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ABSTRACT

We study nonmonotone games satisfying the weak Minty variational inequality
(MVI) with parameter ρ ∈ (−1/L,∞), where L is the Lipschitz constant of the
gradient operator. An error corrected version of the inexact proximal point algo-
rithm is proposed, with which we establish the firstO(1/ϵ) rate for the entire range
ρ ∈ (−1/L,∞), thus removing a logarithmic factor compared with the complex-
ity of existing methods. The scheme automatically selects the needed accuracy for
the proximal computation, and can recover the relaxed extragradient method when
ρ > −1/2L and the relaxed proximal point algorithm (rPPA) when ρ > −1/L. Due
to the error correction, the scheme inherits the strong properties of the exact rPPA.
Specifically, we show that linear convergence is automatically achieved under ap-
propriate conditions. Tightness for the range of ρ is established through a lower
bound for rPPA. Central to the algorithmic construction is a halfspace projection,
where the key insight is that the allowed error tolerance can both be used to correct
for the proximal approximation and to enlarge the problem class.

1 INTRODUCTION

Nonconvex-nonconcave minimax problem—and more generally nonmonotone games—are ubiq-
uitous in machine learning applications but notoriously difficult to solve (Daskalakis et al., 2021;
Hirsch & Vavasis, 1987; Papadimitriou, 1994; Hsieh et al., 2021). A nonmonotone class that has
attracted significant attention is the class of problems satisfying the weak Minty variational inequal-
ity (MVI) introduced in Diakonikolas et al. (2021). One reason for the increased interest is that the
counterexamples constructed to demonstrate the failure of classical methods in Hsieh et al. (2021)
were shown to satisfy the weak MVI (Pethick et al., 2022).

The weak MVI is dictated by a parameter ρ, which determines the degree of allowed nonmonotonic-
ity. A flurry of work has followed since Diakonikolas et al. (2021) focusing on extending the range
of ρ (Pethick et al., 2022; Lee & Kim, 2024; Fan et al., 2023; Alacaoglu et al., 2024; Pethick et al.,
2024). At the heart of all these methods is a relaxed update rule. Interestingly, the relaxed extra-
gradient method achieves a (tight) ρ ∈ (−1/2L,∞) (Pethick et al., 2022; 2024) while the relaxed
proximal point algorithm (rPPA) permits the larger range of ρ ∈ (−1/L,∞) (Alacaoglu et al., 2024;
Pethick et al., 2024). In other words, moving beyond ρ > −1/2L seems to require an increasingly
refined approximation of the proximal operator made precise by the logarithmic factor suffered in
the complexity (Alacaoglu et al., 2024). This is in stark contrast with monotone problems where the
extragradient method (Korpelevich, 1977) can approximate the proximal point algorithm without
any tradeoff (Solodov & Svaiter, 1999b; Mokhtari et al., 2020).

The paper addresses the following fundamental question:

Can we treat the weak MVI range ρ ∈ (−1/L,−1/2L] without suffering a logarithmic factor? (⋆)

Very recently Fan et al. (2023) interestingly managed to show convergence for ρ > − 1−1/e
L ≈

− 0.632
L in unconstrained problems without a logarithmic factor in the complexity. However, it is

unclear if the approach can be generalized to the larger range of ρ and constrained settings.

We answer (⋆) in the affirmative. Our analysis generalizes the halfspace projection approaches in
both Pethick et al. (2022) and Solodov & Svaiter (1999a). The key observation is that the allowed
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Table 1: Comparison with existing literature. Algorithm 1 is the first method to treat weak MVI
with ρ > −1/L without suffering a logarithmic factor in the complexity.

Method Minimum ρ Complexity1 Constraints Linear convergence2

Diakonikolas et al. (2021) − 1
8L

O( 1
ε
) ✗ ✗

Pethick et al. (2022) − 1
2L

O( 1
ε
) ✓ ✗

Böhm (2022) − 1
2L

O( 1
ε
) ✗ ✗

Fan et al. (2023) − 1−1/e
L

O( 1
ε
) ✗ ✗

Alacaoglu et al. (2024) − 1
L

O( 1
ε
ln 1

ε
) ✓ ✗

This paper − 1
L

O( 1
ε
) ✓ ✓

1Number of operator evaluations for making the squared tangent residual smaller than ε.
2Linear convergence is established under an error bound condition (cf. Section 7).

error tolerance in the halfspace projection can both be used to expand the problem class and to cor-
rect for the inexactness of the proximal operator estimation. Our construction provides an intuitive
geometric explanation for convergence results in weak MVIs.

Concretely we make the following contributions:

(i) Improved complexity We propose a hybrid proximal extragradient method (Algorithm 1)
to achieve convergence for ρ > −1/L, which automatically selects the required approxima-
tion quality for the proximal operator through a computationally negligible error condition.
The stopping criterion combined with the error correction step in Algorithm 1 removes
the logarithmic factor in the complexity, while generalizing to constrained and regularized
settings. The tightness of the range of ρ is made precise through a lower bound for the
idealized case of exact proximal computations.

(ii) Unification The error condition for the inner loop in Algorithm 1 can pass immediately
if ρ > −1/2L, in which case the scheme exactly reduces to the AdaptiveEG+ method of
Pethick et al. (2022). Algorithm 1 is an instantiation of the implicit scheme (8) which
can recover the hybrid method of Solodov & Svaiter (1999a) and the celebrated forward-
backward-forward algorithm (Tseng, 2000) when the problem is monotone (i.e. ρ = 0).
The scheme thus unifies the analysis of the relaxed extragradient method, the relaxed proxi-
mal point algorithm (rPPA) and classical methods for monotone problems, while providing
a precise explanation for why the relaxed extragradient method only applies to ρ > −1/2L.

(iii) Linear convergence Algorithm 1 adopts strong properties of the exact rPPA due to the
error correction. Specifically Algorithm 1 automatically obtains linear convergence under
appropriate conditions by exploiting the Fejér monotonicity of the iterates. Additionally,
Fejér monotonicity simplifies the proofs in general by saving us from meticulously arguing
about boundedness of the iterates otherwise necessary in e.g. Alacaoglu et al. (2024);
Pethick et al. (2024). The simplicity is apparent as the proof for the general case fits on
half a page, even in the adaptive case (cf. Appendix C) and in 5 lines in the nonadaptive
case (cf. Theorem 5.5).

2 RELATED WORK

Variational inequalities (VIs) provide a unifying framework for studying optimization, equilibrium,
and fixed point problems (Facchinei & Pang, 2003). Classical work has focused on monotone VIs,
where the operator satisfies a global monotonicity condition. For such problems, a wide range of ef-
ficient algorithms have been developed, including the (inexact) proximal point method (Rockafellar,
1976), the extragradient method (Korpelevich, 1977), and the forward-backward-forward method
(Tseng, 2000).

Recent works have begun to study nonmonotone VIs motivated by nonconvex-nonconcave minimax
optimization. Diakonikolas et al. (2021) introduced the weak Minty variational inequality (MVI)
and showed convergence of the relaxed extragradient method for ρ > −1/8L. Subsequent works
have focused on pushing the allowable range of ρ using various algorithmic techniques. Pethick
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et al. (2022) extended the definition to constrained problems and proposed an algorithm with
convergence for the range ρ > −1/2L. Fan et al. (2023) proposed an extension using multiple
forward operator evaluation, H := id−γF , per iteration, extending the range to ρ > −1−1/e/L
for unconstrained problems. Lee & Kim (2024) also extended the range of ρ using a hyperplane
projection, but at the cost of a logarithmic factor in the complexity. It turns out that relaxed (inexact)
proximal point methods (Pethick et al., 2024; Alacaoglu et al., 2024) can achieve the relaxed range
ρ > −1/L as first shown in Alacaoglu et al. (2024). The same range can be obtained by applying
the inexact proximal point method in e.g. Chen & Luo (2022) to the modified operator defined in
Lee & Kim (2021, App. A.1). Adaptive approaches has also been taken in an attempt to increase
the range of ρ even further (Pethick et al., 2022; Böhm, 2022; Alacaoglu et al., 2023).

Whereas the previous schemes can be seen as instances of the Krasnosel’skiı̆-Mann (KM) iteration
from the fixed point literature (Pethick et al., 2024), there exists another line of work focusing on
the Halpern iteration in the special case of cohypomonotone problems. In contrast with the KM iter-
ation, Halpern iteration linearly interpolates with the initial point using a time-varying stepsize, i.e.
zk+1 = (1−λk)z

0−λkTz
k. This construction has been used to show optimalO(1/k2) convergence

rates for the squared fixed point residual. Sabach & Shtern (2017); Lieder (2021) originally showed
convergence for nonexpansive operators, which implies convergence for ρ-comonotone problems
with ρ > −1/2L using the (exact) proximal operator. By directly approximating the proximal
operator, an explicit scheme was later proposed for monotone problems in Diakonikolas (2020),
suffering a logarithmic factor in the rate. The logarithmic factor was removed for unconstrained
problems by means of an extragradient variant in Yoon & Ryu (2021), which was later extended
to ρ-cohypomonotone problems with ρ > −1/2L in Lee & Kim (2021) and subsequently the con-
strained case in Cai et al. (2022a) while only requiring a single projection. Recently, Alacaoglu et al.
(2024) showed convergence for the range ρ > −1/L using the inexact Halpern iteration by exploiting
the weaker structure of conic-nonexpansiveness (Bauschke et al., 2021; Bartz et al., 2022).

3 PRELIMINARIES

We will formulate our problem as a (possibly nonmonotone) inclusion problem in which we seek to
find z ∈ Rd such that

0 ∈ Sz := Fz +Az. (1)
More compactly, we will write z ∈ zerS. We will use the single-valued operator F : Rd → Rd

to capture the smooth part of the problem and A : Rd ⇒ Rd to capture (projectable) constraints as
made precise in the following assumptions (cf. Appendix A for missing definitions).
Assumption 3.1. In problem (1),

(i) The operator F : Rd → Rd is L-Lipschitz, i.e. for some L ∈ [0,∞),

∥Fz − Fz′∥ ≤ L∥z − z′∥ ∀z, z′ ∈ Rd. (2)

(ii) The operator A : Rd ⇒ Rd is maximally monotone.

(iii) The operator S = F + A satisfies the weak Minty variational inequality (MVI), i.e. there
exists a nonempty solution set Z⋆ ⊆ zerS such that for all z⋆ ∈ Z⋆ and some ρ ∈
(− 1

L ,∞)

⟨v, z − z⋆⟩ ≥ ρ∥v∥2 ∀(z, v) ∈ gphS. (3)

One prominent problem class that can be cast as the inclusion (1) is m-player games.
Example 3.2 (m-player games). Denote the decision variables z := (zi; z−i) := (z1, ..., zm) ∈ Rd

with d =
∑m

i=1 di and let the loss incurred by the ith player be Li(zi; z−i) = φi(z) + gi(zi)
where φi is the payoff function and gi typically enforce constraints on zi. A Nash equilibrium is any
decision z⋆ ∈ Rd which is unilaterally stable, i.e.,

Li(z
⋆
i ; z

⋆
−i) ≤ Li(zi; z

⋆
−i) ∀zi ∈ Rdi and i ∈ [m] := {1, . . . ,m}. (4)

The corresponding first order optimality conditions may be written as the inclusion (1) with Fz =
(∇z1φ1(z), . . . ,∇zmφm(z)) and Az = (∂g1(z1), . . . , ∂gm(zm)). The operator A will only be
accessed through the resolvent

JγA(z) := (id+γA)−1(z) = (proxγg1(z1), . . . ,proxγgm(zm))

with γ > 0. Maximal monotonicity of A is satisfied when gi is proper lsc convex for all i ∈ [m].
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Figure 1: The scheme (8) proceeds by iteratively projecting onto the constructed halfspace D(zk),
which is guaranteed to contain the solution set Z⋆ ⊆ zerS. It turns out that only a relative error
condition when computing z̄k is sufficient to ensure that the sequence do not terminate prematurely.

4 ALGORITHMIC CONSTRUCTION

Our starting point is the (inexact) proximal update on S := F +A, which given a z ∈ Rd seeks:

z̄ ∈ (id+γS)−1(z − ε) ⇔ z̄ = z − (v̄ + ε) and v̄ ∈ γSz̄ (5)

with inexactness ε ∈ Rd. The above update can be applied iteratively, zk+1 = (id+γS)−1(zk−εk)
when the resolvent is singled-valued, as classically considered (Rockafellar, 1976), but establishing
convergence would require the errors to be absolutely summable, i.e.

∑∞
k=0 ∥εk∥ < ∞, which

translates into an increasing number of inner iterations used to approximate the proximal operator.

Instead we will introduce a halfspace projection to correct for the inexactness in the proximal evalu-
ation, which we will refer to interchangeably as the error correction step. The construction is largely
inspired by Solodov & Svaiter (1999a), which introduced the idea for monotone problems to relax
the standard absolute summable error criterion to only requiring what was coined as relative inex-
actness. In what follows, we will importantly construct a halfspace that can be used for the more
general class of weak MVI.

Observe that, regardless of the inexactness, the proximal update (5) can be used to construct a
halfspace that contains the solution set in Assumption 3.1(iii)

D(z) = {w | ⟨v̄, z̄ − w⟩ ≥ δ
γ ∥v̄∥

2 } (6)

where δ ≤ ρ. The containment of the solution set is easily verified by taking w ∈ Z⋆. If we can
iteratively project onto this (changing) halfspace, then convergence immediately follows, provided
that we can argue that there is no fixed point other than z ∈ zerS. For later convenience we define
the projection operator P . As we will see, it is fairly easy to derive the closed form solution to this
halfspace projection, which effectively results in using an extragradient computation v̄ ∈ γSz̄:

P (z) := ΠD(z)(z) = argmin
u∈D(z)

∥u− z∥ =
{
z − αv̄ z /∈ D(z)
z z ∈ D(z) with α =

⟨v̄,z−z̄⟩+ δ
γ ∥v̄∥2

∥v̄∥2 . (7)

A convergent sequence can readily be constructed by repeatedly applying the projection, i.e.
zk+1 = P (zk). This iterative scheme is known as the Picard iterations in the fixed point itera-
tion literature, and it converges for firmly (quasi)-nonexpansive operators—a property which holds
for the projection operator P as formally established in Proposition 5.1.

In order to later relate our adaptive scheme to existing fixed variants in the literature, it will prove
useful to introduce an (over)relaxation parameter λk ∈ (0, 2). The resulting scheme is known as the
Krasnosel’skiı̆-Mann (KM) iteration, which recovers the Picard iteration for λk = 1:

zk+1 = (1− λk)z
k + λkP (zk) (KM)

with λk > 0. It is worth highlighting that our use of the above relaxation is different from the
one used in Alacaoglu et al. (2024); Pethick et al. (2024). They apply the KM iteration directly
to the (inexact) proximal operator, and rely on the (under)relaxation to establish convergence for
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Algorithm 1 An explicit hybrid proximal extragradient method

Require: z0 ∈ Rd λk ∈ (0, 2), σ ∈ [0, 1 + δ
γ ), δ ≤ ρ, γ ∈ (⌊−ρ⌋+, 1/L)

Repeat for k = 0, 1, . . . until convergence
1: z̄k ← zk

2: repeat
3: hk ← zk − γF z̄k

4: z̄k ← (id+γA)−1hk

5: until ⟨zk − z̄k, v̄k⟩ ≥ (1− σ)∥v̄k∥2 where v̄k = hk − z̄k + γF z̄k

6: zk+1 = zk − λkαkv̄
k with αk = ⟨v̄k,zk−z̄k⟩

∥v̄k∥2 + δ
γ

Return zk+1

weak MVIs with ρ > − 1
L . We instead apply it to the halfspace projection operator P and only

use the generalization to expand the algorithmic class. In particular, we will still be able to show
convergence for ρ > − 1

L even when λk ∈ [1, 2).

By expanding the operator P in KM and including the sufficient error condition (12) from Proposi-
tion 5.1 we obtain the following algorithm with γ > 0, λk ∈ (0, 2), δ ≤ ρ and σ ∈ [0, 1 + δ

γ ):

find z̄k ∈ Rd and v̄k ∈ γSz̄k

s.t. z̄k = zk − (v̄k + εk) and − ⟨εk, v̄k⟩ ≤ σ∥v̄k∥2

update zk+1 = zk − λkαkv̄
k αk = ⟨v̄k,zk−z̄k⟩

∥v̄k∥2 + δ
γ

(8)

Remark 4.1. The scheme generalizes both Pethick et al. (2022, Alg. 1) and the construction in
Solodov & Svaiter (1999a). To recover Pethick et al. (2022, Alg. 1) take εk = γ(Fzk − F z̄k)
for which the error condition can automatically pass for ρ > −γ/2 (see Section 6). To recover
Solodov & Svaiter (1999a), which applies to the monotone case (ρ = 0), we first choose δ = 0.
Furthermore, from the Cauchy-Schwarz inequality and the update rule we recover the more stringent
error condition ∥εk∥ ≤ σmax{∥v̄k∥, ∥zk − z̄k∥} from Solodov & Svaiter (1999a). For εk = 0
we obtain the relaxed proximal point algorithm (Eckstein & Bertsekas, 1992) with the relaxation
parameter ᾱk = λkαk = λk(1 +

δ
γ ). See Appendix B for an overview of the special cases.

Comparison Alacaoglu et al. (2024); Pethick et al. (2024) also considers an inexact relaxed prox-
imal point update. For any other choice than εk = 0, the algorithm (8) differs from the approach
in Alacaoglu et al. (2024); Pethick et al. (2024) by not using z̄k directly in the update of zk+1 but
rather importantly the extragradient evaluation v̄k ∈ γSz̄k. This will turn out to be crucial to estab-
lishing Fejér monotonicity and thus avoiding the logarithmic factor in the complexity. Specifically,
the update in Alacaoglu et al. (2024); Pethick et al. (2024) is the relaxed inexact proximal point
algorithm

z̄k ≃ (id+γS)−1(zk)

zk+1 = (1− λk)z
k + λkz̄

k
(9)

where λk ∈ (0, 1). In contrast, our proposed (8) uses an extragradient evaluation at z̄k as follows:

z̄k ≃ (id+γS)−1(zk)

zk+1 = (1− λk)z
k + λk(z

k − αkv̄
k)

(10)

where the extragradient evaluation v̄k ∈ γSz̄k is defined through (8). We further discuss the differ-
ence with existing schemes in Section 6.3.

Explicit scheme To derive an explicit scheme we will define an inner iteration to approximating
the resolvent (id+γS)−1. Recall S := A+ F . Given z ∈ Rd we seek z′ ∈ Rd such that

z′ = (id+γS)−1z = (id+γA)−1(z − γFz′)

Following Nemirovski (2004); Pethick et al. (2024) this can be approximated with a fixed point
iteration of

Cz : w 7→ (id+γA)−1(z − γFw) (11)

5
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which is a contraction for small enough γ since F is Lipschitz continuous. It follows from Banach’s
fixed-point theorem Banach (1922) that the sequence converges linearly. Approximating z̄k in (8)
with an inner iteration (11) leads to Algorithm 1.

5 ANALYSIS OF THE IMPLICIT SCHEME (8)

This section establishes convergence of the implicit scheme (8). The key to showing convergence
is to guarantee that we always make progress towards a zero of S when applying the halfspace
projection operator P in (7). Specifically we will argue that the numerator ⟨v̄, z − z̄⟩ + δ

γ ∥v̄∥
2

in the (adaptive) stepsize α remains positive even with the inaccuracy ε (such that fixP ⊆ Z⋆,
which prevents the sequence from terminating prematurely). We now show crucial properties of this
operator.

Proposition 5.1 (Properties of (7)). Suppose Assumption 3.1(iii) holds, δ ≤ ρ, and (5) satisfies the
following error condition,

−⟨ε, v̄⟩ ≤ σ∥v̄∥2. (12)

where σ ∈ [0, 1 + δ
γ ). Then,

(i) The projection operator P : Rd → Rd in (7) is firmly quasi-nonexpansive.

(ii) Z⋆ ⊆ fixP ⊆ zerS.

(iii) The closed form solution to P is given as in (7) and the stepsize satisfies α ≥ 1 + δ
γ − σ.

Remark 5.2. Notice how the approximation quality in (12) needs to be better (while still only rel-
ative) for increasingly negative ρ through the requirement σ < 1 + δ

γ ≤ 1 + ρ
γ . Trivially, when

σ = 0 we get the loose requirement of ρ > −γ > − 1
L where the last inequality follows from the

requirement γ < 1/L for the proximal operator to be single-valued (see Lemma C.2 and Remark 5.4).

Convergence of (8) follows from convergence of the KM iteration (see Theorem C.1) applied to the
firmly quasi-nonexpansive operator P and the fact that fixP ⊆ zerS. The following theorem is a
direct consequence of the previous Proposition 5.1 and Theorem C.1. The theorem establishes a
convergence rate for what is referred to as the tangent residual (Cai et al., 2022b;a; Bot et al., 2023).

Theorem 5.3. Suppose Assumption 3.1(iii) holds. Consider the sequence (zk)k∈N generated by (8)
with λk ∈ (0, 2), κ := lim infk→∞ λk(2 − λk) > 0, δ ≤ ρ, and σ ∈ [0, 1 + δ

γ ). Then, for all
z⋆ ∈ Z⋆

min
k∈{0,...,K−1}

dist(0, Sz̄k)2 ≤ ∥z0 − z⋆∥2

κγ2(1 + δ
γ − σ)2K

.

Furthermore, if Z⋆ = zerS then (zk)k∈N converges to some z⋆ ∈ Z⋆.

Remark 5.4. It is important to ensure that the (inexact) proximal update is well-defined. The exact
case holds under maximal monotonicity of the operator A and Lipschitz continuity of the operator
F when γ < 1

L (see Lemma C.2). We have assumed maximal monotonicity of A for simplicity.
However, note that it is trivially possible to relax the condition on A to cohypomonotonicity when
S := F +A is also cohypomonotonicity (with ρ > −γ) since well-definedness of JγS is preserved
(Bauschke et al., 2021, Cor. 2.14). The inexact case will be treated for the particular choice of
inexactness, since we will importantly be able to relax the stepsize requirement to γ ≤ 1

L .

Convergence for a variant of (8) with a nonadaptive relaxation parameter λkαk = ᾱ follows im-
mediately, since the adaptive stepsize can be absorbed into λk ∈ (0, 2) as remarked in Section 6.3.
However, we include a direct proof as it turns out to be particularly compact.

Theorem 5.5. Suppose Assumption 3.1(iii) holds. Consider the sequence (zk)k∈N generated by (8)
with the nonadaptive stepsize λkαk = ᾱ ∈ (0, 2(1− σ + ρ

γ )). Then, for all z⋆ ∈ Z⋆

min
k∈{0,...,K−1}

dist(0, Sz̄k)2 ≤ ∥z0 − z⋆∥2

2γ2ᾱ(1− σ − ᾱ
2 + ρ

γ )K
.

6
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Proof. We proceed by expanding the update for rule in (8) and establishing Fejér monotonicity:

∥zk+1 − z⋆∥2 = ∥zk − z⋆∥2 + ᾱ2∥v̄k∥2 − 2ᾱ⟨v̄k, zk − z⋆⟩
= ∥zk − z⋆∥2 + ᾱ2∥v̄k∥2 − 2ᾱ⟨v̄k, zk − z̄k⟩ − 2ᾱ⟨v̄k, z̄k − z⋆⟩
= ∥zk − z⋆∥2 − 2ᾱ(1− ᾱ

2 )∥v̄
k∥2 − 2ᾱ⟨v̄k, εk⟩ − 2ᾱ⟨v̄k, z̄k − z⋆⟩

(Assumption 3.1(iii)) ≤ ∥zk − z⋆∥2 − 2ᾱ(1− ᾱ
2 + ρ

γ )∥v̄
k∥2 − 2ᾱ⟨v̄k, εk⟩

(error condition) ≤ ∥zk − z⋆∥2 − 2ᾱ(1− σ − ᾱ
2 + ρ

γ )∥v̄
k∥2 (13)

Rearranging, summing and telescoping completes the proof.

A few remarks are in place. First notice that there is almost no looseness in the proof as we only
apply an inequality once, which is the weak MVI that we work under—the error condition does
not add any looseness as we can control its tightness. Secondly, from (13), the interplay between
the relaxation parameter ᾱ, the error tolorance σ and the nonmonotonicity constant ρ becomes very
apparent. Specifically, the parameter ᾱ needs to be taken smaller with increasingly negative ρ and
large error tolerance σ. Note that Theorem 5.5 also implies convergence of the explicit Algorithm 1
when we force λkαk = ᾱ.

6 ANALYSIS OF THE EXPLICIT SCHEME (ALGORITHM 1)

Algorithm 1 is an instance of (8) with a particular iterative approximation of z̄k. Thus, in order to
obtain convergence it suffice to show that the error condition will eventually pass. Due to Pethick
et al. (2024, Lem. 5.1), which analyses the same inner iteration as Algorithm 1, the error ∥εk∥ can
be made arbitrarily small, which would be sufficient for ensuring the error condition.

In this section we will show a stronger result by characterizing the number of inner iterations in
Algorithm 1 sufficient for convergence of a given ρ, and crucially show that the number of inner
iterations are independent of the desired accuracy. As a warmup we first show that a single inner
iterations suffice when ρ > − 1

2L , thus exactly recovering the result of Pethick et al. (2022).

6.1 SINGLE-STEP APPROXIMATION

We will show that a single-step approximation of the resolvent suffice under the more stringent
requirement of ρ > −γ

2 > − 1
2L . To obtain the direct extragradient type scheme in Pethick et al.

(2022, Alg. 1) take the error in (8) to be εk = γ(Fzk − F z̄k) such that the update rule defining the
extrapolated point z̄k can be explicitly computed with one forward-backward step

v̄k = Hzk −Hz̄k ⇔ z̄k = (id+γA)−1Hzk (14)

where H := id−γF is the forward operator and well-definedness of the resolvent follows from
maximally monotonicity of A. In turn, the error condition in (8) reduces to

−γ ⟨Fzk − F z̄k, Hzk −Hz̄k⟩ ≤ σ∥Hzk −Hz̄k∥2.

We want to understand for what σ this condition is met. From 1
2 -cocoercivity of H (Lemma A.4(i))

we have the following when the operator F : Rd → Rd is Lipschitz continuous and γ ≤ 1
L

1
2∥Hzk −Hz̄k∥2 ≤ ⟨Hzk −Hz̄k, zk − z̄k⟩ = γ ⟨Hzk −Hz̄k, Fzk − F z̄k⟩+ ∥Hzk −Hz̄k∥2.

Consequently, the error condition holds with σ ∈ [ 12 , 1 +
ρ
γ ) in which case ρ > −γ

2 is sufficient for
convergence.

Notice that the update (14) correspond to having one inner step of Algorithm 1. Thus, by the same
argument the error condition in Algorithm 1 will immediately pass if σ ∈ [ 12 , 1+

ρ
γ ) and Algorithm 1

exactly reduces to Pethick et al. (2022, Alg. 1). The statement is made precise in Theorem 6.1(i).

7
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6.2 MULTIPLE INNER STEPS

The key to extending the nonmonotonicity parameter ρ is observing that we can push the lower
bound on the relative inexactness parameter σ ∈ (0, 1+ ρ

γ ), for which the error condition is guaran-
teed to pass, closer to zero by increasing the number of inner iterations. Consequently, the condition
on ρ becomes weaker. The following theorem makes this precise, where the main technical diffi-
culty comes from having to establish a lower bound on ∥v̄k∥2 appearing in the error condition. The
convergence rate in the theorem is a direct consequence of Theorem 5.3.
Theorem 6.1. Suppose Assumption 3.1 holds. Consider the sequence (zk)k∈N generated by Algo-
rithm 1 and let κ := lim infk→∞ λk(2− λk) > 0. Then, for all z⋆ ∈ Z⋆

min
k∈{0,...,K−1}

dist(0, Sz̄k)2 ≤ ∥z0 − z⋆∥2

κγ2(1 + δ
γ − σ)2K

.

Furthermore, if Z⋆ = zerS then (zk)k∈N converges to some z⋆ ∈ Z⋆. Moreover, let n denote the
number of inner iterations in Algorithm 1. Then,

(i) the error condition passes immediately (i.e. n = 1) even when only γ ≤ 1
L if σ ∈ ( 12 , 1+

ρ
γ )

which is feasible for ρ > −γ
2 .

(ii) the error condition passes after at most n iterations for some γ < 1/L if
σ ∈ ( 2−ln(n)/n

n+1−ln(n)/n , 1 +
ρ
γ ) which is feasible for ρ > − 1

L (1−
ln(n)
n ) n−1

n+1−ln(n)/n .

Remark 6.2. For simplicity of exposition we assume maximally monotonicity of A : Rd ⇒ Rd,
but the assumption can be relaxed to ρA-comonotonicity with ρA > −γ/2 without modifying the
argument, since the resolvent JγA remains nonexpansive (Bauschke et al., 2021, Prop. 3.13(iii)).

We can immediately infer complexity bounds from Theorem 6.1 without a logarithmic factor, due
to the fact that the number of inner steps n are independent of the desired accuracy. The charac-
terization interestingly uncovers an additional dependency on ρ in the complexity in the interval
ρ ∈ (− 1

L ,−
1
2L ], which we conjecture is unavoidable considering the tightness of our construction.

Corollary 6.3. Suppose Assumption 3.1 holds. Consider the sequence (zk)k∈N generated by Algo-
rithm 1 and let κ := lim infk→∞ λk(2 − λk) > 0. Then, for all z⋆ ∈ Z⋆ the sequence achieves
mink∈{0,...,K−1} dist(0, Sz̄

k)2 ≤ ϵ after at most

#(oracle calls) ≤ (1 + n)∥z0 − z⋆∥2

κγ2(1 + δ
γ − σ)2ϵ

to both the operator F and the resolvent (id+γA)−1 where n = ⌈ 6
1+ρL ln( 3

1+ρL )⌉.
Remark 6.4. Corollary 6.3 removes the logarithmic factor in ϵ that otherwise appears for approaches
approximating the proximal operator (Pethick et al., 2024; Alacaoglu et al., 2024; Lee & Kim, 2024).
Not only does Algorithm 1 improve the complexity from O( 1ϵ ln

1
ϵ ) to O( 1ϵ ) for ρ > −(1 − σ)γ,

but the method removes the need for prespecifying the number of inner steps n and the stepsize αk.

6.3 NONADAPTIVE VARIANT

Although the adaptive stepsize αk and error condition of Algorithm 1 comes at essentially no addi-
tional computational cost, it will prove instructive to derive a scheme with a fixed number of inner
iterations and a nonadaptive stepsize. Specifically, the variant will illuminate differences and simi-
larities with the relaxed approximate proximal point method (RAPP) of Pethick et al. (2024) which
can similarly converge for ρ > −1/L. The method is defined by the following recursion

z̄ki+1 = (id+γA)−1(zk − γF z̄ki ) ∀i = 0, ..., n− 1 with z̄k0 = zk

zk+1 = (1− λk)z
k + λkz̄

k
n

(RAPP)

with λk ∈ (0, 1). In contrast, Algorithm 1 reduces to the following when the error condition is
assumed to pass after n iterations:

z̄ki+1 = (id+γA)−1(zk − γF z̄ki ) ∀i = 0, ..., n− 1 with z̄k0 = zk

zk+1 = (1− ᾱk)z
k + ᾱk(z̄

k
n − γF z̄kn + γF z̄kn−1)

(15)

8
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where we can guarantee that ᾱk = λkαk ∈ (0, 2(1 − σ + ρ/γ)) since the adaptive stepsize αk ∈
(1 − σ + ρ/γ,∞) (from Proposition 5.1 by picking δ = ρ) can be absorbed into the relaxation
parameter λk ∈ (0, 2). Consequently, the convergence guarantee of Theorem 6.1 carries over to
(15).

It becomes apparent that for the fixed variant the only difference with RAPP is the additional term
γ(F z̄kn−1−F z̄kn). This difference is a consequence of using the extragradient evaluation v̄k ∈ γSz̄k

in (8) (and consequently Algorithm 1) instead of directly the iterate z̄k used in RAPP, which is
crucial for establishing Fejér monotonicity. Fejér monotonicity is central to avoiding the logarithmic
factor in the complexity by circumventing requiring

∑∞
i=0 ∥εk∥ <∞.

For n = 1 the fixed variant (15) exactly reduces to CEG+ of Pethick et al. (2022) from which
the celebrated forward-backward-forward (FBF) method of Tseng (2000) can be recovered (Pethick
et al., 2022, Rem. 3.3). This perspective provides a new interpretation of the FBF algorithm as a
one-step application of the (contraction) map used to approximate the proximal operator in (8), akin
to the original motivation for the MirrorProx algorithm in Nemirovski (2004). The connection is
precise in the sense that we obtain convergence proof of FBF as an instance of Algorithm 1 (cf.
Theorem 6.1).

7 LINEAR CONVERGENCE

Because of the error correction Algorithm 1 adopts the strong properties of the exact (relaxed) prox-
imal point algorithm (rPPA), even when inexactness is present. This section specifically shows that
linear convergence will automatically be obtained under appropriate structure.

In contrast, inexact KM iteration based schemes (Alacaoglu et al., 2024; Pethick et al., 2024) relies
on quasi-Fejér monotonicity, and thus requires knowing the desired accuracy in advance to specify
the inner loop, which prevents this kind of automatic adaptation. Halpern based methods also do not
automatically adapt due to the anchoring mechanism and depends on stepsize modifications in order
to obtain linear convergence (Park & Ryu, 2022).

We will specifically work under the following assumption.
Assumption 7.1 (Error bound). The operator S = F +A satisfies for some τ > 0 that

∥v∥ ≥ τ dist(z, zerS) ∀(z, v) ∈ gphS. (16)
Remark 7.2. The error bound captures two otherwise seemingly distinct problem classes:

(i) Strongly monotone problems for which τ is the strong monotonicity modulus.

(ii) Affine operators for which τ is the minimum non-zero singular value of the linear operator.
Nonmonontone affine operators are allowed under the weak MVI (cf. Bauschke et al.
(2021, Sec. 5)).

The following theorem establishes linear convergence of Algorithm 1 through the more general
implicit scheme (8).
Theorem 7.3. Suppose Assumptions 3.1(iii) and 7.1 hold. Consider the sequence (zk)k∈N generated
by (8) with λ ∈ (0, 2), δ ≤ ρ, σ ∈ [0, 1 + δ

γ ). Then, for all z⋆ ∈ Z⋆

dist2(zK , zerS) ≤ (1− ζ)K dist2(z0, zerS)

with ζ = λ(2− λ)
( 1−σ+δ/γ
1−σ+1/τγ

)2
.

Remark 7.4. As a by-product, Theorem 7.3 establishes linear convergence for EG+ (Diakonikolas
et al., 2021), AdaptiveEG+/CEG+ (Pethick et al., 2022) (when ρ > −γ/2) and rPPA (Eckstein &
Bertsekas, 1992) (when ρ > −γ). For the reductions see Remark 4.1 and Section 6.1.

8 TIGHTNESS

In this section we establish that the derived range of the weak MVI parameter ρ ∈ (−γ,∞) in
Theorems 5.3 and 6.1 is tight for the relaxed proximal point algorithm (rPPA)

zk+1 = (1− ᾱk)z
k + ᾱk(id+γS)−1(zk) (rPPA)

9
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Figure 2: (left) For ρ = −0.98/L, even n = 200 inner iteration is not sufficient for RAPP to converge,
while Algorithm 1 converges rapidly with only n = 15 (adaptively picked). (right) Algorithm 1 can
achieve arbitrarily high accuracy for a given ρ < −γ using a fixed number of inner steps n.

where (ᾱk)k∈N is a predefined stepsize sequence. Note that rPPA can be seen as a special case of
our implicit scheme (8) in the idealized case of exact access to the proximal operator (i.e. εk = 0).

Theorem 8.1. Consider a sequence (zk)k∈N generated according to rPPA with γ > 0 and ᾱk > 0
for all k ∈ N. Let ρ ≤ −(1 − ᾱk

2 )γ. Then, there exists an operator S : Rd → Rd for any d > 1
satisfying Assumption 3.1(iii) for which the sequence will not converge.

Remark 8.2. Theorem 8.1 prevents convergence in general when the weak MVI parameter ρ ≤ −γ,
even when the relaxation parameter ᾱk → 0. The lower bound ρ ≥ −γ/2 for the (unrelaxed)
proximal point algorithm (Gorbunov et al., 2022, Thm. 3.3) is recovered by taking ᾱk = 1.

In Appendix G we exploit that the range of ρ is dictated by the stepsize γ, by analysing a Gauss-
Seidel type update rule which permits stepsizes that are possibly larger than 1/L.

9 NUMERICAL EVALUATION

We test Algorithm 1 and RAPP on Pethick et al. (2022, Ex. 5) which can be parameterized by ρ
and L (see Example F.1). We set γ = 0.99/L for both methods and ᾱk = 0.001 for RAPP and
compared on ρ = −0.98/L. Algorithm 1 is additionally run on multiple problem instances of varying
ρ to determined the relationship with the (automatically selected) number of inner steps. The results
are shown in Figure 2, where Algorithm 1 is observed to converge using substantially fewer inner
iterations than the baseline.

10 CONCLUSION

We have introduced a hybrid proximal extragradient method that interpolates between a relaxed ex-
tragradient method and the relaxed proximal point method. The algorithm achieves the first O( 1ϵ )
oracle complexity for the loose requirement ρ > −1/L in weak MVIs, thus removing the logarith-
mic factor. The algorithm mitigates the need for hyperparameter selection by both automatically
determining the stepsize αk and the number of inner iterations n, while automatically enjoying lin-
ear convergence under an error bound condition. The construction is obtained through an intuitive
geometric interpretation that leads to a tight and simple analysis.

In the special case of cohypomonotone problems our derived rates can be accelerated for ρ > −1/2L.
It is interesting to investigate integrating the halfspace projection method with Halpern iteration,
which could permit an optimal method in the regime ρ ∈ (−1/L,−1/2L] without suffering a loga-
rithmic factor in the complexity.

10
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A PRELIMINARIES

The distance from z ∈ Rd to a set Z ⊆ Rd is defined as dist(z,Z) := minz′∈Z ∥z − z′∥.
The normal cone is defined as NZ(z) := { v | ⟨v, z′ − z⟩ ≤ 0 ∀z′ ∈ Z } and the projection as
ΠZ(z) := argminw∈Z ∥z − w∥2 and the proximal operator of g : Rd → R as proxγg(z) :=

argminw∈Z g(w) + 1
2γ ∥z − w∥2.

We restate here some common definitions from monotone and nonexpansive operator for conve-
nience (for further details see Bauschke & Combettes (2017)). An operator A : Rd ⇒ Rn

maps each point z ∈ Rd to a subset Az ⊆ Rn, where the notation A(z) and Az will be used
interchangably. We denote the domain of A by domA := {z ∈ Rd | Az ̸= ∅}, its graph
by gphA := {(z, v) ∈ Rd × Rn | v ∈ Az}. The inverse of A is defined through its graph,
gphA−1 := {(v, z) | (z, v) ∈ gphA} and the set of its zeros by

zerA := {z ∈ Rd | 0 ∈ Az}.

The set of fixed points is defined as

fixA := {z ∈ Rd | z ∈ Az}.

Definition A.1. A single-valued operator T : Rd → Rd is said to be

(i) nonexpansive if ∥Tz − Tz′∥ ≤ ∥z − z′∥ ∀z, z′ ∈ Rd.

(ii) quasi-nonexpansive if ∥Tz − z⋆∥ ≤ ∥z − z⋆∥ (∀z ∈ Rd)(∀z⋆ ∈ fixT ).

(iii) firmly nonexpansive if ∥Tz−Tz′∥2 ≤ ∥z−z′∥2−∥(z−z′)−(Tz−Tz′)∥2 ∀z, z′ ∈ Rd.

(iv) firmly quasi-nonexpansive if ∥Tz − z⋆∥2 ≤ ∥z − z⋆∥2 − ∥z − Tz∥2 (∀z ∈ Rd)(∀z⋆ ∈
fixT ).

The resolvent operator JA := (id+A)−1 is firmly nonexpansive (with domJA = Rd) iff A is
maximally monotone.

Let S ⊆ Rd. A sequence (zk)k∈N is said to be

(i) Fejér monotone if ∥zk+1 − z∥ ≤ ∥zk − z∥ (∀z ∈ S)(∀k ∈ N)
(ii) Quasi-Fejér monotone if ∥zk+1 − z∥2 ≤ ∥zk − z∥2 + ek (∀z ∈ S)(∀k ∈ N)

where (ek)k∈N is a summable sequence in (0,∞).

Definition A.2 (monotonicity Bauschke & Combettes (2017)). An operator A : Rd ⇒ Rd is called
monotone if,

⟨v − v′, z − z′⟩ ≥ 0 ∀(z, v), (z′, v′) ∈ gphA,

The operator A is maximally monotone if no other monotone operator B exists for which gphA ⊂
gphB.

Definition A.3 (Lipschitz continuity and cocoercivity). Let D ⊆ Rd be a nonempty set. A single-
valued operator A : D → Rd is said to be L-Lipschitz continuous if for any z, z′ ∈ D

∥Az −Az′∥ ≤ L∥z − z′∥,

and β-cocoercive if
⟨z − z′, Az −Az′⟩ ≥ β∥Az −Az′∥2.

Lemma A.4. Let A : Rd → Rd denote a single valued operator. Then,

(i) A is 1-Lipschitz if and only if T = id−A is 1/2-cocoercive.

(ii) If A is L-Lipschitz, then T = id−ηA, η ∈ (0, 1/L), is (1−ηL)-monotone, and in particular
for all u, v ∈ Rd,

∥Tu− Tv∥ ≥ (1− ηL)∥u− v∥. (17)
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Proof. The first claim follows directly from (Bauschke & Combettes, 2017, Prop.4.11). That T is
strongly monotone is a consequence of the Cauchy Schwarz inequality and Lipschitz continuity of
A:

⟨Tv − Tu, v − u⟩ = ∥v − u∥2 − η⟨Av −Au, v − u⟩ ≥ (1− ηL)∥v − u∥2.

In turn, the last claim follows from the Cauchy-Schwarz inequality.

We will use the following closed form solution concerning hyperplane projections.
Fact A.5. The projection ΠD(x) := argminz∈D ∥z − x∥2 onto the set D = {z | ⟨a, z⟩ ≥ b} of
x ̸∈ D is given as,

ΠD(x) = x− ⟨a, x⟩ − b

∥a∥2
a. (18)

B RECOVERING EXISTING SCHEMES

Let us recall the proposed implicit scheme in (8), which for γ > 0, λk ∈ (0, 2), δ ≤ ρ and
σ ∈ (0, 1 + δ

γ ), proceeds as follows:

find z̄k ∈ Rd and v̄k ∈ γSz̄k

s.t. z̄k = zk − (v̄k + εk) and − ⟨εk, v̄k⟩ ≤ σ∥v̄k∥2

update zk+1 = zk − λkαkv̄
k αk = ⟨v̄k,zk−z̄k⟩

∥v̄k∥2 + δ
γ

(19)

The scheme can recover a range of existing methods.

The relaxed proximal point algorithm Take the error to be εk = 0 in which case αk = 1 + δ
γ

and the error condition is satisfied for any σ. By using that v̄k = zk − z̄k, the update (19) reduces
to the relaxed proximal point update (Eckstein & Bertsekas, 1992)

z̄k = (id+γS)−1(zk)

zk+1 = (1− λk)z
k + λkz̄

k
(20)

where γ > 0, λk ∈ (0, 2(1 + δ
γ )) and δ ≤ ρ.

Solodov & Svaiter In the monotone case (ρ = 0) and with the more stringent error conditioning
∥εk∥ ≤ σmax{∥v̄k∥, ∥zk − z̄k∥}, (19) reduces to the method of Solodov & Svaiter (1999a)

find z̄k ∈ Rd and v̄k ∈ γSz̄k

s.t. z̄k = zk − (v̄k + εk) and ∥εk∥ ≤ σmax{∥v̄k∥, ∥zk − z̄k∥}

update zk+1 = zk − λkαkv̄
k αk = ⟨v̄k,zk−z̄k⟩

∥v̄k∥2

(21)

for γ > 0, λk ∈ (0, 2) and σ ∈ [0, 1).

AdaptiveEG+ Pick εk = Fzk − F z̄k. Notice that the error is a natural choice as it replaces the
implicit evaluation F z̄k in v̄k with the known Fzk. Define the forward operator as H := id−γF
such that v̄k = Hzk −Hz̄k. Then (19) reduces to the scheme of Pethick et al. (2023b):

z̄k = (id+γA)−1(Hzk)

zk+1 = zk − λkαk(Hzk −Hz̄k) αk = ⟨Hzk−Hz̄k,zk−z̄k⟩
∥Hzk−Hz̄k∥2 + δ

γ

(22)

where γ ∈ (⌊−2ρ⌋+, 1/L], λk ∈ (0, 2) and δ ∈ (−γ/2, ρ]. A constant stepsize variant can be
obtained by absorbing the adaptive αk into λk. Let λ = λkαk, then the resulting scheme can be
written as

z̄k = (id+γA)−1(Hzk)

zk+1 = zk − λ(Hzk −Hz̄k)
(23)
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where γ ∈ (⌊−2ρ⌋+, 1/L], λ ∈ (0, 1 + 2δ
γ ) and δ ∈ (−γ/2, ρ]. When in the unconstrained case

(A ≡ 0) the scheme reduces to the extragradient+ method (Diakonikolas et al., 2021)

z̄k = zk − γFzk

zk+1 = zk − λγF z̄k
(EG+)

which we synonymously refer to as the relaxed extragradient method since EG+ can be rewritten as

z̄k = zk − γFzk

zk+1 = (1− λ)zk + λ(zk − γF z̄k)
(24)

Forward-backward-forward In the monotone case (ρ = 0) we can recover the celebrated
forward-backward-forward (FBF) method of Tseng (Tseng, 2000). Pick εk = Fzk − F z̄k and
γ < 1/L (strictly). This allows us to pick λkαk = 1 as noted in Pethick et al. (2023b, Rem. 3.3) in
which case the scheme simplifies to

z̄k = (id+γA)−1(zk − γFzk)

zk+1 = z̄k − γ(F z̄k − Fzk)
(FBF)

with γ ∈ (0, 1/L). When in the unconstrained case (A ≡ 0) the scheme reduces to the extragradient
method (Korpelevich, 1977)

z̄k = zk − γFzk

zk+1 = zk − γF z̄k
(EG)

C PROOFS FOR SECTION 5 (ANALYSIS OF THE IMPLICIT SCHEME (8))

Proposition 5.1 (Properties of (7)). Suppose Assumption 3.1(iii) holds, δ ≤ ρ, and (5) satisfies the
following error condition,

−⟨ε, v̄⟩ ≤ σ∥v̄∥2. (12)

where σ ∈ [0, 1 + δ
γ ). Then,

(i) The projection operator P : Rd → Rd in (7) is firmly quasi-nonexpansive.

(ii) Z⋆ ⊆ fixP ⊆ zerS.

(iii) The closed form solution to P is given as in (7) and the stepsize satisfies α ≥ 1 + δ
γ − σ.

Proof. To find the closed form solution for the projection we invoke Fact A.5, concerning general
hyperplane projections, with a = −v̄ and b = ⟨v̄, z̄⟩ − δ

γ ∥v̄∥
2. For u ̸∈ D(z),

ΠD(z)(u) = u−
⟨v̄,u−z̄⟩+ δ

γ ∥v̄∥2

∥v̄∥2 v̄ (25)

Let us proveZ⋆ ⊆ fixP . The setD(z) defined in (6) is constructed to contain the solution set. Let us
verify this claim. From the definition of z̄ in (5) we have that v̄ ∈ γSz̄. By using Assumption 3.1(iii),
a solution z⋆ ∈ Z⋆ satisfies

⟨v̄, z̄ − z⋆⟩ ≥ ρ
γ ∥v̄∥

2,

which is contained in D(z) by assuming δ ≤ ρ. This proofs that Z⋆ ⊆ D (z) for all z ∈ Rd, which
is more general than Z⋆ ⊆ fixP .

To prove fixP ⊆ zerS we need to show that the (adaptive) stepsize in (25) is positive and bounded
away from zero. We have

⟨v̄, z − z̄⟩+ δ
γ ∥v̄∥

2 = (1 + δ
γ )∥v̄∥

2 + ⟨ε, v̄⟩ ≥ (1 + δ
γ − σ)∥v̄∥2 (26)

where the third last inequality follows from assuming −⟨ε, v̄⟩ ≤ σ∥v̄∥2. Thus, (26) is strictly
positive assuming σ < 1 + δ

γ (which proofs the last claim). Consequently, z ∈ fixP only if
0 = v̄ ∈ Sz̄. This proves the second claim.
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Finally for the first claim, the projection onto a convex set is firmly quasi-nonexpansive. That is, for
all z ∈ Rd and z⋆ ∈ Z⋆ ⊆ fixΠD(z)

∥ΠD(z)(u)− z⋆∥2 ≤ ∥u− z⋆∥2 − ∥u−ΠD(z)(u)∥2

where we can take u = z to establish the claim. This completes the proof.

For completeness we include a well known convergence guarantee for the KM iterations applied to
a firmly quasi-nonexpansive operator, which is used to establish convergence of (8).
Theorem C.1. Suppose T : Rd → Rd is firmly quasi-nonexpansive. Consider the sequence (zk)k∈N
generated by KM with λk ∈ (0, 2). Then, for all z⋆ ∈ fixT

min
k∈{0,...,K−1}

∥Tzk − zk∥2 ≤ ∥z0 − z⋆∥2

λk(2− λk)K
.

Proof. We have

∥zk+1 − z⋆∥2 = (1− λk)∥zk − z⋆∥2 + λk∥Tzk − z⋆∥2 − λk(1− λk)∥Tzk − zk∥2

= (1− λk)∥zk − z⋆∥2 + λk∥Tzk − Tz⋆∥2 − λk(1− λk)∥Tzk − zk∥2

≤ (1− λk)∥zk − z⋆∥2 + λk∥zk − z⋆∥2 − λk∥Tzk − zk∥2 − λk(1− λk)∥Tzk − zk∥2

= ∥zk − z⋆∥2 − λk(2− λk)∥Tzk − zk∥2. (27)

where we have used firmly quasi-nonexpansiveness of T . Telescoping completes the proof.

Theorem 5.3. Suppose Assumption 3.1(iii) holds. Consider the sequence (zk)k∈N generated by (8)
with λk ∈ (0, 2), κ := lim infk→∞ λk(2 − λk) > 0, δ ≤ ρ, and σ ∈ [0, 1 + δ

γ ). Then, for all
z⋆ ∈ Z⋆

min
k∈{0,...,K−1}

dist(0, Sz̄k)2 ≤ ∥z0 − z⋆∥2

κγ2(1 + δ
γ − σ)2K

.

Furthermore, if Z⋆ = zerS then (zk)k∈N converges to some z⋆ ∈ Z⋆.

Proof. From Proposition 5.1 and Theorem C.1 we have that

min
k∈{0,...,K−1}

λk(2− λk)∥αkv̄
k∥2 ≤ ∥z

0 − z⋆∥2

K
.

From Proposition 5.1 we have that αk ≥ (1 + δ
γ − σ). Lower bounding αk in the convergence

guarantee and rearranging obtains the claimed rate.

It follows from Fejér monotonicity with respect to fixP that (zk)k∈N is bounded. Using a telescop-
ing argument we have that (∥v̄k∥)k∈N converges to zero, implying that the limit points of zk belong
to zerS when zerS = Z⋆ as claimed.

Lemma C.2. Suppose Assumptions 3.1(i) and 3.1(ii) hold and the stepsize γ < 1
L . Then the resol-

vent JγS is single-valued and has full domain.

Proof. The operator γS is −γL-monotone due to Assumptions 3.1(i) and 3.1(ii). Consequently
(γS)−1 is −γL-comonotone since γ < 1

L due to Bauschke et al. (2021, Lem. 2.8). Thus, the
resolvent JγS is single-valued and has full domain due to Bauschke et al. (2021, Cor. 2.14) which
completes the proof.

D PROOFS FOR SECTION 6 (ANALYSIS OF THE EXPLICIT SCHEME
(ALGORITHM 1))

Theorem 6.1. Suppose Assumption 3.1 holds. Consider the sequence (zk)k∈N generated by Algo-
rithm 1 and let κ := lim infk→∞ λk(2− λk) > 0. Then, for all z⋆ ∈ Z⋆

min
k∈{0,...,K−1}

dist(0, Sz̄k)2 ≤ ∥z0 − z⋆∥2

κγ2(1 + δ
γ − σ)2K

.
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Furthermore, if Z⋆ = zerS then (zk)k∈N converges to some z⋆ ∈ Z⋆. Moreover, let n denote the
number of inner iterations in Algorithm 1. Then,

(i) the error condition passes immediately (i.e. n = 1) even when only γ ≤ 1
L if σ ∈ ( 12 , 1+

ρ
γ )

which is feasible for ρ > −γ
2 .

(ii) the error condition passes after at most n iterations for some γ < 1/L if
σ ∈ ( 2−ln(n)/n

n+1−ln(n)/n , 1 +
ρ
γ ) which is feasible for ρ > − 1

L (1−
ln(n)
n ) n−1

n+1−ln(n)/n .

Proof. The convergence rate and convergence of (zk)k∈N follows immediately from Theorem 5.3.
The resolvent JγA is single-valued and has full domain due to maximally monotonicity of the oper-
ator A. Theorem 6.1(i) follows from the argument in Section 6.1. Theorem 6.1(ii) follows directly
from Lemma D.7 due to Assumptions 3.1(i) and 3.1(ii).

Corollary 6.3. Suppose Assumption 3.1 holds. Consider the sequence (zk)k∈N generated by Algo-
rithm 1 and let κ := lim infk→∞ λk(2 − λk) > 0. Then, for all z⋆ ∈ Z⋆ the sequence achieves
mink∈{0,...,K−1} dist(0, Sz̄

k)2 ≤ ϵ after at most

#(oracle calls) ≤ (1 + n)∥z0 − z⋆∥2

κγ2(1 + δ
γ − σ)2ϵ

to both the operator F and the resolvent (id+γA)−1 where n = ⌈ 6
1+ρL ln( 3

1+ρL )⌉.

Proof. Due to Assumptions 3.1(i) and 3.1(ii), from Lemma D.8 we know that n = ⌈ 6
1+ρL ln( 3

1+ρL )⌉
inner iterations are sufficient for satisfying the error condition. Note that one additional evaluation
of F is carried out at each iteration, i.e. F z̄k. Combined with the rate in Theorem 6.1, the claim is
obtained.

D.1 ANALYSIS OF THE INNER ITERATIONS

In this section we provide a formal proof for the lower bound on the value of ρ. We have that:

σ ≤ ρ/γ + 1 ⇔ ρ ≥ −γ(1− σ)

So we can start by providing a lower bound on the value of σ.

Notation: We will index the inner iterations of Algorithm 1 by j, meaning that we can rewrite the
jth iteration of the inner loop, as:

hk
j = zk − γF z̄kj−1

z̄kj = (id+γA)−1hk
j

For the sake of exposition, let us rewrite the condition of line 5 of Algorithm 1, using this notation:

⟨zk − z̄kj , v̄
k
j ⟩ ≥ (1− σ)

∥∥v̄kj ∥∥2 , where v̄kj = hk
j − z̄kj + γF z̄kj (28)

D.1.1 LOWER BOUND ON σ

If
∥∥v̄kj ∥∥ = 0, then (28) holds trivially for any σ, so for the rest of this section, we will analyse the

case where
∥∥v̄kj ∥∥ > 0

Lemma D.1. For j inner iterations of Algorithm 1, we have that:

σ ≥
∥∥γF z̄kj − γF z̄kj−1

∥∥∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj − γF z̄kj−1

∥∥
19
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Proof. We have that:

zk − z̄kj = zk − γF z̄kj−1 − z̄kj + γF z̄kj−1

= hk
j − z̄kj + γF z̄kj−1

Let us now analyze the left hand side of (28).

2⟨zk − z̄kj , v̄
k
j ⟩ =

∥∥zk − z̄kj
∥∥2 + ∥∥v̄kj ∥∥2 − ∥∥zk − z̄kj − v̄kj

∥∥2
=

∥∥zk − z̄kj
∥∥2 + ∥∥v̄kj ∥∥2 − ∥∥γF z̄kj−1 − γF z̄kj

∥∥2
So from (28), we have the following bound for σ

2− 2σ ≤ 1 +

∥∥zk − z̄kj
∥∥2 − ∥∥γF z̄kj−1 − γF z̄kj

∥∥2∥∥v̄kj ∥∥2
⇔ σ ≥ 1

2

(
1−

∥∥zk − z̄kj
∥∥2 − ∥∥γF z̄kj−1 − γF z̄kj

∥∥2∥∥v̄kj ∥∥2
)

We will now maximize the above lower bound of σ, which is equivalen to maximizing for
∥∥v̄kj ∥∥2.

Since v̄kj = zk − z̄kj + γF z̄kj − γF z̄kj−1, we get from the triangular inequality, that:∥∥v̄kj ∥∥ ≤ ∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj − γF z̄kj−1

∥∥
So we get:

σ ≥ 1

2

(
1−

∥∥zk − z̄kj
∥∥2 − ∥∥γF z̄kj−1 − γF z̄kj

∥∥2(∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj − γF z̄kj−1

∥∥)2
)

⇔ σ ≥ 1

2

(
1−

(∥∥zk − z̄kj
∥∥− ∥∥γF z̄kj−1 − γF z̄kj

∥∥) (∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj−1 − γF z̄kj

∥∥)(∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj − γF z̄kj−1

∥∥)2
)

⇔ σ ≥ 1

2

(
1−

∥∥zk − z̄kj
∥∥− ∥∥γF z̄kj−1 − γF z̄kj

∥∥∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj − γF z̄kj−1

∥∥
)

⇔ σ ≥ 1

2

(∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj − γF z̄kj−1

∥∥− ∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj−1 − γF z̄kj

∥∥∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj − γF z̄kj−1

∥∥
)

⇔ σ ≥
∥∥γF z̄kj − γF z̄kj−1

∥∥∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj − γF z̄kj−1

∥∥

D.1.2 CONTRACTION BOUNDS

Lemma D.2. Suppose Assumptions 3.1(i) and 3.1(ii). For stepsize γ and j inner iterations, we have:∥∥z̄kj − z̄kj+1

∥∥ ≤ (γL)
j ∥∥zk − z̄k1

∥∥
Proof. For the j inner iteration, we have that:∥∥z̄kj − z̄kj+1

∥∥ =
∥∥(id+γA)−1hk

j − (id+γA)−1hk
j+1

∥∥
(Assumption 3.1(ii)) ≤

∥∥hk
j − hk

j+1

∥∥
=

∥∥γF z̄kj−1 − γF z̄kj
∥∥

(Assumption 3.1(i)) ≤ γL
∥∥z̄kj−1 − z̄kj

∥∥
By doing this recursively, we get the lemma statement.
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Lemma D.3. Suppose Assumptions 3.1(i) and 3.1(ii). For stepsize γ and j inner iterations, we have:∥∥γF z̄kj − γF z̄kj+1

∥∥ ≤ (γL)
j+1 ∥∥zk − z̄k1

∥∥
Proof. ∥∥γF z̄kj − γF z̄kj+1

∥∥ ≤ (γL)
∥∥z̄kj − z̄kj+1

∥∥
The statement follows from the previous lemma.

D.1.3 LOWER BOUND FOR
∥∥zk − z̄kj

∥∥
Lemma D.4. Suppose Assumptions 3.1(i) and 3.1(ii). For j inner iterations, we have the following
inequality: ∥∥zk − z̄kj+1

∥∥ ≥ β
∥∥zk − z̄k1

∥∥ (29)

where β = 1−(γL)j+1

1+γL

Proof. We will proceed by proof by contraction. Let us assume that for j inner iterations we have
the following inequality ∥∥zk − z̄kj+1

∥∥ < β
∥∥zk − z̄k1

∥∥ (30)

for β = 1−(γL)j+1

1+γL .
We have that: ∥∥hk

1 − hk
j+1

∥∥ =
∥∥zk − γF z̄kj+1 − zk + γFzk

∥∥ =
∥∥γF z̄kj+1 − γFzk

∥∥
Note that in Algorithm 1, we set z̄k0 = zk. Additionally, we have that: hk

j+1 + γF z̄kj = zk, for all
j ≥ 0.
Then we have that:

∥hk
1 − hk

j+1 − (id+γA)−1hk
1 − (id+γA)−1hk

j+1 + γFzk − γF z̄kj ∥
=

∥∥zk − zk − (id+γA)−1hk
1 − (id+γA)−1hk

j+1

∥∥
(Assumption 3.1(ii)) ≤

∥∥hk
1 − hk

j+1

∥∥
=

∥∥γFzk − γF z̄kj
∥∥

(Assumption 3.1(i)) ≤ (γL)
∥∥zk − z̄kj

∥∥
The first inequality comes from (firmly) nonexpansiveness of the resolvent when the operator is
maximally monotone, while the second one comes from the Lipschitz of the operator F . Now
applying the triangle inequality, we get:

∥hk
1 − hk

j+1 − (id+γA)−1hk
1 − (id+γA)−1hk

j+1 + γFzk − γF z̄kj ∥
≥

∥∥hk
1 − (id+γA)−1hk

1 + γFzk
∥∥

−
∥∥hk

j+1 − (id+γA)−1hk
j+1 + γF z̄kj

∥∥
> (1− β)

∥∥zk − z̄k1
∥∥

Above we used the assumption of the proof (30). Combining the two previous inequality, we get:∥∥zk − z̄kj
∥∥ >

1− β

γL

∥∥zk − z̄k1
∥∥ (31)

From the triangle inequality, we have that:∥∥zk − z̄kj
∥∥− ∥∥zk − z̄kj+1

∥∥ ≤
∥∥z̄kj − z̄kj+1

∥∥ ⇒∥∥zk − z̄kj
∥∥− ∥∥zk − z̄kj+1

∥∥ ≤ (γL)
j ∥∥zk − z̄k1

∥∥ ⇒
1− β

γL

∥∥zk − z̄k1
∥∥− β

∥∥zk − z̄k1
∥∥ < (γL)

j ∥∥zk − z̄k1
∥∥ ⇒

β >
1− (γL)j+1

1 + γL

Where the second line comes from Lemma D.2. The third line comes from our assumption in the
proof, (30) and (31). Thus our assumption (30) is violated which concludes the proof.
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D.1.4 PROOF OF LEMMA D.6

In this section we will provide the bounds on σ and ρ as a function of the product γL and the inner
iterations j of Algorithm 1.
Lemma D.5. Suppose Assumptions 3.1(i) and 3.1(ii). For j iterations of the inner loop of Algo-
rithm 1 and stepsize γ < 1/L, we have that the error condition of line 5 of Algorithm 1 has been
satisfied, for

σ ≥ (γL)j + (γL)j+1

1 + (γL)j+1
(32)

Proof. From Lemma D.1, we have that:

σ ≥
∥∥γF z̄kj − γF z̄kj−1

∥∥∥∥zk − z̄kj
∥∥+ ∥∥γF z̄kj − γF z̄kj−1

∥∥
in order to get the tighest lower bound on σ we want to maximize the right hand side of this
inequality. We can do this by minimizing the value of

∥∥zk − z̄kj
∥∥ and maximizing the value of∥∥γF z̄kj − γF z̄kj−1

∥∥.
From Lemma D.4, we get that: ∥∥zk − z̄kj

∥∥ ≥ β
∥∥zk − z̄k1

∥∥
where β = 1−(γL)j

1+γL

and from Lemma D.3 ∥∥γF z̄kj − γF z̄kj
∥∥ ≤ (γL)

j ∥∥zk − z̄k1
∥∥

combining the above, we get that:

σ ≥
(γL)

j ∥∥zk − z̄k1
∥∥

1−(γL)j

1+γL

∥∥zk − z̄k1
∥∥+ (γL)

j ∥∥zk − z̄k1
∥∥

=
(γL)

j

1−(γL)j

1+γL + (γL)
j

≥ (γL)j + (γL)j+1

1 + (γL)j+1

Now using Lemma D.5, we can state our corresponding lemma, for ρ.
Lemma D.6. For j iterations of the inner loop of Algorithm 1 and stepsize γ < 1/L, we have that
Algorithm 1 handles ρ, for ρ:

ρ ≥ −γ 1− (γL)j

1 + (γL)j+1
(33)

Proof. We start our proof from Lemma D.5, from which we get the inequality:

σ ≥ (γL)j + (γL)j+1

1 + (γL)j+1

We know that for ρ it holds that: ρ ≥ −γ + γ · σ, substituting the inequality for σ completes the
proof.

D.1.5 BOUNDING ρ BY THE NUMBER OF INNER STEPS

In this section we will convert the lower bound on ρ that is presented as a function of γ and L in
Lemma D.6 to a function of the inner iterations n
Lemma D.7. For n inner loop iterations and inner stepsize γ = (1− lnn/n) /L, we get that the
minimum value for ρ, supported by our algorithm is at least:

− 1

L
(1− lnn

n
)

n− 1

n+ 1− lnn
n

(34)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof. Let us restate Lemma D.6 for the sake of exposition.

ρ ≥ −γ 1− (γL)n

1 + (γL)n+1
(35)

By selecting γ = x/L, we have:

ρ ≥ − 1

L
max

x∈(0,1])
{x 1− xn

1 + xn+1
}

Now we will lower bound the max on the right hand side.

max
x∈(0,1]

{x 1− xn

1 + xn+1
} ≥ (1− lnn

n
)

1− (1− lnn
n )n

1 + (1− lnn
n )n+1

≥ (1− lnn

n
)

1− 1
n

1 + 1
n (1−

lnn
n )

≥ (1− lnn

n
)

n− 1

n+ 1− lnn
n

Where in the first line we just choose to set x = 1− ln(n)/n

D.1.6 INFERRING ORACLE COMPLEXITY

Lemma D.8. Suppose Assumption 3.1 holds. Then Algorithm 1 needs to do

n =
6

1 + ρ · L
· ln( 3

1 + ρ · L
)

inner loop iterations.

Proof. We start from the inequality we gave for ρ, Lemma D.7, which states that with n inner loop
iterations we can handle ρ, when:

ρ ≥ − 1

L
(1− lnn

n
)

n− 1

n+ 1− lnn
n

≥ − 1

L
(1− lnn

n
)
n− 1

n+ 1

By multiplying both sides with −L, we get:

−ρ · L ≤ (1− lnn

n
)
n− 1

n+ 1
(36)

Decreasing the right hand side of 36, with respect to n, yields worse requirements complexity wise,
for n and x. Given this observation, now let us set n = 2 · x · ex, for some x, in this case, we have
that:

lnn = ln(2 · x · ex) = x+ ln(2 · x) ≤ 2x− 1 + ln 2 ≤ 2x

Since 2x is the upperbound on lnn, we have that: 1 − lnn
n ≥ 1 − 2x

2xex . Also note that since
2xex ≥ ex, we have that 2xex−1

2xex+1 ≥
ex−1
ex+1 . So:

(1− lnn

n
) · n− 1

n+ 1
≥ (1− 2x

2xex
) · e

x − 1

ex + 1

So we can upperbound the number of iterations n required for a certain ρ, L, by calculating a solution
to the following equation:

−ρ · L = (1− 1

ex
) · e

x − 1

ex + 1
We solve the above equation for ex > 1, since we require n > 0. By solving for ex, we get:

ex =
2− ρ · L+

√
−ρ · L

√
8− ρ · L

2(1 + ρ · L)
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We can simplify the above expression by taking the upperbound for the value of −ρ · L which is 1.
So we get:

ex =
3

1 + ρ · L
By solving for x, we get:

x = ln(
3

1 + ρ · L
)

So we get that for

n =
6

1 + ρ · L
· ln( 3

1 + ρ · L
)

E PROOFS FOR SECTION 7 (LINEAR CONVERGENCE)

Theorem 7.3. Suppose Assumptions 3.1(iii) and 7.1 hold. Consider the sequence (zk)k∈N generated
by (8) with λ ∈ (0, 2), δ ≤ ρ, σ ∈ [0, 1 + δ

γ ). Then, for all z⋆ ∈ Z⋆

dist2(zK , zerS) ≤ (1− ζ)K dist2(z0, zerS)

with ζ = λ(2− λ)
( 1−σ+δ/γ
1−σ+1/τγ

)2
.

Proof. The error condition in (8) can equivalently be written as

⟨zk − z̄k, v̄k⟩ ≥ (1− σ)∥v̄k∥2

Using ∥εk∥2 = ∥zk − z̄k∥2 + ∥v̄k∥2 − 2 ⟨zk − z̄k, v̄k⟩, due to εk = zk − z̄k − v̄k, we have

∥zk − z̄k∥2 + ∥v̄k∥2 − ∥εk∥2 ≥ 2(1− σ)∥v̄k∥2

It follows that
(1− 2σ + 1

1+e )∥v̄
k∥2 ≤ (1 + 1

e )∥z
k − z̄k∥2 (37)

for any e > 0 where we have used Young’s inequality through the inequality

−∥a− b∥2 ≤ − 1
1+e∥a∥

2 + 1
e∥b∥

2

which holds for any a, b ∈ Rd and e > 0. By optimizing a = σ
1−σ in (37) and rearranging we obtain

∥zk − z̄k∥ ≥ ξ∥v̄k∥ (38)

with ξ = 1− σ.

The update (8) is constructed as the KM iteration on the projection operator P in (7). Thus, from
the Fejér monotonicity of the KM iteration established in (27) we have

∥zk+1 − z⋆∥2 ≤ ∥zk − z⋆∥2 − λk(2− λk)∥Pzk − zk∥2

= ∥zk − z⋆∥2 − λk(2− λk)α
2
k∥v̄k∥2

from which it follows that

dist2(zk+1, zerS) ≤ dist2(zk, zerS)− λk(2− λk)α
2
k∥v̄k∥2. (39)

Using the triangle inequality

dist(zk, zerS) ≤ ∥zk − z⋆∥ ≤ ∥z̄k − z⋆∥+ ∥zk − z̄k∥
(38) ≤ ∥z̄k − z⋆∥+ ξ∥v̄k∥

(Assumption 7.1) ≤ ( 1
τγ + ξ)∥v̄k∥ (40)

with z⋆ = ΠzerS(z̄
k). Combining (40) and (39) we obtain

dist2(zk+1, zerS) ≤ (1− ζk) dist
2(zk, zerS)

with ζk = λk(2− λk)α
2
k

1
(1/τ+ξ)2 ≥ λk(2− λk)(1 +

δ
γ − σ)2 1

(1/τγ+ξ)2 which uses αk ≥ 1 + δ
γ − σ

from Proposition 5.1. Taking λk = λ completes the proof.
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F PROOFS FOR SECTION 8 (TIGHTNESS)

To prove the lower bound we rely on the following operator based on Pethick et al. (2022, Ex. 5).
Example F.1. Consider the following linear operator:

Fz = (ay + bx, by − ax) , (41)

where z = (x, y), b < 0 and a > 0. It is straightforward to verify that

(i) Assumption 3.1(i) is satisfied with L =
√
a2 + b2.

(ii) Assumption 3.1(iii) is satisfied with ρ = b
a2+b2 .

Theorem 8.1. Consider a sequence (zk)k∈N generated according to rPPA with γ > 0 and ᾱk > 0
for all k ∈ N. Let ρ ≤ −(1 − ᾱk

2 )γ. Then, there exists an operator S : Rd → Rd for any d > 1
satisfying Assumption 3.1(iii) for which the sequence will not converge.

Proof. We follow the argument in Pethick et al. (2022, Thm. 3.4) closely. The update rule rPPA is
a linear operator by linearity of the operator F . Specifically,

T : = (1− ᾱk)I + ᾱk(I + γF )−1

=

(
ᾱk(bγ+1)−(ᾱk−1)(a2γ2+b2γ2+2bγ+1)

a2γ2+b2γ2+2bγ+1 − aᾱkγ
a2γ2+b2γ2+2bγ+1

aᾱkγ
a2γ2+b2γ2+2bγ+1

ᾱk(bγ+1)
a2γ2+b2γ2+2bγ+1 − ᾱk + 1

)
(42)

A linear dynamical system is globally asymptotically stable iff the spectral radius of the linear map-
ping is strictly less than 1. Let λ1, λ2 be the eigenvalues of T . Then the spectral radius is the largest
absolute value of the eigenvalues. For T we have,

max
i∈{1,2}

|λi| =
√

(a2γ2 + (bγ + 1)2) ((ᾱk − 1)γ ((ᾱk − 1)γ (a2 + b2)− 2b) + 1)

γ2 (a2 + b2) + 2bγ + 1

=

√
(ᾱk − 1)γL2((ᾱk − 1)γ − 2ρ) + 1

γL2(γ + 2ρ) + 1
,

(43)

where we have used that a =
√
L2 − L4ρ2 and b = L2ρ. Solving for maxi |λi| < 1, we obtain

the requirement ρ < −(1 − ᾱk

2 )γ for convergence of the discrete dynamical system. On the other
hand, since (42) is a linear system, we simultaneously learn that picking γ any smaller would imply
non-convergence through maxi |λi| ≥ 1 (given z0 ̸= 0). Noting that problem (42) can be embedded
into a higher dimension completes the proof. We provide an accompanying Mathematica notebook
for verifying the above steps.

G RELAXING ρ THROUGH A COORDINATE-WISE UPDATE

In this section we show that our implicit scheme (8) can also be used to capture a similar construction
to the primal dual extragradient algorithm in Pethick et al. (2023a). The coordinatewise update we
will develop is important for relaxing the Lipschitz condition, which in term can relax the condition
on the weak MVI parameter ρ through the weaker requirement on the stepsizes.

To allow for coordinate specific stepsizes we will introduce the positive definite stepsize matrix
Γ ∈ Rd×d. Note that this generalization of (8) only affects the constants in the resulting convergence
guarantee, but is not necessary for relaxing the condition on ρ. In other words, (8) can directly
capture the Gauss-Seidel type method developed in this section for a particular choice of the error
εk = γ(Mzk(zk) − Mzk(z̄k)) where M is defined in (48). For simplicity we will consider a
nonadaptive variant with some α > 0:

find z̄k ∈ Rd and v̄k ∈ Sz̄k

s.t. Γ−1(zk − z̄k) = v̄k + εk and − ⟨εk, v̄k⟩Γ ≤ σ∥v̄k∥2Γ
compute zk+1 = zk − αΓv̄k

(44)
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Theorem G.1. Suppose Assumptions 3.1(ii) and 3.1(iii) hold. Consider the sequence (zk)k∈N gen-
erated by (44) with α > 0 and ρ > −γ̄(1 − σ − α

2 ) where γ̄ is the smallest eigenvalue of Γ. Then,
for all z⋆ ∈ Z⋆

min
k∈{0,...,K−1}

distΓ(0, Sz̄
k)2 ≤

∥z0 − z⋆∥2Γ−1

2α(1− σ − α
2 + ρ

γ̄ )K
. (45)

Remark G.2. Note that well-definedness and single-valuedness of the proximal update still needs to
be ensured.

Proof. Recall that v̄k ∈ Sz̄k and the error condition

−⟨εk, v̄k⟩Γ ≤ σ∥v̄k∥2Γ (46)

The update in (44) yields

∥zk+1 − z⋆∥2Γ−1 = ∥zk − z⋆∥2Γ−1 + α2∥v̄k∥2Γ − 2α⟨v̄k, zk − z⋆⟩
= ∥zk − z⋆∥2Γ−1 + α2∥v̄k∥2Γ − 2α⟨v̄k, zk − z̄k⟩ − 2α⟨v̄k, z̄k − z⋆⟩
= ∥zk − z⋆∥2Γ−1 − 2α(1− α

2 )∥v̄
k∥2Γ − 2α⟨v̄k, εk⟩Γ − 2α⟨v̄k, z̄k − z⋆⟩

(46) ≤ ∥zk − z⋆∥2Γ−1 − 2α(1− σ − α
2 )∥v̄

k∥2Γ − 2α⟨v̄k, z̄k − z⋆⟩
(Assumption 3.1(iii)) ≤ ∥zk − z⋆∥2Γ−1 − 2α(1− σ − α

2 )∥v̄
k∥2Γ − 2αρ∥v̄k∥2

≤ ∥zk − z⋆∥2Γ−1 − 2α(1− σ − α
2 + ρ

γ̄ )∥v̄
k∥2Γ (47)

where the last inequality uses that ∥v̄k∥2 ≤ 1
γ̄ ∥v̄

k∥2Γ with γ̄ being the smallest eigenvalue of Γ.
Rearranging, summing and telescoping completes the proof.

Instead of making Lipschitz continuity assumptions on F in S = F + A directly, we consider the
following operator,

Mu(z) := F (z)−Qu(z), (48)

where the operator Qu : Rd → Rd is to be defined.

Assumption G.3. The operator M as defined in (48) is LM -Lipschitz with LM ≤ 1 with respect to
a positive definite matrix Γ ∈ Rd×d, i.e.

∥Mz(z)−Mz(z
′)∥Γ ≤ LM∥z − z′∥Γ−1 ∀z, z′ ∈ Rd. (49)

We will write the update in terms of Hu(z) := Γ−1z −Mu(z), which will be important in order
to relax the Lipschitz conditions. With Mu defined, it is straightforward to establish that Hu is 1/2-
cocoercive and strongly monotone as long as Mu is LM -Lipschitz continuous as done in (Pethick
et al., 2023a) (see Lemma G.4). This provides a strict generalization of Lemma A.4 concerning the
forward operator H := id−γF .

Lemma G.4 (Pethick et al. (2023a, Lem. F.2)). Suppose Assumption G.3 holds and let Γ ∈ Rd×d

be a positive definite matrix. Then, the mapping Hu(z) := Γ−1z −Mu(z) is 1/2-cocoercive, i.e.,

⟨Hz(z
′)−Hz(z), z

′ − z⟩ ≥ 1
2∥Hz(z

′)−Hz(z)∥2Γ ∀z, z′ ∈ Rd. (50)

Proof. By expanding using (48),

Hz(z)−Hz(z
′) = Γ−1(z − z′)− (Mz(z)−Mz(z

′)). (51)

Using this we can show cocoercivity,

⟨Hz(z
′)−Hz(z), z

′ − z⟩ = ⟨Hz(z
′)−Hz(z), Hz(z

′)−Hz(z)− (Mz(z)−Mz(z
′))⟩Γ

(51) = 1
2∥Hz(z

′)−Hz(z)∥2Γ + 1
2∥z

′ − z∥2Γ−1 − 1
2∥Mu(z)−Mu(z

′)∥2Γ
(Assumption G.3) ≥ 1

2∥Hz(z
′)−Hz(z)∥2Γ + 1

2 (1− L2
M )∥z′ − z∥2Γ−1 (52)

This establishes the claim.
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Specifically, pick the error εk = Mzk(zk) −Mzk(z̄k) in (44) such that the update rule defining z̄k

reduces to a preconditioned update asking for a z̄k ∈ Rd such that

Hzk(zk)−Hzk(z̄k) = v̄k ∈ Sz̄k (53)

Thus, the update (44) for the particular choice of εk reduces to the following with Γ ∈ Rd×d and
α > 0:

find z̄k ∈ Rd, vk ∈ Sz̄k

s.t. Hzk(zk)−Hzk(z̄k) = v̄k

compute z̄k+1 = zk − αΓ(Hzk(zk)−Hzk(z̄k))

(54)

We obtain the following corollary by specializing Theorem G.1 to the update in (54).
Corollary G.5. Suppose Assumptions 3.1(ii), 3.1(iii) and G.3 hold. Consider the sequence (zk)k∈N

generated by (54), α > 0 and ρ > − (1−α)γ̄
2 where γ̄ is the smallest eigenvalue of Γ. Then, for all

z⋆ ∈ Z⋆

min
k∈{0,...,K−1}

distΓ(0, Sz̄
k)2 ≤

∥z0 − z⋆∥2Γ−1

α(1− α+ 2ρ
γ̄ )K

. (55)

Proof. Let us compute the error tolerance σ for the particular choice of the error εk. From 1/2-
cocoercive due to Lemma G.4 we immediately have

1
2∥Hzk(zk)−Hzk(z̄k)∥2Γ ≤ ⟨Hzk(zk)−Hzk(z̄k), zk − z̄k⟩

= ⟨Hzk(zk)−Hzk(z̄k),Mzk(zk)−Mzk(z̄k)⟩Γ
+ ∥Hzk(zk)−Hzk(z̄k)∥2Γ

(56)

which is equivalent to −⟨v̄k, εk⟩Γ ≤ σ∥v̄k∥2Γ with σ = 1
2 . We obtain the result by specializing

Theorem G.1 for the particular σ.

Observe that the weak MVI parameter ρ in Corollary G.5 depends on the Lipschitz constant of op-
erator M rather than Lipschitz operator F directly, through the smallest eigenvalue γ̄ of the stepsize
matrix Γ. This is important because γ̄ can potentially be larger than γ̄ = 1

L , which is otherwise
required if we were relying on L-Lipschitz of F .

In the following, we will choose an asymmetric Q in M , that leads to a well-defined (Gauss-Seidel)
update for z̄k, and then subsequently show the implication for the Lipschitz condition. For simplic-
ity, we first illustrate the idea for minimax problem resulting in a block-coordinate update with only
two blocks.

Minimax Consider the following minimax problem

min
x∈X

max
y∈Y

ϕ(x, y). (57)

We will pick an asymmetric Q,
Qz(z̄) = (0,−∇yϕ(x̄, y)) (58)

with z = (x, y) and z̄ = (x̄, ȳ), in which case (53) is well-defined and becomes an alternating
update

z̄k = (Hzk + S)−1Hzk(zk) ⇔
{
x̄k = ΠX (xk − Γ1∇xϕ(x

k, yk))

ȳk = ΠY(y
k + Γ2∇yϕ(x̄

k, yk))
(59)

where we have rescaled the iterates for convenience by defining Γ−1z̄k = (x̄k, ȳk). We furthermore
have that the desired Lipschitz assumption on the operator M (Assumption G.3) holds provided

∥∇xϕ(x, y)−∇xϕ(x
′, y′)∥2 ≤ L2

xx∥x− x′∥2 + L2
xy∥y − y′∥2

∥∇yϕ(x, y)−∇yϕ(x, y
′)∥2 ≤ L2

yy∥y − y′∥2

Specifically, we have that LM =
√
max{L2

xx∥Γ1∥2, L2
xy∥Γ2∥2 + L2

yy∥Γ2∥2} which can be smaller
than the Lipschitz constant L of the operator F .
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Coordinatewise More generally, we can consider a block-coordinatewise update for a general
F (z) = (F1(z), . . . , Fm(z)). Consider the decomposition z = (z1, . . . , zm) ∈ Rd and define the
shorthand notation z≤i := (z1, z2, . . . , zm) and z≥i := (zi, . . . , zm) for the truncated vector. More-
over suppose that A decomposes into Az = (A1z1, . . . , Amzm) with Ai : Rdi ⇒ Rdi maximally
monotone and define Γ = blkdiag(Γ1, . . . ,Γm) where Γi ∈ Rdi×di are positive definite matrices.
We will pick an asymmetric Q,

Qz(z̄) = (0, F1(z̄1, z≥2), F2(z̄1, z̄2, z≥3), . . . , Fm(z̄≤m−1, zm)) (60)

in which case (53) is well-defined (see Pethick et al. (2023a, Lem. F.1)) and becomes a Gauss-Seidel
update

z̄k = (Hzk +S)−1Hzk(zk) ⇔ z̄ki =

{
(Γ−1

1 +A1)
−1(zk1 − F1(z

k)) if i = 1

(Γ−1
i +Ai)

−1(zki − Fi−1(z̄
k
≤i−1, z

k
≥i)) if i = 2, . . . ,m

(61)
We furthermore have that the desired Lipschitz continuous assumption on the operator M (Assump-
tion G.3) holds provided

∥Fi(z)− Fi(z≤i−1, z
′
≥i)∥2 ≤

∑m
j=i L

2
zizj∥zj − z′j∥2 ∀i ∈ [m]

Specifically, we have that L2
M = maxi∈[m]{

∑
j∈[i] L

2
zjzi∥Γi∥2} which can be smaller than the

Lipschitz constant L of the operator F .
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