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ABSTRACT

Large language models (LLMs) quickly become outdated because the factual knowledge
they encode is fixed at training time, and retraining for every new fact is prohibitively
expensive. Prior “internal” editors apply closed-form perturbations directly to the feed-
forward weights, but each new patch is applied in place to the base model, causing edits
to accumulate, interfere, and preventing straightforward revocation. We present DEP-
TRAI—Detachable External-memory layer for Parameter-Transformer Injection—that
stores each edited fact as a key–value tuple outside the model, leaving all original weights
frozen. At inference, the frozen FFN produces a subject key, which is routed to the near-
est stored key using a Mahalanobis metric that mirrors the inverse-covariance scaling of
closed-form editors. A lightweight gate then either substitutes the edited value or preserves
the base projection. This design turns factual patching into a reversible database-style
update rather than a permanent modification of parameters. DEPTRAI achieves the highest
average performance on sequential editing tasks, outperforming the latest dual-memory
method WISE by 15–20%,

1 INTRODUCTION

Large language models (LLMs) such as Claude 1, Grok 2, and GPT-4 (Achiam et al., 2023) have shown a
remarkable performance on many benchmarks (Achiam et al., 2023; Yang et al., 2024b; Wang et al., 2024).
Their success is often attributed to an ability to encode an enormous amount of world knowledge directly in the
parameters of a Transformer network, which makes them attractive as implicit knowledge bases (Feng et al.,
2023; Delétang et al., 2023). However, implicit storage is a double-edged sword: models hallucinate, drift out
of date, and resist fine-grained inspection. Retraining or fully fine-tuning an LLM after every factual change
is prohibitively expensive, motivating the search for lightweight knowledge-editing techniques (De Cao et al.,
2021; Jiang et al., 2024).

The dominant family of editing methods follows the locate–then–edit paradigm. Causal tracing first identifies
the feed-forward (FFN) layers that mediate a target association, a low-rank perturbation ∆ is then solved
in closed form and added to the value matrix W of those layers. ROME (Meng et al., 2022) demonstrates
the approach for single facts, MEMIT (Meng et al., 2023) extends it to thousands of edits, and AlphaEdit
(Fang et al., 2025) further constrains the update by projecting it onto the null space of preserved keys.
Mathematically, all three methods boil down to a global Mahalanobis rescaling between the old output Wk
and the new slice v.

Dual-memory methods such as GRACE (Hartvigsen et al., 2023) and adapter-style memory such as WISE
(Wang et al., 2025) address the entanglement of edits by attaching a side table of parameters and training a

1https://claude.ai/
2https://grok.com/
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router that chooses between base model and patch. However, because the router relies on unwhitened cosine
or dot-product similarity in the full hidden space, it remains sensitive to surface-form variation and carries a
considerable memory footprint.

We introduce DEPTRAI (Detachable External Parameter Transformer Retrieval and Injection), a new editing
framework that couples the precision of closed-form editors with the flexibility of an external memory.
Building on ROME’s insight that the last subject token alone addresses the factual association, we store each
fact as a single subject key and its edited value in an external key–value table, leaving the original weights
untouched.

At inference time the frozen FFN produces a query key k, DEPTRAI routes k to the nearest stored key using a
Mahalanobis distance that mirrors the inverse-covariance factor of MEMIT, then either substitutes the edited
value or lets the base projection Wk pass through.

Our main contributions.

• We present DEPTRAI, the detachable key–value memory that augments a frozen Transformer and realises
knowledge edits without overwriting any internal parameter.

• We show that the Mahalanobis metric induced by the closed-form coefficient β = µ⊤C−1k yields a
principled router that is robust to surface-form variation, eliminating the key-bias of previous editors.

• Experiments on LLaMA 3.2-3B, Qwen 2.5 3B and LLaMA 3.1-8B across ZsRE, Hallucination show that
DEPTRAI achieves the highest average score in sequential editing compared to recent methods such as
WISE about 15-25%.

2 PRELIMINARIES

2.1 AUTOREGRESSIVE LANGUAGE MODELS AND MEMORY STORAGE

Large language models (LLMs) are typically trained in an autoregressive manner, predicting the next token
x[t] based on the previous sequence of tokens x[1], . . . , x[t−1]. Formally, the conditional probability of the
next token can be expressed as

x[t] | x[1], . . . , x[t−1] ≜ G([x[1], . . . , x[t−1]]) = softmax(Wy, h
D
[t−1]), (1)

where G denotes the transformer model (Vaswani et al., 2017), Wy is the output embedding matrix, and
hD
[t−1] is the hidden state at the final layer D for the preceding token x[t−1].

The hidden states in the transformer are updated layer by layer using a combination of self-attention and
feed-forward operations. Specifically, for a token x at layer l, the hidden state hl is computed as

hl = hl−1 + al +ml, (2)

where al denotes the output of the multi-head attention module, and ml denotes the output of the feed-forward
network (FFN). The feed-forward update ml is computed via

ml = W l
outσ(W

l
inγ(h

l−1 + al)), (3)

where W l
in and W l

out are learnable matrices, σ is a non-linear activation function, and γ denotes layer
normalization (Ba et al., 2016).

Following the interpretations proposed in prior works (Bau et al., 2020; Meng et al., 2022), the FFN layers
can be seen as a form of associative memory: the input k (after applying σ(W l

in, γ(h
l−1 + al))) serves as a

key, and the output ml serves as a value. This leads to the perspective that the weight matrix W l
out associates

keys with corresponding stored values. Specifically,

ml = W l
outk, (4)

2
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where k represents the intermediate key encoding derived from the hidden state and attention output.

Based on this understanding, most model editing methods focus on modifying the FFN layers to inject or
update factual knowledge within LLMs. For clarity and consistency throughout the remainder of this paper,
we denote W as shorthand for W l

out.

2.2 MODEL EDITING IN LARGE LANGUAGE MODELS

Many studies have shown that LLMs inherently memorize a vast number of factual associations (Petroni
et al., 2019; Brown et al., 2020; Chowdhery et al., 2023). Such knowledge is often expressed in the form of
(subject, relation, object) triplets (s, r, o), where a prompt like "Michael Jordan plays the sport of" triggers
the model to predict "basketball".

The task of model editing concerns directly modifying factual associations encoded in the parameters of an
LLM without retraining the entire model (Sinitsin et al., 2020; De Cao et al., 2021; Meng et al., 2022; 2023;
Fang et al., 2025). Given a desired change in factual knowledge, editing methods aim to minimally update the
model’s parameters so that it consistently outputs the new fact while preserving unrelated knowledge.

Consider a list of desired edits, where (si, ri, oi) are the subject, relation, and object of the i-th factual triplet.
We assume there are no conflicting edits such that no two edits share the same (s, r) but disagree on o. Each
edit is associated with a prompt pi (e.g., "Michael Jordan plays the sport of") intended to elicit the new object
oi (e.g., "football").

To implement such edits, most recent methods focus on updating the output weight matrices W of the FFN
layers. Suppose W ∈ Rd1×d0 , where d0 and d1 are the input and output dimensions of the FFN, respectively.
For a set of u edits, one constructs two matrices

K1 = [k1|k2| · · · |ku] ∈ Rd0×u, V1 = [v1|v2| · · · |vu] ∈ Rd1×u, (5)

where ki encodes (si, ri) and vi encodes oi. The editing objective becomes minimizing the reconstruction
error

∆ = argmin
∆̃

||(W + ∆̃)K1 − V1||2, (6)

where ∆ is the perturbation applied to W .

However, editing only based on new knowledge can cause catastrophic forgetting of unrelated memories
(Gupta et al., 2024). To mitigate this, one typically incorporates an additional preservation term involving a
matrix K0 and V0, representing the original keys and values from pre-existing knowledge

∆ = argmin
∆̃

(
||(W + ∆̃)K1 − V1||2 + ||(W + ∆̃)K0 − V0||2

)
. (7)

Under the assumption that WK0 ≈ V0 holds prior to editing (i.e., the model faithfully encodes the old
knowledge), the optimal ∆ can be derived using the normal equation (Lang, 2012)

∆ = (V1 −WK1)K
T
1 (K0K

T
0 +K1K

T
1 )

−1. (8)

In practice, K0 is approximated by collecting representations from a large corpus, typically using over
100,000 (subject, relation, object) triplets extracted from datasets like Wikipedia (?Fang et al., 2025). Despite
being an approximation, this strategy enables scalable editing at the level of thousands of factual changes
while maintaining fluency, generalization, and specificity (Meng et al., 2023).

In this work, we build upon these principles to propose improved editing mechanisms that better preserve old
memories while ensuring effective assimilation of new information.

3
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Figure 1: Overview of DEPTRAI compared with adapter-style knowledge editing. (a) Adapter-based editors
store updates as additional trainable modules injected into specific layers, requiring the model to route
activations through these parameter “experts” during inference. In contrast, DEPTRAI detaches all edits from
the backbone: each fact is stored as a whitened key and a learned value vector in an external vector database,
and a Mahalanobis-style gate determines whether to substitute this edited value or fall back to the frozen FFN
output. (b) Illustration of the DEPTRAI vector-storage mechanism, showing the whitening of subject keys,
the learned value update ∆v, and the gating decision that applies edits only when the key similarity exceeds a
threshold.

3 METHODOLOGY

Unlike prior internal editors such as MEMIT and AlphaEdit, which inject low-rank weight perturbations and
must carefully balance new and old knowledge. DEPTRAI leaves the base parameters untouched, stores each
edited subject key and its value in a detachable external layer, and employs a Mahalanobis-based router to
fetch the correct value at inference time, as shown in Figure 1

3.1 MOTIVATION

Starting from the closed-form update shared by MEMIT and AlphaEdit, the optimal perturbation to an FFN
output matrix can be expressed as

∆ = (V1 −WK1)K
⊤
1 C−1, (9)

where the covariance matrix
C = K0K

⊤
0 +K1K

⊤
1 (10)

balances preserved keys K0 and edited keys K1. For a query key ki, the edited layer output is

(W +∆)ki = Wki + (V1 −WK1)K
⊤
1 C−1ki. (11)

Defining the mixing coefficient
βi = K⊤

1 C−1ki, (12)

To connect this to our external-memory design in Figure 1, consider the single-fact case, where there is only
one edited key–value pair, k and v. Then βi becomes a scalar β(ki) = k⊤C−1ki, and equation 11 simplifies

4
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to

(W +∆)ki = Wki + (v −Wk)k⊤C−1ki (13)
= Wki + β(ki) (v −Wk). (14)

If we denote the base FFN output by v0 = Wki and the edit vector by ∆v = v −Wk, we can write

(W +∆)ki = v0 + β(ki)∆v. (15)

Equation 15 makes the structure of the update explicit, the edited output is the original value v0 plus a
direction ∆v scaled by a data-dependent coefficient β(ki). In other words, the closed-form editor is already
implementing a gate that interpolates between the base projection and the edited value.

AlphaEdit influences this gate indirectly by constraining C−1 via a projection onto the null space of K0. This
acts as a coarse, global rescaling of β(ki), but it does not give fine-grained control over how strongly the edit
should fire in different contexts.

DEPTRAI takes the single-fact perspective in equation 15 as a design blueprint. We externalize the key k and
the edit direction ∆v into a vector database, and interpret β(ki) as a Mahalanobis-style routing score. At
inference time, the frozen FFN produces v0 and a subject key; our external layer retrieves ∆v and applies an
explicit gate g(ki) (derived from the same Mahalanobis geometry) to produce

v0 + g(ki)∆v, (16)

as depicted in Figure 1. This view motivates DEPTRAI as a direct factorization of the closed-form update
into a detachable codebook (holding keys and ∆v) plus an interpretable gating mechanism.

3.2 EXTERNAL LAYER: DEPTRAI

From in-place perturbation to detachable memory. In MEMIT (Meng et al., 2023) and AlphaEdit (Fang
et al., 2025), the closed-form update ∆ is injected directly into the FFN output matrix W . This permanently
modifies the base parameters and entangles edits over time. DEPTRAI instead keeps W frozen and stores
each factual edit in an explicit external memory table. This detachable structure allows facts to be added,
revoked, or swapped at runtime, transforming editing into a lightweight retrieval-and-injection process.

From mixing coefficient β to Mahalanobis distance. In the in-place closed-form formulation for a single
edited fact with query key k, edited key µ and value v, the edited output becomes

(W +∆)k = v0 + β(k)∆v. (17)

where the mixing coefficient is the scalar

β(k) = µ⊤C−1k, C = C0 + µµ⊤. (18)

Thus, β(k) represents the projection of the query key k onto the edited key µ, scaled by the inverse covariance.
With the whitening matrix Λ = C−1 ≻ 0, the closed-form coefficient becomes

β(k) = µ⊤Λk. (19)

The associated Mahalanobis distance is

d(k, µ) = (k − µ)⊤Λ(k − µ) = ∥k∥2Λ + ∥µ∥2Λ − 2µ⊤Λk. (20)

Hence,
β(k) ∝ − d(k, µ), (21)

5
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up to terms independent of µ. Maximizing β(k) is therefore equivalent to minimizing the Mahalanobis
distance between k and the edited key. For efficiency, we precompute a whitened key

w = Λµ, (22)

so that routing at inference reduces to the dot-product score

s(k) = w⊤k. (23)

The full quadratic form never needs to be evaluated. This makes DEPTRAI’s routing as cheap as a dot-product
lookup while preserving the exact decision boundary implied by the Mahalanobis geometry of the closed-form
editor.

Memory structure. For each factual edit j, we begin with a subject key kj ∈ Rdin and an edited value vector
vj ∈ Rdout , both extracted following the MEMIT procedure. As discussed the above section, the closed-form
update for a single edit depends on a covariance term of the form

Ci = C0 + kik
⊤
i , (24)

where the global covariance
C0 ≈ Ex

[
k(x)k(x)⊤

]
(25)

captures the geometry of preserved keys, and the rank-1 addition kik
⊤
i introduces the contribution of the new

fact. DEPTRAI follows this formulation but adopts a lightweight storage. For each edit, we compute the
inverse C−1

i only once during preprocessing in order to produce a Mahalanobis-whitened key. The matrix Ci

and its inverse are not stored. Instead, we retain only the transformed vector:

µj = kj , wj = C−1
i µj . (26)

This ensures that all routing decisions operate in the same Mahalanobis geometry induced by the closed-form
solution, while eliminating the overhead of maintaining per-edit covariance matrices.

The external memory is serialized compactly as

E = { (µj , wj , vj) }Mj=1 , (27)

where µj is the raw subject key, wj is its whitened counterpart used for similarity scoring, and vj is the edited
value vector applied when the route is activated. Because only (µj , wj , vj) are stored, lookup at inference
reduces to a dot-product search over whitened keys, avoiding any matrix inversion or dynamic recomputation.

Routing rule. Given a batch of queries {kn}Nn=1, DEPTRAI computes scores and selects the best-scoring
fact

snj = w⊤
j kn, (28)

j⋆n = argmax
j

snj , (29)

and activates an external addition if the score passes a similarity threshold τ :

gaten = 1[ snj⋆n ≥ τ ]. (30)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We briefly introduce the evaluation metrics, datasets, and baseline methods. For more detailed descriptions of
the experimental settings, please refer to Appendix B.

6
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Base LLMs & Baselines. We run experiments on three LLMs: LLaMA 3.2-3B (Meta, 2024), Qwen 2.5-
3B (Yang et al., 2024a), and LLaMA 3.1-8B (Meta, 2024). We compare DEPTRAI against parameter-editing
baselines such as Fine-Tuning FT-L (Meng et al., 2022) and FT-M (Zhang et al., 2024), ELDER (Li
et al., 2025), ROME (Meng et al., 2022), MEMIT (Meng et al., 2023), AlphaEdit (Fang et al., 2025).
To assess sequential editing task, we compare our method with three long-life model editing methods:
GRACE (Hartvigsen et al., 2023), and WISE (Wang et al., 2025).

Datasets. To evaluate sequential editing, we use the closed-book QA dataset ZsRE (Levy et al., 2017) and
assess Hallucination correction on SelfCheckGPT (Manakul et al., 2023) following (Hartvigsen et al., 2023;
Wang et al., 2025). For the single-edit setting, we adopt KnowEdit (Zhang et al., 2024) and report results on
four selective tasks: CounterFact, ZsRE, WikiBio, and ConvSent (Appendix F).

Metrics. In sequential editing task, each edit t ∈ {1, . . . , T} provides an edit query xt
e with target yt

e,
optional paraphrases X t

e′ for testing generalization, and an unrelated statements X t
loc for testing locality. Given

an editing set Dedit = {(X t
e ,Yt

e)}Tt=1, we evaluate the post-edit model fΘT
after all T edits have been applied.

Rel. = 1
T

T∑
t=1

1(fΘT
(xt

e) = yt
e), Gen. = 1

T

T∑
t=1

1(fΘT
(xt

e′) = yt
e), Loc. = 1

T

T∑
t=1

1(fΘT
(xt

loc) = fΘ0
(xt

loc))(31)

where 1(·) denote the indicator function. We report mean scores across edits for reliability (Rel.), gener-
alization (Gen.), and locality (Loc.). When paraphrases or locality probes contain multiple instances, we
average within each set. Following (Hartvigsen et al., 2023; Wang et al., 2025), we assess locality on the
Hallucination dataset using perplexity (PPL) and omit a generalization score due to the lack of a suitable
metric.

To further evaluate the preservation of the LLMs’ intrinsic knowledge after editing, we follow (Fang et al.,
2025), evaluating on the General Capbility Tests before and after editing T = 1000 and T = 5000 samples
from ZsRE Appendix C.
Table 1: Main sequential editing results on ZsRE (QA setting). T : number of sequential edits. Rel., Gen., Loc., and Avg.
denote Reliability, Generalization, Locality, and Average. The results are highlighted as best , and second-best within
a 15% margin of the best. For T = 1, we only highlight our ability to achieve the highest performance.

Method Model
T = 1 T = 10 T = 100 T = 1000

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑

FT-L

L
L

aM
A

-3
.2

-3
B 100 100 100 100 48.00 46.00 75.70 56.57 32.85 27.00 23.00 27.62 16.35 12.60 3.00 10.65

ELDER 100 100 100 100 88.00 68.50 80.10 78.87 65.15 52.77 66.23 61.38 59.67 47.86 48.12 51.88
AlphaEdit 100 100 100 100 87.67 91.00 94.79 91.15 62.88 56.83 33.36 51.02 0.03 0.00 4.94 1.66
GRACE 0.00 0.00 100 33.33 55.17 0.00 100 51.72 34.60 0.10 100 44.90 32.85 0.14 100 44.33
WISE 100 100 100 100 71.83 70.16 100 80.66 60.87 57.37 99.73 72.66 57.69 55.64 99.63 70.99

DEPTRAI 100 100 100 100 100 90.50 100 96.83 89.16 77.07 100 88.74 88.12 74.72 99.15 87.30

FT-L

Q
w

en
2.

5-
3B

100 100 100 100 49.50 47.83 80.29 59.21 30.88 29.41 26.29 28.86 15.69 13.14 3.00 29.18
ELDER 100 90.00 100.0 96.67 83.00 81.50 82.75 82.42 58.52 48.45 70.67 59.21 51.18 44.02 54.57 49.92

AlphaEdit 100 100 100 100 93.00 90.50 98.00 93.83 87.14 77.75 74.36 79.75 71.86 67.28 26.68 55.27
GRACE 25.00 0.00 100 41.67 56.50 0.00 100 52.17 35.64 0.00 100 45.21 33.49 1.89 100 45.13
WISE 100 100 100 100 49.50 48.50 100 66 49.37 45.00 100 64.79 44.52 42.44 100 62.32

DEPTRAI 100 100 100 100 88.00 84.00 100 90.67 76.30 67.90 88.55 77.58 73.67 86.60 66.24 75.50

FT-L

L
L

aM
A

-3
.1

-8
B 100 100 100 100 52.80 51.50 76.70 60.33 37.60 29.83 25.50 30.98 21.69 23.67 2.15 15.84

ELDER 100 100 100 100 88.83 72.17 84.46 81.82 62.82 50.44 73.60 62.29 48.62 39.43 23.29 37.11
AlphaEdit 100 100 100 100 85.17 80.67 81.29 82.38 58.59 54.36 22.68 45.21 2.91 2.71 3.00 2.87
GRACE 0.00 0.00 100 33.33 52.66 0.00 100 50.89 34.73 1.23 100 45.32 31.96 1.38 100 44.45
WISE 100 100 100 100 83.83 78.83 100 87.55 70.99 66.00 100 79.00 63.12 60.22 98.95 74.10

DEPTRAI 100 100 100 100 100 87.50 100 95.83 91.38 80.26 100 90.55 93.50 79.35 100 90.95

7
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Table 2: Main sequential editing results on Hallucination Dataset. T : number of sequential edits. Rel., Gen., Loc., and
Avg. denote Reliability, Generalization, Locality, and Average, respectively. The results are highlighted as best , and
second-best . For T = 1, we only highlight our ability to achieve the highest performance.

Method Model
T = 1 T = 10 T = 100 T = 600

Rel. (PPL↓) Loc.↑ Rel. (PPL↓) Loc.↑ Rel. (PPL↓) Loc.↑ Rel. (PPL↓) Loc.↑

FT-L

L
L

aM
A

-3
.2

-3
B 1.00 100 1.12 88.76 12.45 35.45 254.3 0.10

AlphaEdit 1.59 88.09 3.16 88.69 128.0 0.20 249.7 0.10
GRACE 4.96 100 14.64 100 16.26 100 41.48 100
WISE 1.00 100 1.13 96.06 1.64 99.49 33.05 68.04

DEPTRAI 1.00 100 1.17 100 7.88 99.93 35.33 99.57

FT-L

Q
w

en
2.

5-
3B

1.23 100 18.54 45.68 62.83 0.00 88.34 0.00
AlphaEdit 1.10 100 1.38 96.1 9.17 87.94 182.7 50.38
GRACE 5.52 100 14.53 100 29.31 100 134.5 100
WISE 1.12 100 16.00 54.39 32.8 15.85 36.19 17.73

DEPTRAI 1.04 100 1.37 100 15.53 99.12 36.31 99.16

FT-L

L
L

aM
A

-3
.1

-8
B 1.00 100 6.78 67.89 14.67 32.65 315.6 0.00

AlphaEdit 1.00 100 2.78 97.80 248.34 0.10 325.7 0.00
GRACE 4.58 100 15.97 100 16.76 100 33.04 100
WISE 1.01 100 1.62 96.72 2.00 99.74 25.31 95.04

DEPTRAI 1.00 100 1.41 100 5.48 100 30.65 99.96

4.2 MAIN RESULT

As shown in Table 1, DEPTRAI remains stable under long edit sequences. Across all three base models,
reliability remains at 100% at T = 10 and stays above 88% at T = 1000; generalization and locality are also
among the top results. This suggests the edits are integrated without broader behavioral drift. By comparison,
WISE degrades by roughly 15–20% at higher depths, AlphaEdit and FT-L drop sharply beyond T = 10, and
GRACE maintains locality but at the expense of reliability and generalization.

To further evaluate large-scale behavior, we take the methods that still retain reasonable overall performance
at T = 1000, specifically DEPTRAI, WISE, ELDER and extend the evaluation to much longer horizons.
Figure 2 presents results for T = 2000–5000, showing that DEPTRAI continues to sustain high reliability and
locality even under thousands of edits, whereas baseline methods degrade steadily as the edit depth increases.
Notably, WISE preserves locality well on the Qwen2.5-3B model, but its reliability and generalization still
decline substantially with larger edit streams.

Table 2 indicates that DEPTRAI is consistently the most stable approach on the hallucination benchmark:
it maintains near-perfect locality (≈ 100%) across depths and ranks first or second on the reliability proxy
(lower PPL is better) from T=1 through T=600 for all three base models. WISE is competitive at small T
and often second-best, but its PPL grows more noticeably as edits accumulate. GRACE preserves locality
by design (frequently 100%) yet does so with substantially higher PPL, reflecting weaker reliability under
sequential edits. Fine-tuning baselines (FT-L) and AlphaEdit degrade quickly with depth—PPL rises and
locality erodes—highlighting how naive or overly broad edits can bleed into unrelated contexts. Overall,
DEPTRAI achieves the best robustness profile: edits remain localized while reliability holds up even under
long edit chains.
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Figure 2: Sequential editing performance at large edit depths (T = 2000–5000). Across both LLaMA-3.2-
3B and Qwen-2.5-3B, DEPTRAI sustains high reliability and locality, whereas ELDER and WISE show
increasing degradation as the number of edits grows.

5 RELATED WORKS

5.1 LEVERAGING EXTERNAL KNOWLEDGE

External knowledge can be injected without retraining by retrieving demonstrations or memory entries.
MemPrompt (Madaan et al., 2022) augments prompts with user feedback, while IKE (Zheng et al., 2023)
leverages diverse demonstrations (copy, update, retrain) for reliable fact editing. Yet such methods often
lack ripple effects: inserting one fact does not propagate to its implications (Cohen et al., 2024). To address
this, decomposition-based editors (Zhong et al., 2023; Gu et al., 2024; Wang et al., 2025) break large edits
into sequential sub-edits, while others combine counterfactual knowledge with classifiers to decide when to
invoke the edited model (Mitchell et al., 2022b).

5.2 EXTENDING HIDDEN STATES

Another line of work modifies hidden representations directly, reducing the need for long prompts. Patching
methods interpolate new and old hidden states to steer model outputs (Murty et al., 2022). Others augment
FFN states with additional neurons (Dong et al., 2022; Huang et al., 2023) or use LoRA-style low-rank
adapters to inject knowledge (Wu et al., 2023; Yu et al., 2024; Biderman et al., 2024). REMEDI (Hernandez
et al., 2024) incorporates attribute vectors for entities, while GRACE (Hartvigsen et al., 2023) maintains a
dynamic codebook of updates.

5.3 EDITING INTERNAL PARAMETERS

Finally, parameter-editing methods directly alter weights. Hypernetwork-based approaches predict ∆W for
each edit (Sinitsin et al., 2020; Han et al., 2023; Tan et al., 2024), including KE (De Cao et al., 2021) and
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SLAG (Hase et al., 2023), but are costly at scale. MEND (Mitchell et al., 2022a) improves efficiency via
rank-one decomposition. Other works use causal tracing to locate critical hidden states for more targeted
edits (Meng et al., 2022; 2023). To limit side effects, AlphaEdit (Fang et al., 2025) projects perturbations into
the null space of preserved keys.

6 CONCLUSION

We introduced DEPTRAI, a detachable external-memory layer that edits LLMs without modifying base
weights. By reinterpreting the closed-form mixing coefficient of internal editors as a Mahalanobis-style routing
rule in key space, DEPTRAI turns factual patching into a reversible, database-like retrieval–and–injection step.
Across LLaMA-3.2-3B, Qwen2.5-3B, LLaMA-3.1-8B, and Qwen3-8B, DEPTRAI sustains high reliability
and near-perfect locality over long edit sequences (up to 5,000 edits), and on ZsRE sequential editing it
consistently outperforms recent dual-memory baselines such as GRACE, or Adapter-style memory such as
WISE and ELDER by roughly 15–20% at depth, while preserving general capabilities on GLUE, MMLU,
GSM8K, AIME, and IFEval.

At the same time, our design exposes several limitations. First, DEPTRAI inherits the geometry of the
underlying model: when the subject-key space is well structured (e.g., LLaMA-3 and Qwen3-8B), routing is
clean and stable, but for noisier representations (as observed in Qwen2.5-3B) locality and some capability
scores can degrade under very long edit sequences. Second, the current key–value construction is optimized
for single-hop factual relations; on harder KnowEdit-style portability tests involving abbreviations, translitera-
tions, or multi-hop reasoning, both our method and prior editors remain brittle, indicating that the bottleneck
is the base representation and the value vector vj , not only the routing metric. Finally, DEPTRAI still relies
on a hand-tuned global threshold for activation, chosen from the Mahalanobis score distribution; we do not
yet adapt this threshold online as the memory grows or as the edit stream changes.

These limitations suggest several directions for future work: shaping key representations during pre-training
or instruction tuning to better support external routing; learning richer value encoders that more faithfully
capture the intended edit; developing dynamic or learned thresholds for long-horizon lifelong editing; and
combining detachable codebook-style memory with fine-tuning–based editors when large, coherent batches
of edits are available. We hope DEPTRAI and our analysis of Mahalanobis routing help clarify both the
promise and the boundaries of train-free, external-memory approaches to model editing.
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A DETAIL OF DEPTRAI

Block #i

Block #i+1

Block #i-1...

... Michael Jordan plays

Self Attention

Activation

MLP down projection

If found, replace by the new V

K-V storage

soccer

... Michael Jordan plays

MLP up projection

Query

Figure 3: Detailed flow of DEPTRAI inside a transformer block. The self-attention and MLP down-projection
produce a query key, which is compared against external K–V storage. If a match is found, the stored value V
is injected through the MLP up-projection, replacing the original activation (e.g., updating “Michael Jordan
plays basketball” → “Michael Jordan plays soccer”); otherwise, the original pathway is preserved.
Figure 3 illustrates the detailed inference flow of DEPTRAI within a transformer block. When processing an
input sequence, each block proceeds through the standard self-attention and activation steps. Afterward, the
MLP down-projection generates a query key vector for the current subject token.

DEPTRAI introduces an external detachable key–value (K–V) storage module. During inference, the
generated query key is routed against the stored keys using a Mahalanobis-based distance metric. If a close
match is found, the associated edited value V is retrieved and substituted into the up-projection path of the
MLP, effectively overriding the original factual association. If no suitable match exists, the model simply
forwards the unaltered hidden representation through the up-projection.

This design enables DEPTRAI to (i) preserve the base model parameters intact, (ii) inject or update knowledge
through explicit K–V entries, and (iii) flexibly add, clear, or swap edits at runtime without retraining. The
flow ensures that factual corrections, such as replacing “Michael Jordan plays basketball” with “Michael
Jordan plays soccer,” propagate seamlessly through subsequent layers while retaining locality and fluency.
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B IMPLEMENTATION DETAILS

B.1 DESCRIPTIONS OF COMPARED METHODS

FT-L (Meng et al., 2022). We freeze the LLM except for a single MLP layer, which we fine-tune with an
autoregressive loss. An ℓ∞ constraint keeps the updated parameters close to the pretrained weights to limit
drift.

FT-M (Zhang et al., 2024). It trains the same FFN layer as FT-L using the cross-entropy loss on the target
answer while masking the original text

ROME (Meng et al., 2022). A closed-form editor that identifies the MLP layer most responsible for a fact
and applies a least-squares update to its weight matrix to implant the new relation in one shot.

MEMIT (Meng et al., 2023). A multi-layer extension of ROME that performs coordinated, closed-form
updates across several MLP layers, enabling efficient batch or large-scale injections of facts while minimizing
side effects.

AlphaEdit (Fang et al., 2025). An optimization-based editor that learns a compact parameter delta to satisfy
the edited outputs under locality-preserving regularization, yielding strong reliability with controlled collateral
change.

GRACE (Hartvigsen et al., 2023). A lifelong editor that maintains a discrete key–value codebook of edits.
At inference, it retrieves the nearest key to the current input and, when appropriate, replaces intermediate
activations, thereby isolating new knowledge from the base model.

WISE (Wang et al., 2025). A long-horizon editing method that combines locality-aware training with a
selection mechanism to preserve earlier edits; it remains more reliable than simple fine-tuning under many
sequential edits while avoiding excessive drift.

B.2 TRAINING DETAILS AND HYPERPARAMETERS

General setup. We evaluate on three base models: LLaMA 3.2-3B, Qwen 2.5-3B, and LLaMA 3.1-8B. Batch
size is 1 for sequential editing. All runs use 4×NVIDIA A100 40GB GPUs (each experiment is reproducible
on a single A100).

Layer selection. For MEMIT, and AlphaEdit (internal parameter editing), we target the mid–upper MLP
band: layers [4, 5, 6, 7, 8]. For ROME, DEPTRAI (ours), we edit layer 8 on all three models.

FT-L (single-layer fine-tuning). We use the public ROME codebase3. LR grid {1e−5, 1e−4, 5e−4}, 50
steps; we report the best at 5e−4. All other weights are frozen, and we apply an ℓ∞ constraint to limit drift.

FT-M (multi-layer fine-tuning). A stronger FT baseline that updates a small stack of adjacent transformer
blocks (same LR grid as FT-L) and early stopping keyed to locality. This typically yields higher ES but
increases interference risk.

GRACE. We follow the released setup: LR = 1.0, and replace_last (replace only last-token activations
in AR decoding). We lightly sweep ϵinit for stability; other knobs remain at defaults.

WISE. We use the authors’ suggested settings and evaluate strictly in retrieve mode, without replay and
without merging. Optimization uses SGD (Shamir & Zhang, 2013) with LR = 1.0 for LLaMA 3.2-
3B and Qwen 2.5-3B, and LR = 0.9 for LLaMA 3.1-8B. During editing we set ρ=0.2 and routing
thresholds α=5.0, β=20.0, γ=10.0 (for LLaMA 3.1-8B we use α=2.0, β=20.0, γ=10.0). We use

3https://github.com/kmeng01/rome
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n_iter=70, act_ratio=0.88 for LLaMA 3.2-3B and Qwen 2.5-3B; n_iter=30, act_ratio=0.50
for LLaMA 3.1-8B; norm_constraint=1.0 and objective=only_label for all. The edited pa-
rameter is the MLP down-projection of a single layer per model: layer 20 for LLaMA 3.2-3B, layer 23 for
Qwen 2.5-3B, and layer 29 for LLaMA 3.1-8B. No merging/sharding stage is applied; edits are applied via
retrieval-time routing only.

DEPTRAI (ours). We construct the edit vector V ∗ by following the MEMIT work. The resulting delta
is written at layer 8 for LLaMA 3.2-3B, Qwen 2.5-3B, and LLaMA 3.1-8B. At inference, routing uses a
Mahalanobis score on the layer-8 activation with model-specific thresholds: τ=0.4 (LLaMA 3.2-3B), τ=0.6
(Qwen 2.5-3B), and τ=0.5 (LLaMA 3.1-8B).

C GENERAL CAPABILITY

Table 3: F1 scores (%) on GLUE tasks and MMLU after 1000 sequential edits ZsRE.

Model Setting SST MRPC RTE CoLA NLI MMLU Avg.

LLaMA 3.2-3B
Pre-edited 95.49 58.94 29.26 55.9 68.44 55.43 60.58
Post-edited 95.49 58.94 29.26 55.9 68.44 55.43 60.58

∆ 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Qwen 2.5-3B
Pre-edited 94.49 69.99 18.72 76.98 76.76 59.96 66.15
Post-edited 95.00 67.99 16.99 74.00 77.68 58.37 65.01

∆ ↑0.51 ↓0.2 ↓1.73 ↓2.98 ↑0.92 ↓1.59 ↓ 1.32

LLaMA 3.1-8B
Post-edited 95.99 64.28 24.5 78.69 73.26 59.25 66.00
Pre-edited 95.99 64.28 24.5 78.69 73.26 58.65 65.90

∆ 0.00 0.00 0.00 0.00 0.00 ↓0.6 0.1

1. SST (Stanford Sentiment Treebank) (Socher et al., 2013): single-sentence sentiment classification on
movie-review sentences with human-annotated binary labels.

2. MRPC (Microsoft Research Paraphrase Corpus) (Dolan & Brockett, 2005): sentence-pair classification
to determine whether two sentences are semantically equivalent.

3. MMLU (Massive Multi-Task Language Understanding) (Hendrycks et al., 2021): a broad knowledge
and reasoning evaluation measuring multi-task accuracy.

4. RTE (Recognizing Textual Entailment) (Bentivogli et al., 2009): natural language inference determining
whether a premise logically entails a hypothesis.

5. CoLA (Corpus of Linguistic Acceptability) (Warstadt et al., 2019): single-sentence classification of
grammatical acceptability.

6. NLI (Natural Language Inference) (Williams et al., 2018): inference over sentence pairs to identify their
logical relationship.

Although GLUE and MMLU provide broad measurements of linguistic competence, they are primarily
classification or multiple-choice evaluations. Such formats indicate whether the post-edited model preserves
recognition-based skills, but they do not fully capture generative reasoning or multi-step compositional abili-
ties. To better assess the model’s behavior after large-scale knowledge updates, we therefore include several
free-form generation benchmarks— GSM8K (Cobbe et al., 2021), AIME’24/’25 - American Invitational
Mathematics Examination, MATH500 (Lightman et al.), SimpleQA (Wei et al., 2024), and IFEval (Zhou
et al., 2023) —which require arithmetic reasoning, symbolic manipulation, or coherent instruction following.
These tasks are known to be far more sensitive to internal disruptions introduced by sequential edits.

As reported in Table 3, DEPTRAI largely preserves the general capabilities of the underlying models after
undergoing 1000 sequential ZsRE edits. Both LLaMA-3.2-3B and LLaMA-3.1-8B exhibit virtually no
degradation across the GLUE tasks or MMLU, with average differences below 0.1 F1. This indicates that
extensive factual editing does not compromise their broader linguistic or reasoning skills.

17



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Table 4: AIME, MATH500, GSM8K, SimpleQA, and IFEval performance across three models. We report pre-edit,
post-edit, and the change ∆.

Task / Subtask LLaMA-3.2-3B Qwen2.5-3B LLaMA-3.1-8B

Pre (%) Post (%) ∆ Pre (%) Post (%) ∆ Pre (%) Post (%) ∆

AIME, MATH500, GSM8K, SimpleQA

AIME’24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AIME’25 0.0 0.0 0.0 3.33 0.0 −3.33 0.0 0.0 0.0
MATH500 7.4 7.4 0.0 18.4 3.0 −15.4 12.2 12.2 0.0
GSM8K 26.0 26.0 0.0 14.0 28.4 +14.4 51.4 51.4 0.0
SimpleQA 3.33 3.33 0.0 2.50 0.76 −1.74 4.44 4.42 −0.02

IFEval Instruction Adherence

Prompt Strict 6.2 6.2 0.0 22.8 14.6 −8.2 9.2 9.2 0.0
Inst Strict 11.0 11.0 0.0 31.95 26.52 −5.43 13.45 13.45 0.0
Prompt Loose 7.0 7.0 0.0 24.0 15.8 −8.2 11.0 11.0 0.0
Inst Loose 11.51 11.51 0.0 33.64 27.43 −6.21 15.01 15.01 0.0

A similar trend appears in the broader capability benchmarks summarized in Table 4 (AIME’24/’25,
MATH500, GSM8K, SimpleQA, and IFEval). For both LLaMA backbones, post-edit performance remains
almost unchanged, reflecting strong robustness to large volumes of injected knowledge.

However, Qwen-2.5-3B behaves differently. While some tasks remain stable, others—particularly MATH500,
SimpleQA, and IFEval—show non-trivial declines after sequential edits. This contrast suggests that DEP-
TRAI’s robustness may depend on properties of the underlying model family, such as representational
geometry or layer-wise key alignment. To investigate this further, we conduct additional experiments on a
larger and more recent model, Qwen3-8B (Appendix D), to examine whether the observed sensitivity persists
in stronger backbones.

D EXPERIMENTS ON QWEN3-8B

The degradation observed in Qwen-2.5–3B does not appear in the larger and more recent Qwen3-8B model.
As shown in Table 7 and Figure 4, Qwen3-8B maintains strong reliability and near-perfect locality even at
extreme edit depths (T=2000–5000), with performance curves closely tracking those of the LLaMA series.
Its GLUE and MMLU scores remain unchanged after 1000 edits (Table 6), and its generative reasoning
tasks—AIME’24/’25, MATH500, GSM8K, SimpleQA, and IFEval—show effectively no degradation in
either standard or reasoning-enabled modes.

This contrast suggests that the performance decline observed earlier in Qwen 2.5–3B is not inherent to
DEPTRAI, but rather model-dependent. We hypothesize that the weaker robustness of Qwen 2.5-3B arises
from properties of its training pipeline or pretraining dataset, which may yield a noisier or less stable key-space
geometry. Since DEPTRAI relies on high-quality subject-key representations to populate its external vector
memory, insufficiently structured or inconsistent internal keys can propagate noise into the stored value
vectors, ultimately degrading downstream general-capability tasks.

The stable results of Qwen3-8B, despite undergoing the same sequential edits, support this hypothesis, its
improved architecture and training corpus appear to produce cleaner, more consistent key representations,
leading to durable performance across all metrics. These findings highlight an important consideration for
external-memory editing methods, the underlying model’s representation geometry plays a crucial role in
determining long-horizon editing robustness.
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Figure 4: Sequential editing performance of Qwen3-8B at large edit depths (T = 2000–5000)

Table 5: Main sequential editing results on ZsRE (QA setting) for Qwen3-8B. T : number of sequential edits. Rel.,
Gen., Loc., and Avg. denote Reliability, Generalization, Locality, and Average. The results are highlighted as best , and
second-best within a 15% margin. For T = 1, only our method is highlighted.

Method Model
T = 1 T = 10 T = 100 T = 1000

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑

ELDER

Q
w

en
3-

8B 100.00 100.00 100.00 100.00 95.50 89.50 92.50 92.50 72.05 63.30 73.58 69.64 64.60 54.50 50.24 56.45
WISE 100.00 100.00 100.00 100.00 84.50 79.50 100.00 88.00 72.41 68.89 100.00 80.43 58.51 55.11 97.66 70.43

DEPTRAI 100.00 100.00 100.00 100.00 100.00 79.50 100.00 93.17 86.81 76.16 100.00 87.66 86.22 72.62 99.74 86.19

E BATCH EDIT EXPERIMENTS

Although our context is designed for sequential, sample-by-sample updates, we also evaluate the batch editing
setting to better understand the behavior of different editing paradigms. Sequential editing represents the most
challenging regime for parameter-based editors. Each update alters the model weights, so later edits must
operate on parameters that have already been modified by earlier ones. This accumulation of interference is
precisely what causes degradation in methods such as MEMIT or AlphaEdit when T becomes large.

Batch editing serves as an informative control condition. When all T edits are applied simultaneously,
parameter-editing methods can harmonize the updates in a single closed-form solve, avoiding the compounding
drift that arises in sequential mode. Comparing sequential and batch performance therefore allows us to
isolate the origin of degradation whether it stems from the editor itself or from the iterative accumulation of
weight perturbations.

From this perspective, batch results serve two purposes. First, they reveal how well parameter-based editors
behave when interference is removed, showing the upper bound of their performance. Second, they highlight
the contrast with DEPTRAI’s external-memory design, because DEPTRAI never modifies the base weights,
its performance does not depend on batching and remains stable across all T . The results from Table 8
validate that routing-based editing intrinsically avoids the interference problem that batch editing is designed
to mitigate.

F KNOWEDIT BENCHMARK

Table 9 shows high edit success (ES) across methods but comparatively lower portability (Port.) and locality
(Loc.), largely due to KnowEdit’s stress design. Portability is tested with aliases, synonyms, paraphrases, and
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Table 6: MMLU and GLUE benchmark (F1 score) for Qwen3-8B. We report pre-edit, post-edit, and the difference ∆.

Task Pre (%) Post (%) ∆

MMLU 71.74 71.74 0.00
SST 96.50 96.50 0.00
MRPC 75.28 74.75 −0.53
RTE 18.79 18.79 0.00
CoLA 80.00 80.00 0.00
NLI 85.76 85.76 0.00

Table 7: Comparison of Qwen3-8B in Non-reasoning mode (chat template) and Reasoning mode (chat template,
enable_thinking=True). We report pre-edit, post-edit, and the difference ∆.

Task / Subtask Non-reasoning Reasoning

Pre (%) Post (%) ∆ Pre (%) Post (%) ∆

AIME, MATH500, GSM8K, SimpleQA

AIME24 28.10 28.10 0.00 73.33 73.33 0.00
AIME25 21.33 21.33 0.00 66.67 66.67 0.00
MATH500 85.20 85.20 0.00 95.40 95.40 0.00
GSM8K 93.25 93.25 0.00 94.20 94.20 0.00
SimpleQA 2.61 2.59 −0.02 2.54 2.54 0.00

IFEval Instruction Adherence

Prompt Strict 81.33 81.33 0.00 82.21 82.21 0.00
Inst Strict 87.41 87.41 0.00 88.33 88.33 0.00
Prompt Loose 85.21 85.21 0.00 86.93 86.93 0.00
Inst Loose 89.93 89.93 0.00 91.06 91.06 0.00

light compositions that intentionally differ from the edited surface form. When the learned edit binds too
tightly to the original phrasing, transfer fails, leading to a drop in portability. Locality is probed by pairing
the edited subject tokens with unrelated predicates or questions, a “near-miss” setup that routes the model
toward the edited entity while requiring the pre-edit response, so edits that globally modulate the subject
representation can bleed into these contexts and trigger false activations, lowering Loc. DEPTRAI generally
offers the best balance, maintaining strong ES while limiting collateral effects. The benchmark construction
makes Port. and Loc. harder than ES.

G ABLATION STUDY

G.1 COMPARISON WITH OTHER ROUTING METHODS

Furthermore, we experiment comparing Mahalanobis against cosine similarity for 3 models on the KnowEdit
benchmark and report the performance in Table 10.

As depicted in Table 10, although the editing score (ES) of Mahalanobis is relatively lower compared to cosine
similarity for 3 models, the portability (Port.), locality (Loc.), and fluency (F.) are significantly higher. We
hypothesize that by using cosine similarity as the distance method, the set of key synonyms K could contain
both actual synonyms and related phrases (e.g., a synonym of “dog” is “canine”, but related phrases such
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Table 8: Batch editing results for LLaMA-3.2-3B and Qwen2.5-3B.

Model Method T = 10 T = 100 T = 1000

Rel. Gen. Loc. Rel. Gen. Loc. Rel. Gen. Loc.

L
L

aM
A

-3
.2

-3
B MEMIT 88.50 88.50 97.95 2.43 2.43 0.17 0.00 0.00 0.00

MEMIT-batch 84.00 84.00 99.69 79.97 79.37 84.17 76.09 72.35 68.86
AlphaEdit 87.67 91.00 94.79 62.88 56.83 33.36 0.03 0.00 4.94

AlphaEdit-batch 85.17 82.67 93.99 77.82 73.72 73.98 67.26 64.76 50.76
DEPTRAI 100.0 90.50 100.0 89.16 77.07 100.0 88.12 74.72 99.15

Q
w

en
2.

5-
3B

MEMIT 84.50 71.00 53.08 0.00 0.00 0.00 0.00 0.00 0.00
MEMIT-batch 83.00 75.50 83.33 78.36 76.53 76.53 88.38 23.69 17.48

AlphaEdit 93.00 90.50 98.00 93.83 87.14 77.75 71.86 67.28 26.68
AlphaEdit-batch 89.50 79.50 99.00 89.07 78.16 89.14 89.42 81.18 78.16

DEPTRAI 88.00 84.00 100.0 76.30 67.90 88.55 73.67 86.60 66.24

Table 9: Performance across models and editing methods on the KnowEdit benchmark. ES = Edit Sucess, Port. =
Portability, Loc. = Locality, and F. = Fluency. The results are highlighted as best , second-best , and third-best .

Method Model
ZsRE WikiBio WikiCounterFact ConvSent

ES↑ Port.↑ Loc.↑ F.↑ ES↑ Loc.↑ F.↑ ES↑ Port.↑ Loc.↑ F.↑ ES↑ Loc.↓ F.↑

FT-L

L
L

aM
A

3.
2-

3B

52.71 45.69 67.43 350.51 66.54 57.82 589.76 46.50 39.59 49.96 434.81 51.82 0.00 494.86
FT-M 100.00 58.36 86.41 395.03 100.00 91.60 602.73 100.00 72.77 69.82 508.61 47.57 0.00 464.77

ROME 99.12 51.61 46.99 527.57 99.16 35.99 591.09 99.25 54.79 37.21 588.95 45.14 0.00 612.79
MEMIT 97.18 51.21 51.67 522.18 87.85 70.54 627.58 97.08 51.79 39.88 579.10 46.57 0.00 588.80

AlphaEdit 98.40 51.09 45.85 521.34 92.90 68.31 627.05 98.15 57.33 35.19 589.21 43.55 0.00 591.22
DEPTRAI 97.15 51.61 41.22 521.73 94.78 67.42 621.55 98.64 59.20 33.87 577.68 42.85 0.00 584.83

FT-L

Q
w

en
2.

5-
3B

53.93 45.64 73.42 493.01 66.33 79.86 606.95 45.15 33.60 50.48 528.26 49.50 0.00 607.86
FT-M 99.98 60.31 89.78 552.26 100.00 93.38 612.69 100.00 74.36 76.76 575.62 46.10 0.00 592.52

ROME 96.77 52.63 53.67 573.75 96.08 62.74 617.69 98.57 55.92 51.97 584.04 45.79 0.00 606.32
MEMIT 95.37 52.67 48.32 563.31 94.40 61.51 616.65 98.05 58.56 46.62 575.96 44.75 0.00 602.62

AlphaEdit 97.18 53.50 49.32 580.00 91.5 67.45 617.69 99.2 45.03 46.64 598.28 43.5 0.00 612.28
DEPTRAI 98.95 55.01 52.55 586.16 92.86 57.13 628.86 99.36 55.01 39.82 598.43 39.16 0.00 624.34

FT-L

L
L

aM
A

3.
1-

8B

50.29 38.18 51.11 350.91 62.04 70.41 571.88 49.21 38.45 32.69 394.80 51.72 0.00 505.59
FT-M 100.00 59.23 79.30 418.66 100.00 87.26 599.32 100.00 73.40 62.35 518.36 48.33 0.00 462.15

ROME 98.91 52.41 48.48 551.85 91.49 66.66 627.68 99.19 57.33 40.77 591.05 44.88 0.00 608.20
MEMIT 97.65 50.36 69.01 573.11 82.02 83.88 630.25 97.09 40.76 61.19 599.93 48.94 0.00 594.03

AlphaEdit 84.81 48.75 77.38 579.29 90.43 67.09 628.00 82.54 34.35 69.95 605.63 41.89 0.00 594.80
DEPTRAI 94.99 52.46 68.98 575.26 95.51 69.81 624.84 97.97 59.71 41.85 579.55 45.43 0.00 594.26

as “cat” or “kitty” also have close distances to “dog” under cosine similarity space). Therefore, the editing
method could modify the incorrect set of keys, leading to poorer locality and portability scores compared to
Mahalanobis. This phenomenon does not happen to Mahalanobis, as this distance first clusters semantically
equivalent points, thus eliminating the related phrases in the first place.
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Table 10: Performance across models and distance methods on the KnowEdit benchmark. Best results are shown in
red .

Model Method
ZsRE WikiBio WikiCounterFact ConvSent

ES↑ Port.↑ Loc.↓ F.↑ ES↑ Loc.↑ F.↑ ES↑ Port.↑ Loc.↑ F.↑ ES↑ Loc.↑ F.↑

LLaMA 3.2-3B
Mahalanobis 97.15 51.61 41.22 521.73 94.78 67.42 621.55 98.64 59.20 33.87 577.68 42.85 0.00 584.83
Cosine 0.6 99.60 47.11 40.35 351.52 91.90 56.29 622.98 99.64 44.44 30.77 489.32 41.95 0.00 579.52

Qwen2.5-3B
Mahalanobis 98.95 55.01 52.55 586.16 92.86 57.13 628.86 99.36 55.01 39.82 598.43 39.16 0.00 624.34
Cosine 0.6 99.49 50.31 52.98 586.92 94.38 55.84 626.29 99.43 52.97 39.49 596.86 39.16 0.00 624.34

LLaMA 3.1-8B
Mahalanobis 94.99 52.46 68.98 575.26 95.51 69.81 624.84 97.97 59.71 41.85 579.55 45.43 0.00 594.26
Cosine 0.6 97.09 50.17 52.51 524.07 90.64 69.98 627.18 98.89 48.61 41.26 581.60 43.50 0.00 590.07

Table 11: Ablation of edit-layer selection for LLaMA-3.2-3B. We report Reliability (Rel.), Generalization (Gen.),
and Locality (Loc.) at T = 100 and T = 1000. Best results are highlighted as best and second-best within 15% as
second-best .

Method T = 100 T = 1000

Rel. Gen. Loc. Rel. Gen. Loc.

DEPTRAI-L4 85.62 71.57 100.0 87.64 72.35 98.51
DEPTRAI-L8 89.16 77.07 100.0 88.12 74.72 99.15
DEPTRAI-L15 82.22 63.89 94.33 65.47 48.95 76.69
DEPTRAI-L25 90.22 59.28 54.84 81.75 52.86 44.98

G.2 LAYER SELECTION

To determine the most effective intervention point for DEPTRAI, we follow the causal-tracing procedure
introduced in ROME (Meng et al., 2022), which identifies layers that carry the strongest causal influence
over subject–object factual associations. ROME’s analysis consistently shows that mid-FFN layers encode
subject-specific identity features more cleanly than shallow or deep layers. Motivated by this, we test multiple
FFN layers in LLaMA-3.2-3B to validate whether DEPTRAI exhibits similar behavior. Table 11 reports
Reliability, Generalization, and Locality for edits applied at Layers 4, 8, 15, and 25 under T=100 and T=1000.
The trend mirrors the causal-tracing prediction: mid-layers, particularly Layer 8, achieve the best balance of
edit accuracy and isolation.

G.3 THRESHOLD SELECTION

To choose an appropriate routing threshold τ , we compute the Mahalanobis similarity score for each subject
token and its surrounding non-subject tokens across all edited records. Figure 5 displays these distributions
for four different base models. In every case, subject tokens form a compact cluster at higher similarity values,
whereas other tokens spread across lower scores. This separation is exactly the structure DEPTRAI relies on:
a clean subject band enabling confident activation, and a dispersed non-subject region preventing accidental
overrides.

Given these distributions, we define a feasible range for τ as any value lying strictly between the subject
and non-subject clusters. Intuitively, a larger threshold biases the system toward preservation, since the
router only fires when a subject key is extremely close to a stored fact; this minimizes false activations and
maximizes locality. Conversely, a smaller threshold favors higher generalization, allowing the router to cover
mild paraphrases or slightly mismatched subject mentions, at the potential cost of activating more often.
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(a) LLaMA 3.2-3B
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(b) Qwen 2.5-3B
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(c) LLaMA 3.1-8B
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(d) Qwen 3-8B

Figure 5: Mahalanobis scores across model variants.

Across the four models, the optimal threshold differs slightly due to variations in key-space geometry. LLaMA
models exhibit a sharper subject–non-subject margin, enabling a wider safe range of τ . Qwen2.5, however,
shows a more entangled distribution—consistent with the performance drift observed in Section C—suggesting
its key representation is less cleanly factorized and thus requires a more conservative threshold.

Overall, the separation patterns in Figure 5 provide a direct, data-driven method for choosing the edit-activation
threshold, balancing locality and generalization depending on deployment needs.
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