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ABSTRACT

Large language models (LLMs) quickly become outdated because the factual knowledge
they encode is fixed at training time, and retraining for every new fact is prohibitively
expensive. Prior “internal” editors apply closed-form perturbations directly to the feed-
forward weights, but each new patch is applied in place to the base model, causing edits
to accumulate, interfere, and preventing straightforward revocation. We present DEP-
TRAI—Detachable External-memory layer for Parameter-Transformer Injection—that
stores each edited fact as a key–value tuple outside the model, leaving all original weights
frozen. At inference, the frozen FFN produces a subject key, which is routed to the near-
est stored key using a Mahalanobis metric that mirrors the inverse-covariance scaling of
closed-form editors. A lightweight gate then either substitutes the edited value or preserves
the base projection. This design turns factual patching into a reversible database-style
update rather than a permanent modification of parameters. DEPTRAI achieves the highest
average performance on sequential editing tasks, outperforming the latest dual-memory
method WISE by 15–20%,

1 INTRODUCTION

Large language models (LLMs) such as Claude 1, Grok 2, and GPT-4 (Achiam et al., 2023) have shown a
remarkable performance on many benchmarks (Achiam et al., 2023; Yang et al., 2024b; Wang et al., 2024).
Their success is often attributed to an ability to encode an enormous amount of world knowledge directly in the
parameters of a Transformer network, which makes them attractive as implicit knowledge bases (Feng et al.,
2023; Delétang et al., 2023). However, implicit storage is a double-edged sword: models hallucinate, drift out
of date, and resist fine-grained inspection. Retraining or fully fine-tuning an LLM after every factual change
is prohibitively expensive, motivating the search for lightweight knowledge-editing techniques (De Cao et al.,
2021; Jiang et al., 2024).

The dominant family of editing methods follows the locate–then–edit paradigm. Causal tracing first identifies
the feed-forward (FFN) layers that mediate a target association, a low-rank perturbation ∆ is then solved
in closed form and added to the value matrix W of those layers. ROME (Meng et al., 2022a) demonstrates
the approach for single facts, MEMIT (Meng et al., 2023a) extends it to thousands of edits, and AlphaEdit
(Fang et al., 2025) further constrains the update by projecting it onto the null space of preserved keys.
Mathematically, all three methods boil down to a global Mahalanobis rescaling between the old output Wk
and the new slice V1β, Eq. equation 13.

Dual-memory methods such as GRACE (Hartvigsen et al., 2023) and WISE (Wang et al., 2025) address the
entanglement of edits by attaching a side table of parameters and training a router that chooses between base

1https://claude.ai/
2https://grok.com/
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model and patch. However, because the router relies on unwhitened cosine or dot-product similarity in the
full hidden space, it remains sensitive to surface-form variation and carries a considerable memory footprint.

We introduce DEPTRAI (Detachable External Parameter Transformer Retrieval and Injection), a new editing
framework that couples the precision of closed-form editors with the flexibility of an external memory.
Building on ROME’s insight (Meng et al., 2022a) that the last subject token alone addresses the factual
association, we store each fact as a single subject key and its edited value in an external key–value table,
leaving the original weights untouched.

At inference time the frozen FFN produces a query key k, DEPTRAI routes k to the nearest stored key using a
Mahalanobis distance that mirrors the inverse-covariance factor of MEMIT, then either substitutes the edited
value or lets the base projection Wk pass through.

Our main contributions.

• We present DEPTRAI, the detachable key–value memory that augments a frozen Transformer and realises
knowledge edits without overwriting any internal parameter.

• We show that the Mahalanobis metric induced by the closed-form coefficient β = K⊤
1 C−1k yields a

principled router that is robust to surface-form variation, eliminating the key-bias of previous editors.
• Experiments on LLaMA 3.2-3B, Qwen 2.5 3B and LLaMA 3.1-8B across ZsRE, Hallucination show that

DEPTRAI achieves the highest average score in sequential editing compared to recent methods such as
WISE about 15-25%.

2 PRELIMINARIES

2.1 AUTOREGRESSIVE LANGUAGE MODELS AND MEMORY STORAGE

Large language models (LLMs) are typically trained in an autoregressive manner, predicting the next token
x[t] based on the previous sequence of tokens x[1], . . . , x[t−1]. Formally, the conditional probability of the
next token can be expressed as

x[t] | x[1], . . . , x[t−1] ≜ G([x[1], . . . , x[t−1]]) = softmax(Wy, h
D
[t−1]), (1)

where G denotes the transformer model (Vaswani et al., 2017), Wy is the output embedding matrix, and
hD
[t−1] is the hidden state at the final layer D for the preceding token x[t−1].

The hidden states in the transformer are updated layer by layer using a combination of self-attention and
feed-forward operations. Specifically, for a token x at layer l, the hidden state hl is computed as

hl = hl−1 + al +ml, (2)

where al denotes the output of the multi-head attention module, and ml denotes the output of the feed-forward
network (FFN). The feed-forward update ml is computed via

ml = W l
outσ(W

l
inγ(h

l−1 + al)), (3)

where W l
in and W l

out are learnable matrices, σ is a non-linear activation function, and γ denotes layer
normalization (Ba et al., 2016).

Following the interpretations proposed in prior works (Bau et al., 2020; Meng et al., 2022a), the FFN layers
can be seen as a form of associative memory: the input k (after applying σ(W l

in, γ(h
l−1 + al))) serves as a

key, and the output ml serves as a value. This leads to the perspective that the weight matrix W l
out associates

keys with corresponding stored values. Specifically,

ml = W l
outk, (4)

2
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Feed to next
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LLM answer

EDITING TIME
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Figure 1: Illustration of the DEPTRAI editing pipeline. At editing time (above), we extract the key–value
representations associated with subject tokens from selected FFN layers and store them externally as explicit
key–value pairs. At inference time (below), given a query containing the subject token, DEPTRAI extracts its
key representation from the same layer and retrieves the corresponding stored value by measuring Mahalanobis
distances to all external keys. The closest match is returned and passed to subsequent layers, allowing accurate
injection of updated or newly inserted knowledge, such as changing the factual association from "Michael
Jordan plays basketball" to "Michael Jordan plays soccer" or inserting new knowledge like "Penguin sings
Opera".

where k represents the intermediate key encoding derived from the hidden state and attention output.

Based on this understanding, most model editing methods focus on modifying the FFN layers to inject or
update factual knowledge within LLMs. For clarity and consistency throughout the remainder of this paper,
we denote W as shorthand for W l

out.

2.2 MODEL EDITING IN LARGE LANGUAGE MODELS

Many studies have shown that LLMs inherently memorize a vast number of factual associations (Petroni
et al., 2019; Brown et al., 2020; Chowdhery et al., 2023). Such knowledge is often expressed in the form of
(subject, relation, object) triplets (s, r, o), where a prompt like "Michael Jordan plays the sport of" triggers
the model to predict "basketball".

The task of model editing concerns directly modifying factual associations encoded in the parameters of an
LLM without retraining the entire model (Sinitsin et al., 2020; De Cao et al., 2021; Meng et al., 2022c; 2023b;
Fang et al., 2025). Given a desired change in factual knowledge, editing methods aim to minimally update the
model’s parameters so that it consistently outputs the new fact while preserving unrelated knowledge.

3
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Consider a list of desired edits, where (si, ri, oi) are the subject, relation, and object of the i-th factual triplet.
We assume there are no conflicting edits such that no two edits share the same (s, r) but disagree on o. Each
edit is associated with a prompt pi (e.g., "Michael Jordan plays the sport of") intended to elicit the new object
oi (e.g., "football").

To implement such edits, most recent methods focus on updating the output weight matrices W of the FFN
layers. Suppose W ∈ Rd1×d0 , where d0 and d1 are the input and output dimensions of the FFN, respectively.
For a set of u edits, one constructs two matrices

K1 = [k1|k2| · · · |ku] ∈ Rd0×u, V1 = [v1|v2| · · · |vu] ∈ Rd1×u, (5)

where ki encodes (si, ri) and vi encodes oi. The editing objective becomes minimizing the reconstruction
error

∆ = argmin
∆̃

||(W + ∆̃)K1 − V1||2, (6)

where ∆ is the perturbation applied to W .

However, editing only based on new knowledge can cause catastrophic forgetting of unrelated memories
(Gupta et al., 2024). To mitigate this, one typically incorporates an additional preservation term involving a
matrix K0 and V0, representing the original keys and values from pre-existing knowledge

∆ = argmin
∆̃

(
||(W + ∆̃)K1 − V1||2 + ||(W + ∆̃)K0 − V0||2

)
. (7)

Under the assumption that WK0 ≈ V0 holds prior to editing (i.e., the model faithfully encodes the old
knowledge), the optimal ∆ can be derived using the normal equation (Lang, 2012)

∆ = (V1 −WK1)K
T
1 (K0K

T
0 +K1K

T
1 )

−1. (8)

In practice, K0 is approximated by collecting representations from a large corpus, typically using over
100,000 (subject, relation, object) triplets extracted from datasets like Wikipedia (Meng et al., 2023b; Fang
et al., 2025). Despite being an approximation, this strategy enables scalable editing at the level of thousands
of factual changes while maintaining fluency, generalization, and specificity (Meng et al., 2023b).

In this work, we build upon these principles to propose improved editing mechanisms that better preserve old
memories while ensuring effective assimilation of new information.

3 METHODOLOGY

Unlike prior internal editors such as MEMIT and AlphaEdit, which inject low-rank weight perturbations and
must carefully balance new and old knowledge. DEPTRAI leaves the base parameters untouched, stores each
edited subject key and its value in a detachable external layer, and employs a Mahalanobis-based router to
fetch the correct value at inference time, as shown in Figure 1

3.1 MOTIVATION

Starting from the closed-form update shared by MEMIT and AlphaEdit, the optimal perturbation to an FFN
output matrix can be expressed as

∆ = (V1 −WK1)K
⊤
1 C−1 (9)

where the covariance matrix could be defined by

C = K0K
⊤
0 +K1K

⊤
1 (10)

4
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balancing preserved keys K0 and edited keys K1.

For a given query key ki, the output of the edited layer can then be formulated as

(W +∆)ki = Wki + (V1 −WK1)K
⊤
1 C−1ki (11)

By defining the mixing coefficient
βi = K⊤

1 C−1ki (12)

we simplify this expression to

(W +∆)ki = V1βi +W (ki −K1βi) (13)

Equation 13 highlights a critical factor that determines the success and robustness of an edit: the behavior of
the mixing coefficient βi. This coefficient governs the balance between incorporating the new knowledge
stored in V1 and retaining the existing associations encoded in W .

AlphaEdit indirectly regulates βi by projecting C−1 onto the null space P of the preserved keys K0. However,
this projection functions as a coarse, global scaling operation. It lacks the flexibility required to adapt to more
nuanced interactions between newly injected and pre-existing knowledge.

To overcome this limitation, we introduce an explicit gating layer that directly manipulates the mixing
coefficients βi. This adaptive mechanism dynamically balances old and new information at inference time,
surpassing the fixed scaling induced by the inverse covariance C−1. By doing so, DEPTRAI provides finer
control over the integration of edits, ensuring that factual updates are both precise and robust while minimizing
unintended interference with the model’s preserved knowledge.

3.2 EXTERNAL LAYER: DEPTRAI
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Figure 2: Mahalanobis score across model variants.
From in-place perturbation to detachable memory. In MEMIT (Meng et al., 2023a) and AlphaEdit (Fang
et al., 2025), the closed-form update ∆ is injected directly into the FFN output matrix W . This permanently
modifies the base parameters and entangles edits over time. DEPTRAI instead keeps W frozen and stores
each factual edit in an explicit external memory table. This detachable structure allows facts to be added,
revoked, or swapped at runtime, transforming editing into a lightweight retrieval-and-injection process.

Memory structure. For each factual edit j, we store a single key–value pair (kj , vj), where kj ∈ Rdin is the
subject key (as extracted in MEMIT) and vj ∈ Rdout is the edited value vector. To enable robust comparison
at inference time, we estimate the local covariance of keys and its inverse:

µj = kj , Σj = (kj − µj)(kj − µj)
⊤ + εI, Λj = Σ−1

j .

5
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The external memory is thus serialized as E = {(µj ,Λj , vj)}Mj=1.

From mixing coefficient βi to Mahalanobis distance. In the in-place formulation, the edited output is:

(W +∆)ki = V1βi +W (ki −K1βi), (14)

βi = K⊤
1 C−1ki, C = K0K

⊤
0 +K1K

⊤
1 . (15)

Thus, βi represents the projection of query key ki onto the span of edited keys, scaled by the inverse covariance
C−1. With a global whitening matrix Λ = C−1 ≻ 0, the closed-form mixing coefficient for a query key k
and a stored key µj can be written as

βij = µ⊤
j Λk. (16)

dj(k) = (k − µj)
⊤Λ(k − µj) = ∥k∥2Λ + ∥µj∥2Λ − 2µ⊤

j Λk. (17)

βij ∝ − dj(k), (18)
up to terms that are constant in j. This shows that maximizing βij is equivalent to minimizing the Mahalanobis
distance between k and each stored fact. For efficiency, we precompute transformed keys wj = Λµj . At
inference, routing then reduces to a matrix–vector multiplication

sj(k) = w⊤
j k, (19)

so the full Mahalanobis quadratic form never needs to be evaluated. This makes routing as cheap as a
dot-product lookup while preserving the same decision boundary as Mahalanobis distance.

Routing rule. Given a batch of queries {kn}Nn=1, DEPTRAI computes scores selects the best-scoring fact

snj = w⊤
j kn, (20)

j⋆n = argmax
j

snj , (21)

and activates an external override if the score passes a similarity threshold τ :

gaten = ⊮[ snj⋆n ≥ τ ]. (22)

Figure 2 illustrates Mahalanobis scores for subject versus non-subject tokens across LLaMA 3.2-3B and Qwen
2.5-3B. Subject tokens consistently exhibit lower scores, clustering near their stored keys, while non-subject
tokens yield higher scores. This clear separation validates Mahalanobis routing as a reliable discriminator:
it activates edits only when the query truly corresponds to a stored subject, preventing spurious overrides.
The sharper subject–non-subject margin in LLaMA suggests that some models yield more geometrically
well-aligned key spaces than others, influencing routing robustness.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We briefly introduce the evaluation metrics, datasets, and baseline methods. For more detailed descriptions of
the experimental settings, please refer to Appendix B.

Base LLMs & Baselines. We run experiments on three LLMs: LLaMA 3.2-3B (Meta, 2024), Qwen 2.5-
3B (Yang et al., 2024a), and Llama 3.1-8B (Meta, 2024). We compare DEPTRAI against parameter-editing
baselines such as Fine-Tuning FT-L (Meng et al., 2022b) and FT-M (Zhang et al., 2024b), ROME (Meng
et al., 2022b), MEMIT (Meng et al., 2023b), AlphaEdit (Fang et al., 2025). To assess sequential editing
task, we compare our method with three long-life model editing methods: GRACE (Hartvigsen et al., 2023),
SERAC (Mitchell et al., 2022b), and WISE (Wang et al., 2025).

6
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Datasets. To evaluate sequential editing, we use the closed-book QA dataset ZsRE (Levy et al., 2017) and
assess Hallucination correction on SelfCheckGPT (Manakul et al., 2023) following (Hartvigsen et al., 2023;
Wang et al., 2025). For the single-edit setting, we adopt KnowEdit (Zhang et al., 2024a) and report results on
four selective tasks: CounterFact, ZsRE, WikiBio, and ConvSent.

Metrics. In sequential editing task, each edit t ∈ {1, . . . , T} provides an edit query xt
e with target yt

e,
optional paraphrases X t

e′ for testing generalization, and an unrelated statements X t
loc for testing locality.

Given an editing set Dedit = {(X t
e ,Yt

e)}Tt=1, we evaluate the post-edit model fΘT
after all T edits have been

applied.

Rel. =
1

T

T∑
t=1

1(fΘT
(x

t
e) = y

t
e), Gen. =

1

T

T∑
t=1

1(fΘT
(x

t
e′ ) = y

t
e), Loc. =

1

T

T∑
t=1

1(fΘT
(x

t
loc) = fΘ0

(x
t
loc)), (23)

where 1(·) denote the indicator function. We report mean scores across edits for reliability (Rel.), gener-
alization (Gen.), and locality (Loc.). When paraphrases or locality probes contain multiple instances, we
average within each set. Following (Hartvigsen et al., 2023; Wang et al., 2025), we assess locality on the
Hallucination dataset using perplexity (PPL) and omit a generalization score due to the lack of a suitable
metric.

On KnowEdit, we report Edit Success (ES), Portability (Port.), Locality (Loc.), and Fluency (F.) as
described in (Zhang et al., 2024a). ES measures success on the edited queries; Port. evaluates whether the
edit transfers to aliases, paraphrases, and simple compositions; Loc. assesses that predictions for unrelated
inputs remain consistent with the pre-edit model; F. captures output well-formedness using an fluency scorer
(higher is better). Please refer to Appendix D

To further evaluate the preservation of the LLMs’ intrinsic knowledge after editing, we follow (Fang et al.,
2025), evaluating on the General Capbility Tests before and after editing T = 1000 samples from ZsRE
Appendix C.
Table 1: Main sequential editing results on ZsRE (QA setting). T : number of sequential edits. Rel., Gen., Loc., and Avg.
denote Reliability, Generalization, Locality, and Average. The results are highlighted as best , and second-best within
a 15% margin of the best. For T = 1, we only highlight our ability to achieve the highest performance.

Method Model
T = 1 T = 10 T = 100 T = 1000

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑

FT-L

L
L

aM
A

-3
.2

-3
B 100 100 100 100 48.00 46.00 75.70 56.57 32.85 27.00 23.00 27.62 16.35 12.60 3.00 10.65

AlphaEdit 100 100 100 100 87.67 91.00 94.79 91.15 62.88 56.83 33.36 51.02 0.03 0.00 4.94 1.66
GRACE 0.00 0.00 100 33.33 55.17 0.00 100 51.72 34.60 0.10 100 44.90 32.85 0.14 100 44.33
WISE 100 100 100 100 71.83 70.16 100 80.66 60.87 57.37 99.73 72.66 57.69 55.64 99.63 70.99

DEPTRAI 100 100 100 100 100 90.50 100 96.83 89.16 77.07 100 88.74 88.12 74.72 99.15 87.30

FT-L

Q
w

en
2.

5-
3B

100 100 100 100 49.50 47.83 80.29 59.21 30.88 29.41 26.29 28.86 15.69 13.14 3.00 29.18
AlphaEdit 100 100 100 100 93.00 90.50 98.00 93.83 87.14 77.75 74.36 79.75 71.86 67.28 26.68 55.27
GRACE 25.00 0.00 100 41.67 56.50 0.00 100 52.17 35.64 0.00 100 45.21 33.49 1.89 100 45.13
WISE 100 100 100 100 48.50 47.50 71.00 55.67 43.52 43.41 85.29 57.41 35.09 33.68 84.40 51.06

DEPTRAI 100 100 100 100 88.00 84.00 100 90.67 76.30 67.90 88.55 77.58 73.67 86.60 66.24 75.50

FT-L

L
L

aM
A

-3
.1

-8
B 100 100 100 100 52.80 51.50 76.70 60.33 37.60 29.83 25.50 30.98 21.69 23.67 2.15 15.84

AlphaEdit 100 100 100 100 85.17 80.67 81.29 82.38 58.59 54.36 22.68 45.21 2.91 2.71 3.00 2.87
GRACE 0.00 0.00 100 33.33 52.66 0.00 100 50.89 34.73 1.23 100 45.32 31.96 1.38 100 44.45
WISE 100 100 100 100 83.83 78.83 100 87.55 70.99 66.00 100 79.00 63.12 60.22 98.95 74.10

DEPTRAI 100 100 100 100 100 87.50 100 95.83 91.38 80.26 100 90.55 93.50 79.35 100 90.95

7
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Table 2: Main sequential editing results on Hallucination Dataset. T : number of sequential edits. Rel., Gen., Loc., and
Avg. denote Reliability, Generalization, Locality, and Average, respectively. The results are highlighted as best , and
second-best . For T = 1, we only highlight our ability to achieve the highest performance.

Method Model
T = 1 T = 10 T = 100 T = 600

Rel. (PPL↓) Loc.↑ Rel. (PPL↓) Loc.↑ Rel. (PPL↓) Loc.↑ Rel. (PPL↓) Loc.↑

FT-L

L
L

aM
A

-3
.2

-3
B 1.00 100 1.12 88.76 12.45 35.45 254.3 0.10

AlphaEdit 1.59 88.09 3.16 88.69 128.0 0.20 249.7 0.10
GRACE 4.96 100 14.64 100 16.26 100 41.48 100
WISE 1.00 100 1.13 96.06 1.64 99.49 33.05 68.04

DEPTRAI 1.00 100 1.17 100 7.88 99.93 35.33 99.57

FT-L

Q
w

en
2.

5-
3B

1.23 100 18.54 45.68 62.83 0.00 88.34 0.00
AlphaEdit 1.10 100 1.38 96.1 9.17 87.94 182.7 50.38
GRACE 5.52 100 14.53 100 29.31 100 134.5 100
WISE 1.12 100 16.00 54.39 32.8 15.85 36.19 17.73

DEPTRAI 1.04 100 1.37 100 15.53 99.12 36.31 99.16

FT-L

L
L

aM
A

-3
.1

-8
B 1.00 100 6.78 67.89 14.67 32.65 315.6 0.00

AlphaEdit 1.00 100 2.78 97.80 248.34 0.10 325.7 0.00
GRACE 4.58 100 15.97 100 16.76 100 33.04 100
WISE 1.01 100 1.62 96.72 2.00 99.74 25.31 95.04

DEPTRAI 1.00 100 1.41 100 5.48 100 30.65 99.96

1 10 100 1000
Sequential edits (T)

0

20

40

60

80

100
LLaMA-3.2-3B

1 10 100 1000
Sequential edits (T)

Qwen2.5-3B

1 10 100 1000
Sequential edits (T)

LLaMA-3.1-8B

DEPTRAI WISE AlphaEdit FT-L GRACE

Figure 3: Reliability of sequential edits on ZsRE as edit depth grows. Each panel shows one base
model (LLaMA 3.2-3B, Qwen 2.5-3B, LLaMA 3.1-8B), with curves for the five editing methods over
T ∈ {1, 10, 100, 1000} edits.

4.2 MAIN RESULT

As shown in Table 1 and Figure 3, DEPTRAI remains stable under long edit sequences. Across all three base
models, reliability remains at 100% at T = 10 and stays above 88% at T = 1000; generalization and locality
are also among the top results. This suggests the edits are integrated without broader behavioral drift. By
comparison, WISE degrades by roughly 15–20% at higher depths, AlphaEdit and FT-L drop sharply beyond
T = 10, and GRACE maintains locality but at the expense of reliability and generalization.
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Table 2 indicates that DEPTRAI is consistently the most stable approach on the hallucination benchmark:
it maintains near-perfect locality (≈ 100%) across depths and ranks first or second on the reliability proxy
(lower PPL is better) from T=1 through T=600 for all three base models. WISE is competitive at small T
and often second-best, but its PPL grows more noticeably as edits accumulate. GRACE preserves locality
by design (frequently 100%) yet does so with substantially higher PPL, reflecting weaker reliability under
sequential edits. Fine-tuning baselines (FT-L) and AlphaEdit degrade quickly with depth—PPL rises and
locality erodes—highlighting how naive or overly broad edits can bleed into unrelated contexts. Overall,
DEPTRAI achieves the best robustness profile: edits remain localized while reliability holds up even under
long edit chains.

5 RELATED WORKS

5.1 LEVERAGING EXTERNAL KNOWLEDGE

External knowledge can be injected without retraining by retrieving demonstrations or memory entries.
MemPrompt (Madaan et al., 2022) augments prompts with user feedback, while IKE (Zheng et al., 2023)
leverages diverse demonstrations (copy, update, retrain) for reliable fact editing. Yet such methods often
lack ripple effects: inserting one fact does not propagate to its implications (Cohen et al., 2024). To address
this, decomposition-based editors (Zhong et al., 2023; Gu et al., 2024; Wang et al., 2025) break large edits
into sequential sub-edits, while others combine counterfactual knowledge with classifiers to decide when to
invoke the edited model (Mitchell et al., 2022c).

5.2 EXTENDING HIDDEN STATES

Another line of work modifies hidden representations directly, reducing the need for long prompts. Patching
methods interpolate new and old hidden states to steer model outputs (Murty et al., 2022). Others augment
FFN states with additional neurons (Dong et al., 2022; Huang et al., 2023) or use LoRA-style low-rank
adapters to inject knowledge (Wu et al., 2023; Yu et al., 2024; Biderman et al., 2024). REMEDI (Hernandez
et al., 2024) incorporates attribute vectors for entities, while GRACE (Hartvigsen et al., 2023) maintains a
dynamic codebook of updates.

5.3 EDITING INTERNAL PARAMETERS

Finally, parameter-editing methods directly alter weights. Hypernetwork-based approaches predict ∆W for
each edit (Sinitsin et al., 2020; Han et al., 2023; Tan et al., 2024), including KE (De Cao et al., 2021) and
SLAG (Hase et al., 2023), but are costly at scale. MEND (Mitchell et al., 2022a) improves efficiency via
rank-one decomposition. Other works use causal tracing to locate critical hidden states for more targeted
edits (Meng et al., 2022a; 2023a). To limit side effects, AlphaEdit (Fang et al., 2025) projects perturbations
into the null space of preserved keys.

6 CONCLUSION

We introduced DEPTRAI, a detachable external-memory layer that edits LLMs without altering base weights.
By casting the closed-form mixing coefficient as a Mahalanobis routing rule, DEPTRAI achieves reversible
database-style updates with high efficiency. On Qwen 2.5 3B and LLaMA-3 8B it delivers the best average
performance on sequential editing, surpassing WISE by 15–20%, while preserving specificity and locality. A
current limitation is that stored keys may not generalize across synonyms or transliterations, and injected
values can still risk subtle locality interference, both of which remain directions for future improvement.
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A DETAIL OF DEPTRAI

Figure 4 illustrates the detailed inference flow of DEPTRAI within a transformer block. When processing an
input sequence, each block proceeds through the standard self-attention and activation steps. Afterward, the
MLP down-projection generates a query key vector for the current subject token.

DEPTRAI introduces an external detachable key–value (K–V) storage module. During inference, the
generated query key is routed against the stored keys using a Mahalanobis-based distance metric. If a close
match is found, the associated edited value V is retrieved and substituted into the up-projection path of the
MLP, effectively overriding the original factual association. If no suitable match exists, the model simply
forwards the unaltered hidden representation through the up-projection.

This design enables DEPTRAI to (i) preserve the base model parameters intact, (ii) inject or update knowledge
through explicit K–V entries, and (iii) flexibly add, clear, or swap edits at runtime without retraining. The
flow ensures that factual corrections, such as replacing “Michael Jordan plays basketball” with “Michael
Jordan plays soccer,” propagate seamlessly through subsequent layers while retaining locality and fluency.

B IMPLEMENTATION DETAILS

B.1 DESCRIPTIONS OF COMPARED METHODS

FT-L (Meng et al., 2022a). We freeze the LLM except for a single MLP layer, which we fine-tune with an
autoregressive loss. An ℓ∞ constraint keeps the updated parameters close to the pretrained weights to limit
drift.

14

https://ojs.aaai.org/index.php/AAAI/article/view/29916
https://ojs.aaai.org/index.php/AAAI/article/view/29916
https://aclanthology.org/2023.emnlp-main.296/
https://aclanthology.org/2023.emnlp-main.971/
https://aclanthology.org/2023.emnlp-main.971/


658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Block #i
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K-V storage

soccer

... Michael Jordan plays

MLP up projection

Query

Figure 4: Detailed flow of DEPTRAI inside a transformer block. The self-attention and MLP down-projection
produce a query key, which is compared against external K–V storage. If a match is found, the stored value V
is injected through the MLP up-projection, replacing the original activation (e.g., updating “Michael Jordan
plays basketball” → “Michael Jordan plays soccer”); otherwise, the original pathway is preserved.

FT-M (Zhang et al., 2024a). A stronger fine-tuning baseline that updates a larger subset of parameters (e.g.,
several successive transformer blocks) with small learning rates and early stopping, trading higher edit success
for a greater risk of interference.

ROME (Meng et al., 2022a). A closed-form editor that identifies the MLP layer most responsible for a fact
and applies a least-squares update to its weight matrix to implant the new relation in one shot.

MEMIT (Meng et al., 2023a). A multi-layer extension of ROME that performs coordinated, closed-form
updates across several MLP layers, enabling efficient batch or large-scale injections of facts while minimizing
side effects.

AlphaEdit (Fang et al., 2025). An optimization-based editor that learns a compact parameter delta to satisfy
the edited outputs under locality-preserving regularization, yielding strong reliability with controlled collateral
change.

GRACE (Hartvigsen et al., 2023). A lifelong editor that maintains a discrete key–value codebook of edits.
At inference, it retrieves the nearest key to the current input and, when appropriate, replaces intermediate
activations, thereby isolating new knowledge from the base model.

WISE (Wang et al., 2025). A long-horizon editing method that combines locality-aware training with a
selection mechanism to preserve earlier edits; it remains more reliable than simple fine-tuning under many
sequential edits while avoiding excessive drift.

B.2 TRAINING DETAILS AND HYPERPARAMETERS

General setup. We evaluate on three base models: LLaMA 3.2-3B, Qwen 2.5-3B, and LLaMA 3.1-8B. Batch
size is 1 for sequential editing. All runs use 4×NVIDIA A100 40GB GPUs (each experiment is reproducible
on a single A100).
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Layer selection. For MEMIT, and AlphaEdit (internal parameter editing), we target the mid–upper MLP
band: layers [4, 5, 6, 7, 8]. For ROME, DEPTRAI (ours), we edit layer 8 on all three models.

FT-L (single-layer fine-tuning). We use the public ROME codebase3. LR grid {1e−5, 1e−4, 5e−4}, 50
steps; we report the best at 5e−4. All other weights are frozen, and we apply an ℓ∞ constraint to limit drift.

FT-M (multi-layer fine-tuning). A stronger FT baseline that updates a small stack of adjacent transformer
blocks (same LR grid as FT-L) and early stopping keyed to locality. This typically yields higher ES but
increases interference risk.

GRACE. We follow the released setup: LR = 1.0, and replace_last (replace only last-token activations
in AR decoding). We lightly sweep ϵinit for stability; other knobs remain at defaults.

WISE. We use the authors’ suggested settings and evaluate strictly in retrieve mode, without replay and
without merging. Optimization uses SGD (Shamir & Zhang, 2013) with LR = 1.0 for LLaMA 3.2-
3B and Qwen 2.5-3B, and LR = 0.9 for LLaMA 3.1-8B. During editing we set ρ=0.2 and routing
thresholds α=5.0, β=20.0, γ=10.0 (for LLaMA 3.1-8B we use α=2.0, β=20.0, γ=10.0). We use
n_iter=70, act_ratio=0.88 for LLaMA 3.2-3B and Qwen 2.5-3B; n_iter=30, act_ratio=0.50
for LLaMA 3.1-8B; norm_constraint=1.0 and objective=only_label for all. The edited pa-
rameter is the MLP down-projection of a single layer per model: layer 20 for LLaMA 3.2-3B, layer 23 for
Qwen 2.5-3B, and layer 29 for LLaMA 3.1-8B. No merging/sharding stage is applied; edits are applied via
retrieval-time routing only.

DEPTRAI (ours). We construct the edit vector V ∗ by following the MEMIT work. The resulting delta
is written at layer 8 for LLaMA 3.2-3B, Qwen 2.5-3B, and LLaMA 3.1-8B. At inference, routing uses a
Mahalanobis score on the layer-8 activation with model-specific thresholds: τ=0.4 (LLaMA 3.2-3B), τ=0.6
(Qwen 2.5-3B), and τ=0.5 (LLaMA 3.1-8B).

C GENERAL CAPABILITY

Table 3: F1 scores (%) on GLUE tasks and MMLU after 1000 sequential edits ZsRE.

Model Setting SST MRPC RTE CoLA NLI MMLU Avg.

LLaMA 3.2-3B
Pre-edited 95.49 58.94 29.26 55.9 68.44 55.43 60.58
Post-edited 95.49 58.94 29.26 55.9 68.44 55.43 60.58

∆ 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Qwen 2.5-3B
Pre-edited 94.49 69.99 18.72 76.98 76.76 59.96 66.15
Post-edited 95.00 67.99 16.99 74.00 77.68 58.37 65.01

∆ ↑0.51 ↓0.2 ↓1.73 ↓2.98 ↑0.92 ↓1.59 ↓ 1.32

LLaMA 3.1-8B
Post-edited 95.99 64.28 24.5 78.69 73.26 59.25 66.00
Pre-edited 95.99 64.28 24.5 78.69 73.26 58.65 65.90

∆ 0.00 0.00 0.00 0.00 0.00 ↓0.6 0.1

1. SST (Stanford Sentiment Treebank) (Socher et al., 2013): single-sentence sentiment classification on
movie-review sentences with human-annotated binary labels.

2. MRPC (Microsoft Research Paraphrase Corpus) (Dolan & Brockett, 2005): sentence-pair classification
to determine whether two sentences are semantically equivalent.

3. MMLU (Massive Multi-Task Language Understanding) (Hendrycks et al., 2021): a broad knowledge
and reasoning evaluation measuring multi-task accuracy.

4. RTE (Recognizing Textual Entailment) (Bentivogli et al., 2009): natural language inference determining
whether a premise logically entails a hypothesis.

3https://github.com/kmeng01/rome
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5. CoLA (Corpus of Linguistic Acceptability) (Warstadt et al., 2019): single-sentence classification of
grammatical acceptability.

6. NLI (Natural Language Inference) (Williams et al., 2018): inference over sentence pairs to identify their
logical relationship.

As illustrated in Table 3, DEPTRAI successfully preserves the general knowledge after intensive knowledge
updates, with an average of 0.05 for the two Llama models and 1.32 for Qwen 2.5-3B. This further highlights
the practicality of DEPTRAI in real-life applications, where the post-edited LLM needs to both recall
commonsense knowledge and utilize the updated piece of given information.

D KNOWEDIT BENCHMARK

Table 4: Performance across models and editing methods on the KnowEdit benchmark. ES = Edit Sucess, Port. =
Portability, Loc. = Locality, and F. = Fluency. The results are highlighted as best , second-best , and third-best .

Method Model
ZsRE WikiBio WikiCounterFact ConvSent

ES↑ Port.↑ Loc.↑ F.↑ ES↑ Loc.↑ F.↑ ES↑ Port.↑ Loc.↑ F.↑ ES↑ Loc.↑ F.↑

FT-L

L
L

aM
A

3.
2-

3B

52.71 45.69 67.43 350.51 66.54 57.82 589.76 46.50 39.59 49.96 434.81 51.82 0.00 494.86
FT-M 100.00 58.36 86.41 395.03 100.00 91.60 602.73 100.00 72.77 69.82 508.61 47.57 0.00 464.77

ROME 99.12 51.61 46.99 527.57 99.16 35.99 591.09 99.25 54.79 37.21 588.95 45.14 0.00 612.79
MEMIT 97.18 51.21 51.67 522.18 87.85 70.54 627.58 97.08 51.79 39.88 579.10 46.57 0.00 588.80

AlphaEdit 98.40 51.09 45.85 521.34 92.90 68.31 627.05 98.15 57.33 35.19 589.21 43.55 0.00 591.22
DEPTRAI 97.15 51.61 41.22 521.73 94.78 67.42 621.55 98.64 59.20 33.87 577.68 42.85 0.00 584.83

FT-L

Q
w

en
2.

5-
3B

53.93 45.64 73.42 493.01 66.33 79.86 606.95 45.15 33.60 50.48 528.26 49.50 0.00 607.86
FT-M 99.98 60.31 89.78 552.26 100.00 93.38 612.69 100.00 74.36 76.76 575.62 46.10 0.00 592.52

ROME 96.77 52.63 53.67 573.75 96.08 62.74 617.69 98.57 55.92 51.97 584.04 45.79 0.00 606.32
MEMIT 95.37 52.67 48.32 563.31 94.40 61.51 616.65 98.05 58.56 46.62 575.96 44.75 0.00 602.62

AlphaEdit 97.18 53.50 49.32 580.00 91.5 67.45 617.69 99.2 45.03 46.64 598.28 43.5 0.00 612.28
DEPTRAI 98.95 55.01 52.55 586.16 92.86 57.13 628.86 99.36 55.01 39.82 598.43 39.16 0.00 624.34

FT-L

L
L

aM
A

3.
1-

8B

50.29 38.18 51.11 350.91 62.04 70.41 571.88 49.21 38.45 32.69 394.80 51.72 0.00 505.59
FT-M 100.00 59.23 79.30 418.66 100.00 87.26 599.32 100.00 73.40 62.35 518.36 48.33 0.00 462.15

ROME 98.91 52.41 48.48 551.85 91.49 66.66 627.68 99.19 57.33 40.77 591.05 44.88 0.00 608.20
MEMIT 97.65 50.36 69.01 573.11 82.02 83.88 630.25 97.09 40.76 61.19 599.93 48.94 0.00 594.03

AlphaEdit 84.81 48.75 77.38 579.29 90.43 67.09 628.00 82.54 34.35 69.95 605.63 41.89 0.00 594.80
DEPTRAI 94.99 52.46 68.98 575.26 95.51 69.81 624.84 97.97 59.71 41.85 579.55 45.43 0.00 594.26

Table 4 shows high edit success (ES) across methods but comparatively lower portability (Port.) and locality
(Loc.), largely due to KnowEdit’s stress design. Portability is tested with aliases, synonyms, paraphrases, and
light compositions that intentionally differ from the edited surface form. When the learned edit binds too
tightly to the original phrasing, transfer fails, leading to a drop in portability. Locality is probed by pairing
the edited subject tokens with unrelated predicates or questions, a “near-miss” setup that routes the model
toward the edited entity while requiring the pre-edit response, so edits that globally modulate the subject
representation can bleed into these contexts and trigger false activations, lowering Loc. DEPTRAI generally
offers the best balance, maintaining strong ES while limiting collateral effects. The benchmark construction
makes Port. and Loc. harder than ES.

E ABLATION STUDY

Furthermore, we experiment comparing Mahalanobis against cosine similarity for 3 models on the KnowEdit
benchmark and report the performance in Table 5.
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Table 5: Performance across models and distance methods on the KnowEdit benchmark. Best results are shown in red .

Model Method
ZsRE WikiBio WikiCounterFact ConvSent

ES↑ Port.↑ Loc.↑ F.↑ ES↑ Loc.↑ F.↑ ES↑ Port.↑ Loc.↑ F.↑ ES↑ Loc.↑ F.↑

LLaMA 3.2-3B
Mahalanobis 97.15 51.61 41.22 521.73 94.78 67.42 621.55 98.64 59.20 33.87 577.68 42.85 0.00 584.83
Cosine 0.6 99.60 47.11 40.35 351.52 91.90 56.29 622.98 99.64 44.44 30.77 489.32 41.95 0.00 579.52

Qwen2.5-3B
Mahalanobis 98.95 55.01 52.55 586.16 92.86 57.13 628.86 99.36 55.01 39.82 598.43 39.16 0.00 624.34
Cosine 0.6 99.49 50.31 52.98 586.92 94.38 55.84 626.29 99.43 52.97 39.49 596.86 39.16 0.00 624.34

LLaMA 3.1-8B
Mahalanobis 94.99 52.46 68.98 575.26 95.51 69.81 624.84 97.97 59.71 41.85 579.55 45.43 0.00 594.26
Cosine 0.6 97.09 50.17 52.51 524.07 90.64 69.98 627.18 98.89 48.61 41.26 581.60 43.50 0.00 590.07

As depicted in Table 5, although the editing score (ES) of Mahalanobis is relatively lower compared to cosine
similarity for 3 models, the portability (Port.), locality (Loc.), and fluency (F.) are significantly higher. We
hypothesize that by using cosine similarity as the distance method, the set of key synonyms K could contain
both actual synonyms and related phrases (e.g., a synonym of “dog” is “canine”, but related phrases such
as “cat” or “kitty” also have close distances to “dog” under cosine similarity space). Therefore, the editing
method could modify the incorrect set of keys, leading to poorer locality and portability scores compared to
Mahalanobis. This phenomenon does not happen to Mahalanobis, as this distance first clusters semantically
equivalent points, thus eliminating the related phrases in the first place.
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