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ABSTRACT

Adaptive Moment Estimation (Adam) is a cornerstone optimization algorithm in
deep learning, widely recognized for its flexibility with adaptive learning rates
and efficiency in handling large-scale data. However, despite its practical suc-
cess, the theoretical understanding of Adam’s convergence has been constrained
by stringent assumptions, such as almost surely bounded stochastic gradients or
uniformly bounded gradients, which are more restrictive than those typically re-
quired for analyzing stochastic gradient descent (SGD).
In this paper, we introduce a novel and comprehensive framework for analyz-
ing the convergence properties of Adam. This framework offers a versatile ap-
proach to establishing Adam’s convergence. Specifically, we prove that Adam
achieves asymptotic (last iterate sense) convergence in both the almost sure sense
and the L1 sense under the relaxed assumptions typically used for SGD, namely
L-smoothness and the ABC inequality. Meanwhile, under the same assumptions,
we show that Adam attains non-asymptotic sample complexity bounds similar to
those of SGD.

1 INTRODUCTION

Adaptive Moment Estimation (Adam) is one of the most widely used optimization algorithms in
deep learning due to its adaptive learning rate properties and efficiency in handling large-scale data
(Kingma & Ba, 2014). Despite its widespread use, the theoretical understanding of Adam’s con-
vergence is not as advanced as its practical success. Previous studies have often imposed stringent
assumptions on the loss function and stochastic gradients, such as uniformly bounded loss func-
tions and almost surely bounded gradients (Reddi et al., 2018b; Zou & Shen, 2019), which are more
restrictive than those required for analyzing classical stochastic gradient descent (SGD).

In this paper, we introduce a novel and comprehensive framework for analyzing the convergence
properties of Adam. Our framework unifies various aspects of convergence analysis, including non-
asymptotic (average iterate sense) sample complexity, asymptotic (last iterate sense) almost sure
convergence, and asymptotic L1 convergence. Crucially, we demonstrate that under this framework,
Adam can achieve convergence under the same assumptions typically used for SGD—namely, the
L-smooth condition and the ABC inequality (L2 sense) (Khaled & Richtárik, 2023; Bottou, 2010;
Ghadimi & Lan, 2013).

Several recent works have attempted to relax the stringent conditions required for Adam’s conver-
gence, each focusing on different aspects of the stochastic gradient assumptions and convergence
guarantees. However, limitations still exist in terms of assumptions and the types of convergence
results obtained. Table 1 provides the references and a summary of the works and compares the
assumptions on stochastic gradients, the resulting complexities, and the convergence properties
achieved.

Our approach builds upon these prior works and seeks to offer a more comprehensive and gen-
eral framework for analysis. In contrast to these previous works, we study Adam under the ABC
inequality, which is more general and less restrictive compared to the assumptions made in the previ-
ous studies. Our analysis successfully establishes non-asymptotic sample complexity and achieves
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Table 1: Comparison of Assumptions and Convergence Results. (♢) The smoothing term µ is
often set to small values like 10−8 in practice. It is difficult and relevant to avoid the O(poly( 1µ ))
dependence (Wang et al., 2024a), which our analysis achieves. (♠) The work focuses on learning
rates and hyperparameters dependent on the total number of iterations T , leading to results without a
O(lnT ) term. As our asymptotic analysis uses T -independent parameters, terms regarding O(lnT )
inevitably appear, though our method can be easily extended to T -dependent settings. (♥) These
works have weakened the classical L-smooth condition, which is different from the focus of this
paper.

Reference Assumptions on Stochastic Gradient Sample Complexity A.S. Convergence L1 Convergence
Wang et al. (2024a)♠ Bounded Variance (or Coordinate Weak Growth) O

(
1√
T

)
No No

He et al. (2023)♢ Almost Surely Bounded Stochastic Gradient O
(

poly
(

1
µ

)
· lnT√

T

)
Yes Yes

Zou et al. (2019) L2 Bounded Stochastic Gradient O
(

lnT√
T

)
No No

Zhang et al. (2022) Randomly Reshuffled Stochastic Gradient O
(

lnT√
T

)
No No

Li et al. (2024)♥♢ Almost Surely Bounded Stochastic Gradient
or Sub-Gaussian Variance O

(
poly

(
1
µ

)
· lnT√

T

)
No No

Wang et al. (2024b)♥ Randomly Reshuffled Stochastic Gradient O
(

lnT√
T

)
No No

Xiao et al. (2024)♥ Almost Surely Bounded Stochastic Gradient No Result Yes No

Our Work ABC Inequality O
(

lnT√
T

)
Yes Yes

asymptotic almost sure convergence and L1 convergence under conditions that align with those re-
quired for SGD. This makes our framework theoretically sound and versatile for analyzing multiple
convergence properties of Adam. Our framework might also be of independent interest in analyzing
different variants of Adam. In summary, our work presents a novel and general theoretical frame-
work for Adam, unifying various convergence properties. This framework demonstrates that Adam’s
convergence guarantees can be aligned with those of SGD, which justifies the applicability of Adam
across a wide range of machine learning problems.

1.1 RELATED WORKS

In recent years, the convergence properties of Adam have been extensively studied, with various
works focusing on different assumptions about stochastic gradients and the types of convergence
guarantees provided. In the following discussion, we categorize and review key contributions based
on the different types of stochastic gradient assumptions they employ, as summarized in Table 1.

Bounded Variance and Coordinate Weak Growth: Wang et al. (2024a) considered Adam’s con-
vergence under the assumption of bounded variance or coordinate weak growth. The coordinate
weak growth condition (Eq. 2) is particularly stringent as it requires that each component of the
stochastic gradient satisfies a weak growth inequality, which is stronger than the traditional weak
growth condition (Eq. 1) applied to the entire gradient. Under these assumptions, Wang et al. were
able to avoid the O(1/µ) complexity. However, their work did not focus on analyzing almost sure
convergence or L1 convergence, as the primary emphasis was on the sample complexity of the al-
gorithm’s behavior.

Almost Surely Bounded Stochastic Gradients: Several works, including He et al. (2023) and
Xiao et al. (2024), have explored Adam’s convergence under the assumption that the stochastic gra-
dients are almost surely bounded. This is a particularly strong assumption, as it implies several other
commonly made assumptions about stochastic gradients, such as bounded variance, weak growth,
coordinate weak growth, and sub-Gaussian properties. The assumption is often impractical in non-
convex settings where gradients can become unbounded. Moreover, studies in Wang et al. (2023)
have highlighted that this assumption is unrealistic in many common machine learning frameworks,
failing to hold even for simple quadratic functions, let alone for deep neural networks. While these
works achieved almost sure convergence and, in some cases, L1 convergence, they did not address
the complexity related to the O(1/µ) term.

L2 Bounded Stochastic Gradients: Zou et al. (2019) analyzed Adam under the assumption of
L2 bounded stochastic gradients. Although this condition is milder than the almost surely bounded
gradients assumption, it is still stronger than the traditional weak growth condition and the ABC
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inequality. In the standard analytical framework, this assumption can at best be weakened to the
coordinate weak growth condition, which remains more restrictive than the assumptions typically
considered for SGD. At the same time, this work focused on complexity analysis without addressing
asymptotic convergence.

Randomly Reshuffled Stochastic Gradients: In other works, such as those by Zhang et al. (2022)
and Wang et al. (2024b), the authors considered the case where the stochastic gradients are randomly
reshuffled. Randomly reshuffled stochastic gradients represent a special case where the gradients are
typically assumed to satisfy certain inequalities almost surely. This reliance on almost sure proper-
ties forms a much stronger and more restrictive analytical framework compared to those based on
traditional weak growth conditions or the ABC inequality. While these works successfully avoided
O(1/µ) complexity, they did not focus on analyzing the asymptotic convergence property.

2 PRELIMINARIES

In this section, we introduce the necessary preliminaries and establish the foundational framework
for our convergence analysis of the Adam. We begin by recalling the Adam optimization algorithm.
We then state the assumptions that will be used throughout our analysis. These assumptions are
standard in stochastic optimization and are crucial for deriving our main results. By laying out these
assumptions explicitly, we also facilitate a clear comparison with the conditions used in previous
works, highlighting the less restrictive nature of our approach.

2.1 ADAM

Adam is an extension of SGD that computes adaptive learning rates for each parameter by utilizing
estimates of the first and second moments of the gradients. It combines the advantages of two other
extensions of SGD: AdaGrad, which works well with sparse gradients, and RMSProp, which works
well in online and non-stationary settings.

Algorithm 1 Adam
Input: Stochastic oracle O, initial learning rate ηt > 0, initial parameters w1 ∈ Rd, initial exponen-
tial moving averages m0 = 0, v0 = v ·1⊤ with v > 0, hyperparameters β1, β2,1 ∈ [0, 1), smoothing
term µ > 0, number of iterations T
Output: Final parameter wT

1: for t = 1 to T do
2: Generate conditioner parameter β2,t;
3: Sample a random data point zt and compute the stochastic gradient gt = Of (wt, zt);
4: Update the second moment estimate: vt = β2,tvt−1 + (1− β2,t)g

◦2
t ;

5: Update the first moment estimate: mt = β1mt−1 + (1− β1)gt;
6: Compute the adaptive learning rate: ηvt = ηt ◦ 1√

vt+µ ;
7: Update the parameters: wt+1 = wt − ηvt ◦mt;
8: end for

In Adam, the random variables {zt}t≥1 are mutually independent. The stochastic gradient at itera-
tion t is denoted by gt. The quantities mt and vt represent the exponential moving averages of the
first and second moments of the gradients, respectively. The hyperparameters β1 and β2,t control
the exponential decay rates for the moment estimates. A small smoothing term µ is introduced to
prevent division by zero, and ηvt represents the adaptive learning rate for each parameter.

In terms of notation, all vectors are column vectors unless specified otherwise, and 1⊤ denotes a row
vector with all elements equal to 1. For vectors β, γ ∈ Rd, the Hadamard product (element-wise
multiplication) is represented by β ◦ γ, and the element-wise square root of a vector γ ∈ Rd is
written as

√
γ. Operations such as β + v0, 1

β , and β◦2 are performed element-wise. Additionally,
the i-th component of a vector βt is denoted as βt,i.
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When analyzing Adam, ∇f(wt) refers to the true gradient of the loss function at iteration t. We
define Ft = σ(g1, . . . , gt) as the σ-algebra generated by the stochastic gradients up to iteration t,
with F0 = {Ω, ∅} and F∞ = σ

(⋃
t≥1 Ft

)
.

2.2 ASSUMPTIONS

To establish our convergence results, we make the following standard assumptions, focusing on the
stochastic gradient conditions. These assumptions are less restrictive than those imposed in some
prior works, as highlighted in Table 1.
Assumption 2.1. (Bounded from Below Loss Function) Let f : Rd → R be a loss function defined
on Rd. We assume that there exists a constant f∗ ∈ R such that for all w ∈ Rd, the following
inequality holds: f(w) ≥ f∗.

This assumption ensures that the loss function f is bounded from below, preventing it from decreas-
ing indefinitely during the optimization process.
Assumption 2.2. (L-Smoothness) Let f : Rd → R be a differentiable loss function. We assume
that the gradient ∇f is Lipschitz continuous. That is, there exists a constant Lf ≥ 0 such that for
all w,w′ ∈ Rd, the following inequality holds: ∥∇f(w) − ∇f(w′)∥ ≤ Lf∥w − w′∥, where ∥ · ∥
denotes the Euclidean norm. The constant Lf is known as the Lipschitz constant of the gradient.

Assumption 2.3. (ABC Inequality) We assume that the stochastic gradient gt is an unbiased esti-
mate of the true gradient, i.e., E[gt | Ft−1] = ∇f(wt), and there exist constants A,B,C ≥ 0 such
that for all iterations t, we have: E[∥gt∥2 | Ft−1] ≤ A(f(wt)− f∗) +B∥∇f(wt)∥2 + C.

The ABC inequality provides a bound on the second moment of the stochastic gradients, which is
crucial for analyzing the convergence of stochastic optimization algorithms.

2.3 COMPARISON WITH PRIOR WORKS ON STOCHASTIC GRADIENT ASSUMPTIONS

Our assumption on the stochastic gradient (Assumption 2.3) is relatively mild compared to those in
prior works. Here, we focus on comparing with the traditional weak growth condition, coordinate
weak growth assumption, and the almost surely bounded stochastic gradient assumption.

Traditional Weak Growth Condition The traditional weak growth condition (e.g., Bottou et al.
(2018); Nguyen et al. (2018)) assumes that there exist constants B ≥ 0 and C ≥ 0 such that:

E[∥gt∥2 | Ft−1] ≤ B∥∇f(wt)∥2 + C. (1)

This condition bounds the expected squared norm of the stochastic gradient by a linear function of
the squared norm of the true gradient plus a constant. It is stronger than our ABC inequality because
it does not include the term involving the function value difference f(wt)− f∗.

Even under this condition, current methods for analyzing Adam encounter significant difficulties.
We will explain these challenges in the proof sketch of Lemma 4.1.

Coordinate Weak Growth Assumption Wang et al. (2024a) introduce the coordinate weak
growth assumption, which requires that each component of the stochastic gradient satisfies a weak
growth inequality. Specifically, for each coordinate i, there exist constants B,C ≥ 0 such that:

E[g2t,i | Ft−1] ≤ B∥∇if(wt)∥2 + C, (2)

where gt,i and ∇if(wt) are the i-th components of gt and ∇f(wt), respectively.

This assumption is stronger than the traditional weak growth condition because it imposes the in-
equality on each coordinate individually, rather than on the overall gradient.

Almost Surely Bounded Stochastic Gradient Assumption Some prior works, such as He et al.
(2023); Xiao et al. (2024), assume that the stochastic gradients are almost surely bounded. That is,
there exists a constant M ≥ 0 such that for all iterations t: ∥gt∥ ≤ M almost surely. This is a strong
assumption, as it requires that the stochastic gradient norm is uniformly bounded almost surely
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at all iterations. In practice, especially in non-convex optimization problems, this assumption is
often violated (see Wang et al. 2023). For instance, when optimizing deep neural networks, gradient
norms can become unbounded due to the complexity and non-linearity of the models. Moreover, this
assumption implies that the true gradient is also bounded by M , because ∥∇f(wt)∥2 ≤ E[∥gt∥2 |
Ft−1] ≤ M2. Our assumption is clearly weaker than the almost surely bounded stochastic gradient
assumption, as we only require a bound on the expected squared norm of the stochastic gradient,
which can depend on the current function value and gradient norm, rather than a uniform almost
sure bound.

Moreover, assuming almost surely bounded stochastic gradients is hard to satisfy in practice and
may not reflect realistic scenarios. As discussed in Wang et al. (2023); Khaled & Richtárik (2023),
such assumptions can be unrealistic and limit the applicability of theoretical results.

Next, we introduce a property. We know that when the loss function is L-smooth, the true gradient
of the loss function can be controlled by the loss function value f(wt) − f∗ (as shown in Lemma
B.1). Therefore, we can simplify the ABC inequality as follows.
Property 1. Under Assumptions 2.2 and 2.3, for all iterations t, we have:

E[∥gt∥2 | Ft−1] ≤ (A+ 2LfB)(f(wt)− f∗) + C.

This property demonstrates that the variance of the stochastic gradients can be bounded by the
function value difference, which is a key component in our convergence analysis.

2.4 HYPERPARAMETER SETTINGS

In this paper, to avoid overly lengthy proofs, we choose a class of representative parameter settings,
as follows:

β2,t :=

{
1− α0, if t = 1
1− 1

tγ , if t ≥ 2
, β1 ∈ [0, 1), ηt =

1

t
1
2+δ

,

(
α0 ∈ [0, 1), γ ∈ [1, 2δ + 1], δ ∈

[
0,

1

2

])
.

Imposing restrictions on Adam’s parameters, particularly β2,t, is necessary to ensure convergence.
Early studies (Reddi et al., 2018a) have demonstrated that without appropriate constraints on β2,t,
counterexamples exist where the algorithm fails to converge. Moreover, for the gradient norm to
converge to zero, it is essential that β2,t approaches 1 (Zou et al., 2019; He et al., 2023), as noted in
previous works.

Some studies on complexity allow β2,t to be constant. However, these studies typically focus on
the algorithm’s complexity over a finite number of iterations T . In such cases, the constant value
of 1 − β2,t is inversely related to T , effectively causing β2,t to approach 1 as T increases. This is
another means of ensuring that β2,t asymptotically approaches 1, which is crucial for convergence.

The hyperparameter settings adopted in this paper are representative and have been considered in
previous studies (Zou et al., 2019; He et al., 2023). Our configuration includes settings that can
achieve near-optimal complexity of O(lnT/

√
T ). The logarithmic factor lnT arises because β2,t is

chosen independent of the total number of iterations T , which is an unavoidable consequence with
this class of parameters.

Our choice of hyperparameters simplifies the analysis while capturing the essential behavior of the
Adam. Although the proof techniques can be extended to a broader range of parameter settings, this
paper focuses primarily on the assumptions related to the convergence of the algorithm rather than
an exhaustive exploration of hyperparameter configurations.

3 THEORETICAL RESULTS

In this section, we establish both non-asymptotic and asymptotic convergence guarantees for the
Adam within our smooth non-convex framework, as defined by Assumptions 2.1–2.3. For the non-
asymptotic analysis, we derive a sample complexity bound that is independent of O(1/µ), providing
an explicit bound on the number of iterations required to achieve a specified accuracy. In the asymp-
totic analysis, we consider two forms of convergence: almost sure convergence and convergence in
the L1 norm. The almost sure convergence result demonstrates that, the gradient norm of almost
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every trajectory converges to zero. Meanwhile, the L1 convergence result reveals that the conver-
gence across different trajectories is uniform with respect to the L1 norm of the gradient, where the
L1 norm is taken in the sense of the underlying random variable, meaning the expectation of the
gradient norm.

3.1 NON-ASYMPTOTIC SAMPLE COMPLEXITY

We first establish a non-asymptotic bound on the sample complexity of Adam.
Theorem 3.1 (Non-Asymptotic Sample Complexity). Consider the Adam algorithm as specified
in Algorithm 2.1, and suppose that Assumptions 2.1–2.3 hold. Then, for any initial point and for
T ≥ 1, the following results hold:

1

T

T∑
t=1

E[∥∇f(wt)∥] ≤


O
( 1

T
1
2−δ

)
, if δ ∈ (0, 1

2 ],

O
( lnT√

T

)
, if γ > 1, δ = 0,

O
( ln2 T√

T

)
, if γ = 1, δ = 0.

The constant hidden in the O notation depends on the initial point, the constants in our required
assumptions (excluding 1/µ), and the parameters δ and α0.

This theorem provides a non-asymptotic rate of convergence for the expected gradient norm, high-
lighting how the choice of hyperparameters affects the convergence rate.

3.2 ASYMPTOTIC CONVERGENCE

We now present our main asymptotic convergence results, demonstrating that the gradients of the
Adam converge to zero both almost surely and in the L1 sense under appropriate conditions.
Theorem 3.2 (Asymptotic Almost Sure Convergence). Under Assumptions 2.1–2.3, consider the
Adam with hyperparameters specified in Subsection 2.4 with γ > 1 and δ > 0. Then, the gradients
of the Adam converge to zero almost surely, i.e., limt→∞ ∥∇f(wt)∥ = 0 a.s.

This theorem shows that the gradients evaluated at the iterates converge to zero almost surely, indi-
cating that the algorithm approaches a critical point of the loss function along almost every trajectory.

Remark 1. (Almost sure vs L1 convergence) As stated in the introduction, it is important to note
that the almost sure convergence does not imply L1 convergence. To illustrate this concept, let us
consider a sequence of random variables {ζn}n≥1, where P(ζn = 0) = 1 − 1/n2 and P(ζn =
n2) = 1/n2. According to the Borel-Cantelli lemma, it follows that limn→+∞ ζn = 0 almost surely.
However, it can be shown that E(ζn) = 1 for all n > 0 by simple calculations.
Theorem 3.3 (Asymptotic L1-Convergence). Under Assumptions 2.1–2.3, consider the Adam with
hyperparameters specified in Subsection 2.4 with γ > 1 and δ > 0. Then, the gradients of the Adam
converge to zero in the L1 sense, i.e., limt→∞ E[∥∇f(wt)∥] = 0.

This result establishes convergence in the mean sense, showing that the expected gradient norm
approaches zero as the number of iterations increases. It indicates that the convergence of gradient
norms across different trajectories is uniform in the L1 norm of the random variables.

In previous works (He et al. (2023); Xiao et al. (2024)), the assumption that the stochastic gradients
are uniformly bounded, i.e., ∥gt∥ ≤ M a.s. (∀ t ≥ 1), or that the gradients themselves are uniformly
bounded, i.e., ∥∇f(wt)∥ ≤ M (∀ t ≥ 1), allows almost sure convergence to directly imply L1

convergence via the Lebesgue’s Dominated Convergence theorem. However, in our framework,
which deals with potentially unbounded stochastic gradients or gradients, proving L1 convergence
is much more challenging. We will elaborate on this in the next section.

4 FRAMEWORK FOR ANALYZING ADAM

In this section, we present the analytical framework that underpins our convergence analysis for the
Adam. Our approach is built upon the insights provided by existing methods, while introducing
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new techniques to address the limitations of previous analyses and provide a more comprehensive
understanding of Adam’s behavior under weaker assumptions. Our core innovations are detailed in
Section 4.3.1, Section 4.4, and Section 4.5.

4.1 KEY PROPERTIES OF ADAPTIVE LEARNING RATES

We begin by characterizing the fundamental properties of the adaptive learning rate sequence ηvt .
These properties are critical as they directly influence the behavior of the algorithm and are foun-
dational to our subsequent analysis. By understanding how these properties interact with the algo-
rithm’s dynamics, we obtain more insights on the conditions under which Adam converges.
Property 2. Each element ηvt,i of the sequence {ηvt}t≥1 = {[ηvt,1, ηvt,2, . . . , ηvt,d]⊤}t≥1 is mono-
tonically decreasing with respect to t.

This property ensures that the learning rate becomes progressively smaller as the algorithm pro-
gresses, which is a crucial factor in the stability and convergence of Adam.
Property 3. Each element ηvt,i of the sequence {ηvt}t≥1 = {[ηvt,1, ηvt,2, . . . , ηvt,d]⊤}t≥1 satisfies
the inequality tγvt,i ≥ α1St,i, where we define α1 := min{1− α0, α0}, St,i := v +

∑t
k=1 g

2
k,i for

all t ≥ 1, and S0,i := v.

This property highlights the relationship between the accumulated gradient information St,i and
the adaptive learning rate, ensuring that the latter appropriately scales with the former as iterations
proceed.
Remark 4.1. For the purpose of simplifying the proofs of subsequent theorems, we define two aux-
iliary parameters: Σvt :=

∑d
i=1 vt,i and St :=

∑d
i=1 St,i. Additionally, for convenience in the

subsequent proofs, we define a new initial parameter based on S0,i as ηv0,i = S0,i/α1 = v/α1.

These definitions of auxiliary parameters help streamline the analysis, making the mathematical
expressions more manageable and the proofs more concise.

With the key properties of the adaptive learning rates established, we now turn our attention to
analyzing the momentum term, which plays a crucial role in the Adam.

4.2 HANDLING THE MOMENTUM TERM

To effectively analyze the momentum term in the Adam, we adopt a classical method introduced
by Liu et al. (2020). The momentum term introduces additional complexity in the analysis due to
its recursive nature, which can complicate the convergence proofs. To address this, we construct an
auxiliary variable ut that simplifies the analysis by decoupling the momentum term from the update
process. This auxiliary variable is defined as follows:

ut :=
wt − β1wt−1

1− β1
= wt +

β1

1− β1
(wt − wt−1) = wt −

β1

1− β1
ηvt−1 ◦mt−1. (3)

The introduction of ut allows us to handle the momentum term more effectively by transforming
the recursive nature of the updates into a more tractable form. Specifically, we can express the
relationship between successive iterations of ut as follows:

ut+1 − ut = −ηvt ◦ gt +
β1

1− β1
(ηvt−1

− ηvt︸ ︷︷ ︸
∆t

) ◦mt−1. (4)

This recursive relation is instrumental in breaking down the complex dependencies introduced by
the momentum term, which will facilitate the convergence analysis.

4.3 ESTABLISHING THE APPROXIMATE DESCENT INEQUALITY

In the convergence analysis of stochastic gradient descent (SGD), a fundamental tool is the approx-
imate descent inequality, which quantifies the expected decrease in the objective function at each
iteration. Specifically, for SGD, the approximate descent inequality is given by:

f(wt+1) ≤ f(wt)−
ηt
2
∥∇f(wt)∥2 +

η2tL

2
E[∥gt∥2 | Ft] + ηt∇f(wt)

⊤(∇f(wt)− gt), (5)
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where ηt is the learning rate, L is the Lipschitz constant, and gt is the stochastic gradient.

Motivated by the success of this approach in analyzing SGD, we aim to establish a similar approx-
imate descent inequality for the Adam. The goal is to develop a descent inequality that captures
the adaptive nature of Adam’s learning rates while maintaining the essential structure seen in the
analysis of SGD.

To this end, we present the following key result, which forms the cornerstone of our convergence
analysis for Adam.
Lemma 4.1 (Approximate Descent Inequality). Consider the sequences {wt}t≥1, {vt}t≥1, and
{ut}t≥1 generated by Algorithm 2.1 and Eq. 4. Under Assumptions 2.1–2.3, the following sufficient
decrease inequality holds:

Π∆,t+1f̂(ut+1)−Π∆,tf̂(ut) ≤ − 5

16
Π∆,t+1

d∑
i=1

ζi(t) + (Lf + 1)Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i +Π∆,t+1Mt.

(6)

Here,

f̂(ut) := f(ut) + C

d∑
i=1

ηvt−1,i +
C2

(1− β1)
√
v
∥mt−1∥2, ζi(t) := ηvt,i(∇if(wt))

2,

Π∆,t :=

t−1∏
k=1

(1 + C1∆k)
−1 (∀ t ≥ 2), Π∆,1 := 1, ∆t :=

d∑
i=1

E(∆t,i | Ft−1),

Mt := Mt,1 +Mt,2 +Mt,3. (7)

Constants C1 and C2 are defined in Eq. 21; Mt,1 is defined in Eq. 15; Mt,2 and Mt,3 are defined in
Eq. 16.

This lemma introduces Π∆,tf̂(ut) as a new Lyapunov function for the Adam, which plays a crucial

role in our analysis. In inequality 6, the term − 5

16
Π∆,t+1

∑d
i=1 ζi(t) can be interpreted as the

descent term, representing the expected decrease in the Lyapunov function. The second term, (Lf +

1)Π∆,t+1

∑d
i=1 η

2
vt,i

g2t,i, accounts for the squared error due to the stochastic nature of the gradients.
The third term on the right-hand side, Π∆,t+1Mt, is a martingale difference sequence with respect
to the filtration {Ft}t≥1, which, due to its zero expectation, can be considered to have no overall
impact on the algorithm’s iteration process.

This structure closely resembles the approximate descent inequality commonly used in the analysis
of SGD. For comparison, the approximate descent inequality for SGD is given by Eq. 5.

We now proceed to provide the main idea of proving Lemma 4.1 and highlight the key steps and
challenges involved in establishing this result for Adam.

To begin with, we calculate the difference in the loss function values between two consecutive
auxiliary variables {ut}t≥1 that we introduced. We obtain the following expression (informal):

f(ut+1)− f(ut) ≤−
d∑

i=1

E [ηvt,i∇f(wt)gt,i|Ft−1]︸ ︷︷ ︸
Termt,1

+O

(
d∑

i=1

η2vt,ig
2
t,i

)
︸ ︷︷ ︸

Termt,2

+

d∑
i=1

E [ηvt,i∇f(wt)gt,i|Ft−1]−
d∑

i=1

ηvt,i∇f(wt)gt,i︸ ︷︷ ︸
Termt,3

+Rt. (8)

It can be observed that the above equation is simply a second-order Taylor expansion of f(ut+1)−
f(ut) (since an L-smooth function is almost everywhere twice differentiable). Termt,1 represents
the first-order term, which in general serves as the descent term. Termt,2 is the quadratic error, and
Termt,3 is a martingale difference sequence. The remaining term Rt is negligible and can be ignored.

8
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In the informal explanation provided in the sketch, these were collectively referred to as remainder
terms. For the exact formulation, refer to the detailed proof in Appendix D.1.

While handling the quadratic error term Termt,2 is relatively straightforward using standard scaling
techniques, addressing the first-order term Termt,1 is more challenging due to the adaptive nature of
Adam’s learning rates. Specifically, ηvt,i and gt,i are both Ft-measurable, which necessitates the
introduction of an auxiliary random variable η̃vt,i ∈ Ft−1 to facilitate the extraction of the learning
rate from the conditional expectation. In this paper, we choose the auxiliary random variable ηvt−1,i

to approximate ηvt,i. There are also other forms of this approximation, as discussed by Wang et al.
(2023; 2024a). This allows us to rewrite the first-order term as:

−Termt,1 = −
d∑

i=1

E [ηvt,i∇f(wt)gt,i|Ft−1]

= −
d∑

i=1

E
[
ηvt−1,i∇f(wt)gt,i|Ft−1

]
︸ ︷︷ ︸

Descent-Termt

+

d∑
i=1

E
[
(ηvt−1,i − ηvt,i)∇f(wt)gt,i|Ft−1

]
︸ ︷︷ ︸

Termt,4

.

The presence of Termt,4 introduces an additional layer of complexity in the analysis, as it reflects the
difference between successive adaptive learning rates. Addressing this extra error term is crucial for
establishing robust convergence guarantees under the ABC inequality or weak growth conditions.
Existing approaches to handling such terms, which often rely on the cancellation of errors through
preceding descent terms, fall short in this context. This necessitates a more innovative strategy,
which we present in the following section.

4.3.1 ADDRESSING THE EXTRA ERROR TERM: OUR INNOVATIVE APPROACH

The term Termt,4, introduced by the difference between ηvt−1,i and ηvt,i, presents a significant chal-
lenge in the convergence analysis of Adam under the ABC inequality or weak growth conditions. In
existing methods, it is common to attempt to cancel out such error terms by leveraging the preceding
descent term Descent-Termt. However, this approach might not work within the ABC framework.
Recent works such as Wang et al. (2023; 2024a) have shown that, under existing techniques, the best
one can achieve is a weakened form of the stochastic gradient assumption, namely the coordinate
weak growth condition.

To overcome these limitations, we introduce a novel approach to handle Termt,4. We scale it as
follows:

Termt,4 ≤1

2

d∑
i=1

E
[
ηvt−1,i∇f(wt)gt,i|Ft−1

]
+ C1f(ut) ·

d∑
i=1

E[∆t,i | Ft−1]

+ C

d∑
i=1

∆t,i + C

d∑
i=1

(
E[∆t,i | Ft−1]−∆t,i

)
︸ ︷︷ ︸

Term5

,

where ∆t,i := ηvt−1,i − ηvt,i, and C1 :=
A+2LfB

2 (Lf + 1). The key term in the inequality is
C1f(ut)

∑d
i=1 E[∆t,i | Ft−1], which cannot be easily canceled out by existing methods.

To handle this issue, we move the term C1f(ut)
∑d

i=1 E[∆t,i | Ft−1] to the left-hand side of
inequality 8 and combine it with the existing f(ut) term. This leads to a new iteration inequality of
the form:

f(ut+1)− (1 + C1∆t)f(ut) ≤ −1

2
Descent-Termt + M-Termt + Termt,2 + R-Termt. (9)

In the inequality M-Termt = Termt,3 + Termt,5 is a martingale difference sequence and R-Termt is
the (neglectable) remainder term by combining all other terms from the inequalities. To express this
inequality in a form resembling a Lyapunov function, we introduce an auxiliary product variable:

Π∆,t :=

t−1∏
k=1

(1 + C1∆k)
−1 (∀ t ≥ 2), Π∆,1 := 1.

9
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Multiplying both sides of the inequality by Π∆,t+1, we obtain the following reformulated inequality:

Π∆,t+1f(ut+1)−Π∆,tf(ut) ≤ −1

2
Π∆,t+1 · Descent-Termt +Π∆,t+1 · M-Termt

+Π∆,t+1 · Termt,2 +Π∆,t+1 · R-Termt. (10)
This reformulation introduces Π∆,t as a scaling factor, which, along with the original Lyapunov
function, captures the impact of Termt,4. The resulting inequality closely parallels the approximate
descent inequality for SGD, with additional terms accounting for Adam’s adaptive nature.

The handling of Termt,4 in our analysis framework is a significant advancement over existing meth-
ods. It allows us to establish stronger convergence guarantees under more general conditions.

4.4 DERIVING SAMPLE COMPLEXITY AND ALMOST SURE CONVERGENCE

After establishing the Approximate Descent Inequality, the next step is to derive the sample com-
plexity and almost sure convergence results for Adam. The methodology for obtaining these results
largely mirrors the approaches traditionally used in the analysis of SGD. Specifically, the inequality
provides a foundation for bounding the expected decrease in the loss function, which can then be
used to establish both sample complexity and almost sure Convergence.

However, a key difference in our analysis lies in the introduction of the term Π∆,t+1 within the
Approximate Descent Inequality. This term introduces a new layer of complexity not present in the
standard SGD analysis. In particular, we are required to bound the p-th moment of the reciprocal of
this term, i.e., E[Π−p

∆,t+1], (p ≥ 1). Due to the unique structure of Π∆,t+1, determining a bound for
this p-th moment is a non-trivial task.

To address this challenge, we leverage tools from discrete martingale theory, particularly the
Burkholder’s inequality. It allows us to establish a recursive relationship between the p-th moment
E[Π−p

∆,t+1] and the p/2-th moment E[Π−p/2
∆,t+1]. This recursive structure is crucial as it enables us to

iteratively bound the higher moments of Π−1
∆,t+1.

Once the recursive relationship is established, we apply fundamental theorems from measure theory,
such as the Lebesgue’s Monotone Convergence theorem or the Lebesgue’s Dominated Convergence
theorem, to obtain the final bound on the p-th moment.

The detailed process for bounding E[Π−p
∆,t+1] can be found in Lemma B.2 and Lemma B.3.

4.5 ESTABLISHING ASYMPTOTIC L1 CONVERGENCE

Since we have already proved almost sure convergence in Theorem 3.2, it is natural to attempt to
prove L1 convergence via the Lebesgue’s Dominated Convergence theorem. To achieve this, we
need to find a function h that is F∞-measurable and satisfies E|h| < +∞, and such that for all
t ≥ 1, we have ∥∇f(wt)∥ ≤ |h|. Since for all t we naturally have ∥∇f(wt)∥ ≤ supk≥1 ∥∇f(wk)∥,
we only need to prove that E[supk≥1 ∥∇f(wk)∥] < +∞.

This task presents a significant challenge because, within our analytical framework, we cannot
assume that the gradients are uniformly bounded, which means we cannot directly apply the
Lebesgue’s Dominated Convergence theorem. Instead, we need to utilize advanced techniques from
discrete martingale theory, specifically the first hitting time decomposition method, to obtain a bound
on this maximal expectation. The detailed process can be found in Appendix E.4.

5 CONCLUSION

We have introduced a novel and comprehensive framework for analyzing the convergence properties
of Adam. Our frame starts with weak assumptions such as the ABC inequality. By identifying the
key properties of the learning rate, handling the momentum term, and establishing the approximate
descent inequality, the frame concludes the sample complexity, almost surely convergence, and
asymptotic L1 convergence results of Adam. Our techniques overcome the limitations of existing
analyses, and show that Adam’s convergence guarantees can be aligned with those of SGD, which
justifies the applicability of Adam across a wide range of machine learning problems.

10
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A ESTABLISHING KEY PROPERTIES BETWEEN wt AND ut

Here, we establish two key properties that connect the original variable wt and the auxiliary vari-
able ut which defined in Section 4.2. These properties are crucial for bounding the changes in the
momentum term and linking the function values at different points in the iteration process.
Property 4. For any iteration step t, the following inequality holds:

∥mt∥2 − ∥mt−1∥2 ≤ −(1− β1)∥mt−1∥2 + (1− β1)∥gt∥2.

This property establishes a bound on the change in the momentum term, which is critical for ensuring
that the momentum does not increase indefinitely during the optimization process. Controlling the
momentum in this manner is a key aspect of proving convergence.
Property 5. For any iteration step t, the following inequality holds:

f(wt) ≤ (Lf + 1)f(ut) +
(Lf + 1)β2

1

2(1− β1)2
∥∥ηvt−1

◦mt−1

∥∥2 .
This property links the function values at wt and ut, providing a foundation for analyzing the conver-
gence of f(wt). By establishing this relationship, we can relate the behavior of the original variable
wt to the more manageable auxiliary variable ut, thereby simplifying the overall convergence anal-
ysis.
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B SUPPORTING LEMMAS

B.1 THEOREM DEPENDENCY GRAPH

In this section, we will supplement several additional supporting lemmas that are crucial to the
overall proof. Due to the large number of lemmas, we have combined these lemmas with those in
the main text and theorems to create a lemma-theorem dependency graph. Readers can refer to this
graph while following the proofs.

Lemma 4.1

Lemma B.4

Lemma B.5

Lemma B.6

Lemma B.7

Lemma B.9

Lemma B.10

Lemma B.12 Lemma B.11

Lemma B.2

Lemma B.3

Theorem 3.1

Theorem 3.2

Theorem 3.3

Lemma B.8
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B.2 THE BASIC FORM OF ADDITIONAL IMPORTANT LEMMAS

Lemma B.1. Suppose that f(x) is differentiable and lower bounded f∗ = infx∈ Rd f(x) > −∞
and ∇f(x) is Lipschitz continuous with parameter L > 0, then ∀ x ∈ Rd, we have∥∥∇f(x)

∥∥2 ≤ 2L
(
f(x)− f∗).

Lemma B.2. Let {(Xn,Fn)}n≥1 be a non-negative adapted process such that
∑+∞

n=1 Xn = M <
+∞ almost surely, where M is a finite constant. Define the partial sum of conditional expectations
as ΛT :=

∑T
n=1 E[Xn | Fn−1]. Then:

(i) The sequence {ΛT }T≥1 converges almost surely, i.e., ΛT
a.s.−−→ Λ, where Λ :=∑+∞

n=1 E[Xn | Fn−1].

(ii) For any p ≥ 1, the sequence {ΛT }T≥1 converges in Lp, i.e., limT→∞ E [|ΛT − Λ|p] = 0.
Meanwhile, the p-th moment of the limit Λ is bounded by a constant CΛ(p) > 0, where
CΛ(p) = o(p

√
p).

(iii) The arbitrary p-th moment of the random variable eΛ also exists, and its upper bound
depends only on p and M . We denote this upper bound by CeΛ(p,M).

Lemma B.3. For Π∆,T+1 as defined in Eq. 7, for any T ≥ 0 and any p ≥ 1, the p-th moment of its
reciprocal is bounded, i.e.,

E
[
Π−p

∆,T+1

]
< Cv,d,p < +∞,

where Cv,d,p is a constant that depends only on v, d, and p.

Moreover, we have that Π−1
∆,∞ := limt→+∞ Π−1

∆,t < +∞ a.s., and for any p ≥ 1, the p-th moment
of Π−1

∆,∞ exists, with

E
[
Π−p

∆,∞

]
≤ Cv,d,p < +∞.

Lemma B.4. Consider the Adam in Algorithm 2.1 and suppose that Assumption 2.1∼2.3 hold, then
for any initial point, and T ≥ 1, we have:

Π∆,t+1f̂(ut+1)√
St

≤ f̂(u1)√
dv

+
3(Lf + 1)d

α1
√
v

+

T∑
t=1

Π∆,t+1√
St−1

Mt. (11)

Lemma B.5. Consider the Adam in Algorithm 2.1 and suppose that Assumption 2.1∼2.3 hold, then
for any initial point and ∀ ϕ > 0, we have for any T ≥ 1, the following inequality:

Π∆,T

√
ST

(T + 1)ϕ
≤

√
dv +

T∑
t=1

Π∆,tΛϕ,t. (12)

where

Λϕ,t :=
∥gt∥2

(t+ 1)ϕ
√
St−1

,

and ST is defined in Eq. 4.1.

Lemma B.6. Consider the Adam as defined in Algorithm 2.1, and suppose that Assumptions 2.1
through 2.3 hold. Then, for any initial point and for all T ≥ 1, there exists a random variable ζ
such that the following results hold:

(a) 0 ≤ ζ < +∞ almost surely, and E(ζ) is uniformly bounded above by a constant Cζ , which
depends on the initial point and the constants in the required assumptions (excluding 1/µ).
The explicit form of this upper bound is provided in Eq. 30.

(b)
√
ST ≤ (T +1)2ζ, and ln(ST ) ≤ ζ ′ ln(T +1), where ζ ′ := 8 ln

(
max

{
e,

√
2Π−1

∆,∞ζ
√
v

})
.
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Lemma B.7. Consider the Adam in Algorithm 2.1 and suppose that Assumption 2.1 2.3 hold, then
for any initial point, and T ≥ 1, the following results hold:

T∑
t=1

E
[
Π∆,t+1

d∑
i=1

ζi(t)

]
≤
{
C4,δ, if δ ∈ (0, 1]

C5 + C6 E [ln(ST )] , if δ = 0
,

where C5 and C6 are two constants that depend on the initial point and the constants in our required
assumptions (excluding 1/µ), and C4,δ is a constant that depends on the initial point, δ, and the
constants in our required assumptions (excluding 1/µ).
Lemma B.8 (Subsequence Convergence). Under Assumptions 2.1–2.3, consider the Adam (Al-
gorithm 2.1) with hyperparameters as specified in Subsection 2.4, where δ > 0. Then, there
exists a subsequence {wct}t≥1 such that its gradients converge to zero almost surely, i.e.,
limt→∞ ∥∇f(wct)∥ = 0 a.s.
Lemma B.9. Consider the Adam as defined in Algorithm 2.1, and assume that Assumptions 2.1
through 2.3 hold. Then, for any initial point and for all T ≥ 1, the following results hold:

- When δ = 0, we have

sup
t≥1

Π∆,t+1(f(wt)− f∗)

ln2(t+ 1)
< +∞ a.s., sup

T≥1
E
[
Π∆,t+1(f(wt)− f∗)

ln2(t+ 1)

]
< M0 < +∞,

- When δ > 0, we have

sup
t≥1

Π∆,t+1(f(wt)− f∗) < +∞ a.s., sup
T≥1

E [Π∆,t+1(f(wt)− f∗)] < Mδ < +∞,

and

sup
t≥1

Π∆,t∥mt−1∥ < +∞ a.s.,,

where M0 and Mδ are two constants that depend on the initial point and the constants in our
assumptions (excluding 1/µ).
Lemma B.10. Consider the Adam in Algorithm 2.1 and suppose that Assumption 2.1 2.3 hold, then
for any initial point, T ≥ 1, i ∈ [1, d], there is

E(S3/4
T ) =

{
O(T 3/4), if δ ∈ (0, 1]

O(T 3/4 ln3/2 T ), if δ = 0
.

where constant hidden in O depends only on initial point, and the constants in our required assump-
tions (not includes 1/µ).
Lemma B.11. Under Assumptions 2.1–2.3, consider the Adam (Algorithm 2.1) with the hyperpa-
rameters specified in Subsection 2.4. Then, for any t ≥ 1, the following inequality holds:

sup
t≥1

E[Π∆,t+1Σvt ] <

{
E[Π∆,2Σv1 ] + (A+ 2LfB)Mδ + C, if δ ∈ (0, 1]

E[Π∆,2Σv1 ] + (A+ 2LfB)M0 ln
2 t+ C, if δ = 0

.

Furthermore, if λ > 1, then we have

sup
t≥1

E[Π∆,t+1Σvt ] <

{(
(A+ 2LfB)Mδ + C

)∑+∞
t=1

1
(t+1)λ

, if δ ∈ (0, 1](
(A+ 2LfB)M0 + C

)∑+∞
t=1

ln2 t
(t+1)λ

, if δ = 0
< +∞,

and the following almost sure bound:

sup
t≥1

Σvt < +∞ a.s.

Lemma B.12. Under Assumption 2.1-2.3, consider the Adam with hyperparameters in Subsection
2.4 with γ > 1, δ > 0. Then for any initial point, the following results hold:

+∞∑
t=1

ηt∥∇f(wt)∥2 < +∞ a.s. and
+∞∑
t=1

ηt∥∇f(ut)∥2 < +∞ a.s.
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C PROOFS OF VITAL PROPERTIES

C.1 THE PROOF OF PROPERTY 2

Proof. Due to Algorithm 2.1, we know that

vt+1 = β2,t+1vt + (1− β2,t+1)g
◦2
t+1 =

(
1− 1

(t+ 1)γ

)
vt +

1

(t+ 1)γ
g◦2t+1, (∀ t ≥ 1).

which means

(t+ 1)γvt+1,i =
(
(t+ 1)γ − 1

)
vt,i + g2t+1,i ≥ tγvt,i. (13)

This implies that tvt,i is monotonically non-decreasing. Subsequently, we can obtain:

ηvt,i =
ηt√

vt,i + µ
=

√
tγηt√

tγvt,i +
√
tγµ

=

1

tδ−
γ−1
2√

tvt,i +
√
tγµ

.

It can be seen that the numerator is monotonically decreasing and greater than 0, while the denom-
inator is monotonically non-increasing and greater than 0. Therefore, overall, we can deduce the
monotonic non-increasing property of ηvt .

C.2 THE PROOF OF PROPERTY 3

Proof. For v1,i, we can derive the following estimate:

v1,i = β2,1v0,i + (1− β2,1)g
2
1,i = (1− α0)v + α0g

2
1,i = (1− α0)v + g21,i − (1− α0)g

2
1,i.

It is easy to find that α1S1,i ≤ v1,i ≤ S1,i. For ∀ k ≥ 2, we back to Eq. 13, acquiring kγvk,i ≥
(k − 1)γvk−1,i + g2k,i. Next, by summing up the above iterative equations, we obtain ∀ t ≥ 2,

tγvt,i ≥ v1,i +

t∑
k=2

g2k,i.

Next, combining the estimate for v1,i, we obtain ∀ t ≥ 2:

tγvt,i ≥ (1− α0)v + α0g
2
1,i +

t∑
k=2

g2k,i.

It is easy to find that tγvt,i ≥ α1St,i. With this, we complete the proof.

C.3 THE PROOF OF PROPERTY 5

Proof. According to Algorithm 2.1, we have the following iterative equations:

mt = β1mt−1 + (1− β1)gt

We take the square of the 2-norm on both sides, yielding

∥mt∥2 = ∥β1mt−1 + (1− β1)gt∥2

= β2
1∥mt−1∥2 + 2β1(1− β1)m

⊤
t−1gt + (1− β1)

2∥gt∥2

(a)

≤ β1∥mt−1∥2 + (1− β1)∥gt∥2

Eq. 13
≤ β1∥mt−1∥2 + (1− β1)∥gt∥2.

In step (a), we used the AM-GM inequality, i.e.,

2β1(1− β1)m
⊤
t−1gt ≤ β1(1− β1)∥mt−1∥2 + β1(1− β1)∥gt∥2,

that is,

∥mt∥2 − ∥mt−1∥2 ≤ −(1− β1)∥mt−1∥2 + (1− β1)∥gt∥2.
With this, we complete the proof.
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C.4 THE PROOF OF PROPERTY 5

Proof. Due to

|f(wt)− f(ut)| =
∣∣∣∣∇f(ut)

⊤(wt − ut) +
Lf

2
∥wt − ut∥2

∣∣∣∣ ≤ ∥∇f(ut)∥∥wt − ut∥+
Lf

2
∥wt − ut∥2

≤ 1

2
∥∇f(ut)∥2 +

Lf + 1

2
∥wt − ut∥2

= Lf(ut) +
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1

◦mt−1∥2,

we have

f(wt) ≤ f(ut) + |f(wt)− f(ut)| ≤ (Lf + 1)f(ut) +
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1 ◦mt−1∥2.

D PROOFS OF THEOREMS AND LEMMAS

D.1 PROOFS OF LEMMA 4.1

Proof. By L-smooth in Assumption 2.2, we have:

f(ut+1)− f(ut) ≤ ∇f(ut)
⊤(ut+1 − ut) +

Lf

2
∥ut+1 − ut∥2.

Then, by substituting the iterative formula for ut from Eq. 4 into the above inequality, we obtain:

f(ut+1)− f(ut) ≤ −
d∑

i=1

ηvt,i∇if(ut)gt,i +
β1

1− β1

d∑
i=1

∆t,i∇if(ut)mt−1,i + Lf

d∑
i=1

η2vt,ig
2
t,i

+ Lf

( β1

1− β1

)2 d∑
i=1

∆2
t,im

2
t−1,i

(a)
= −

d∑
i=1

ηvt,i∇if(wt)gt,i︸ ︷︷ ︸
Θt,1

+

d∑
i=1

(ηvt,i(∇if(wt)−∇if(ut))gt,i)︸ ︷︷ ︸
Θt,2

+
β1

1− β1

d∑
i=1

∆t,i∇if(ut)mt−1,i︸ ︷︷ ︸
Θt,3

+Lf

d∑
i=1

η2vt,ig
2
t,i

+ Lf

( β1

1− β1

)2 d∑
i=1

∆2
t,im

2
t−1,i︸ ︷︷ ︸

Θt,4

. (14)

Step (a) employs the identity ∇if(ut) = ∇if(wt) +∇if(ut) − ∇if(wt). Next, we handle Θt,1,
Θt,2,Θt,3 and Θt,4 separately. First, for Θt,1, we can perform the following identity transformation:

Θt,1 = −
d∑

i=1

ηvt,i∇if(wt)gt,i = −
d∑

i=1

ηvt−1,i∇if(wt)gt,i +

d∑
i=1

∆t,i∇if(wt)gt,i

= −
d∑

i=1

ηvt−1,i(∇if(wt))
2︸ ︷︷ ︸

ζi(t)

+

d∑
i=1

∆t,i∇if(wt)gt,i︸ ︷︷ ︸
Θt,1,1

+

d∑
i=1

ηvt−1,i∇if(wt)(∇if(wt)− gt,i)︸ ︷︷ ︸
Mt,1

,

(15)
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where ∆t,i in the above inequality represents the i-th component of the vector ∆t, which is defined
in Eq. 4. It can be observed that we decompose Θ1 into a descent term −

∑d
i=1 ζi(t), an error term

Θt,1,1, and a martingale difference term Mt,1. Next, we will further scale and control the error term
Θt,1,1. Specifically, we have:

Θt,1,1 =

d∑
i=1

E
(
∆t,i∇if(wt)gt,i | Ft−1

)
+

d∑
i=1

(
∆t,i∇if(wt)gt,i − E

[
∆t,i∇if(wt)gt,i | Ft−1

]
︸ ︷︷ ︸

Mt,2

)

(a)
<

d∑
i=1

√
ηvt−1,i∇if(wt)E

[√
∆t,igt,i | Ft−1

]
+Mt,2

(b)

≤ 1

2

d∑
i=1

ηvt−1,i(∇if(wt))
2 +

1

2

d∑
i=1

E2
[√

∆t,igt,i | Ft−1

]
+Mt,2

(c)

≤ 1

2

d∑
i=1

ζi(t) +
1

2

d∑
i=1

E[g2t,i | Ft−1] · E[∆t,i | Ft−1] +Mt,2

≤ 1

2

d∑
i=1

ζi(t) +
1

2

d∑
i=1

E[g2t,i | Ft−1] · E[∆t,i | Ft−1] +Mt,2

≤ 1

2

d∑
i=1

ζi(t) +
1

2

(
d∑

i=1

E[g2t,i | Ft−1]

)
·

(
d∑

i=1

E[∆t,i | Ft−1]

)
+Mt,2

(d)

≤ 1

2

d∑
i=1

ζi(t) +
1

2

(
(A+ 2LfB)f(wt) + C

)
·

(
d∑

i=1

E[∆t,i | Ft−1]

)
+Mt,2

=
1

2

d∑
i=1

ζi(t) +
1

2
(A+ 2LfB)f(wt) ·

(
d∑

i=1

E[∆t,i | Ft−1]

)

+ C

(
d∑

i=1

E[∆t,i | Ft−1]

)
+Mt,2

=
1

2

d∑
i=1

ζi(t) +
1

2
(A+ 2LfB)f(wt) ·

(
d∑

i=1

E[∆t,i | Ft−1]︸ ︷︷ ︸
∆t

)
+ C

d∑
i=1

∆t,i

+ C

(
d∑

i=1

(
E[∆t,i | Ft−1]−∆t,i

))
︸ ︷︷ ︸

Mt,3

+Mt,2 (16)

In the above derivation, in step (a), we utilized the property of conditional expectation, which states
that if random variables X ∈ Fn−1 and Y ∈ Fn, then E[XY |Fn−1] = X E[Y |Fn−1]. Addi-
tionally, we need to note that ∆t,i =

√
∆t,i

√
∆t,i <

√
ηvt−1

√
∆t,i (due to Property 2, we know

∆t,i ≥ 0, so taking the square root is well-defined). In step (b), we employed the AM-GM inequal-
ity, which states ab ≤ a2+b2

2 . In step (c), we used the Cauchy-Schwarz inequality for conditional
expectations: E[XY |Fn−1] ≤

√
E[X2|Fn−1]E[Y 2|Fn−1]. For step (d), we used Property 1.

Specifically, we have:

d∑
i=1

E[g2t,i|Ft−1] = E[∥gt∥2|Ft−1] ≤ (A+ 2LfB)f(wt) + C.
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Substituting the estimate of Θt,1,1 back into Eq. 16, we obtain:

Θt,1 = −1

2

d∑
i=1

ζi(t) +
A+ 2LfB

2
∆t · f(wt) + C

d∑
i=1

∆t,i +Mt,1 +Mt,2 +Mt,3︸ ︷︷ ︸
Mt

,

Then, we use Property 5 to replace f(wt) with f(ut) to obtain:

Θt,1 = −1

2

d∑
i=1

ζi(t) +
(A+ 2LfB)(Lf + 1)

2
∆t · f(ut) + C

d∑
i=1

∆t,i

+
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1

◦mt−1∥2 +Mt, (17)

Next, we deal with Θt,2. Specifically, we have the following derivation:

Θt,2 =
1

2

d∑
i=1

(ηvt,i(∇if(wt)−∇if(ut))gt,i)

≤
d∑

i=1

η2vt,ig
2
t,i +

1

2

d∑
i=1

(∇if(wt)−∇if(ut))
2

=

d∑
i=1

η2vt,ig
2
t,i +

1

2
∥∇f(wt)−∇f(ut)∥2

≤
d∑

i=1

η2vt,ig
2
t,i +

L2
f

2
∥wt − ut∥2

=

d∑
i=1

η2vt,ig
2
t,i +

β2
1L

2
f

2(1− β1)2
∥ηvt−1 ◦mt−1∥2. (18)

Next, we deal with Θt,3, and we obtain:

Θt,3 =

d∑
i=1

∆t,i∇if(ut)mt−1,i

AM-GM inequality
≤ 1

8

d∑
i=1

∆t,i(∇if(ut))
2 + 2

d∑
i=1

∆t,im
2
t−1,i

=
1

8

d∑
i=1

∆t,i(∇if(wt))
2 +

1

8

d∑
i=1

∆t,i

(
(∇if(ut))

2 − (∇if(wt))
2
)
+ 2

d∑
i=1

∆t,im
2
t−1,i

(a)

≤ 3

16

d∑
i=1

∆t,i(∇if(wt))
2 +

3

8

d∑
i=1

(∇if(ut)−∇if(wt))
2 + 2

d∑
i=1

∆t,im
2
t−1,i

(b)

≤ 3

16

d∑
i=1

ζi(t) +
3β2

1L
2
f

8(1− β1)2
∥ηvt−1

◦mt−1∥2 + 2

d∑
i=1

∆t,im
2
t−1,i. (19)

In step (a), we used the following substitution:

1

8
(∇if(ut))

2 − (∇if(wt))
2 =

1

8

(
2(∇if(wt))(∇if(ut)−∇if(wt)) + (∇if(ut)−∇if(wt))

2
)

AM-GM inequality
≤ 1

16
(∇if(wt))

2 +
3

8
(∇if(ut)−∇if(wt))

2.

In step (b), we used the L-Smooth condition (Assumption 2.2), i.e.,

d∑
i=1

(∇if(ut)−∇if(wt))
2 = ∥∇f(wt)−∇f(ut)∥2

≤ L2
f∥wt − ut∥2

Eq. 4
=

β2
1Lf

(1− β1)2
∥ηvt−1

◦mt−1∥2.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

For Θt,4, we have that

Θt,4 =

d∑
i=1

∆2
t,im

2
t−1,i

∆t,i≤ηvt−1,i

<

d∑
i=1

η2t,im
2
t−1,i = ∥ηvt−1

◦mt−1∥2. (20)

Finally, substituting the estimates of Θt,1 from Eq. 17, Θt,2 from Eq. 18, Θt,3 from Eq. 19, and
Θt,4 from Eq. 20 back into Eq. 14, we obtain:

f(ut+1)− f(ut) ≤ − 5

16

d∑
i=1

ζi(t) +
(A+ 2LfB)(Lf + 1)

2
∆t · f(ut) + C

d∑
i=1

ηvt−1,i − C

d∑
i=1

ηvt,i

+
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1

◦mt−1∥2 + Lf

( β1

1− β1

)2 d∑
i=1

η2vt,ig
2
t,i

+
β2
1L

2
f

2(1− β1)2
∥ηvt−1 ◦mt−1∥2 + Lf

( β1

1− β1

)2
∥ηvt−1 ◦mt−1∥2

+
3β2

1L
2
f

8(1− β1)2
∥ηvt−1

◦mt−1∥2 + 2

d∑
i=1

∆t,im
2
t−1,i + Lf

d∑
i=1

η2vt,ig
2
t,i

+Mt.

Then we note that ∆t,i < ηvt−1,i and η2vt−1,i
< 1√

v
ηvt−1,i. After simplification, we obtain:(

f(ut+1) + C

d∑
i=1

ηvt,i

)
−
(
f(ut) + C

d∑
i=1

ηvt−1,i

)
≤ − 5

16

d∑
i=1

ζi(t) + C1∆t · f(ut)

+ C2∥
√
ηvt−1

◦mt−1∥2 + (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Mt,

where

C1 :=
(A+ 2LfB)(Lf + 1)

2
,

C2 :=
1√
v
·
(7L2

f

8
+

Lf + 1

2

)
· β2

1

(1− β1)2
+ 2 +

Lf√
v
·
( β1

1− β1

)2
. (21)

We add the following term to both sides of the above inequality:

C2

(1− β1)
√
v
(∥mt∥2 − ∥mt−1∥2),

to obtain:(
f(ut+1) + C

d∑
i=1

ηvt,i +
C2

(1− β1)
√
v
∥mt∥2︸ ︷︷ ︸

f̂(ut+1)

)
−
(
f(ut) + C

d∑
i=1

ηvt−1,i +
C2

(1− β1)
√
v
∥mt−1∥2︸ ︷︷ ︸

f̂(ut)

)

≤ − 5

16

d∑
i=1

ζi(t) + C1∆t · f(ut)

+

(
C2

(1− β1)
√
v
(∥mt∥2 − ∥mt−1∥2) + C2∥mt−1∥2

)
+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Mt

(a)

≤ − 5

16

d∑
i=1

ζi(t) + C1∆t · f(ut) + 0 + (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Mt. (22)

In step (a), we mainly used Property 4. Specifically, we have:

C2

(1− β1)
√
v
(∥mt∥2 − ∥mt−1∥2) + C2∥

√
ηvt−1 ◦mt−1∥2
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≤ −C2∥
√
ηvt−1

◦mt−1∥2 + C2∥
√
ηvt−1

◦mt−1∥2 = 0.

We apply an obvious inequality to the second term on the right side of Eq. 22:

f(ut) < f(ut) + C

d∑
i=1

ηvt−1,i +
C2

(1− β1)
√
v
∥mt−1∥2 = f̂(ut),

and then move the expanded term to the left side of the inequality and combine like terms to obtain:

f̂(ut+1)− (1 + C1∆t)f̂(ut) ≤ − 5

16

d∑
i=1

ζi(t) + (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Mt.

Next, we construct an auxiliary variable

Π∆,t :=

t−1∏
k=1

(1 + C1∆k)
−1 (∀ t ≥ 2), Π∆,1 := 1.

Multiplying both sides of the above inequality by Π∆,t+1, we obtain

Π∆,t+1f̂(ut+1)−Π∆,tf̂(ut) ≤ − 5

16
Π∆,t+1

d∑
i=1

ζi(t) + (Lf + 1)Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i

+Π∆,t+1Mt.

With this, we complete the proof.

D.2 THE PROOF OF LEMMA B.1

Proof. For ∀x ∈ RN , we define function

g(t) = f

(
x+ t

x′ − x

∥x′ − x∥

)
,

where x′ is a constant point such that x′−x is parallel to ∇f(x). By taking the derivative, we obtain

g′(t) = ∇
x+t x′−x

∥x′−x∥
f

(
x+ t

x′ − x

∥x′ − x∥

)T
x′ − x

∥x′ − x∥
. (23)

Through the Lipschitz condition of ∇f(x), we get ∀t1, t2

∣∣g′(t1)− g′(t2)
∣∣ = ∣∣∣∣∣

(
∇

x+t x′−x
∥x′−x∥

f

(
x+ t1

x′ − x

∥x′ − x∥

)
−∇

x+t x′−x
∥x′−x∥

f

(
x+ t2

x′ − x

∥x′ − x∥

))T
x′ − x

∥x′ − x∥

≤

∥∥∥∥∥∇x+t x′−x
∥x′−x∥

f

(
x+ t1

x′ − x

∥x′ − x∥

)
−∇

x+t x′−x
∥x′−x∥

f

(
x+ t2

x′ − x

∥x′ − x∥

)∥∥∥∥∥
∥∥∥∥ x′ − x

∥x′ − x∥

∥∥∥∥ ≤ L|t1 − t2|.

So g′(t) satisfies the Lipschitz condition, and we have inft∈R g(t) ≥ infx∈RN f(x) > −∞. Let
g∗ = inf x ∈Rg(x), then it holds that for ∀ t0 ∈ R,

g(0)− g∗ ≥ g(0)− g(t0). (24)

By using the Newton-Leibniz’s formula, we get that

g(0)− g(t0) =

∫ 0

t0

g′(α)dα =

∫ 0

t0

(
g′(α)− g′(0)

)
dα+

∫ 0

t0

g′(0)dα.

Through the Lipschitz condition of g′, we get that

g(0)− g(t0) ≥
∫ 0

t0

−L|α− 0|dα+

∫ 0

t0

g′(0)dα =
1

2L
(
g′(0)

)2
.
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Then we take a special value of t0. Let t0 = −g′(0)/L, then we get

g(0)− g(t0) ≥ −
∫ 0

t0

L|α|dα+

∫ 0

t0

g(0)dt = −L
2
(0− t0)

2 + g′(0)(−t0)

= − 1

2L
(
g′(0)

)2
+

1

L
(
g′(0)

)2
=

1

2L
(
g′(0)

)2
.

(25)

Substituting Eq. 25 into Eq. 24, we get

g(0)− g∗ ≥ 1

2L
(
g′(0)

)2
.

Due to g∗ ≥ f∗ and
(
g′(0)

)2
= ∥∇f(x)∥2, it follows that∥∥∇f(x)

∥∥2 ≤ 2L
(
f(x)− f∗).

D.3 THE PROOF OF LEMMA B.2

Proof. (i) Consider the non-negative adapted process {Xn,Fn}n≥1 and define the partial sum of
conditional expectations as ΛT :=

∑T
n=1 E[Xn | Fn−1].

First, we compute the expectation of ΛT :

E[ΛT ] = E

[
T∑

n=1

E[Xn | Fn−1]

]
=

T∑
n=1

E[Xn] ≤ M.

Since Xn are non-negative, we know that ΛT is a non-decreasing sequence, and considering that
E(ΛT ) (∀ T ≥ 1) is also bounded by M , we can apply the Lebesgue’s Monotone Convergence
theorem.

Thus, ΛT converges almost surely to a limit Λ:

Λ := lim
T→∞

ΛT =

∞∑
n=1

E[Xn | Fn−1] a.s.

This concludes that the sequence of conditional expectation sums converges almost surely.

(ii) We begin by normalizing Xn by considering the expression Yn = Xn

2M . According to the
Lebesgue’s monotone convergence theorem, we only need to prove that

∀ p ≥ 1, E

[ ∞∑
n=1

E[Yn|Fn−1]

]p
:= M(p) < +∞.

Next, we proceed with the calculation, and we obtain ∀ p ≥ 2, there is:

M(p) = E

[ ∞∑
n=1

E[Yn|Fn−1]

]p
= E

[ ∞∑
n=1

Yn +

∞∑
n=1

(E[Yn|Fn−1]− Yn)

]p
(a)

≤ E

[
1

2
+

∞∑
n=1

(E[Yn|Fn−1]− Yn)

]p
(b)

≤ 2p−1

(
1

2p
+ E

[ ∞∑
n=1

(E[Yn|Fn−1]− Yn)

]p)
(c)

≤ 1

2
+ 2p−1Cp E

[ ∞∑
n=1

|E[Yn|Fn−1]− Yn|2
]p/2

(d)

≤ 1

2
+ 2p−1Cp E

[ ∞∑
n=1

|E[Yn|Fn−1]− Yn|

]p/2
(f)

≤ 1

2
+ 2p−2Cp + 2

3
2p−2Cp E

[ ∞∑
n=1

E[Yn|Fn−1]

]p/2
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=
1

2
+ 2p−2Cp + 2

3
2p−2CpM(p/2). (26)

In the above derivation, inequality (a) requires noting that

+∞∑
n=1

Yn =
1

2
.

Inequality (b) uses the AM-GM inequality, specifically,(
a+ b

2

)p

≤ ap + bp

2
.

Inequality (c) involves using Burkholder’s inequality 1, where Cp is a constant depending only on
p, and its order with respect to p is O(p). Inequality (d) requires noting that

|E[Yn|Fn−1]− Yn|2 ≤ |E[Yn|Fn−1]− Yn|.

By repeatedly iterating Eq. 26 and using the fact that Cp = O(p), we can finally obtain the following
estimate:

M(p) = o(p
√
p),

that is,
E[Λp] = o((2M)p · p

√
p)

(iii) Similarly, we first consider the partial sum sequence ΛT . Since there exists an obvious upper
bound for this sequence that depends on T , given by ΛT < M ·T a.s., and because the Taylor series
of the function hp(x) = epx at x = 0 converges uniformly on every compact subset of R, we can
expand eΛT using its Taylor series, yielding the following expression:

eΛT =

∞∑
n=0

Λn
T

n!
.

Since the Taylor series converges uniformly on every compact subset, we can interchange the sum-
mation and the expectation operators when taking the expectation on both sides of the above equa-
tion. Specifically, we have:

E[epΛT ] = E

[ ∞∑
n=0

pnΛn
T

n!

]
=

∞∑
n=0

pnE[Λn
T ]

n!
.

Noting that E[Λn
T ] < E[Λn] < o((2M)n · n

√
n), we have:

E[epΛT ] =

∞∑
n=0

pnE[Λn
T ]

n!
≤

∞∑
n=0

o((2pM)n · n
√
n)

n!
= O

( ∞∑
n=0

(2pM)n · n
√
n

n!

)
.

We use Stirling’s approximation 2 to substitute the factorial in the denominator. It is evident that
the series inside the O notation converges and depends only on p and M . Then, by applying the
Lebesgue’s Monotone Convergence theorem, we can prove that E[epΛ] exists, and its upper bound
depends only on p and M .

With this, we complete the proof.
1Burkholder’s inequality: For any martingale (Mn,Fn) with M0 = 0 almost surely, and for any 1 ≤ p <

∞, there exist constants cp > 0 and Cp > 0 depending only on p such that:

cp E[(S(M))p] ≤ E[(M∗)p] ≤ Cp E[(S(M))p],

where M∗ = supn≥0 |Mn| and S(M) =
(∑

i≥1(Mi −Mi−1)
2
)1/2

.
2Stirling’s approximation can be written as:

n! =
√
2πn

(n
e

)n

e
θn
12n ,

where 0 < θn < 1.
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D.4 THE PROOF OF LEMMA B.3

Proof. First, using the expression in Eq. 7, we express Π−p
∆,T+1 as follows:

Π−p
∆,T+1 =

T∏
k=1

(1 + C1∆k)
p.

By applying the logarithmic transformation, we obtain:

Π−p
∆,T+1 = exp

{
p

T∑
k=1

ln(1 + C1∆k)

}
ln(1+x)≤x (∀ x>0)

≤ exp

{
pC1

T∑
k=1

∆k

}
.

Based on the definition of ∆k, we have

∆k =

d∑
i=1

E[∆k,i|Fk−1] = E

[
d∑

i=1

∆k,i

∣∣∣∣Fk−1

]
.

Since
∑d

i=1 ∆k,i > 0 and
+∞∑
k=1

d∑
i=1

∆k,i <
d√
v
,

we can use Lemma B.2 to prove that:

E

[
exp

{
pC1

T∑
k=1

∆k

}]
< Cv,d,p,

which implies
E[Π−p

∆,T+1] < Cv,d,p.

Next, noting the monotonicity of the sequence {Π−1
∆,T+1}T≥1, we take T → +∞ and apply the

Lebesgue’s Monotone Convergence theorem to obtain the result regarding Π∆,∞.

With this, the proof is complete.

D.5 THE PROOF OF LEMMA B.4

Proof. Recalling the approximate descent inequality 4.1, we have:

Π∆,t+1f̂(ut+1)−Π∆,tf̂(ut) ≤ − 5

16
Π∆,t+1

d∑
i=1

ζi(t) + (Lf + 1)Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i

+Π∆,t+1Mt.

We multiply both sides of the above equation by 1√
St−1

, we obtain:

Π∆,t+1f̂(ut+1)√
St

− Π∆,tf̂(ut)√
St−1

≤ (Lf + 1)
Π∆,t+1√

St−1

d∑
i=1

η2vt,ig
2
t,i +

Π∆,t+1√
St−1

Mt

Π∆,t+1≤1

≤ (Lf + 1)
1√
St−1

d∑
i=1

η2vt,ig
2
t,i +

Π∆,t+1√
St−1

Mt.

We sum the above inequality with respect to the index t from 1 to T , and we obtain:

Π∆,t+1f̂(ut+1)√
St

≤ f̂(u1)√
S0

+ (Lf + 1)

T∑
t=1

1√
St−1

d∑
i=1

η2vt,ig
2
t,i︸ ︷︷ ︸

Γt,3

+

T∑
t=1

Π∆,t+1√
St−1

Mt. (27)
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For Γt,3, we can perform the following simplification, and we obtain:

1√
St−1

d∑
i=1

η2vt,ig
2
t,i =

1√
St

d∑
i=1

η2vt,ig
2
t,i +

(
1√
St−1

− 1√
St

) d∑
i=1

η2vt,ig
2
t,i

=
1√
St

d∑
i=1

1

t2δ
g2t,i
tvt,i

+

(
1√
St−1

− 1√
St

) d∑
i=1

1

t2δ
g2t,i
tvt,i

Property 3
≤ 1

α1

√
St

d∑
i=1

g2t,i
St,i

+
1

α1

(
1√
St−1

− 1√
St

) d∑
i=1

g2t,i
St,i

St≥St,i

≤ 1

α1

d∑
i=1

g2t,i

S
3/2
t,i

+
d

α1

(
1√
St−1

− 1√
St

)
.

By using the series-integral inequality, we obtain:

T∑
t=1

Γt,3 ≤ 1

α1

d∑
i=1

T∑
t=1

g2t,i

S
3/2
t,i

+
d

α1

T∑
t=1

(
1√
St−1

− 1√
St

)

≤ 1

α1

d∑
i=1

∫ +∞

S0,i

1

x3/2
dx+

d

α1

√
S0

=
2d

α1
√
v
+

1

α1

√
d

v

<
3d

α1
√
v
.

Substituting above inequality into Eq. 27, we acquire

Π∆,t+1f̂(ut+1)√
St

≤ f̂(u1)√
dv

+
3(Lf + 1)d

α1
√
v

+

T∑
t=1

Π∆,t+1√
St−1

Mt.

With this, we complete the proof.

D.6 THE PROOF OF LEMMA B.5

Proof. For any ϕ ∈ R, we consider
√
ST

(T+1)ϕ
, and we obtain:

√
ST

(T + 1)ϕ
=

ST

(T + 1)ϕ
√
ST

=
S0 +

∑T
t=1 ∥gt∥2

(T + 1)ϕ
√
ST

=
S0

(T + 1)ϕ
√
ST

+

T∑
t=1

∥gt∥2

(T + 1)ϕ
√
ST

≤ S0

(T + 1)ϕ
√
ST

+

T∑
t=1

∥gt∥2

(T + 1)ϕ
√
ST

≤
√

S0 +

T∑
t=1

∥gt∥2

(t+ 1)ϕ
√

St−1

=
√
dv +

T∑
t=1

∥gt∥2

(t+ 1)ϕ
√
St−1

.

Next, by multiplying both sides of the above inequality by Π∆,T and noting the monotonicity of
{Π∆,t}t≥1 as well as the fact that Π∆,T ≤ 1 for all T ≥ 1, we immediately obtain the result.

D.7 THE PROOF OF LEMMA B.6

Proof. We take ϕ = 2 in Lemma B.5 and bound the expectation of the partial sum
∑T

t=1 Λ2,t. We
have:

E

[
T∑

t=1

Π∆,tΛ2,t

]
=

T∑
t=1

E[Π∆,tΛ2,t] =

T∑
t=1

E

[
Π∆,t∥gt∥2

(t+ 1)2
√

St−1

]
=

T∑
t=1

E

[
Π∆,t E[∥gt∥2|Ft−1]

(t+ 1)2
√
St−1

]
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Property 1
≤

T∑
t=1

E

[
(A+ 2LfB)Π∆,t(f(wt)− f∗) + C

(t+ 1)2
√

St−1

]
Property 5

≤
T∑

t=1

E

[
(A+ 2LfB)Π∆,t((Lf + 1)f(ut) +

(Lf+1)β2
1

2(1−β1)2
∥ηvt−1

◦mt−1∥2 − f∗) + C

(t+ 1)2
√
St−1

]

≤ C3

T∑
t=1

1

(t+ 1)2
E
[
Π∆,tf̂(ut)√

St−1

]
+ C4

T∑
t=1

1

(t+ 1)2
, (28)

where

C3 := (A+ 2LfB)max

{
Lf + 1,

(Lf + 1)β2
1

2C2(1− β1)

}
, C4 :=

(A+ 2LfB)|f∗|+ C√
S0

.

Based on the results in Lemma B.4, we can compute:

E
[
Π∆,tf̂(ut)√

St−1

]
≤ E[f̂(u1)]√

dv
+

3(Lf + 1)d

α1
√
v

+ 0.

Substitute above result into Eq. 28, and combine

T∑
t=1

1

(t+ 1)2
≤

+∞∑
t=1

1

t2
=

π2

6
,

we get:

E

[
T∑

t=1

Π∆,tΛ2,t

]
≤ C3π

2 E[f̂(u1)]

6
√
dv

+
π2C3(Lf + 1)d

2α1
√
v

+
π2C4

6
.

It can be observed that the right side of the above inequality is independent of T . Thus, according
to the Lebesgue’s Monotone Convergence theorem, we have

T∑
t=1

Π∆,tΛ2,t →
+∞∑
t=1

Π∆,tΛ2,t a.s.,

and

E

[
+∞∑
t=1

Π∆,tΛ2,t

]
= lim

T→∞
E

[
T∑

t=1

Π∆,tΛ2,t

]
= lim

T→∞

T∑
t=1

E[Π∆,tΛ2,t] ≤
C3π

2 E[f̂(u1)]

6
√
dv

+
π2C3(Lf + 1)d

2α1
√
v

+
π2C4

6
.

Next, we set

ζ :=
√
dv +

+∞∑
t=1

Π∆,tΛ2,t,

and combine Lemma B.5. We get:√
ST ≤ Π−1

∆,T (T + 1)2ζ < Π−1
∆,∞(T + 1)2ζ. (29)

Meanwhile,

E[ζ] =
√
dv + E

[
+∞∑
t=1

Λ2,t

]
≤

√
dv +

C3π
2 E[f̂(u1)]

6
√
dv

+
π2C3(Lf + 1)d

2α1
√
v

+
π2C4

6
. (30)

Then through Eq. 29, we have

1

2
ln
(2ST

v

)
≤ 2 ln(T + 1) + ln

(
max

{
e,

√
2
√
2Π−1

∆,∞ζ
√
v

})
= 2 ln

(
max

{
e,

√
2Π−1

∆,∞ζ
√
v

})( ln(T + 1)

ln
(
max

{
e,

√
2Π−1

∆,∞ζ
√
v

}) + 1

2

)
− ln(Π∆,T ).
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Next, we note that

ln

(
max

{
e,

√
2Π−1

∆,∞ζ
√
v

})
≥ 1, and

1

2
≤ ln(T + 1),

from which we obtain:

1

2
ln(ST ) ≤ 2 ln

(
max

{
e,

√
2Π−1

∆,∞ζ
√
v

})( ln(T + 1)

ln
(
max

{
e,

√
2Π−1

∆,∞ζ
√
v

}) + 1

2

)

≤ 4 ln

(
max

{
e,

√
2Π−1

∆,∞ζ
√
v

})
ln(T + 1).

With this, we complete the proof.

D.8 THE PROOF OF LEMMA B.7

Proof. For any T > 0, taking the expectation on both sides of the recursive inequality in the
Sufficient Decreasing lemma (Lemma 4.1) and summing the indices from n = 1 to T , noting
E[Π∆,t+1Mt] = E[Π∆,t+1 E[Mt|Ft−1]] = 0, we obtain:

5

16

T∑
t=1

E
[
Π∆,t+1

d∑
i=1

ζi(t)

]
≤ f̂(u1)−Π∆,t+1f̂(ut+1) + (Lf + 1)Π∆,t+1

T∑
t=1

E
( d∑

i=1

η2vt,ig
2
t,i

)
+ 0

f̂(ut+1)≥f∗

≤ f̂(u1)−Π∆,t+1f
∗ + (Lf + 1)Π∆,t+1

T∑
t=1

E
( d∑

i=1

η2vt,ig
2
t,i

)
Π∆,t+1≤1

≤ f̂(u1) + |f∗|+ (Lf + 1)

T∑
t=1

E
[
Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i︸ ︷︷ ︸

Γt

]
.

(31)

To prove the conclusion of this lemma, we actually only need to bound
∑T

t=1 E [Γt]. Specifically,
we perform the following transformation on Γt. We have:

Γt = Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i = Π∆,t+1

d∑
i=1

η2t g
2
t,i

(
√
vt,i + µ)2

≤ Π∆,t+1

d∑
i=1

1

t2δ
g2t,i
tvt,i

Property 3
≤ (t+ 1)2δ

t2δ
Π∆,t+1

d∑
i=1

1

α1(t+ 1)2δ
g2t,i
St,i

(a)

≤ 22δ

α1
ζδΠ1−δ

∆,t+1

d∑
i=1

g2t,i

St,i
1+ δ

2

Π∆,t+1≤1

≤ 22δ

α1
ζδ

d∑
i=1

g2t,i

St,i
1+ δ

2

. (32)

In step (a) of the above derivation, we need to apply Lemma B.6 to (t+1)2δ . Specifically, according
to Lemma B.6, we have √

St ≤ (t+ 1)2ζ,

which means:
1

(t+ 1)2δ
≤ ζδ

(t+ 1)2δS
δ
2
t

≤ ζδ

(t+ 1)2δS
δ
2
t,i

Π−1
∆,t.

Next, with the estimate for Γt, we can estimate
∑T

t=1 E[Γt]. Specifically, we have:
T∑

t=1

E[Γt] = E

[
22δζδ

α1

d∑
i=1

T∑
t=1

g2t,i

St,i
1+ δ

2

]
≤ E

[
22δζδ

α1

d∑
i=1

∫ ST,i

S0,i

1

x1+ δ
2

dx

]
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≤

{
22δd

α1v
δ
2
E
[
ζδ
]
, if δ ∈ (0, 1]

22δ

α1
E
[
ln
(
ST

dv

)]
, if δ = 0

(a)

≤

{
O(1), if δ ∈ (0, 1]
22δ

α1
E
[
ln
(
ST

dv

)]
, if δ = 0

. (33)

In step (a), we used the following Hölder’s inequality to obtain the O(1) result

E
[
ζδ
]
≤ (E [ζ])

δ
= Cδ

ζ .

Next, we substitute the estimate of
∑T

t=1 E [Γt] from Eq. 33 back into Eq. 31, and we obtain the
result. This completes the proof.

D.9 THE PROOF OF LEMMA B.9

Proof. We only analyze the case where δ = 0; the case where δ > 0 can be treated using exactly the
same analytical approach. Returning to the approximate descent inequality (Lemma 4.1), we have:

Π∆,t+1f̂(ut+1)−Π∆,tf̂(ut) ≤ − 5

16
Π∆,t+1

d∑
i=1

ζi(t) + (Lf + 1)Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i

+Π∆,t+1Mt.

We divide both sides of the above inequality by ln2(t+ 1), and noting that ln2(t+ 1) < ln2(t+ 2),
we obtain:

Π∆,t+1f̂(ut+1)

ln2(t+ 2)
− Π∆,tf̂(ut)

ln2(t+ 1)
≤ (Lf + 1)

Π∆,t+1

ln2(t+ 1)

d∑
i=1

η2vt,ig
2
t,i +

Π∆,t+1Mt

ln2(t+ 1)

Π∆,t+1≤1

≤ (Lf + 1)
1

ln2(t+ 1)

d∑
i=1

η2vt,ig
2
t,i︸ ︷︷ ︸

Ωt

+
Π∆,t+1Mt

ln2(t+ 1)
. (34)

For Ωt, we can perform the following transformation, and we have:

Ωt =
1

ln2(t+ 1)

d∑
i=1

η2vt,ig
2
t,i =

1

ln2(t+ 1)

d∑
i=1

g2t,i
tvt,i

≤ 1

α1

d∑
i=1

g2t,i

ln2(t+ 1)St,i

(a)

≤ 1

α1

d∑
i=1

(ζ ′
2
)
2g2

t,i

v

ln2(
2St,i

v )
2St,i

v

.

In step (a), we use the last result from Lemma B.6, which states:

ln
(2St,i

v

)
≤ ln

(2St

v

)
≤ ζ ′ ln(T + 1).

Then, using the series-integral inequality, we can bound
∑+∞

t=1 E[Ωt], and we obtain:

+∞∑
t=1

E[Ωt] ≤
1

α1

d∑
i=1

E
[+∞∑

t=1

(ζ ′
2
)
2g2

t,i

v

ln2(
2St,i

v )
2St,i

v

]
<

1

α1

d∑
i=1

E

[∫ +∞

2

ζ ′
2

x ln2 x
dx

]
=

dE[ζ ′2]
α1 ln 2

.

Next, we use the explicit expression for ζ ′ given in Lemma B.6 to bound E[ζ ′2]. We have:

E[ζ ′2] = E

[
8 ln

(
max

{
e,

√
2Π−1

∆,∞ζ
√
v

})]
= 8E

[
max

{
1, ln

(√
2Π−1

∆,∞ζ
√
v

)}]
≤ 8E

[
max

{
1, ln

√
2− lnΠ∆,∞ + ln(ζ)− ln

√
v
}]
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Lemma B.3 and Lemma B.6
< +∞.

As a result, we have:
+∞∑
t=1

E[Ωt] < +∞. (35)

According to the Lebesgue’s Monotone Convergence theorem, we know that the above result im-
plies:

+∞∑
t=1

E[Ωt|Ft−1] < +∞ a.s. (36)

Next, we take the conditional expectation with respect to Ft−1 on both sides of Eq. 34, and we
obtain:

E

[
Π∆,t+1f̂(ut+1)

ln2(t+ 2)

∣∣∣∣∣Ft−1

]
≤ Π∆,tf̂(ut)

ln2(t+ 1)
+ (Lf + 1)E[Ωt|Ft−1] + 0. (37)

Based on the result from Eq. 36 and the supermartingale convergence theorem, we deduce that
Π∆,tf̂(ut)

ln2(t+1)
convergence almost surely. Then, according to Property 5, we can bound f(wt) − f∗

using f̂(ut), i.e.,

f(wt)− f∗ ≤ (Lf + 1)(f(ut)− f∗) +
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1 ◦mt−1∥2 + Lff

∗

≤ max

{
Lf + 1,

(Lf + 1)β2
1

2C2(1− β1)

}
f̂(ut) + Lff

∗.

Then we can acquire our first result. Next, we take the expectation on both sides of Eq. 34, and we
obtain:

E

[
Π∆,t+1f̂(ut+1)

ln2(t+ 2)

]
≤ E

[
Π∆,tf̂(ut)

ln2(t+ 1)

]
+ (Lf + 1)E[Ωt] + 0. (38)

Based on the convergence result of the expectation summation in Eq. 35 and a simple summation
formula for a recursive sequence, we obtain our second result. Thus, the case for δ = 0 has been
fully analyzed. For the case where δ > 0, we can reach the conclusion using the same method. This
completes the proof.

D.10 THE PROOF OF LEMMA B.10

Proof. Since the case of δ > 0 is relatively straightforward, we first analyze the scenario where
δ > 0. According to the second conclusion for δ > 0 in Lemma B.9, we easily obtain:

E[S3/4
T ] = E[Π−3/4

∆,T+1Π
3/4
∆,T+1S

3/4
T ]

Hölder’s inequality
≤ E1/4[Π−3

∆,T+1]E
3/4[Π∆,T+1ST ].

Then according to Lemma B.3, we have E[Π−3
∆,T+1] ≤ Cv,d,3. For the other term, E[Π∆,T+1ST ],

we can handle it as follows:

E[Π∆,T+1ST ] ≤ S0 + E

[
Π∆,T+1

T∑
t=1

∥gt∥2
]
≤ dv + E

[
T∑

t=1

Π∆,t+1∥gt∥2
]

= dv +

T∑
t=1

E
[
Π∆,t+1 E[∥gt∥2|Ft−1]

]
Property 1

≤ dv +

T∑
t=1

E
[
Π∆,t+1((A+ 2LfB)(f(wt)− f∗) + C)

]
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Lemma B.9
≤ dv + ((A+ 2LfB)Mδ + C)T.

This implies that:

E[
√
ST ] ≤ C

1/4
v,d,3(dv + ((A+ 2LfB)Mδ + C)T 3/4 = O(T 3/4).

For the case where δ = 0, we use the same approach as in the case of δ > 0 and apply the corre-
sponding conclusion for δ = 0 from Lemma B.9. Thus, we obtain:

E[S3/4
T ] = O(T 3/4 ln3/2 T ).

D.11 THE PROOF OF LEMMA B.11

Proof. We discuss two cases based on the value of λ. In the first case, when λ = 1, we naturally
have:

vt+1 =
(
1− 1

t+ 1

)
vt +

1

t+ 1
g◦2t (∀ t ≥ 1),

that is
(t+ 1)vt+1 = tvt + g◦2t .

Summing over all coordinates, we obtain:

(t+ 1)Σvt+1
= tΣvt + ∥gt∥2. (39)

Multiplying both sides of the above equation by Π∆,t+1, and noting that Π∆,t+1 ≥ Π∆,t+2, we
obtain:

(t+ 1)Π∆,t+2Σvt+1
= tΠ∆,t+1Σvt +Π∆,t+1∥gt∥2.

Taking the expectation on both sides, we obtain:

(t+ 1)E[Π∆,t+2Σvt+1
] ≤ tE[Π∆,t+1Σvt ] + E[Π∆,t+1∥gt∥2]
= tE[Π∆,t+1Σvt ] + E[Π∆,t+1 E[∥gt∥2|Ft−1]]

Property 1
≤ tE[Π∆,t+1Σvt ] + (A+ 2LfB)E[Π∆,t+1(f(wt)− f∗)] + C

≤ tE[Π∆,t+1Σvt ] + (A+ 2LfB)
(
sup
t≥1

E[Π∆,t+1(f(wt)− f∗)]
)
+ C

Lemma B.9
≤ tE[Π∆,t+1Σvt ] + (A+ 2LfB)Mδ + C.

By iterating the above inequality, we finally obtain:

(t+ 1)E[Π∆,t+2Σvt+1 ] ≤
{
E[Π∆,2Σv1 ] +

(
(A+ 2LfB)Mδ + C

)
t, if δ ∈ (0, 1]

E[Π∆,2Σv1 ] +
(
(A+ 2LfB)M0 ln

2 t+ C
)
t, if δ = 0

.

This implies that for any t ≥ 1, we always have:

E[Π∆,t+2Σvt+1
] ≤

{
E[Π∆,2Σv1 ] + (A+ 2LfB)Mδ + C, if δ ∈ (0, 1]

E[Π∆,2Σv1 ] + (A+ 2LfB)M0 ln
2 t+ C, if δ = 0

,

that is

sup
t≥1

E[Π∆,t+1Σvt ] <

{
E[Π∆,2Σv1

] + (A+ 2LfB)Mδ + C, if δ ∈ (0, 1]

E[Π∆,2Σv1 ] + (A+ 2LfB)M0 ln
2 t+ C, if δ = 0

.

Next, we discuss the scenario when λ > 1. In this case, we have the following inequality:

Σvt+1 ≤ Σvt +
1

(t+ 1)λ
∥gt∥2.

We multiply both sides of the above inequality by Π∆,t+1 and, noting its monotonicity, we obtain:

Π∆,t+2Σvt+1
≤ Π∆,t+1Σvt +

Π∆,t+1

(t+ 1)λ
∥gt∥2. (40)
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Taking the conditional expectation with respect to Ft−1 on both sides of the inequality, we have:

E[Π∆,t+2Σvt+1
|Ft−1] ≤ Π∆,t+1Σvt

+
Π∆,t+1

(t+ 1)λ
E[Π∆,t+1∥gt∥2|Ft−1].

According to Property 1 and Lemma B.9, we easily obtain:

+∞∑
t=1

Π∆,t+1

(t+ 1)λ
E[Π∆,t+1∥gt∥2|Ft−1]

≤

{(
(A+ 2LfB) supt≥1

(
Π∆,t+1(f(wt)− f∗)

)
+ C

)
·
∑+∞

t=1
1

(t+1)λ
, if δ ∈ (0, 1](

(A+ 2LfB) supt≥1

(
Π∆,t+1(f(wt)−f∗)

ln2 t

)
+ C

)
·
∑+∞

t=1
ln2 t

(t+1)λ
, if δ = 0

< +∞ a.s.

By the supermartingale convergence theorem, we easily obtain that Π∆,t+1Σvt converges almost
surely, which implies that supt≥1 Π∆,t+1Σvt < +∞ a.s. According to Lemma B.3, where
supt≥1 Π

−1
∆,t+1 < +∞ a.s., we can immediately deduce that supt≥1 Σvt

< +∞ a.s.. Next,
we prove that the expected supremum is finite. Taking the expectation on both sides of Eq. 40, we
obtain:

E
[
Π∆,t+2Σvt+1

]
≤ E

[
Π∆,t+1Σvt

]
+

1

(t+ 1)λ
E[Π∆,t+1∥gt∥2].

By summing the above recursive inequalities and using the results from Property 1 and Lemma B.9,
we can easily prove that

sup
t≥1

E[Π∆,t+1Σvt ] <

{(
(A+ 2LfB)Mδ + C

)∑+∞
t=1

1
(t+1)λ

, if δ ∈ (0, 1](
(A+ 2LfB)M0 + C

)∑+∞
t=1

ln2 t
(t+1)λ

, if δ = 0
< +∞.

With this, we complete the proof.

D.12 THE PROOF OF LEMMA B.12

Proof. According to the result from Lemma B.7, it is straightforward to see that when δ > 0, we
have:

T∑
t=2

E
[
Π∆,t+1

ηt−1∥∇f(wt)∥2√
Σvt−1

+ µ

]
≤

T∑
t=2

E
[
Π∆,t+1

ηt−1√
Σvt−1

+ µ

d∑
i=1

(∇if(wt))
2

]

≤
T∑

t=1

E
[
Π∆,t+1

d∑
i=1

ζi(t)

]
< C4,δ < +∞.

Next, we apply the Lebesgue’s Monotone Convergence theorem:

+∞∑
t=2

Π∆,t+1
ηt−1∥∇f(wt)∥2√

Σvt−1 + µ
< +∞ a.s.

Then, by combining the almost surely boundedness of supt≥1 Π
−1
∆,t+1 and supt≥1 Σvt from Lemma

B.3 and Lemma B.11, we immediately obtain:

+∞∑
t=1

ηt∥∇f(wt)∥2 ≤ ∥∇f(w1)∥2 +
+∞∑
t=2

ηt−1∥∇f(wt)∥2

< ∥∇f(w1)∥2 +
(
sup
t≥1

Π
−3/2
∆,t+1

)
·
(√

sup
t≥1

Π∆,t+1Σvt + µ
)
·
+∞∑
t=2

Π∆,t+1
ηt−1∥∇f(wt)∥2√

Σvt−1 + µ

< +∞ a.s..
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According to the L-smooth assumption (Assumption 2.2), it is easy to see that

|∥∇f(wt)∥ − ∥∇f(ut)∥| ≤ Lf∥wt − ut∥ =
Lfβ1

1− β1
∥ηvt−1

◦mt−1∥ ≤ Lfβ1

(1− β1)t
1
2+δµ

∥mt−1∥,

which implies

∥∇f(ut)∥2 ≤
(
∥∇f(wt)∥+

Lfβ1

(1− β1)t
1
2+δµ

∥mt−1∥
)2

≤ 2

(
∥∇f(wt)∥2 +

L2
fβ

2
1

(1− β1)2t1+2δµ2
∥mt−1∥2

)
≤ 2∥∇f(wt)∥2 +

2L2
fβ

2
1

(1− β1)2t1+2δµ2

(
sup
t≥1

∥mt∥
)2

.

Thid implies that

+∞∑
t=1

ηt∥∇f(ut)∥2 ≤ 2

+∞∑
t=1

ηt∥∇f(wt)∥2 +
2L2

fβ
2
1

(1− β1)2µ2

(
sup
t≥1

∥mt∥
)2 +∞∑

t=1

1

t1+2δ

Lemma B.9 and δ > 0
< +∞ a.s.

With this, we complete the proof.

E PROOFS OF THEOREMS

E.1 THE PROOF OF THEOREM 3.1

Proof. According to Lemma B.7, we have:

T∑
t=1

E
[
Π∆,t+1

d∑
i=1

ζi(t)

]
≤
{
C4,δ, if δ ∈ (0, 1]

C5 + C6 E [ln(ST )] , if δ = 0
.

According to the monotonicity of ηvt,i in Property 2 and the monotonicity of Π∆,t itself, we obtain
the following inequality:

T∑
t=1

E

[
Π∆,T+1

∥∇f(wt)∥2

T
1
2+δ(

√
vT + µ)

]
≤

T∑
t=1

E
[
Π∆,t+1

d∑
i=1

ζi(t)

]
≤
{
C4,δ, if δ ∈ (0, 1]

C5 + C6 E [ln(ST )] , if δ = 0
.

For the leftmost part of the above inequality, we apply the Cauchy-Schwarz inequality and obtain:

E
[
Π−1

∆,T+1T
1
2+δ(

√
vT + µ)

]( T∑
t=1

E

[
Π∆,T+1

∥∇f(wt)∥2

T
1
2+δ(

√
vT + µ)

])
≥

T∑
t=1

E[∥∇f(wt)∥],

which means
T∑

t=1

E[∥∇f(wt)∥] ≤

{
C4,δ E

[
Π−1

∆,T+1T
1
2+δ(

√
vT + µ)

]
, if δ ∈ (0, 1]

C5 E
[
Π−1

∆,T+1T
1
2+δ(

√
vT + µ)

]
+ C6 E

[
Π−1

∆,T+1T
1
2+δ(

√
vT + µ)

]
E [ln(ST )] , if δ = 0

.

Combining the results from Lemma B.10, Lemma B.11 and Lemma B.3, we obtain:

E
[
Π−1

∆,T+1T
1
2+δ(

√
vT + µ)

]
≤ 2T

1
2+δ
√

E[Π−3
∆,T+1]

√
E[Π∆,T+1(vT + µ2)]

≤


C

1/2
v,d,3O(T

1
2+δ), if γ > 1

C
1/2
v,d,3O(T

1
2+δ), if γ = 1, δ ∈ (0, 1]

C
1/2
v,d,3O(

√
T lnT ) if γ = 1, δ = 0

.
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and

E[ln(ST )] =
4

3
E[ln(S3/4

T )] ≤ 4

3
ln(E[S3/4

T ]) =

{
O(lnT ), if δ ∈ (0, 1]

O(lnT ) +O(ln lnT ), if δ = 0
.

Combining the two estimates above, we finally obtain:

T∑
t=1

E[∥∇f(wt)∥] ≤


O(T

1
2+δ), if δ ∈ (0, 1]

O(
√
T lnT ), if γ > 1, δ = 0

O(
√
T ln2 T ), if γ = 1, δ = 0

.

that is

1

T

T∑
t=1

E[∥∇f(wt)∥] ≤


O
(

1

T
1
2
−δ

)
, if δ ∈ (0, 1]

O
(

lnT√
T

)
, if γ > 1, δ = 0

O
(

ln2 T√
T

)
, if γ = 1, δ = 0

.

With this, we complete the proof.

E.2 THE PROOF OF LEMMA B.8

Proof. From Theorem 3.1, we have

lim
T→+∞

min
1≤t≤T

E ∥∇f(wt)∥ ≤ lim
T→+∞

1

T

T∑
t=1

E ∥∇f(wt)∥ = 0.

This implies that there exists a subsequence {wdt
}t≥1 of {wt}t≥1 such that

lim
t→+∞

E ∥∇f(wdt
)∥ = 0.

By the Riesz theorem, we can find a further subsequence {wct}t≥1 from {wdt
}t≥1 such that

lim
t→+∞

∥∇f(wct)∥ = 0 a.s.

This completes the proof.

E.3 THE PROOF OF THEOREM 3.2

Proof. According to the L-smooth assumption (Assumption 2.2), it is easy to see that

|∥∇f(wt)∥ − ∥∇f(ut)∥| ≤ Lf∥wt − ut∥ =
Lfβ1

1− β1
∥ηvt−1

◦mt−1∥ ≤ Lfβ1

(1− β1)t
1
2+δµ

∥mt−1∥.

According to Lemma B.9, we know that supt≥1 ∥mt−1∥ < +∞ a.s.. This implies that

lim
t→+∞

|∥∇f(wt)∥ − ∥∇f(ut)∥| ≤
(
sup
t≥1

∥mt−1∥
)
· lim
t→+∞

Lfβ1

(1− β1)t
1
2+δµ

= 0 a.s.

This implies that we only need to prove limt→+∞ ∥∇f(ut)∥ = 0 a.s.. To achieve this objective,
we proceed as follows.

For any l > 0, we construct the following stopping time 3 sequence {τl,n}n≥1 :

τl,1 := min{t ≥ 1 : ∥∇f(ut)∥ > l}, τl,2 := min{t > τl,1 : ∥∇f(ut)∥ ≤ l},
...,

τl,2k−1 := min{t > τl,2k−2 : ∥∇f(ut)∥ > l}, τl,2k := min{t > τl,2k−1 : ∥∇f(ut)∥ ≤ l}.
3In this paper, we adopt the following definition of stopping time: Let τ be a random variable defined on

the filtered probability space (Ω,F , (Fn)n∈N,P) with values in N∪ {+∞}. Then τ is called a stopping time
(with respect to the filtration (Fn)n∈N) if the following condition holds: {τ = n} ∈ Fn for all n.
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According to the subsequence convergence result in Lemma B.8, we know that when τ2k−1 <
+∞ (∀ k ≥ 1), it must hold that τ2k < +∞ a.s.. We now discuss two cases:

1. When there exists some k0 ≥ 1 such that τ2k0−1 = +∞, this implies that eventually
{∥∇f(ut)∥}t≥1 will remain below l, i.e.,

lim sup
t→+∞

∥∇f(ut)∥ < l. (41)

2. Next, we focus on the second case, where for all τ2k−1, we have τ2k−1 < +∞. In this situation,
we examine the behavior of supτ2k−1≤t<τ2k

∥∇f(ut)∥. It is easy to see that:

sup
τ2k−1≤t<τ2k

∥∇f(ut)∥ ≤ l + sup
τ2k−1≤t<τ2k

∥∇f(ut)∥ − ∥∇f(uτ2k−1−1)∥

≤ l +

(
τ2k−1∑

t=τ2k−1−1

∣∣∥∇f(ut)∥ − ∥∇f(ut−1)∥
∣∣)

l-smooth
≤ l +

(
Lf

τ2k−1∑
t=τ2k−1−1

∥ut − ut−1∥

)
Eq. 4
≤ l + Lf

(
τ2k−1∑

t=τ2k−1−1

∥ηvt ◦ gt∥

)
︸ ︷︷ ︸

Υk,1

+
β1L

2
f

1− β1

(
τ2k−1∑

t=τ2k−1−1

∥∆t ◦mt−1∥

)
︸ ︷︷ ︸

Υk,2

.

Our next goal is to prove separately that lim supk→+∞ Υk,1 = 0 a.s. and lim supk→+∞ Υk,2 =
0 a.s.. For Υk,1, we have:

Υk,1 =

(
τ2k−1∑

t=τ2k−1−1

∥ηvt ◦ gt∥

)
=

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηvt,i|gt,i|

)

=

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt|gt,i|√
vt + µ

)
≤

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt|gt,i|
µ

)

=
1

µ

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt E[|gt,i||Ft−1]

)

+
1

µ

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt(|gt,i| − E[|gt,i||Ft−1])

)

=
1

µ

(
τ2k−1∑

t=τ2k−1−1

ηtE[|gt||Ft−1]

)
︸ ︷︷ ︸

Υk,1,1

+
1

µ

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt(|gt,i| − E[|gt,i||Ft−1])

)
︸ ︷︷ ︸

Υk,1,2

.

For Υk,1,1, we have:

Υk,1,1

Property 1
≤

(
τ2k−1∑

t=τ2k−1−1

ηt
(
(A+ 2LfB)(f(wt)− f∗) + C

))

≤
(
(A+ 2LfB) sup

t≥1
(f(wt)− f∗) + C

)
·

(
τ2k−1∑

t=τ2k−1−1

ηt

)
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=
(
(A+ 2LfB) sup

t≥1
(f(wt)− f∗) + C

)
·

(
ητ2k−1

+

(
τ2k∑

t=τ2k−1−1

ηt

))
(a)

≤ 1

l2
(
(A+ 2LfB) sup

t≥1
(f(wt)− f∗) + C

)
·

(
ητ2k−1

+

(
τ2k−1∑

t=τ2k−1

ηt∥∇f(ut)∥2
))

.

In step (a), this is due to the fact that, over the interval [τ2k−1, τ2k), we always have ∥∇f(ut)∥2 >
l2. Based on Lemma B.12, we know that

+∞∑
t=1

ηt∥∇f(ut)∥2 < +∞ a.s.

By applying the Cauchy’s convergence principle, we can prove that

lim
k→+∞

τ2k−1∑
t=τ2k−1

ηt∥∇f(ut)∥2 = 0 a.s.

On the other hand, it is evident that limk→+∞ ητ2k−1
= 0. Meanwhile, based on Lemma B.9 and

Lemma B.3, we can easily prove that

sup
t≥1

(f(wt)− f∗) ≤
(
sup
t≥1

Π−1
∆,t+1

)
·
(
sup
t≥1

(
Π∆,t+1(f(wt)− f∗)

))
< +∞ a.s.

Therefore, we have proven that

lim sup
k→+∞

Υk,1,1 = lim
k→+∞

Υk,1,1 = 0.

For Υk,1,2, we consider the following martingale difference sequence:

XT :=

T∑
t=1

d∑
i=1

ηt(|gt,i| − E[|gt,i| | Ft−1]).

We can compute

+∞∑
t=1

E

[(
d∑

i=1

ηt(|gt,i| − E[|gt,i| | Ft−1])

)2 ∣∣∣∣Ft−1

]
≤ d

+∞∑
t=1

η2t

d∑
i=1

E[(|gt,i| − E[|gt,i| | Ft−1])
2]

≤ d

+∞∑
t=1

η2t

d∑
i=1

E[∥gt∥2 | Ft−1]

Property 1
≤ d

+∞∑
t=1

η2t

d∑
i=1

(
(A+ 2LfB) sup

t≥1
(f(wt)− f∗) + C

)
≤ d

d∑
i=1

(
(A+ 2LfB)

(
sup
t≥1

Π∆,t

)(
sup
t≥1

(f(wt)− f∗) + C
))

·
+∞∑
t=1

η2t

Lemma B.3 and B.9
< +∞ a.s.

By the Martingale Convergence theorem, we obtain

lim
T→+∞

XT =

+∞∑
t=1

d∑
i=1

ηt(|gt,i| − E[|gt,i| | Ft−1]) < +∞ a.s.

Using the Cauchy’s Convergence principle, we can easily prove that

lim sup
k→+∞

Υk,1,2 = lim
k→+∞

τ2k−1∑
t=τ2k−1−1

d∑
i=1

ηt(|gt,i| − E[|gt,i||Ft−1]) = 0 a.s.
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Combining the above two limit proofs for Υt,1,1 and Υt,1,2, we can conclude that

lim sup
k→+∞

Υt,1 = 0 a.s.

Next, we will demonstrate that limk→+∞ Υk,2 = 0 a.s.. This is relatively easy; we only need to
examine the series sum

+∞∑
t=1

∥∆t ◦mt−1∥,

which can easily be proven to satisfy

+∞∑
t=1

∥∆t◦mt−1∥ =

+∞∑
t=1

d∑
i=1

∆−1
t,i |mt−1,i| <

√
d
(
sup
t≥1

Π∆,t

)
·
(
sup
t≥1

Π∆,t∥mt−1∥
)
·

d∑
i=1

∆t,i

Lemma B.3 and B.9
< +∞ a.s.

Thus, by the Cauchy’s Convergence principle, we obtain

lim sup
k→+∞

Υk,2 = lim
k→+∞

τ2k−1∑
t=τ2k−1−1

d∑
i=1

ηt(|gt,i| − E[|gt,i||Ft−1]) = 0 a.s.

Combining the limit results for Υk,1 and Υk,2, we conclude that

lim sup
k→+∞

sup
τ2k−1≤t<τ2k

∥∇f(ut)∥ ≤ l + 0 = l.

Moreover, combining supτ2k≤t<τ2k+1
∥∇f(ut)∥ < l, we can deduce that

lim sup
t→+∞

∥∇f(ut)∥ ≤ l a.s.

Then, due to the arbitrariness of l, we conclude that

lim sup
t→+∞

∥∇f(ut)∥ = 0 a.s.

This implies that
lim

t→+∞
∥∇f(ut)∥ = 0 a.s.

Thus, we complete the proof.

E.4 THE PROOF OF THEOREM 3.3

Proof. Since we have already proven almost sure convergence in Theorem 3.2, it is natural to attempt
to prove L1 convergence via the Lebesgue’s Dominated Convergence theorem. To achieve this, we
need to find a function h that is F∞-measurable and satisfies E |h| < +∞, and such that for all
t ≥ 1, we have ∥∇f(wt)∥ ≤ |h|. Since for all t, we naturally have ∥∇f(wt)∥ ≤ supk≥1 ∥∇f(wk)∥,
we only need to prove that E[supk≥1 ∥∇f(wk)∥] < +∞. We proceed to achieve this goal.

Returning to the Approximate Descent Inequality (Lemma 4.1), we have:

Π∆,t+1f̂(ut+1)−Π∆,tf̂(ut) ≤ − 5

16
Π∆,t+1

d∑
i=1

ζi(t) + (Lf + 1)Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i

+Π∆,t+1Mt. (42)

For any λ > 0, define the stopping time τλ as the first time the sequence {Π∆,tf̂(ut)}t≥1 exceeds
λ, i.e.,

τλ := min{t ≥ 2 : Π∆,tf̂(ut) > λ}.
It can be rigorously verified that τλ is a stopping time with respect to the filtration {Ft}t≥1, and
satisfies a special property [τλ = n] ∈ Fn−1 for all n ≥ 1. This implies that the preceding time
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τλ − 1 is also a stopping time. Next, for any deterministic time T ≥ 3, we define τλ,T := τλ ∧ T .
We then sum the indices of Eq. 42 from 1 to τλ,T − 1. Specifically, we have:

Π∆,τλ,T
f̂(uτλ,T

) ≤ Π∆,1f̂(u1) + (Lf + 1)

τλ,T−1∑
t=1

Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i +

τλ,T−1∑
t=1

Π∆,t+1Mt.

Taking the expectation on both sides, we obtain:

E
[
Π∆,τλ,T

f̂(uτλ,T
)
]
≤ E

[
Π∆,1f̂(u1)

]
+ (Lf + 1)E

[ τλ,T−1∑
t=1

Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i

]

+ E
[ τλ,T−1∑

t=1

Π∆,t+1Mt

]
.

Since {Π∆,t+1Mt,Ft−1}t≥1 is a martingale difference sequence and τλ,T ≤ T < +∞, by Doob’s
Stopped theorem, we know that:

E
[ τλ,T−1∑

t=1

Π∆,t+1Mt

]
= 0.

This implies that:

E
[
Π∆,τλ,T

f̂(uτλ,T
)
]
≤ E

[
Π∆,1f̂(u1)

]
+ (Lf + 1)E

[ τλ,T−1∑
t=1

Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i

]

< E
[
Π∆,1f̂(u1)

]
+ (Lf + 1)E

[ T∑
t=1

Π∆,t+1

d∑
i=1

η2vt,ig
2
t,i

]
.

According to the estimates of
∑T

t=1 E[Γt] from Eq. 32 to Eq. 33, we easily obtain that when δ > 1,
the following holds:

E
[
Π∆,τλ,T

f̂(uτλ,T
)
]
≤ M < +∞,

where

M := E
[
Π∆,1f̂(u1)

]
+

22δd(Lf + 1)

α1v
δ
2

Cδ
ζ .

On the other hand, we easily observe the following event decomposition:[
sup

2≤t<T
Π∆,tf̂(ut) > λ

]
=

T−1⋃
k=2

[τλ = k] =

T−1⋃
k=2

[τλ,T = k].

Moreover, since for any j ̸= k, we have [τλ,T = j] ∩ [τλ,T = k] = ∅, it follows that:

P
[

sup
2≤t<T

Π∆,tf̂(ut) > λ
]
=

T−1∑
k=2

P[τλ,T = k]
Markov’s inequality

≤ 1

λ

T−1∑
k=2

E
[
Π∆,kf̂(uk)I[τλ,T=k]

]
<

1

λ
E
[
Π∆,τλ,T

f̂(uτλ,T
)
]
≤ M

λ
. (43)

Next, for any K ≥ 1, we compute E
[(

sup2≤t<T Π∆,tf̂(ut)
)3/4 ∧K

]
. We have

E
[(

sup
2≤t<T

Π∆,tf̂(ut)
)3/4 ∧K

]
= −

∫ +∞

0

x d

(
P

[(
sup

2≤t<T
Π∆,tf̂(ut)

)3/4

∧K > x

])

= −
∫ +∞

0

(∫ x

0

1dλ
)

d

(
P

[(
sup

2≤t<T
Π∆,tf̂(ut)

)3/4

∧K > x

])
Fubini’s theorem

= −
∫ +∞

0

(∫ +∞

λ

1d

(
P

[(
sup

2≤t<T
Π∆,tf̂(ut)

)3/4

∧K > x

]))
dλ
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=

∫ +∞

0

P

[(
sup

2≤t<T
Π∆,tf̂(ut)

)3/4

∧K > λ

]
dλ

≤ 1 +

∫ +∞

1

P

[(
sup

2≤t<T
Π∆,tf̂(ut)

)3/4

∧K > λ

]
dλ

= 1 +

∫ +∞

1

P
[(

sup
2≤t<T

Π∆,tf̂(ut)

)
∧K4/3 > λ4/3

]
dλ

< 1 +

∫ +∞

1

P
[(

sup
2≤t<T

Π∆,tf̂(ut)

)
> λ4/3

]
dλ

Eq. 43
< 1 +

∫ +∞

1

M

λ4/3
dλ

= 1 + 3M.

Next, we take K → +∞ and apply the Lebesgue’s Monotone Convergence theorem. We get:

E
[(

sup
2≤t<T

Π∆,tf̂(ut)
)3/4]

≤ 1 + 3M.

Next, by taking T → +∞ and applying the Lebesgue’s Monotone Convergence theorem once again,
we obtain:

E
[(

sup
t≥2

Π∆,tf̂(ut)
)3/4]

≤ 1 + 3M.

Note that for any finite t, we have Π∆,t+1 ≥ Π∆,∞ (where Π∆,∞ is defined in Lemma B.3). Thus,
we have:

E
[
Π

3/4
∆,∞

(
sup
t≥2

f̂(ut)
)3/4]

≤ E
[(

sup
t≥2

Π∆,tf̂(ut)
)3/4]

≤ 1 + 3M.

Next, by applying Hölder’s inequality, we obtain:

E
[(

sup
t≥2

f̂(ut)
)1/2]

≤ E1/3
[
Π

−3/2
∆,∞

]
E2/3

[
Π

3/4
∆,∞

(
sup
t≥2

f̂(ut)
)3/4] Lemma B.3

≤ C
1/3
v,d,3/2(1+3M)2/3.

Then, according to Property 5, we can bound f(wt)− f∗ using f̂(ut), i.e.,

f(wt)− f∗ ≤ (Lf + 1)(f(ut)− f∗) +
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1

◦mt−1∥2 + Lff
∗

≤ max

{
Lf + 1,

(Lf + 1)β2
1

2C2(1− β1)

}
f̂(ut) + Lff

∗.

That means

E
[(

sup
t≥2

(
f(wt)−f∗))1/2] ≤ (max

{
Lf + 1,

(Lf + 1)β2
1

2C2(1− β1)

})1/2

C
1/3
v,d,3/2(1+3M)2/3+

√
Lf |f∗|.

Finally, according to Lemma B.1, we obtain:

E
[
sup
t≥2

∥∇f(wt)∥
]
≤
√
2Lf E

[(
sup
t≥2

(
f(wt)− f∗))1/2]

<
√
2Lf

(
max

{
Lf + 1,

(Lf + 1)β2
1

2C2(1− β1)

})1/2

C
1/3
v,d,3/2(1 + 3M)2/3

+
√
2L2

f |f∗|.

By adding the first term, we obtain:

E
[
sup
t≥1

∥∇f(wt)∥
]
< ∥∇f(w1)∥+

√
2Lf

(
max

{
Lf + 1,

(Lf + 1)β2
1

2C2(1− β1)

})1/2

C
1/3
v,d,3/2(1 + 3M)2/3
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+
√
2L2

f |f∗| < +∞.

Finally, combining the almost sure convergence result from Theorem 3.2 with the Lebesgue’s Dom-
inated Convergence theorem, we obtain the L1 convergence result, namely:

lim
t→+∞

E[∥∇f(wt)∥] = 0.

With this, we complete the proof.
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