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Abstract

Fréchet inception distance (FID) established itself as standard performance mea-
suring method for generative adversarial networks (GANs). In this paper, we
empirically investigate the biases that are inherited by its underlying design de-
cision of extracting image features using the Inception v3 image classification
network. As a result, we investigate how reliable FID is in terms of ranking
performances of GANs. In this context, we find that FID is not aligned with
human perception and exchanging Inception v3 with different image classification
networks simply steers the ranking towards different biases.
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Figure 1: FID [9] is commonly used to decide if one model is superior to another in terms of
producing images that are close to the training distribution. Here, we show images generated by
different models trained on FFHQ [14] (left) and CIFAR10 [16] (right) with their respective FIDs
(lower is better). Would you agree with these rankings?

The generation of photo-realistic, unseen images has made significant progress with the introduction
of generative adversarial networks (GANs) [6]. Since then, many architectures emerged competing
with each other to provide the best performance [3, 15, 13]. With it arose the question how their
performance should be interpreted and measured to provide a ranking between different architectures.
Metrics like inception score (IS) and Fréchet inception distance (FID) were proposed to evaluate
image distributions automatically. These metrics are based on extracting features from images that
are provided by the Inception v3 image classification network [23], and hence inspired their names.
While IS was proven to be not useful to compare different models [2], its successor FID is now
widely adopted within the GAN community. FID compares the distribution of features between
two image datasets that are estimated from training data and samples from the generator network.
Well-performing generators are supposed to produce images that match the feature distribution of
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the data. Some theoretical and practical shortcomings of FID, like a bias due to sample sizes [4] and
inconsistent downsampling implementations between different image processing libraries [19] are
already discussed in the literature. However, none of these works discuss the shortcomings that come
with its underlying feature extractor. The contributions of this paper are as follows:

• We empirically show biases in the underlying assumptions of the commonly used metric
Fréchet Inception Distance (FID) caused by the network Inception v3 (section 1).

• We investigate if an improvement in terms of FID is a reliable indicator of improvement in
generator performance. Here, we show cases where FID clearly fails to align its ranking
with human perception (section 2; see Figure 1 for an example).
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Figure 2: (left) Color-coded FIDs between 19 corruptions of ImageNet validation images with 5
severity levels [8] to their originals. Colors and circle sizes depend on the observed FID over all
corruptions and severities. (right) Examples of different corruptions at severity 5.

1 Fréchet Inception Distance and its Biases

To compute FID between two image datasets, image features are extracted by sampling images from
those datasets and feeding them into the pretrained Inception v3 [23] image classification network. In
the following, we denote Inception v3 by function φ that returns feature column vectors given single
images and feature matrices with samples on rows given image datasets. FID is then computed via
the Wasserstein-2 distance

FID = ||µ1 − µ2||22 + tr(Σ1) + tr(Σ2)− 2 · tr(
√

Σ1Σ2) (1)

between two image sources, where tr(·) is the trace operator,

µX =
1

|X|
∑
x∈X

φ(x) and ΣX =
(φ (X)− µx)

T
(φ (X)− µx)

n− 1
(2)

are the mean vector and covariance matrix of feature vectors of dataset X. The motivation of FID is
that, given a sufficiently large number of samples, the first two moments of the feature distributions
should match if the images are sampled from the same dataset. Hence, the closer the generator
network gets to reproducing the Inception v3 feature distribution of the training data, the smaller FID
becomes.
FID is related to model robustness. While pretrained feature extractors can facilitate certain
tasks in meaningful ways, like object recognition or detection, we argue that caution needs to be
taken in the context of comparing image distributions. The Inception v3 network is trained on the
ImageNet object recognition challenge [5], where the task is to classify images into 1000 distinct

2



classes. Hence, the network learns to extract features from images that discriminate classes found in
ImageNet. For this task, it is beneficial for the network to become robust against several distribution
shifts, like color or intensity changes and diverse spatial transformations. A common way to equip
image classification networks with robustness against before-mentioned shifts is to augment the
training data. For example, Inception v3 was trained with the following augmentation pipeline [1]: a)
cropping the input image with a random scale (8%-100%) and aspect ratio (3/4 to 4/3), b) randomly
flipping the input image horizontally, and c) randomly introducing color distortions in terms of hue,
saturation, brightness, and contrast. Consequentially, we assume that the network is at least robust
to some degree of corruption. In the following, we investigate i) how robust Inception v3 is against
certain corruption types, and ii) how these findings impact the applicability of FID as a metric.
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Figure 3: Corruptions introduced
by transforming CIFAR10 [16] test
images a) with increasing likeli-
hood of horizontal or vertical flips
and b) by moving the image in x, y,
or both directions up to an increas-
ing distance (reflection padding).
The figure depicts the FID between
a corruption at a certain level with
the original CIFAR10 test dataset.

We first look into how different kinds of corruptions influence
FID. Research in the area of robustness has produced several
benchmark dataset collections, one of which is ImageNet-C [8].
This collection contains the ImageNet [5] validation images
with 19 corruption types at 5 severity levels, hence, a total of
95 image datasets. On this benchmark, we can uncover which
types of corruptions influence the feature distribution provided
by Inception v3 (and therefore FID) to which degree. In Fig-
ure 2 we depict the corresponding FIDs between the original
ImageNet validation images and all datasets in ImageNet-C.
We interpret larger FIDs as indicator that the distribution of
features extracted by Inception v3 is influenced more by cer-
tain corruptions, and hence we derive that the model is more
sensitive to these types of corruptions. We can make the follow-
ing observations from Figure 2: First, Inception v3 is mostly
robust to deviations in brightness, saturation, and contrast up
to a certain degree. While information about colors and inten-
sities is lost in these cases, edges are mostly preserved. In the
frequency domain, we can see these corruptions acting on low
frequencies [24], while high frequencies are mostly untouched.
Second, Inception v3 is sensitive to noise that acts on the high
frequency spectrum, either by adding high frequency artifacts
(impulse noise, shot noise, speckle noise), or by removing high
frequency information (glass blur, Gaussian blur). These obser-
vations lead us to the assumption that Inception v3 has a bias
towards extracting features based on edges and textures rather than color and intensity information.
This aligns with its augmentation pipeline that introduces color distortions, but keeps high frequency
information intact (in contrast to, for example, augmentation with Gaussian blur). Consequently, FID
inherits this bias. When used as ranking metric, generative models reproducing textures well
might be preferred over models that reproduce color distributions well.

Since ImageNet-C contains no corruptions that test robustness to translations, we further investigate
this aspect by introducing additional corruptions (see Figure 3 in appendix). We are interested
in knowing how FID is influenced by a) flipping images either horizontally or vertically, and b)
by translating the images in certain directions. Our results indicate that Inception v3 is mostly
robust towards horizontal flips and translations, while being more sensitive in the vertical direction.
Again, this fits well with the training data augmentation of Inception v3 that reinforces robustness in
horizontal directions via random horizontal flips [1].

2 Reinforcing the Bias by minimizing FID

If FID is a metric that aligns with human judgement, we can assume that the visual appearance of
images generated by any GAN model should improve if we optimize the generator by minimizing
FID [17]. But can this assumption hold? To verify, we train two GAN architectures, DCGAN [20]
and SNGAN [18], on FFHQ [14] downscaled to 642 image resolution (further called FFHQ64) and
CIFAR10 [16]. We consider three training procedures, a) GANG+D where we train the model in
its common setting in which a discriminator network provides the training signal for the generator
network (baseline), b) GANFID

G+D where we extend a) by adding an additional loss for the generator
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network given by Equation 1 (further called FID loss), and c) GANFID
G where we drop the discriminator

network and train the generator solely by minimizing the FID loss. Depictions of b) and c) are given
in Figure 6. In each iteration that we minimize FID loss directly, we generate 400 images for DCGAN
and 360 images for SNGAN to approximate the current FID. During training we measure FID to
track the training progress after each epoch by sampling 10 000 images from the generator.
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Figure 4: Results of train-
ing DCGAN and SNGAN
with different training proce-
dures. FID loss stabilizes the
training and achieves better
performances (smaller FID),
whereas the discriminator only
marginally improves the gen-
erator performance.

The progress for each training setting is shown in Figure 4. Given
the training curves provided by evaluating FID after each epoch,
one could assume that applying FID loss stabilizes the training. We
could go even further and assume that the discriminator is not even
necessary for GAN training, since the results measured in FID differ
only slightly. However, the story changes after examining the images
each of these models generate (see Figure 1 and appendix for further
examples). By inspecting samples, we observe no visual improve-
ment in image quality between GANG+D and GANFID

G+D despite the
large gaps in terms of FID. We even argue that images produced
by GANFID

G+D contain more artifacts and are less visually pleasing,
which we see as a sign of overfitting to the FID loss. We hypothesize
that the generator learns to produce unsuitable features to match the
training data distribution. This observation becomes more severe in
the case of GANFID

G . Here, we notice that the missing discrimina-
tor leads to spatially incoherent feature distributions. For example
SNGANFID

G adds mostly single eyes and aligns facial characteristics
in a daunting manner. We assume that this is the result of the choice
of layer that features are extracted from Inception v3. Features are
spatially pooled and therefore lose all spatial information before they
are extracted. While human annotators would surely prefer images
produced by SNGAND+G over SNGANFID

G (in cases where data fi-
delity is preferred over art), we see that this is not reflected by FID.
Hence, FID is not aligned with human perception. We argue that
discriminative features provided by image classification networks
are not sufficient to provide the basis of a meaningful metric. To fur-
ther emphasize this point, we substitute Inception v3 by an extensive
choice of different image classification networks. We evaluate FIDs
on ImageNet-C at different severities for each backbone network
(details are provided in the appendix). Here we see that biases present in Inception v3 are also widely
present in other classification networks. Additionally, we see that different networks would produce
different rankings in-between corruption types.

3 Conclusion

We provided an overview of inherent biases that are present due to the design decision of FID to
use Inception v3 as feature extractor. We showed that the way Inception v3 was trained enforced
it to become robust to corruptions related to color, intensity, saturation, and horizontal translations,
while being sensitive to corruptions of textures and to vertical translations. These biases influence the
ranking when different architectures are compared and need to be taken into account. Additionally,
we showed that FID as a metric is not aligned with human perception by minimizing FID as a loss
term. Here, we showed that generators trained with FID loss produce images with substantially
improved FIDs, but worse visual appearance. The plotted training curves showing the development
of FID are misleading in those cases. Finally, we showed that substituting Inception v3 with another
image classification network would simply mean to exchange different biases. Hence, we hope to
inspire further research to close the gap towards a humanly aligned and unbiased metric that enables
to fairly rank generator architectures.

4



Acknowledgement

The authors thank Abdullah-Al-Zubaer Imran for his thorough feedback and valuable mentorship.
We thank Kalun Ho for his support with the classification networks. Lastly, we thank all anonymous
reviewers for their constructive remarks and suggestions.

References
[1] Advanced Guide to Inception v3 on Cloud TPU. https://cloud.google.com/tpu/docs/

inception-v3-advanced. Accessed: 2021-10-08.

[2] Shane T. Barratt and Rishi Sharma. A Note on the Inception Score. ArXiv, abs/1801.01973,
2018.

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. In International Conference on Learning Representations (ICLR),
2018.

[4] Min Jin Chong and D. Forsyth. Effectively Unbiased FID and Inception Score and Where to
Find Them. In CVPR, 2020.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

[6] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative Adversarial Nets. In NIPS, 2014.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[8] Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Robustness to Common
Corruptions and Perturbations. In ICLR, 2019.

[9] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and S. Hochreiter.
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In
NIPS, 2017.

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[11] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[12] Shyo Prakash Jakhar, Amita Nandal, and Rahul Dixit. Classification and measuring accuracy of
lenses using inception model v3. In Manoj Kumar Sharma, Vijaypal Singh Dhaka, Thinagaran
Perumal, Nilanjan Dey, and João Manuel R. S. Tavares, editors, Innovations in Computational
Intelligence and Computer Vision, pages 376–383, Singapore, 2021. Springer Singapore.

[13] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans
for improved quality, stability, and variation. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

[14] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[15] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8110–8119, 2020.

5

https://cloud.google.com/tpu/docs/inception-v3-advanced
https://cloud.google.com/tpu/docs/inception-v3-advanced


[16] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

[17] Alexander Mathiasen and Frederik Hvilshøj. Backpropagating through Fréchet Inception
Distance, 2021.

[18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018.

[19] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On Buggy Resizing Libraries and Surprising
Subtleties in FID Calculation. arXiv, abs/12104.11222, 2021.

[20] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. In Yoshua Bengio and Yann LeCun, editors,
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[22] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2017.

[23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the Inception Architecture for Computer Vision. In CVPR, 2016.

[24] Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D. Cubuk, and Justin Gilmer. A
Fourier Perspective on Model Robustness in Computer Vision. In NIPS, 2019.

[25] Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and Dahua Lin. Polynet: A pursuit of
structural diversity in very deep networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 718–726, 2017.

[26] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

6



Supplementary Material
Internalized Biases in Fréchet Inception Distance

Code, trained models and datasets containing generated images will be published on GitHub1. In
this supplementary, we depict the Inception v3 architecure (A), provide more details about our
experiments in section 2 as well as an overview of all results (B-C), show that it is possible to improve
generator architectures by minimizing FID (D), show more generated images for each model trained
(E-H), compute "FIDs" with different backbone classification networks on ImageNet-C (I), and
describe an experiment for deep fake detection using FID (J), .

• Appendix A: Inception v3 architecture
• Appendix B: Training Settings (section 2)
• Appendix C: Implementation Details to Minimizing FID (section 2)
• Appendix D: Improving generator architectures with FID loss
• Appendix E: Generated Images (DCGAN/FFHQ)
• Appendix F: Generated Images (SNGAN/FFHQ)
• Appendix G: Generated Images (DCGAN/CIFAR10)
• Appendix H: Generated Images (SNGAN/CIFAR10)
• Appendix I: FIDs when substituting backbone networks on ImageNet-C
• Appendix J: Deep Fake Detection with FID

Appendix A: Inception v3 architecture
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Figure 5: Depiction of the Inception v3 architecture (inspired by [12]) that is used to extract image
features to compute FID [9]. Grid size reductions are not shown here.

Appendix B: Training Settings (section 2)

D

G

FID

GAN

G

FID

FID
G+DGAN

FID
GGAN

Figure 6: Different settings to train generator networks. In GANFID
G+D we add an additional loss called

FID loss (see Equation 1). In GANFID
G we drop the discriminator network and train the generator

solely by minimizing FID loss.
1https://github.com/steffen-jung/FID-bias
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Appendix C: Implementation Details to Minimizing FID (section 2)

We train each of the models for 48 hours and report the best FID measured during training. FIDs are
measured after each epoch. We train DCGAN with the minimax loss

LG = Ez∼N(0,1)[log(1−D(G(z)))], (3)

LD = −Ex∼data[log(D(x))] − Ez∼N(0,1)[log (1−D(x̂))], (4)

and for optimization we use Adam with β = (0.5, 0.999), ε = 10−8, learning rate = 0.0002, and
weight decay = 0.
We train SNGAN with the hinge loss

LG = −Ez∼N(0,1)[D(G(z))], (5)

LD = −Ex∼data[min(0,−1 +D(x))]− Ez∼N(0,1)[min(0,−1−D(G(z)))]. (6)

and for optimization we use Adam with β = (0.0, 0.9), ε = 10−8, learning rate = 0.0002, and
weight decay = 0.
We combine all results in the following table.
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Table 1: Combined results of trained models from section 2.

Data Resolution Model FID↓ Images

FFHQ 642

DCGANG+D 14.86

DCGANFID
G+D 5.38

DCGANFID
G 7.89

DCGAN-UpFID
G 7.61

SNGANG+D 9.44

SNGANFID
G+D 6.00

SNGANFID
G 7.74

CIFAR10 322

DCGANG+D 28.72

DCGANFID
G+D 8.27

DCGANFID
G 10.82

DCGAN-UpFID
G 10.77

SNGANG+D 17.85

SNGANFID
G+D 8.07

SNGANFID
G 11.66
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Appendix D: Improving generator architectures with FID loss

Images produced by DCGANFID
G (see Figure 1 and Figure 10) are only hardly recognizable due to

noise covering the images. In this case, minimizing FID without discriminator exposes possible
flaws in its architecture. Indeed, when we exchange transpose convolutions in DCGAN with bilinear
upsampling followed by convolutional kernels we observe that the noise vanishes (see Figure 7).

FID=7.89 FID=7.79

DCGANGFID DCGAN-UpGFID

Figure 7: DCGAN TransposeConv vs UpsampleConv FFHQ.
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Appendix E: Generated Images (DCGAN/FFHQ)

Figure 8: DCGANG+D trained on FFHQ64. FID: 14.86.
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Figure 9: DCGANFID
G+D trained on FFHQ64. FID: 5.38.
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Figure 10: DCGANFID
G trained on FFHQ64. FID: 7.89.
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Figure 11: DCGAN-UpFID
G (upsampling instead of transpose convolutions) trained on FFHQ64. FID:

7.61.
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Appendix F: Generated Images (SNGAN/FFHQ)

Figure 12: SNGANG+D trained on FFHQ64. FID: 9.44.
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Figure 13: SNGANFID
G+D trained on FFHQ64. FID: 6.00.
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Figure 14: SNGANFID
G trained on FFHQ64. FID: 7.74.
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Appendix G: Generated Images (DCGAN/CIFAR10)

Figure 15: DCGANG+D trained on CIFAR10. FID: 28.72.
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Figure 16: DCGANFID
G+D trained on CIFAR10. FID: 8.27.
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Figure 17: DCGANFID
G trained on CIFAR10. FID: 10.82.
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Figure 18: DCGAN-UpFID
G (upsampling instead of transpose convolutions) trained on CIFAR10.

FID: 10.77.
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Appendix H: Generated Images (SNGAN/CIFAR10)

Figure 19: SNGANG+D trained on CIFAR10. FID: 17.85.
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Figure 20: SNGANFID
G+D trained on CIFAR10. FID: 8.07.
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Figure 21: SNGANFID
G trained on CIFAR10. FID: 11.66.
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Appendix I: FIDs when substituting backbone networks on ImageNet-C
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Figure 22: Color-coded FIDs between ImageNet validation images and 19 corrupted versions
thereof provided by ImageNet-C. Inception v3 is substituted by different classification networks
[21, 7, 25, 26, 22, 10, 11, 23] to see how FID would have been All corruptions are at severity 1.
Colors and circle sizes depend on the largest observed FID per network. Additionally, principal
component analysis (PCA) is shown, which provides descriptive features with different sensitivity to
corruptions compared to image classification networks.
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Figure 23: Color-coded FIDs between ImageNet validation images and 19 corrupted versions
thereof provided by ImageNet-C. Inception v3 is substituted by different classification networks
[21, 7, 25, 26, 22, 10, 11, 23] to see how FID would have been All corruptions are at severity 2.
Colors and circle sizes depend on the largest observed FID per network. Additionally, principal
component analysis (PCA) is shown, which provides descriptive features with different sensitivity to
corruptions compared to image classification networks.
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Figure 24: Color-coded FIDs between ImageNet validation images and 19 corrupted versions
thereof provided by ImageNet-C. Inception v3 is substituted by different classification networks
[21, 7, 25, 26, 22, 10, 11, 23] to see how FID would have been All corruptions are at severity 3.
Colors and circle sizes depend on the largest observed FID per network. Additionally, principal
component analysis (PCA) is shown, which provides descriptive features with different sensitivity to
corruptions compared to image classification networks.
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Figure 25: Color-coded FIDs between ImageNet validation images and 19 corrupted versions
thereof provided by ImageNet-C. Inception v3 is substituted by different classification networks
[21, 7, 25, 26, 22, 10, 11, 23] to see how FID would have been All corruptions are at severity 4.
Colors and circle sizes depend on the largest observed FID per network. Additionally, principal
component analysis (PCA) is shown, which provides descriptive features with different sensitivity to
corruptions compared to image classification networks.
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Figure 26: Color-coded FIDs between ImageNet validation images and 19 corrupted versions
thereof provided by ImageNet-C. Inception v3 is substituted by different classification networks
[21, 7, 25, 26, 22, 10, 11, 23] to see how FID would have been All corruptions are at severity 5.
Colors and circle sizes depend on the largest observed FID per network. Additionally, principal
component analysis (PCA) is shown, which provides descriptive features with different sensitivity to
corruptions compared to image classification networks.
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Appendix J: Deep Fake Detection with FID

We map 70 000 images from FFHQ and 70 000 images generated by StyleGAN2 (with and without
truncation) into the Inception v3 feature space by using the FID PyTorch implementation. We split
each into 60 000 training and 10 000 testing images, and hence, end up with balanced training datasets
containing 120 000 images and balanced test datasets containing 20 000 images. We train sklean
logistic regression models and report the accuracy on the test dataset. A selection of corresponding
images is shown in Figure 27. We argue that a meaningful metric should be visually aligned with
human perception. Hence, if a human can be fooled by a generator network, then this generator
should be considered superior to one that is not able to do so. We see that truncation decreases FID
significantly, and consequently improves the ability of detecting StyleGAN2 generated images as
fake. In contrast, we show images produced by StylegAN2 without and with truncation in Figure 27.
By inspecting the images we observe that truncation removes textures (and also artifacts). We
hypothesize that its bias towards textures facilitates Inception v3 to extract features that allow almost
perfect detectability (98% when truncation is applied). However, we expect humans to be more easily
fooled by truncated images than untruncated ones. Hence, we argue that this is a hint towards that
FID is not aligned with human perception.

Table 2: A logistic regression is trained to perform fake detection based on image features provided
by Inception v3.

Model Data FID↓ Accuracy↑ Precision↑ Recall↑ F1↑Res.
StyleGAN2 FFHQ

2.65 .71 .70 .72 .71
ψ = 1.0 10242

StyleGAN2 FFHQ
57.77 .98 .98 .98 .98

ψ = 0.5 10242

StyleGAN2
ψ=1.0 ψ=0.5

Figure 27: StyleGAN2 images.
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https://github.com/mseitzer/pytorch-fid
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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