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Abstract

We introduce MULTIMODAL FAITHSCORE001
(Faithfulness in Atomic Fact Score), a fine-002
grained evaluation metric that measures the003
faithfulness of generated responses to an in-004
put image and corresponding open-ended ques-005
tions. MULTIMODAL FAITHSCORE first iden-006
tifies sub-sentences that should be verified,007
then extracts nuanced elements from identi-008
fied sub-sentences, and finally conducts con-009
sistency verification between elements and the010
input image. Meta-evaluation demonstrates011
that our reference-free metric highly corre-012
lates with human judgments of faithfulness.013
We measure hallucinations in state-of-the-art014
LLVMs with MULTIMODAL FAITHSCORE.015
Based on both automatic evaluation and hu-016
man judgments, we show that current systems017
mostly face challenges such as unfaithful gen-018
erations that are not grounded to the image,019
which leaves room for improvements in perfor-020
mance. Our codes and data are publicly avail-021
able at https://577279815.wixsite.022
com/multimodalfathscore.023

1 Introduction024

Large Language Models (LLMs), such as GPT-025

3 (Brown et al., 2020) and ChatGPT (OpenAI,026

2022), have demonstrated various language model-027

ing capabilities. Despite their achievements, they028

still lack the capacity to handle multimodal inputs029

effectively. As a result, a significant amount of030

research has shifted its focus towards Large Vision-031

Language Models (LVLMs) (Liu et al., 2023b;032

Ye et al., 2023; Sun et al., 2023), by incorporat-033

ing powerful LLMs (Touvron et al., 2023; Chi-034

ang et al., 2023) and Vision Foundation Mod-035

els (VFMs) (Dosovitskiy et al., 2021; Bommasani036

et al., 2021). Furthermore, LVLMs have shown037

strong performance on various multimodal tasks,038

such as VQA (Antol et al., 2015), Image Caption-039

ing (Lin et al., 2014), and Multimodal Conversa-040

tion (Liu et al., 2023b).041

Im
ag

e

What is the position of 
the skateboard in the 
image?

Question
The skateboard is 
positioned on a 
ramp, with the 
s k a t e b o a r d e r 
standing on it.

Answer

Can you elaborate on 
the elements of the 
picture provided?

The image features a 
young boy standing 
on a skateboard, 
which is placed on a 
wooden ramp. The 
boy is wearing a 
green shirt...

Question

Answer

Figure 1: Two testing examples for LVLMs. Answers
are generated by the LLaVA model. The part high-
lighted in blue denotes hallucinations in the answers.

Unfortunately, the problem of hallucination in 042

LLMs is pervasive and poses a significant chal- 043

lenge, often leading these models to generate mis- 044

leading or fabricated information (Ji et al., 2023b). 045

Similar to LLMs, LVLMs continue to grapple with 046

the issue of hallucination, where they produce in- 047

accurate information that is incongruent with the 048

provided visual input. As shown in Figure 1, one 049

of the commonly used LVLMs, LLaVA (Liu et al., 050

2023b), generates answers with several inaccurate 051

descriptions (e.g., stateboarder standing on it, a 052

young boy standing on a sketeboard and a green 053

shirt), which is not faithful towards the input im- 054

age. The phenomenon of hallucination in models 055

introduces potential hazards that could result in 056

significant consequences such as misinformation 057

and safety concerns, thus degrading the model’s 058

usability inevitably (MacLeod et al., 2017). Hence, 059

it is imperative that these issues are thoroughly 060

measured and addressed (Ji et al., 2023b). 061

Despite the phenomenon of hallucinations in 062

LVLMs should not be underestimated, there has 063

been limited exploration that measured the degree 064
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Image

What is unusual about this 
image?

Question

The unusual aspect of this 
image is a man ironing 
clothes on the back of a 
minivan or van. This is not a 
typical place to perform this 
activity, as one would usually 
iron clothes in a more station-
ary and safe location, such as 
a home, using a regular 
ironing board. The scene 
depicted in the image is 
peculiar as it involves a 
makeshift ironing setup on a 
vehicle, which can be both 
unsafe and unconventional. 
Additionally, it is not clear 
how the man is able to 
maintain balance and stability 
while ironing clothes in such 
an unstable environment.

Answer

LLaVA

Figure 2: A testing sample of complex reasoning ques-
tion for LVLMs. The blue words denotes commonsense
reasoning-related content in the answer.

of hallucinations in LVLMs. Li et al. (2023b) was065

among the first to propose an evaluation method for066

the hallucinations of LVLMs. In addition, Gunjal067

et al. (2023) annotated a multi-modal hallucination068

detection dataset for detailed image description069

evaluation. Moreover, Lovenia et al. (2023) devised070

Negative Object Presence Evaluation (NOPE) to071

quantitatively evaluate object hallucination through072

VQA. Although prior work has achieved success,073

none of them explored evaluating hallucination of074

the complex and free-form response to the open-075

ended question (OpenAI, 2023).076

Evaluating hallucinations present in free-form077

responses is especially challenging for two primary078

reasons: (1) Free-form answers contain hybrid of079

description and analysis. Unlike image caption-080

ing, answering complex questions in a free-form081

manner does not simply generate a descriptive con-082

tent of the given image. It also contains a certain083

degree of analytic content such as commonsense084

reasoning. As depicted in Figure 2, certain sub-085

sentences (e.g., those highlighted in blue) do not re-086

quire verification with the image input due to their087

analytical nature. More precisely, they encompass088

commonsense reasoning that extends beyond mere089

visual inputs, rather than solely offering a direct090

description of the visual modality. Thus, pinpoint-091

ing the descriptive content within the responses092

generated by LVLMs poses a major challenge. (2)093

Model outputs are prone to contain multiplic-094

ity of hallucinations. Current methodologies of-095

fer a constricted view on evaluating hallucinations,096

primarily concentrating on coarse-grained object097

existences, while neglecting other fine-grained el-098

ements, such as counts, colors, and the spatial in-099

terrelations between objects, which also form a 100

significant portion of hallucinations (Gunjal et al., 101

2023). Consequently, devising a method to holisti- 102

cally evaluate fine-grained hallucinations emerges 103

as another substantial challenge. 104

To address the aforementioned challenges, we 105

propose the MULTIMODAL FAITHSCOREmetric. 106

This metric comprises three primary components: 107

Descriptive Sub-sentence Identification, Atomic 108

Fact Generation, and Fact Verification, as illus- 109

trated in Figure 3. The first component is tasked 110

with discerning descriptive sub-sentences within 111

the composite content of the generated answer. 112

The second component deconstructs this descrip- 113

tive content into fine-grained elements (i.e., atomic 114

facts). These facts cover a variety of types, such 115

as color and count. The final component empha- 116

sizes verifying the consistency between the visual 117

modality information and the devised atomic facts 118

via the Visual Entailment Model (VEM) (Xie et al., 119

2019). Based on the proposed metric, we evaluated 120

several advanced LVLMs. From the result, we con- 121

clude that current LVLMs still face challenges of 122

unfaithful generations that are not grounded in the 123

image, which leaves room for improvement. 124

In summary, our contributions are as follows: 125

(1) We introduce MULTIMODAL FAITHSCORE, 126

a metric tailored to assess various types of hallu- 127

cinations in LLVMs free-form answers to open- 128

ended questions, which is neglected by current 129

methods; (2) To the best of our knowledge, this 130

work is the first study that systematically evalu- 131

ates the fine-grained hallucinations of free-form an- 132

swers to open-ended questions in existing LVLMs; 133

(3) In our quest to understand the hallucinations 134

manifested by LVLMs, we embarked on compre- 135

hensive experiments with six publicly available 136

models across diverse datasets. Our findings un- 137

derscore that addressing hallucination remains a 138

pressing challenge for LVLMs. 139

2 Related Work 140

Large Vision-Language Model Motivated by 141

the success of the pertaining technique in LLMs 142

and Vision Foundation Models (VFMs), the multi- 143

modal committee has recently shifted the research 144

attention to LVLMs. Contemporary advanced 145

LVMs predominantly feature three core compo- 146

nents: a text encoder, an image encoder, and a 147

cross-modal alignment module. Specifically, the 148

text encoder often takes the form of a language 149
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model, as seen in examples like LLaMA (Tou-150

vron et al., 2023) and Vicuna (Chiang et al., 2023).151

Conversely, the image encoder is typically derived152

from VFMs, such as ViT (Dosovitskiy et al., 2021).153

The function of the cross-modal alignment module154

is to bridge visual content with textual represen-155

tation, enhancing the text encoder’s capacity to156

interpret visual semantics. To accomplish visual157

understanding, LVLMs typically undergo multi-158

ple training phases (Gong et al., 2023; Zhu et al.,159

2023; Liu et al., 2023a). For instance, Liu et al.160

(2023b) first aligns the image features with the161

word embeddings of a pre-trained LLM during an162

initial pre-training stage, and subsequently fine-163

tunes the LVLM using specialized language-image164

instruction-following datasets. For efficiency en-165

hancement, LVLMs often freeze parameters of the166

LLM or VFM, and are trained with efficient fine-167

tuned techniques (Ye et al., 2023; Dai et al., 2023),168

such as LoRA (Hu et al., 2022).169

However, in spite of the considerable advance-170

ments made by LVLMs, they consistently grapple171

with hallucination issues. These issues markedly172

impact their efficacy across a range of vision-173

language tasks.174

Vision-language Model Hallucinations and Eval-175

uations Though hallucination phenomenons and176

mitigation methods have been extensively studied177

in the text generation literature (Ji et al., 2023a;178

Min et al., 2023a), it is much less investigated in179

vision-language models (Dai et al., 2023; Liu et al.,180

2023c). Current work mainly focuses on the con-181

straint setting such as image captioning. For exam-182

ple, Rohrbach et al. (2018) propose caption halluci-183

nation assessment with image relevance (CHAIR),184

which is a popular metric for evaluating object hal-185

lucination in sentence-level captions. They also186

show that popular metrics like METEOR (Baner-187

jee and Lavie, 2005a) and CIDEr (Vedantam et al.,188

2015) do not capture this. Li et al. (2023a) ex-189

tends CHAIR and proposes “POPE”, polling-based190

query technique for probing objects. Besides, Love-191

nia et al. (2023) devised Negative Object Presence192

Evaluation (NOPE) to quantitatively assess object193

hallucination through VQA, based on “POPE”.194

Gunjal et al. (2023) further proposed to detect hal-195

lucinations in more detailed image captions and196

investigated utilizing a reward model for mitigating197

them.198

Different from all above, we are the first to pro-199

pose a general metric for evaluating the responses200

of open-ended visual question answering setting, 201

where answers are of free-form and lengthy (pas- 202

sages). 203

3 MULTIMODAL FAITHSCORE 204

In this section, we begin by clearly defining the re- 205

search problem, followed by a detailed explanation 206

of the devised MULTIMODAL FAITHSCOREmetric 207

framework. 208

3.1 Task and Settings 209

Suppose we have an image I and a question Q cor- 210

responding to the image and then feed them into 211

a large vision-language model denoted as M, and 212

obtain the generated answer Ai. Our objective is 213

to design a scoring function F that yields a faith- 214

fulness score based on the generated answer A, the 215

input question Q, and the input image I , defined as 216

f = F(A,Q, I). f is a real value ranging between 217

0 and 1. Notably, the devised evaluation method 218

doesn’t need a ground truth answer. 219

In order to assess the faithfulness of the gener- 220

ated answers by Large Vision-Language models, 221

we introduce a novel metric called MULTIMODAL 222

FAITHSCOREto implement the scoring function 223

F . The MULTIMODAL FAITHSCOREmetric com- 224

prises three key components: descriptive sub- 225

sentence identification, atomic fact generation, and 226

fact verification, as depicted in Figure 3. We in- 227

troduce Recognizer, Dcomposer, and Verifier, to 228

fulfill these components, respectively. 229

Descriptive Sub-sentence Identification. Un- 230

like LLMs, faithfulness in the context of vision- 231

language models refers to the consistency between 232

the input visual modality content and the generated 233

answer. Notably, we should focus on the content 234

that is an objective description of the input image. 235

Therefore, our first step is to identify the descriptive 236

sub-sentences within the answer by a recognizer, to 237

obtain a more precise and fine-grained understand- 238

ing of the hallucination. 239

Based on the actual answers generated by 240

LVLMs, we have observed that humans are ca- 241

pable of distinguishing descriptive sub-sentences 242

from other sub-sentences (referred to as analytical 243

sub-sentences) by analyzing the content of these 244

generated answers. However, it’s important to note 245

that manually identifying descriptive sub-sentences 246

within the answers is a resource-intensive process, 247

requiring both time and labor for human annota- 248

tions. As a practical solution, we turn to the LLM 249
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The unusual aspect of this image is a man 
ironing clothes on the back of a minivan 
or van. This is not a typical place to 
perform this activity, as one would 
usually iron clothes in a more stationary 
and safe location, such as a home, using a 
regular ironing...

Answer

The unusual aspect of this image is a man 
ironing clothes on the back of a minivan 
or van. This is not a typical place to 
perform this activity, as one would 
usually iron clothes in a more stationary 
and safe location, such as a home, using a 
regular ironing……

Descriptive Content

Atomic Facts
 A man is ironing clothes. A man is ironing clothes. A man is ironing clothes. A man is ironing clothes.

Image

Recognizer

Verifier

Decomposer

Figure 3: An overview of MULTIMODAL FAITHSCORE,
which mainly consists of three components: Descriptive
Sub-sentence Identification, Atomic Fact Generation,
and Fact Verification. The blue words denote recognized
descriptive content.

to implement the recognizer, which has demon-250

strated remarkable text analysis capabilities across251

a wide range of natural language processing tasks.252

To be specific, our approach focuses on craft-253

ing a prompt that encompasses task instructions254

and in-context learning examples. This designed255

prompt is subsequently input into LLMs, leading256

to the generation of annotated results, defined by257

the equation:258

Â = LLM(A,P ) (1)259

where Â signifies the generated result, from which260

we can extract all descriptive sub-sentences, de-261

noted as A′. For a more comprehensive under-262

standing of the specific prompt P utilized in this263

process, please refer to the Appendix.264

Atomic Fact Generation. The descriptive sub-265

sentences denoted as A′ encompass multiple pieces266

of information (i.e., atomic facts), each of which267

may have varying degrees of faithfulness. There-268

fore, we need a decomposer to break the sub-269

sentences into atomic facts to get a fine-grained270

evaluation. In order to assess the faithfulness of an-271

swers generated by LVLMs at a fine-grained level,272

prior research (Li et al., 2023b) has employed the273

Caption Hallucination Assessment with Image Rel-274

evance (CHAIR) metric (Rohrbach et al., 2018) to275

evaluate hallucination in image captioning tasks.276

However, it is worth noting that the CHAIR met- 277

ric primarily focuses on object-level hallucination, 278

neglecting aspects such as object attributes and re- 279

lationships between objects. Additionally, it relies 280

on the availability of additional labels for objects 281

and encompasses a limited variety of object types. 282

Hence, to address these limitations, we intro- 283

duce a novel mechanism that can break down the 284

original sentence into atomic facts. In particular, 285

we break sentences down into atomic facts. We 286

divide the atomic facts into five distinct categories: 287

entity, count, color, relation, and other attributes, 288

which can cover all the content of the answer. In 289

this paper, we define atomic fact as the information 290

belonging to one category in the above five cate- 291

gories. Importantly, the atomic fact is a minimal 292

unit of information, which can ensure verification 293

of each element in the answer and avoid being dis- 294

turbed by other information. For example, for the 295

category entity, the atomic fact can’t contain more 296

than two entities. To facilitate understanding, you 297

can refer to the prompt of atomic fact generation in 298

the Appendix and get some examples. 299

This approach allows us to identify and assess 300

hallucinations in terms of different categories and 301

atomic levels. To achieve this, similar to the pro- 302

cess of identifying descriptive sub-sentences, we 303

also rely on LLMs for the generation of atomic 304

facts. More precisely, we annotate a set of K ex- 305

amples for demonstrations and prompt LLMs for 306

sentence decomposition as follows: 307

Ei = LLM(A′, P ′), i ∈ [1, C] (2) 308

where Ei = {e1i , · · · , e
ni
i } represents all (i.e., ni) 309

atomic facts pertaining to the i-th category, and C 310

stands for the total number of categories. It is im- 311

portant to note that the set Ei may occasionally be 312

an empty set. Further details regarding the specific 313

prompt P ′ utilized in this process can be found in 314

the Appendix. 315

Fact Verification. To calculate the MULTI- 316

MODAL FAITHSCOREscore for the LVLM answer, 317

we first compute the score for each fact and then 318

aggregate them to derive the overall score using the 319

following formula: 320

f̂ =

∑C
i=1

∑nj

j=1w
j
i · s(e

j
i , I)∑C

i=1

∑nj

j=1 1
, (3) 321

where f̂ represents the overall faithfulness score 322

of the answer A. The function s(eji , I) refers to 323
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Metric Spearman’s ρ % Kendall’s τ %

BLEU-1 4.6 -10.3
BLEU-2 2.0 -9.2
BLEU-3 -2.6 -12.6
BLEU-4 -4.6 -13.5
ROUGE-1 22.1 14.6
ROUGE-2 9.3 -1.6
ROUGE-L 14.1 10.3
METEOR 0.6 -12.5
CHAIR -26.8 -38.5
CLIP-Score -6.5 -1.5
Ours 34.8 28.5

Table 1: Correlation between each evaluation metric and
human judgment on LVLM hallucinations, measured by
Spearman’s ρ and Kendall’s τ .

the verification function (i.e., Verifier), which de-324

termines whether eji can be supported by the input325

image I . To implement this function, we resort to326

the Visual Entailment model. When the Visual En-327

tailment model outputs 1, indicating that the image328

I semantically entails the text eji , and 0 otherwise.329

The parameter wj
i is a weighted factor that can be330

used to assign different weights to different atomic331

facts for various tasks. In this paper, we set all the332

weights to 1, following the setting of the existing333

work (Min et al., 2023b; Krishna et al., 2023).334

In addition, we further introduce a sentence-level335

MULTIMODAL FAITHSCOREscore as follows,336

f̂s =
Ch

C
, (4)337

where C is the total number of descriptive sub-338

sentences in the answer and Ch is the total number339

of descriptive sub-sentences with hallucination in340

the answer.341

4 Meta-evaluate MULTIMODAL342

FAITHSCORE for Automatic343

Evaluation344

To verify that our automatic evaluation correlates345

with human judgment, we conduct a human evalua-346

tion in terms of hallucination. We select the testing347

dataset from LLaVA for human evaluation. This348

testing set is a visual instruction dataset comprising349

three distinct sample types: detailed description,350

conversation, and complex question. For each of351

these sample types, this dataset included 30 sam-352

ples. We select LLaVA (Liu et al., 2023b) and353

mPLUG-Owl (Ye et al., 2023) models for halluci-354

nation evaluation.355

4.1 Annotation Process 356

For each testing sample, we meticulously crafted an 357

annotation process to assign the faithfulness score 358

to the text via the subsequent steps. 359

Step 1: Sub-sentence Identification. Annota- 360

tors first should review the given question, the 361

corresponding answer, and the associated image. 362

Subsequently, they evaluate each sub-sentence ex- 363

tracted from the answer. If a sub-sentence is an 364

objective description of visual information, they 365

mark it as the "description" category; otherwise, 366

it’s categorized as "analytics". For the “analytics” 367

sub-sentence, annotators should skip the following 368

steps. Otherwise, they should follow the next steps. 369

Step 2: Atomic Fact Revision. In this step, the 370

human annotator should decompose the descrip- 371

tive sub-sentence into a sequence of atomic facts. 372

To optimize the annotation process and reduce the 373

time required, we pre-supply atomic facts derived 374

from ChatGPT. Annotators then have the flexibil- 375

ity to use or modify these facts as needed. In 376

particular, annotators meticulously examine each 377

atomic fact to ensure its fidelity to the given sub- 378

sentence. Atomic facts that are either redundant 379

or non-atomic facts are promptly removed. Sub- 380

sequently, the focus shifts to the linguistic aspect, 381

ensuring that each atomic fact is articulated in a 382

coherent manner and that it accurately represents 383

the intended entity or concept by revision atomic 384

facts. Additionally, any missing atomic facts that 385

should have been included in the sub-sentence are 386

added. 387

Step 3: Fact Verification. In this step, for every 388

individual atomic fact derived from the descrip- 389

tive sub-sentence, annotators assess its consistency 390

with the given image. If the content of atomic facts 391

is not present or contradicts the image, it’s identi- 392

fied as a hallucination, and accordingly marked as 393

"yes". Conversely, if the element is in alignment 394

with the image, it’s validated and marked as "no". 395

To quantify the correlation score, we employed the 396

Likert Scale (Likert, 1932) to gauge the faithful- 397

ness of LVLM. This approach transforms human 398

evaluations into a tangible scale, ranging from 1 399

(being the poorest) to 5 (being the best). The details 400

are given in the Appendix B. 401

We have 3 employers for annotation and every 402

person annotated 180 testing samples. We recruit 403
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Model Conversation Detailed Description Complex Question Overall

MiniGPT-4 0.7122 0.7006 0.7019 0.7049
LLaVA 0.7403 0.7164 0.7163 0.7243
LLaVA-1.5 0.7419 0.7378 0.7358 0.7385
InstructBLIP 0.7650 0.7399 0.7439 0.7496
Multimodal-GPT 0.6458 0.6314 0.6387 0.6386
mPLUG-Owl 0.7868 0.7696 0.7778 0.7781

Table 2: Evaluation results of different LVLMs on the LLaVA-1k dataset.

Model Performance

MiniGPT-4 0.6482
LLaVA 0.6760
LLaVA-1.5 0.7689
InstructBLIP 0.8316
Multimodal-GPT 0.6710
mPLUG-Owl 0.7039

Table 3: Evaluation results of different LVLMs on the
MSCOCO-Cap dataset

annotators via Amazon Mechanical Turk1 and pay404

15-20 USD per hour. The average time to com-405

plete all steps of the annotation process is 212.8406

seconds. More details about the annotation process407

are provided in the Appendix.408

4.2 Correlations with Different Metrics409

To verify the superiority of our proposed atomic410

metric, we compare it with several generation met-411

rics: BLEU-{1-4} (Papineni et al., 2002), Rouge-412

{1,2, L} (Lin, 2004), METEOR (Banerjee and413

Lavie, 2005b), CHAIR (Rohrbach et al., 2018),414

and CLIP-Score (Hessel et al., 2021). To ascertain415

the reliability of human evaluation, we determined416

the Fleiss’ kappa values across all annotators for417

the sub-sentence identification task, arriving at a418

value of 67.5%. This signifies a robust consensus419

among the annotators. Additionally, for the defini-420

tive faithfulness score, we derived Fleiss’ kappa421

values involving all annotators and achieved a re-422

sult of 47.7%. This suggests a moderate level of423

concordance among the evaluation participants.424

Table 1 delineates the correlation between var-425

ious evaluation metrics and human judgment re-426

garding LVLM hallucinations, gauged using Spear-427

man’s ρ and Kendall’s τ . One particularly in-428

triguing observation is the CHAIR metric, which429

1https://requestersandbox.mturk.com/.

exhibits a pronounced negative correlation, even 430

though it was specifically engineered for object 431

hallucination evaluation. A potential reason for 432

CHAIR’s deviation from human evaluation could 433

be rooted in its inherent design, which narrows its 434

focus predominantly to a limited range of objects. 435

This constrained scope may not adeptly address 436

fine-grained and open-domain hallucinations, thus 437

diminishing its efficacy and resonance with more 438

comprehensive human evaluations. However, amid 439

the varied metrics landscape, our metric MULTI- 440

MODAL FAITHSCOREdistinctly shines. It registers 441

a robust positive correlation, emphasizing its supe- 442

rior alignment with human perceptions. 443

5 Evaluating Hallucinations with 444

MULTIMODAL FAITHSCORE 445

5.1 Models 446

We selected six open-source widely used large 447

vision-language models for evaluation. 1) 448

MiniGPT-4 (Zhu et al., 2023); 2) LLaVA (Liu 449

et al., 2023b); 3) InstrucBLIP (Dai et al., 2023); 4) 450

Multimodal-GPT (Gong et al., 2023); 5) mPLUG- 451

Owl (Ye et al., 2023); 6) LLaVA-1.5 (Liu et al., 452

2023a). In particular, these LVLMs are composed 453

of three essential components: a visual encoding 454

module, an alignment mechanism, and a large lan- 455

guage model. Furthermore, all of these models 456

have undergone fine-tuning using curated datasets 457

of visual instruction data. 458

5.2 Datasets 459

To assess the performance of existing LVLMs, 460

we conducted experiments using various datasets. 461

Here is a description of each dataset: (1) MSCOCO- 462

Cap: This dataset is designed for the image cap- 463

tioning task. We randomly selected 1,000 images 464

from the MSCOCO (Lin et al., 2014) validation 465

set and devised the prompt as "Generate a con- 466

cise caption for the given image"; (2) LLaVA-1k: 467

6
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Model Conversation Detailed Description Complex Question Overall

MiniGPT-4 0.5248 0.5042 0.5169 0.5153
LLaVA 0.4562 0.4205 0.4236 0.4334
LLaVA-1.5 0.4763 0.4708 0.4793 0.4755
InstructBLIP 0.4952 0.4813 0.4762 0.4842
Multimodal-GPT 0.4184 0.4034 0.4371 0.4197
mPLUG-Owl 0.5131 0.5202 0.5426 0.5253

Table 4: Sentence-level evaluation results of different LVLMs on the LLaVA-1k dataset.

Model Performance

MiniGPT-4 0.4024
LLaVA 0.3298
LLaVA-1.5 0.4034
InstructBLIP 0.4845.
Multimodal-GPT 0.5364
mPLUG-Owl 0.3716

Table 5: Sentence-level evaluation results of different
LVLMs on the MSCOCO-Cap dataset

Similar to the LLaVA dataset, we extracted 1,000468

images from the COCO validation set and gener-469

ated three sample types (i.e., detailed description,470

conversation, and complex question) for each im-471

age, following the data augmentation methodology472

outlined in (Liu et al., 2023b).473

5.3 Hallucination Evaluation474

Table 2 and Table 3 present a comprehensive per-475

formance comparison of various models in terms of476

MULTIMODAL FAITHSCOREwhen benchmarked477

on the LLaVA-1k and MSCOCO-Cap datasets.478

(1) m-PLUG-Owl distinctly outperforms its coun-479

terparts on the LLaVA-1k and MSCOCO-Cap480

datasets. This demonstrates its preeminent capabil-481

ity in achieving and maintaining faithfulness dur-482

ing generation processes. A significant contributor483

to the model’s standout performance is its exten-484

sive utilization of visual instruction data. This im-485

plies that leveraging vast amounts of visual data486

might be key for future improvements in the field.487

(2) It’s worth noting that different models exhibit488

varied strengths across tasks. For instance, while489

mPLUG-Owl leads in the "Conversation" and "De-490

tailed Description" tasks, InstructBLIP outshines in491

the "Complex Question" category. This may be be-492

cause of the differences between data that is Used493

to do instruction tuning. (3) Compared to LLaVA,494

LLaVA-1.5 demonstrates significantly superior per-495

Figure 4: The illustration of the length distribution over
different models and datasets.

formance across various tasks. This improvement 496

underscores the effectiveness of incorporating ad- 497

ditional academic task-related data and leveraging 498

advanced cross-modal connectors for multimodal 499

fusion. 500

5.4 Sentence-level Hallucination 501

To further understand the faithfulness of LVLMs, 502

we evaluate them with the proposed sentence-level 503

MULTIMODAL FAITHSCORE. Table 4 and Table 5 504

show the sentence-level evaluation across differ- 505

ent LVLMs. Upon analyzing the performance of 506

different LVLMs across multiple datasets, several 507

insights emerge: (1) The MiniGPT-4 model consis- 508

tently ranks among the top-performing models in 509

most categories across LLaVA-1k and MSCOCO- 510

Cap datasets. The result indicates the consistency 511

of the proposed metric across datasets to an extent. 512

(2) While mPLUG-Owl has achieved successful 513

performance in MULTIMODAL FAITHSCORE, it 514

performs less favorably in terms of sentence-level 515

hallucination evaluation. This is understandable 516

because hallucinations may be dispersed loosely 517

and scattered throughout the sub-sentences. (3) 518
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Figure 5: MULTIMODAL FAITHSCOREvs. numbers of
objects (i.e., entities) in the answer generated by LVLMs
on LLaVA-1k. As the amount of entities increases the
performance (i.e., MULTIMODAL FAITHSCORE) begins
to decline.

MiniGPT-4 and Multimodal-GPT appear to be519

strong contenders for many multimodal tasks. This520

is different compared with the results in Section 5.3.521

The potential reason may be that the hallucinations522

generated by MiniGPT-4 and Multimodal-GPT are523

very concentrated, and they tend to appear densely524

in one or a few sentences. (4) Similar to the re-525

sults in Section 5.3, LLaVA-1.5 further advances526

the performance of LLaVA across various tasks.527

5.5 Other Analysis528

The Influence of Answer Length on Hallucina-529

tion. To further elucidate the impact of answer530

length on model-generated hallucinations, we an-531

alyzed answer lengths across various LVLMs on532

different datasets. As illustrated in Figure 4, there’s533

a significant variation in the distribution of an-534

swer lengths produced by different models. Multi-535

modal GPT consistently generates the lengthiest re-536

sponses, potentially compromising its performance537

across tasks. In contrast, mPLUG-Owl tends to pro-538

duce shorter answers than its counterparts, which539

could explain its enhanced fidelity across various540

tasks. Interestingly, the captioning task, despite541

having the shortest average answer length among542

all testing tasks, showed lower faithfulness in gener-543

ated content. This may be attributed to the fact that544

captioning sentences mainly are visual descriptions,545

placing a heightened emphasis on the model’s ac-546

curacy and faithfulness.547

The influence of multiple objects. Figure 5548

shows how the number of entities (i.e., objects)549

Figure 6: MULTIMODAL FAITHSCOREon each type of
atomic facts in the LLaVA-1k benchmark. The types are
"Entity", "Relation", "Color", "Count", and "Others".

in the answer generated by different models affects 550

the MULTIMODAL FAITHSCOREscore. According 551

to this figure, it is evident that the model’s faith- 552

fulness varies with the number of objects. While 553

all models start off with relatively high scores, 554

their performance generally declines as the number 555

of objects increases. For example, Instruct-BLIP 556

starts with a high of 0.798 for 1 object and sustains 557

a relatively low score of 0.573 for 10 objects. 558

Analysis on Types of Hallucination When com- 559

paring the performance metrics of various models 560

across different categories, we can deduce the re- 561

spective strengths and potential vulnerabilities of 562

each in maintaining faithfulness. From Figure 6, 563

we can observe that while mPLUG-Owl consis- 564

tently excels across most categories, other models 565

also showcase strengths in specific domains. For 566

instance, Multimodal-GPT performs notably well 567

in the color and count categories. The varied per- 568

formance across categories underscores that most 569

models exhibit differential strengths. However, 570

achieving consistently high faithfulness across a 571

diverse range of categories remains a formidable 572

challenge for LVLMs. 573

6 Conclusion 574

In this paper, we introduce a novel metric called 575

MULTIMODAL FAITHSCOREfor evaluating free- 576

form answers generated by LVLMs. Com- 577

pared to previous metrics, MULTIMODAL FAITH- 578

SCOREoffers a finer level of granularity, inter- 579

pretability, and closer alignment with human judg- 580

ments. Our quantitative analysis demonstrates that 581

current LVLMs continue to grapple with the hal- 582

lucination problem. We anticipate that MULTI- 583

MODAL FAITHSCOREwill prove invaluable for 584

evaluating forthcoming advanced LVLMs. 585
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Limitations586

It’s worth noting that, at present, MULTIMODAL587

FAITHSCORErelies on ChatGPT, which can be588

computationally expensive. Therefore, in the fu-589

ture, researchers can implement this metric using590

open-source models to make it more accessible and591

widely applicable.592
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A Experimental Detail813

We infer all VLMs for answer generation on an814

NVIDIA A100 GPU. We fix the generation temper-815

ature for all VLMs to get a stable result.816

B Likert Scale Guideline817

Specifically, suppose the generated answer where a818

generated answer comprises n atomic facts, out of819

which x are designated as hallucinations. Both n820

and x are tallied by the annotators. The benchmark821

scoring guideline is outlined as follows:822

• Score 1: All atomic facts are hallucinations,823

symbolized as x == n;824

• Score 2: More than half of the atomic facts825

are hallucinations, represented as x > n/2;826

• Score 3: Half or fewer atomic facts are hallu-827

cinations, represented as n/3 <= x < n/2;828

• Score 4: Less than one-third of the atomic829

facts are hallucinations, which translates to830

x < n/3;831

• Score 5: All atomic facts accurately represent832

the visual content, meaning x = 0.833

12



Figure 7: System software User Interface (UI) for annotators.
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Figure 8: Instructions for data annotation.
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Figure 9: Prompt for sub-sentence identification.
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Figure 10: Prompt for atomic fact generation .
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