlight the reliability
of MCTS-Judge powered by test-time computation.
As shown in Fig. 1, our approach elevates the
accuracy of DeepSeek-Coder-Lite-16B (Zhu et al.,
2024) from 41.0% to 80.0%, surpassing ol-series
models (Jaech et al., 2024) and open-source Qwen-
QwQ-32B (Qwen, 2024), while using only 3x
fewer tokens and a smaller model. Furthermore,
we achieve SOTA performance on all experiments
compared to previous System-1 thinking-based
LLM-as-a-judge frameworks, with up to 32%
improvement on APPS, and demonstrate strong
robustness in generalizable scenarios without code
references. Case studies on HumanEval-X further
showcase MCTS-Judge’s superior reasoning
across four fine-grained dimensions, such as logic
and analytics, achieving a higher win rate over
ol-series models. Finally, we validated that scaling
test-time computation, including tree depth and
rollouts, further enhances MCTS-Judge’s accuracy,
shedding light into the test-time scaling law for
LLM-as-a-judge paradigms.

2 Related Work

2.1 Code Correctness Evaluation

Code correctness evaluation can be broadly bro-
ken down into two paradigms. Execution-free
methods, such as BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), METEOR (Denkowski and
Lavie, 2014), ChrF (Popovi¢, 2015), RUBY (Tran
et al., 2019), and CodeBLEU (Ren et al., 2020),
assess code based on textual or code-specific fea-
ture similarity to reference code. In this paper,
we refer to them as similarity-based evaluation
methods. However, reference code is often un-
available in practice, and these methods struggle
to distinguish semantically equivalent but syntac-
tically different code, leading to low accuracy, as
shown in Appendix B. In contrast, execution-based
methods, commonly used in code generation bench-
marks (Zheng et al., 2023; Zhuo et al., 2024), assess
code correctness by executing it against test cases.
However, this approach demands comprehensive
handcrafted test cases and isolated environments,
making it costly and operationally complex (Zhang
et al., 2022). To address these limitations, recent
efforts have explored LLM-as-a-Judge paradigms
with in-context learning. ICE-Score (Zhuo, 2023)
integrates evaluation criteria into prompts, while
CODEJUDGE (Tong and Zhang, 2024) employs
a two-stage prompting approach. However, these
methods rely on System-1 thinking (Kahneman,
2011), leading to rapid, superficial decisions that
are constrained by the inherent uncertainties of
LLMs, resulting in limited reliability.

2.2 Test-time Computation Boost Reasoning

Recent studies highlight a shift in scaling laws
from train-time to test-time (Ji et al., 2025; Xu
et al., 2025), as pretrained models approach data
scale limits (Snell et al., 2024), while reasoning
models leverage test-time computation, demon-
strating remarkable performance improvements,
exemplified by OpenAlI’s o-series models (Jaech
et al., 2024). To advance human-like System-2
thinking, key innovations include chain-of-thought
data curation (Wang et al., 2022, 2024b), reinforce-
ment learning (DeepSeek-Al, 2025; Qwen, 2024),
and reward models (Guan et al., 2025; Yu et al.,
2024). As a core support, search paradigms like
beam search and MCTS dynamically select diverse
reasoning trajectories, significantly enhancing ac-
curacy in large search spaces. Examples include
ReST-MCTS (Zhang et al., 2024a), rStar (Qi et al.,



2024), MCTSr (Zhang et al., 2024b), and (Xie et al.,
2024), which integrate MCTS with reinforced self-
training, self-play mutual reasoning, and prefer-
ence optimization, driving advancements in reason-
ing tasks such as math and code problem-solving.
Building on this remarkable improvement in relia-
bility, we pioneeringly integrate test-time computa-
tion into the LLM-as-a-Judge paradigm, proposing
a novel framework, MCTS-Judge, which leverages
System-2 thinking to generate reliable, human-like
reasoning trajectories for comprehensive, multi-
perspective code correctness evaluation.

3 MCTS-Judge

In this section, we first introduce the overview of
MCTS-Judge for code evaluation (Sec.3.1), then
detail its MCTS architecture (Sec.3.2) and reward
mechanism (Sec. 3.3).

3.1 Overview

The code correctness evaluation task determines
whether a code snippet ¢ correctly implements the
functionality described in a problem statement p,
expressed as = (¢, p). In MCTS-Judge, we de-
compose this task into subtasks, each prompting
the LLM to verify a specific requirement. The
action space of our MCTS consists of these sub-
tasks and a null action representing no evalua-
tion. At each node in the search tree, the sub-
action space includes one non-repeating subtask
and the null action. Each action in MCTS pro-
duces an output s; € S with state transitions de-
fined as s; = L(x, Slyeneny si_l), where L repre-
sents an LLM. This forms a reasoning trajectory
t=x®s1 DD sk, where k is the maximum
depth of the search tree. The prediction for a tra-
jectory is computed as f(t, g), where f aggregates
the subtask outcomes in t along with a global evalu-
ation g. A task-specific terminal reward is assigned
based on the agreement between f(t,g) and the
simulated execution result. We perform multiple
rollouts, yielding a set of reasoning trajectories
T = {tl,tQ, ... ,t”}. The cumulative rewards
R(t') = 3,41 7(s) for these trajectories are used
for weighted sampling to select the optimal tra-
jectory tP. The final prediction for z is given by

f(tP, g).
3.2 Architecture Design

We chose MCTS to implement System-2 think-
ing essential for code evaluation for two reasons:

First, MCTS breaks down the overall code eval-
uation task into simpler subtasks, reducing the
task complexity compared to other System-2 meth-
ods like Best-of-N (Brown et al., 2024) and self-
consistency (Wang et al., 2022), which require gen-
erating complete solutions in a single inference.
Second, our MCTS introduces rewards to guide
the search and select the optimal trajectory, further
improving the reliability of the LLM-as-a-Judge
paradigm. As shown in Fig. 2, our tailored MCTS
follows four key stages: selection, expansion, sim-
ulation, and backpropagation.

1) Selection. The selection process begins at
the root node and progresses hierarchically until
it reaches a node that has not been fully expanded
yet. We propose a selection strategy that combines
global and local information to balance the opti-
mization of high-value regions in the search space
with the current trajectory, resulting in a more co-
herent evaluation. Specifically, we employ a two-
level approach: a global-level UCT algorithm (Koc-
sis and Szepesvari, 2006), leveraging insights from
previous rollouts, and a local-level LLM-driven
self-assessment, which evaluates historical actions
within the current trajectory. The final selection is
obtained through weighted sampling, with the UCT
result weighted by w,, and the self-assessment re-
sult weighted by w;. The UCT algorithm selects
the node with the highest UCT value, computed as:

vers) = 9B
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where Q(s) represents the cumulative reward of
node s, N(s) is the visit count of s, Npgrent(s)
the visit count of s’s parent node, and « is a con-
stant that helps balance exploration and exploita-
tion. The LLM self-assessment result is obtained
by prompting the LLM whether including this sub-
task enhances code evaluation completeness based
on the completed subtasks in the current trajectory.

2) Expansion. If the maximum depth has not
been reached, a new child node is added to the
selected node by randomly sampling an unused
action and executing it. If the action is not null,
a subtask outcome is obtained by prompting the
LLM to carefully analyze c and p (optionally with
reference code) from a specific perspective and
then summarize the analysis into a binary decision.

3) Simulation. During the simulation process,
MCTS-Judge consistently selects non-null actions
to execute until the maximum depth is reached.
At this point, a complete reasoning trajectory t =
TP s D D sy that evaluates the code across
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Figure 2: MCTS-Judge generates reasoning trajectories with multi-dimensional evaluations using Monte-Carlo
Tree Search (MCTS). Each trajectory is iteratively constructed through selection, expansion, simulation, and
backpropagation. Our node selection strategy combines LLM-driven self-assessment, based on historical actions in
the current trajectory, with the Upper Confidence Bound for Tree (UCT) algorithm based on prior rollouts. This
strategy effectively integrates global and local information, balancing the optimization of high-value regions in the
search space with the refinement of the current trajectory. Moreover, we introduce a high-precision, unit-test-level
reward mechanism, encouraging the LLM to perform line-by-line analysis. This simulated execution reward guides
the search process and selects the final answer from candidate trajectories.

multiple dimensions is generated. The prediction
of this trajectory (i.e. f(t,g)) is determined by a
consistency check using the majority vote across
all binary subtask outcomes, combined with an
additional global evaluation g.

4) Backpropagation. Once the maximum depth
is reached, a terminal reward is calculated for
the trajectory and propagated upward through the
search tree. Each node in the trajectory updates its
Q(s) by adding the terminal reward and increment-
ing its N (s) by one.

3.3 Reward Mechanism

Reward is crucial in MCTS to guide the search to-
ward promising paths while minimizing suboptimal
exploration. Moreover, cumulative rewards directly
determine the final answer in MCTS-Judge, further
underscoring the importance of reward accuracy.
However, verifying the correctness of predictions
without ground truth labels is challenging. Ap-
proaches like M* (Kang et al., 2024) and LLaMA-
Berry (Zhang et al., 2024c) attempted to address
this issue by training a reward model, but these
methods often struggle with data collection and
risk overfitting. RAP (Hao et al., 2023) introduced
a self-evaluation mechanism where rewards are de-
rived by asking the LLM to identify errors in its
reasoning within a single completion. However,
this mechanism may perform close to random if
the LLM’s capabilities are limited (Qi et al., 2024).

Therefore, inspired by execution-based evalua-
tion methods (Liu et al., 2024; Xia et al., 2024;
Zhang et al., 2024d) and the recently established
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success of commercial models, represented by
GPT-40, in code-related tasks and applications (Ma
et al., 2025; Liu et al., 2025; Anysphere, 2024), we
propose a fully LLM-powered simulated execution
reward mechanism that requires no training and im-
proves reliability through cross-checking and step-
by-step, in-depth analysis. As illustrated in Fig.3,
the mechanism comprises two key phases: test case
generation and execution simulation. The test case
generation phase occurs prior to the MCTS process
and requires only the problem statement p. GPT-
40(OpenAl, 2024) is used to construct, validate,
and store diverse test cases. The execution sim-
ulation phase is invoked once MCTS reaches its
maximum depth and is carried out using the same
LLM as in the search phase. Each test case is repre-
sented as an input-output pair, where the evaluated
code must produce the correct output correspond-
ing to a given input.

1) Recipe for Test Case Generation. In the
test case generation phase, we instructe GPT-40 to



analyze the problem statement thoroughly, identi-
fying key requirements, constraints, boundary con-
ditions, and special cases. Based on this analysis,
the model generates low-complexity test cases that
span a range of scenarios, each with a brief expla-
nation. These cases are organized into structured
input-output pairs. To ensure correctness, each pair
undergoes a validation process in which the LLM
is prompted S times to self-evaluate whether the
output aligns with the input and the intended behav-
ior. Test cases that consistently pass this validation
are retained, while those that do not are discarded.
2) LLM-driven Execution Simulation. When
the MCTS search reaches its maximum depth, the
test case execution simulation phase begins. We
randomly select ~y stored test cases, mask their out-
puts, and provide the inputs to the LLM one by one.
We instruct the LLM to simulate a code interpreter,
executing the code line by line while tracking vari-
able changes, and then determining the expected
output for the given input based on this execution
trace. This process repeats J times per test case,
and the generated outputs are compared with the
originally stored outputs. The majority vote from
the § repetitions finally determines whether a test
case passes. The reward mechanism predicts that
the code is correct only if all sampled test cases
pass, and the result is expressed by A(x). This de-
sign mirrors practical test case evaluation: if a code
passes all test cases, it may be correct; however, if
it fails any test case, it is definitively incorrect. Fi-
nally, if the trajectory’s prediction f(t,g) matches
h(x), the trajectory receives a terminal reward e.
In doing so, our reward mechanism is both cau-
tious and reliable, leveraging the characteristics of
the code evaluation task to establish a systematic,
cross-checking evaluation process that effectively
minimizes errors. Additionally, by simulating an in-
terpreter that executes the code line by line, our ap-
proach encourages LLMs to perform fine-grained
deductive reasoning, considering code flow, vari-
able updates, and logical branches. This detailed
analysis helps uncover potential errors that might
otherwise go unnoticed with a superficial “general
impression”, ensuring that final conclusions are
grounded in concrete and verifiable evidence.

4 Experiments

4.1 Setup

Following previous work (Tong and Zhang, 2024),
we evaluated MCTS-Judge on three challeng-

ing benchmarks: HumanEval-X (Zheng et al.,
2023), APPS (Hendrycks et al., 2021), and Big-
CodeBench (Zhuo et al., 2024). HumanEval-X
includes 164 introductory coding tasks across five
programming languages. APPS consists of Python
coding tasks of three different difficulty levels,
from which we randomly selected 100 competition-
level tasks. BigCodeBench contains 1,140 practical
and challenging Python programming tasks, cov-
ering 723 function calls from 139 libraries. For
tasks in BigCodeBench that lack meaningful input-
output pairs, such as drawing or compressing, we
shift the reward mechanism from simulated exe-
cution to simulated discussions, granting rewards
only when all reasoning steps yield positive signals
that enhance generalizability.

MCTS-Judge is a general framework compatible
with various LLMs. To assess its effectiveness and
generalizability, we employed five different LLMs
as base models, including code-specialized LLM:s:
Owen2.5-Coder-14B (Hui et al., 2024), DeepSeck-
Coder-V2-16B-Instruct (Zhu et al., 2024) and
Mistralai-Codestral-22B (team, 2024), as well
as general LLMs: Llama-3.1-8B-Instruct (Tou-
vron et al., 2023) and GPT-40-mini (Achiam
et al.,, 2023). We compare MCTS-Judge with
three System 2 thinking LLMs, including Ope-
nAl ol-preview (Jaech et al., 2024), ol-mini (Jaech
et al., 2024), and Qwen-OwQ-32B (Qwen, 2024),
as well as two LLM-as-a-Judge paradigms de-
signed for code evaluation with System 1 think-
ing: CodeJudge (Tong and Zhang, 2024) and ICE-
Score (Zhuo, 2023).! We further introduce a
Vanilla baseline, which prompts the LLM directly
for code correctness, reflecting its native evalua-
tion capability. Additionally, we also include a
test-case-only verification baseline using GPT-40,
demonstrating that the MCTS-Judge’s effective-
ness derives from its architecture rather than model-
specific advantages. BigCodeBench is excluded
here as it’s evaluated with non-test-case-based ap-
proach. More details such as hyperparameters and
prompts are included in Appendix A.

4.2 Main Results

Table 1 presents the comparison results between
MCTS-Judge and baselines. We highlight three
key observations: (1) MCTS-Judge significantly
enhances the code evaluation capabilities of all

'TCE-Score produces ratings ranging from 0 to 4. Follow-

ing the approach in (Tong and Zhang, 2024), only a rating of
4 is considered correct.



Table 1: Accuracy (%) of MCTS-Judge and baselines on BigCodeBench, APPS, and HumanEval-X. MCTS-Judge
significantly improves the accuracy of base models and achieves the highest accuracy among existing LLM-as-a-
Judge methods across all benchmarks and five LLMs (highlighted in bold). It also surpasses larger reasoning model,
QOwen-QwQ-32B in most tasks and outperforms ol-series models in certain tasks (highlighted with underlines).

HumanEval-X

Method Approach BigCodeBench APPS
Python Java C++ JavaScript Go  Average
Test-case Verification
GPT-40 System-1 - 55.00 59.09 53.79 60.61 62.12 6591 60.30
Commercial Reasoning LLMs
GPT-ol-preview System-2 82.02 75.00 82.58 89.39 87.12 86.36 83.33 85.76
GPT-o01-mini System-2 75.70 78.00 9545 9242 94.70 90.91 88.64 9242
Open-sourced Reasoning LLMs
Qwen-QwQ-32B System-2 50.96 60.00 72.73 75.00 75.00 64.39 78.03  73.03
Code-Specialized Base Model: Qwen2.5-Coder-14B-Instruct
Vanilla System-1 63.33 62.00 62.12 6439 68.94 64.39 7348  66.66
ICE-Score System-1 70.44 65.00 7273 7424 7197 72.73 78.79  74.09
CodeJudge System-1 63.33 68.00 86.36 81.06 79.55 82.58 75.75  81.06
MCTS-Judge (Ours) System-2 71.23 79.00 90.15 85.61 84.09 84.85 81.06 85.15
Code-Specialized Base Model: DeepSeek-Coder-V2-16B-Instruct
Vanilla System-1 51.75 41.00 7348 6439 63.64 66.67 60.61  65.76
ICE-Score System-1 57.89 48.00 71.21 76,52 69.70 70.45 7424 7242
CodeJudge System-1 52.45 62.00 7348 69.70 67.42 69.70 66.67  69.39
MCTS-Judge (Ours) System-2 62.46 80.00 80.30 77.27 80.30 78.79 82.58 79.85
Code-Specialized Base Model: Mistralai-Codestral-22B
Vanilla System-1 42.81 62.00 82.58 68.18 7045 62.88 66.67  70.15
ICE-Score System-1 51.93 56.00 8258 68.18 60.61 63.64 6136 67.27
CodeJudge System-1 49.04 54.00 85.61 69.70 68.94 71.21 66.67 7243
MCTS-Judge (Ours) System-2 68.77 72.00 87.78 75.76 77.27 73.48 75.76  78.01
General Base Model: Llama-3.1-8B-Instruct
Vanilla System-1 43.16 56.00 6591 63.64 64.39 62.12 7045 6530
ICE-Score System-1 45.88 42.00 7273 6439 62.88 56.82 5455 6227
CodeJudge System-1 63.86 53.00 7348 73.48 75.76 70.45 6742 7212
MCTS-Judge (Ours) System-2 71.84 62.00 7424 79.55 77.27 70.45 71.97 74.70
Commercial General Base Model: GPT-4o-mini
Vanilla System-1 72.37 65.00 86.36 82.58 85.61 86.36 84.85 85.15
ICE-Score System-1 71.37 72.00 84.85 7879 86.36 83.33 85.61  83.79
CodeJudge System-1 70.70 72.00 87.12 83.33 87.88 86.36 84.09 85.76
MCTS-Judge (Ours) System-2 79.12 76.00 87.88 86.36 88.64 88.64 85.61 87.43

base models. When using open-source LLMs with
substantially smaller model sizes, its performance
can match or even surpass ol-series models. This
phenomenon is illustrated more clearly in Fig. 4.
On average, MCTS-Judge achieves a 14.34% accu-
racy improvement across five different base mod-
els on three benchmarks. In particular, DeepSeek-
Coder-V2-16B-Instruct, originally at 41% accuracy
on the APPS benchmark, improved dramatically
to 80% with MCTS-Judge, surpassing both ol-
preview and ol-mini. (2) Any base model we evalu-
ated, when powered by MCTS-Judge, outperforms
the open-source reasoning model Qwen-QwQ-32B
on most tasks. For instance, MCTS-Judge based
on Llama-3.1-8B-Instruct, with a model size only
a quarter of Qwen-QwQ-32B, outperforms it in all

tasks except those using the Go language, achiev-
ing up to a 20.88% higher accuracy. (3) Com-
pared to previous LLM-as-a-Judge paradigms with
System 1 thinking, MCTS-Judge demonstrates sig-
nificantly superior performance in all tasks. For
example, MCTS-Judge with DeepSeek-Coder-V2-
16B-Instruct achieved 18% higher accuracy than
CodeJudge and 32% higher than ICE-Score on the
APPS benchmark.

4.3 Inference Efficiency

To evaluate the test-time computational efficiency
of MCTS-Judge, we analyzed the average num-
ber of reasoning tokens generated on the APPS
benchmark. As presented in Table 2, when us-
ing DeepSeek-Coder-V2-16B-Instruct as the base
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Figure 4: MCTS-Judge (darker colors) significantly
enhances LLMs’ inherent code evaluation capabilities
(lighter colors) across three benchmarks.

model, MCTS-Judge outperforms ol-preview in
accuracy, while only consuming one third as many
reasoning tokens, with an additional 20% equiv-
alent token consumption for simulation in paral-
lelization indicated by the superscript, and main-
taining a model size that is 19 times smaller?.

# Reasoning

Methods Model Size Acc
Tokens

ol-preview ~300B 5631 75.0

ol-mini ~100B 3755 78.0

Qwen-QwQ-32B  32B 2559 60.0

Ours w/ Deepseek  16B 2065412 80.0

Table 2: Compared to advanced reasoning LLMs,
MCTS-Judge is cost-effective. With DeepSeek-Coder-
V2-16B-Instruct on the APPS benchmark, it achieves
the highest accuracy using the fewest tokens and the
smallest model size.

4.4 Fine-grained Quality Assessment

MCTS-Judge demonstrated superior code correct-
ness evaluation ability, while simultaneously gen-
erating multi-perspective analyses during reason-
ing trajectory construction. We believe that this
may offer developers deeper insights into the code,
providing a distinct advantage over both similarity-
based and execution-based evaluation methods. To
evaluate the quality of meta-analysis and reasoning
capabilities, we compared the reasoning trajecto-
ries generated by MCTS-Judge with three reason-
ing models—oI-preview, ol-mini, and Qwen-QwQ-
32B across four critical dimensions: thoroughness,
logic, analysis, and overall reasoning quality, with
GPT-40 assessing the win rate. As shown in Ta-

>The model sizes of ol-preview, ol-mini, and GPT-40-
mini are referenced from this paper (Abacha et al., 2024).

ble 3, MCTS-Judge with Deepseek-Coder-V2-16B-
Instruct and Qwen?2.5-Coder-14B-Instruct consis-
tently achieves higher win rates, particularly ex-
celling at thoroughness and depth of analysis.

Deepseek-Coder-
V2-16B-Instruct

Qwen2.5-Coder-
14B-Instruct

Dimensions
ol-preview Ours ol-preview Ours
Thoroughness  35.6%  64.4% 28.8%  71.2%
Logic 515%  485% 492%  50.8%
Analysis 333% 66.7% 34.8%  65.2%
Overall 545%  455% 523% @ 47.7%
0l-mini Ours  ol-mini Ours
Thoroughness  25.8% 742% 14.4% 85.6%
Logic 409%  591% 22.7%  71.3%
Analysis 16.7%  833% 159% 84.1%
Overall 462%  53.8%  47.0% 53.0%
QwQ Ours QwQ Ours
Thoroughness  28.0%  72.0% 31.1%  68.9%
Logic 258%  T42% 432%  56.8%
Analysis 38.6% 61.4% 40.1%  59.9%
Overall 492%  50.8% 439%  56.1%

Table 3: Comparison of MCTS-Judge’s reasoning tra-
jectories with advanced reasoning LLMs across thor-
oughness, logic, analysis, and overall reasoning quality,
with GPT-40 assessing the win rate.

4.5 Extensions to General Scenarios

Reference code is crucial for similarity-based eval-
uation but is often unavailable in practice. While it
aids LLMs in understanding problems, LL.M-as-a-
Judge methods should adapt to more generalizable
settings without it. We evaluated MCTS-Judge
and baselines on three benchmarks without refer-
ence code (full results in Appendix C). As shown
in Table 4, the absence of reference code signifi-
cantly degrades the performance of existing LLM-
as-a-Judge frameworks. In contrast, our MCTS-
Judge demonstrates exceptional robustness, with
only minimal performance drop, highlighting its
promising generalization capabilities.

BigCode- Human
Method Bench APPS Eval-X
ICE-Score 459 42.0 62.3
w/o reference 34.5 c114%)  46.0 (4%) 52.3 (10.0%)
CodeJudge 63.9 53.0 72.1
w/o reference 41.4 (25% 47.0 60%  57.4 147%)
Ours 71.8 62.0 74.7
w/o reference 65.8 (6%) 62.0 0.0%) 69.5 (52%)

Table 4: In the absence of reference code, MCTS-Judge
with Llama-3.1-8B-Instruct demonstrates robustness
with minimal performance drop, while other baselines
degrade significantly.
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Figure 5: Increasing test cases («v), executions per case
(9), tree depth, and rollouts improves MCTS-Judge’s
accuracy on APPS, revealing a test-time scaling law.

4.6 Scaling Test-time Computation

We explore the relationship between test-time com-
putational scale and performance gains under our
LLM-as-a-Judge framework. MCTS-Judge relies
on simulated execution of test cases to determine
the terminal reward, thereby providing more accu-
rate guidance for MCTS and final prediction selec-
tion. Intuitively, increasing the number of test cases
(av) reduces the likelihood of misjudging incorrect
code as correct, while increasing the execution
times per test case () further enhances accuracy.
Furthermore, extending the maximum tree depth
provides a more comprehensive evaluation, and
more rollouts enable broader exploration. Fig. 5
demonstrates the impact of these key hyperparam-
eters on the APPS benchmark using DeepSeek-
Coder-V2-16B-Instruct and Qwen2.5-Coder-14B-
Instruct as base models. MCTS-Judge bene-
fits from increased test-time computation, though
the gains vary with specific hyperparameters and
models. These results align with OpenAI’s find-
ings (Openai, 2024), highlighting the potential of
test-time scaling for LLM-as-a-Judge frameworks.

4.7 Ablation Studies

Table 5 presents ablation results evaluating the
key components of MCTS-Judge. Under System-
1 thinking, the Vanilla baseline reflects the base
model’s intrinsic evaluation capability, while Ma-
jority Vote executes all subtasks and selects the
most frequent answer. Majority Vote improves ac-
curacy by 13% over Vanilla, highlighting the value
of incorporating multi-perspective evaluation.
Under System-2 thinking, driven by MCTS, re-

ward mechanisms are further analyzed. RMgc
assigns rewards based on self-consistency majority
voting (Qi et al., 2024), while RMgg incorporates
self-evaluation rewards (Hao et al., 2023). Our pro-
posed simulated execution reward, closely aligned
with ground truth, surpasses RMgc and RMgg by
13% in accuracy. Moreover, a variant using pure
UCT-based node selection is outperformed by the
full MCTS-Judge, highlighting the benefit of our
global-local-aware node selection strategy.

Reward Node

Method Model Selection Acc
System-1 Thinking
Vanilla - - 41.0
Majority Vote - - 54.0
System-2 Thinking
RMgc UCT 65.0
Monte Carlo RMgg UCT 65.0
Tree Search RMop.,s UCT 78.0
RMop,rs UCT+LLM  80.0

Table 5: Ablation of System-2 thinking, reward mech-
anism, and node selection strategy on APPS with
DeepSeek-Coder-V2-16B-Instruct highlights the effec-
tiveness of our designed components. The grey line
represents the complete MCTS-Judge, improving from
41.0% to 80.0% over Vanilla.

5 Conclusion

In this work, we propose MCTS-Judge, a novel
resource-efficient, test-time computation LLM-as-
a-Judge framework with System-2 thinking for
code correctness evaluation. Powered by a fully
LLM-driven MCTS, MCTS-Judge decomposes
problems into simpler, multi-perspective evalua-
tions. Through our global-local node selection
strategy, along with guidance from a simulated
execution reward mechanism, MCTS-Judge per-
forms line-by-line deep analysis. Experiments on
five LLMs and three benchmarks show that MCTS-
Judge significantly improves base model accu-
racy, surpassing ol-series models and Qwen-QwQ-
32B with one-third of the tokens and a smaller
model size. Compared to existing LLM-as-a-Judge
frameworks with System-1 thinking, MCTS-Judge
achieves SOTA performance while reducing depen-
dence on reference code. Moreover, its reasoning
trajectory shows superiority in logic, analytics, thor-
oughness, and overall quality. We further reveal
the test-time scaling law of MCTS-Judge, mark-
ing an important first step in integrating test-time
computation with the LLM-as-a-Judge paradigm.



6 Limitation

In this work, we propose a System-2 thinking
approach with a carefully designed architecture
for code correctness evaluation. Our current re-
ward mechanism leverages GPT-40, one of the
few models capable of producing reliable and
well-formatted reward signals. In contrast, exist-
ing open-source LLMs often struggle with accu-
rate, line-by-line code execution using only pre-
trained capabilities and frequently fail to generate
structured, precise outputs for programming tasks.
Looking forward, we aim to integrate future ad-
vancements in open-source models to develop a
more cost-effective and broadly deployable solu-
tion. To ensure full and reliable reproducibility, we
will release the complete codebase, data flywheel
pipeline for test case generation, and comprehen-
sive documentation upon acceptance. For review
purposes, we have also included our source code
in the Supplementary Materials.
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A Experiment Settings

Table 6 details the hyperparameter settings of
MCTS-Judge employed to generate the results pre-
sented in this paper. These settings encompass
various aspects of the MCTS architecture, includ-
ing maximum tree depth, number of rollouts, ex-
ploration constant v, LLM sample weight w;, and
UCT sample weight w,,. Additionally, the reward
mechanism parameters include the number of test
case validations /3, number of test cases used +,
number of test case simulations 4, and reward scal-
ing factor €. Hyperparameters related to the LLM
configuration, such as temperature, top_p, top_k,
and maximum output tokens, are also specified. All
experiments were executed on a single H100 GPU
with 80GB of memory, ensuring consistency and
reproducibility in computational performance.

Hyperparameter Value
Maximum tree depth 9
Number of rollouts 8
Constant « 3
LLM sample weight wy; 0.1
UCT sample weight w,, 0.9
Number of test case validations 5 | 5
Number of test cases used y 3
Number of test case simulations 6 | 7
Reward ¢ 1.1
Temperature 0.4
Top_p 0.95
Top_k 40
Maximum tokens 2048

Table 6: Hyperparameters of MCTS-Judge.

B Limitations of Execution-Free Methods

In this experiment, we evaluate whether similarity-
based execution-free metrics, which do not require
test cases and isolated environments, can be used to
accurately assess code correctness. We evaluated
six representative metrics on the APPS benchmark:
BLEU, ROUGE-L, METEOR, ChrF, CodeBLEU,
and RUBY. Fig. 6 shows that the score distributions
for incorrect and correct code differ only slightly
for these metrics. This further highlights the impor-
tance of developing high-precision execution-free
methods for assessing code correctness.

C Evaluation without References

As discussed in Sec.4.5, we present the complete
results for extending to more general scenarios,



10 Error code 10 Error code Problem Statement:
08 Correct code 08 Correct code Check if two words have the same characters.
> >
2 2 Code Snippet:
£06 o6 PP
3 3 def same_chars(s0: str, sl: str):
o4 Lo4 return sorted(s@) == sorted(sl)
0.2 0.2 Ground Truth: False
%000 02 04 o6 o8 10 %0 02 04 06 08 10 Answer from Vanilla:
G BLEU Score 10 ROUGE-L Score This method efficiently checks for anagrams, which are words or phrases
Error code E""" C:ded created by rearranging the letters of another word or phrase, utilizing all
0.8 Correcteode || 08 orrect code original letters exactly once. It's a concise and effective approach for
206 o6 comparing the characters between two strings. Final Answer: True
So.
=] 3
504 50.4 Reasoning trajectory of MCTS-Judge:
- - oo Step 1:
0:2 ’ Analysis: Objectively, we're determining if two strings share the same
0.0 0.0 characters. The given code sorts both strings and compares them. This is
00 02 04 06 08 10 00 02 04 06 08 10 effective if the goal is to check whether the two strings are anagrams (i.e
METEOR Score ChrF Score ertect g D EiEcy : g g =
6 10 identical characters with identical frequencies). However, for checking
Error code E::’r'ezf:: e only the presence of the same unique characters, frequency doesn't matter,
08 Correct code >°'8 so this code may not align with the exact requirement.
9 o <4
Jecis 5
06 §0.6 Decision ( 1): True
3
o
go.a 0.4 Step 2:
w e q 9 .
02 02 Analysis: The formal requirement states: 'Check if two words have the
' same UNIQUE characters, ignoring frequency and order.' The sorting-
based code compares frequency and order. Thus, it does not satisfy the
%000 02 04 06 08 10 %0 02 04 06 08 10 ° comp o e fy s et I -
CodeBLEU Score RUBY Score exact requirement of ignoring frequency. A set-based comparison wou

Figure 6: Score distributions of six execution-free met-
rics on the APPS benchmark show negligible distinction
between correct and incorrect code, indicating a lack of

reliability.

specifically in the absence of reference data. Ta-
ble7 compares the performance of MCTS-Judge
with baselines across three benchmarks and five
LLMs. The results highlight MCTS-Judge’s greater
robustness and generalization ability, as evidenced
by reduced performance decay compared to other
LLM-as-a-Judge methods, aligning with the con-
clusions drawn in the main paper’s analysis.

D Case Study

We demonstrated the superiority of analysis meta-
data from reasoning chains generated by MCTS-
Judge across four key dimensions in Section 4.4. To
further highlight MCTS-Judge’s advantages over
the System-1 thinking approach in terms of accu-
racy and comprehensive analysis, we present a case
study comparing the vanilla Deepseek-Coder-V2-
16B-Instruct model with the one integrated with

MCTS-Judge.

do that correctly
Decision ( ,): False

Step 3:

Analysis: According to the specification, we need to identify unique
characters in each string and compare those sets. Sorting compares ordered
characters, including duplicates. Hence, it goes beyond just checking
presence of characters. The specification is not fully met by the provided
code.

Decision ( 3): False

Step 4:

Analysis: We can declare the code as correct for an anagram check, since
sorting ensures that same-frequency characters appear in identical
positions. But for the stated requirement—comparing only unique
characters—it falls short.

Decision ( 4): True

Step 5:

Analysis: Logically, sorting each string and comparing them is a sound
approach for determining if they have the same characters AND the same
counts. But since the problem only requires checking for unique-character
presence, there's a logical mismatch between the solution and the stated
requirement.

Decision ( 5): False

Step 6:

Analysis: Functionality demands ignoring frequency and order. The
sorting solution goes beyond that by implicitly matching frequencies.
Hence, for THIS functionality (unique characters only), the code is not
correct. But for an anagram check, it would be correct.

Decision ( g): False

Step 7:

Analysis: From an algorithmic standpoint, sorting is O(n log n), set
comparison is typically O(n). For ignoring frequency, sets are both more
appropriate and more efficient. Still, sorting is a valid algorithm for
verifying anagrams, but not for simply checking shared unique characters.
Decision ( 7): True

Step 8:

Analysis: Revalidating the initial problem: it asks to see if two words share
the same set of unique characters. Sorting inevitably measures frequency
as well. Therefore, for the EXACT requirement, the sorting solution is
inadequate.

Decision ( g): False

As shown in Fig. 7, at each step, MCTS-Judge
provides evaluations from diverse perspectives,
such as verifying whether requirements are met
(Step 2) and assessing the correctness of the code
logic (Step 5). In contrast, the vanilla model gener-
ates an incorrect answer with only superficial anal-
ysis, demonstrating a lack of deeper understanding.

Summary:

Some of the 8 agents evaluated the problem and concluded that the
provided sorting-based code does not meet the problem's requirements.
Final consensus from all agents: False

Figure 7: Case Study: System-2 Thinking vs. System-
1 Thinking. MCTS-Judge leads with comprehensive
evaluations, while vanilla fails with superficial analysis.

12



Method Approach BigCodeBench APPS HumanEval-X

Python Java C++ JavaScript Go  Average

Commercial Reasoning LLMs

GPT-o1-mini System-2 71.14 78.00 93.18 86.36 86.36 89.39 87.88  88.63
Open-sourced Reasoning LLMs

Qwen-QwQ-32B System-2 51.05 69.00 61.36 68.18 66.67 67.42 7727  68.18

Code-Specialized Base Model: Qwen2.5-Coder-14B-Instruct
Base Model System-1 46.84 61.00 60.61 62.88 68.94 65.91 76.52  66.97
ICE-Score System-1 66.23 69.00 75.00 66.67 71.21 72.73 75.00  72.12
CodeJudge System-1 47.02 62.00 87.12 7576 79.55 81.06 73.48  79.40
MCTS-Judge (Ours) System-2 70.35 74.00 86.36 87.12 80.30 82.58 82.58 83.79
Code-Specialized Base Model: DeepSeek-Coder-V2-16B-Instruct
Base Model System-1 35.09 49.00 69.70 5833 53.79 53.79 56.06  58.33
ICE-Score System-1 47.19 56.00 7424 69.70 71.21 66.67 69.70  70.30
CodeJudge System-1 35.44 62.00 7576 66.67 63.64 66.67 66.67 67.89
MCTS-Judge (Ours) System-2 51.58 71.00 82.58 72.73 84.85 75.00 81.82 79.40
Code-Specialized Base Model: Mistralai-Codestral-22B
Base Model System-1 32.63 43.00 75.76 5833 58.33 57.58 5833 61.67
ICE-Score System-1 31.05 41.00 76.52 57.58 53.03 59.09 53.79  60.00
CodeJudge System-1 35.44 48.00 78.79 59.09 59.09 60.61 63.64 64.24
MCTS-Judge (Ours) System-2 52.37 74.00 79.55 7273 75.76 65.91 7727 74.24
General Base Model: Llama-3.1-8B-Instruct
Base Model System-1 33.95 58.00 59.85 60.61 62.88 64.39 67.42  63.30
ICE-Score System-1 34.47 46.00 62.12 51.52 50.76 54.55 4242 5227
CodeJudge System-1 41.40 47.00 6136 60.61 58.33 54.55 5227 5742
MCTS-Judge (Ours) System-2 65.79 62.00 71.21 69.70 65.15 68.18 73.48 69.54
Commercial General Base Model: GPT-4o-mini

Base Model System-1 71.05 61.00 81.82 80.30 83.33 83.33 8333 8242
ICE-Score System-1 58.60 62.00 78.03 75.00 75.76 81.06 82.58  78.49
CodeJudge System-1 57.46 70.00 81.06 82.58 85.61 84.85 8333  83.49
MCTS-Judge (Ours) System-2 73.68 72.00 82.58 83.33 87.12 87.12 85.61 85.15

Table 7: Accuracy (%) of MCTS-Judge and baselines without reference code on BigCodeBench, APPS, and
HumanEval-X. Compared to existing LLM-as-a-Judge methods, MCTS-Judge without reference code still achieves
the highest accuracy across all benchmarks and five LLMs (highlighted in bold). MCTS-Judge without reference
code maintains its advantage over advanced reasoning LLMs, with superior accuracy compared to the ol-series
models highlighted with underlines.

E Prompts

We present the key prompt designs utilized
in MCTS-Judge, including the vanilla baseline
(Fig. 8), the test-case verification baseline (Fig. 9),
the LLM-driven self-assessment (Fig. 10), the logic
assessment action (Fig. 11), the test case genera-
tion and validation (Fig. 12), and the simulated
execution (Fig. 13).
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Vanilla

<Isysteml>:Determine the correctness of the code snippet. Output Yes or No.
<luserl>: Problem Statement:{problem}

Example:{example}

Reference Solution ({language}):{reference code}

Code Snippet ({language}):{code}

<lassistant|>:Answer (Yes or No only):

Table 8: Prompt of the baseline named Vanilla.

Test Cases Generation

<Isysteml|>:You are an Al assistant specialized in analyzing Python functions and generating test cases.
You will be provided with a problem statement and its solution to evaluate the correctness of the code.
<luser!>: Full Code:{language}{code}

Public Test Case for the Main

Function:{example}

Instructions: Please analyze how the {function name} function is used within the main function and how
it contributes to the expected outputs in the gold test case. For each test case, you should analyze
step-by-step based on both the input and the expected output of the main function, and then provide the
corresponding input and expected output for the {function name} function. Ensure that the generated test
cases are consistent with the behavior expected in the public test cases.

<lassistantl>:Let’s break down the code and give the input and expected output of the {function name}
function step-by-step for each given gold test case ignoring any discrepancie between the function’s logic
and the expected outputs of public test case:

Test Case Validation

<Isysteml>: You are an Al assistant specializing in test case validation. Your task is to assess the
correctness of a given test case based on the problem description, which consists of four parts: the
problem statement, input description, output description, and several input-output pair examples.
<luserl|>: Problem:{problem }

Test Cases: {test_cases}

### Instructions: Validate the correctness of the test case and determine if it aligns with the expected
behavior outlined in the problem description. Do not provide a corrected version. Return PASS or FAIL
to indicate the accuracy of the given test case.

<lassistant|>: Let’s validate the correctness of the test case step-by-step:

Simulated Execution

<Isysteml>: You are an Al assistant skilled in executing {language} scripts.

<luser|>:Execute the following {language} script. Analyze the code and run each subfunction in the test
case step-by-step.

Code:{code}

Test Case: {test case}

Instruction: Act as a {language} interpreter to execute the code line-by-line, tracking changes in each
variable throughout the process. Based on this execution trace, determine the output of the unit test case.
<lassistant|>:Let’s execute the code step-by-step, analyzing the input test case:

Table 9: Prompt for the test-case verification baseline.

14



LLM-drive Self-Assessment for Node Selection

<Isysteml>: You are a code evaluation planning expert. Your task is to assess whether the suggested
evaluator agent should proceed based on the provided problem statement, code snippet, and evaluation
history. Determine if this evaluator will enhance coverage or completeness of the assessment.
<luser!>: Problem Statement: {problem}

Code Snippet:{language} {code}

Proposed Next Evaluator: {agent}

Evaluation History: Agents previously used: {history}

Instruction: Skip the evaluation only if it very negatively affect the assessment. Otherwise, please
respond ’Yes’ to include the evaluator.

<lassistant|>: Decision: (Yes or No only)

Table 10: Prompt for LLM-driven self-assessment in MCTS node selection.

Code Logic Evaluation

<Isysteml>: You will be provided with a problem statement, a code snippet that supposedly addresses
the problem in {language}, and a reference solution in {language}. Your task is to check if the code
snippet covers the required functionalities. Do not provide a corrected version.

Evaluation Steps:1. Read the problem statement carefully and identify the required functionalities of the
implementation. You can refer to the example and reference answer to understand the problem better.
2. Read the code snippet and analyze its logic. Check if the code snippet covers all the required
functionalities of the problem. 3. Finally, conclude your evaluation.

<luser|>:Problem Statement: { problem }

Example:{example}

Reference Solution ({language}):{reference code}

Code Snippet ({language}):{code}

<lassistantl>:Evaluation (Code Logic Analysis):

Analysis Summarization

<Isysteml>: You will be provided with an analysis result of a code snippet. If the analysis believes that
the code snippet is correct, output: "Yes". Otherwise, output: "No".

<luserl>: Analysis Result:{analysis}

<lassistant|>: Final Answer (Yes or No only):

Table 11: Example of subtasks: prompt focused on logic assessment
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Initial Test Cases Generation

<Isysteml>: You are an Al assistant specializing in problem analysis and test case generation, with
particular expertise in {difficulty} test cases. Your task is to generate comprehensive test cases based
on the given problem description.

<luser|>: Problem: {problem }

### Instructions: Please analyze the problem statement carefully and create five well-rounded test
cases. The test cases should be at {difficulty} difficulty level. Your test cases should: 1. Cover a
variety of scenarios to thoroughly validate code correctness 2. Avoid excessively large computations
3. Avoid extreme edge cases unless specifically required 4. Include common use cases and reasonable
boundary conditions 5. Focus on practical, real-world scenarios

For each test case, please provide:- Input values - Expected output- Brief explanation of what the
test case verifies.

<lassistant|>:I’1l analyze the problem systematically and create carefully curated test cases.
**Analysis Approach:**1. First, I'll identify the key requirements and constraints 2. Then, I'll
determine important edge cases and boundary conditions 3. Finally, I’ll design test cases that
progressively increase in complexity

Let’s examine each test case:

JSON Reformation

<Isysteml>: You are an Al assistant specializing in test case reformatting. Your task is to extract
and reformat the test cases based on the examples provided.

<luser!>: Problem:{problem}

Test Cases: {test_cases}

### Instructions:Reformat the test cases and return them in a list of JSON format, where each test
case is structured as follows:

{{"<root_function_name>": {{ "input": "<input>" (as a string), "expected_output": "<expected_
output>" (as a string)} } } }

Use the main function name identified in each test case as the key. Retain the original input and
output formats, ensuring that all provided test cases are included.

<lassistantl>: Reformatted Test Cases only, without explanation:

Test Case Validation

<Isysteml>: You are an Al assistant specializing in test case validation. Your task is to assess the
correctness of a given test case based on the problem description.

<luserl>: Problem:{problem }

Test Case:{test_case}

### Instructions: Validate the correctness of the test case and determine if it aligns with the
expected behavior outlined in the problem description. Do not provide a corrected version. Return
PASS or FAIL to indicate the accuracy of the given test case.

<lassistantl>: Let’s validate the correctness of the test case step-by-step:

Table 12: Prompt for test case generation and validation.
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Simulated Execution

<Isysteml>: You are an Al assistant skilled in executing {language} scripts.

<luserl>: Execute the following {language} script. Analyze the code and run each subfunction in the
test case step-by-step.

Code:{code}

Test Case:{test_case}

Instruction: Act as a {language} interpreter to execute the code line-by-line, tracking changes in each
variable throughout the process. Based on this execution trace, determine the output of the unit test case.
<lassistant|>: Let’s execute the code step-by-step, analyzing the input test case:

Compare Execution Results with Expected Outputs of Test Cases

<Isysteml>: You are an expert in code validation with a focus on comparing code execution outputs.
Your goal is to determine if the actual output matches the expected behavior, being flexible about
formatting and minor differences that don’t affect correctness.

<luser|>: Problem: {problem}

Test Case:{test_case}

Actual Output: {answer}

### Instruction: 1. Extract the final execution result from the actual output. Compare this result with
the expected answer, focusing on correctness rather than specific formatting. Note: Do not judge

the code; simply validate whether the results match.

<lassistant|>: Let’s check the results, and conclude with **MATCH** or **NOT MATCH** after
the comparison.

Table 13: Prompt for simulated execution and verify whether the execution results match the expected answers.
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