EXACT CERTIFICATION OF NEURAL NETWORKS AND PARTITION AGGREGATION ENSEMBLES AGAINST LABEL POISONING

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033

035

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Label-flipping attacks, which corrupt training labels to induce misclassifications at inference, remain a major threat to supervised learning models. This drives the need for robustness certificates that provide formal guarantees about a model's robustness under adversarially corrupted labels. Existing certification frameworks rely on ensemble techniques such as smoothing or partition-aggregation, but treat the corresponding base classifiers as black boxes—yielding overly conservative guarantees. We introduce **EnsembleCert**, the first certification framework for partition-aggregation ensembles that utilizes white-box knowledge of the base classifiers. Concretely, EnsembleCert yields tighter guarantees than black-box approaches by aggregating per-partition white-box certificates to compute ensemblelevel guarantees in polynomial time. To extract white-box knowledge from the base classifiers efficiently, we develop **ScaLabelCert**, a method that leverages the equivalence between sufficiently wide neural networks and kernel methods using the neural tangent kernel. ScaLabelCert yields the *first* exact, polynomial-time calculable certificate for neural networks against label-flipping attacks. Ensemble-Cert is either on par, or significantly outperforms the existing partition-based black box certificates. Exemplary, on CIFAR-10, our method can certify upto +26.5%more label flips in median over the test set compared to the existing black-box approach while requiring $100 \times$ fewer partitions, thus, challenging the prevailing notion that heavy partitioning is a necessity for strong certified robustness.

1 Introduction

Machine learning models, especially those trained in supervised settings, are critically dependent on the integrity of labeled data. This reliance exposes them to *label-flipping attacks*, where the training labels are corrupted to degrade model performance, or induce targeted misclassifications (Biggio et al., 2011; Xiao et al., 2015). In response, a range of empirical defenses have been proposed, including data sanitization techniques that aim to identify and remove poisoned samples prior to training (Paudice et al., 2018), and adversarial training methods that improve robustness by learning on perturbed examples (Bal et al., 2025). However, these approaches often rely on heuristics and have been shown to fail under adaptive attacks (Carlini & Wagner, 2017; Athalye et al., 2018; Koh et al., 2021). This limitation has led to growing interest in *robustness certificates*, that provide formal guarantees about the robustness of a model's predictions under a given adversarial threat model.

Existing certificates against label-flipping poisoning attacks are predominantly derived using *ensemble* methods. Techniques include randomized smoothing (Rosenfeld et al., 2020), where base classifiers are trained on datasets with randomly perturbed labels, and partition aggregation (Levine & Feizi, 2020), which trains base classifiers on *disjoint* partitions of the training data. Since these certificates rely solely on the base classifier outputs, they are inherently black-box (Ashtiani et al., 2020). Black-box treatment of the base classifiers often leads to overly conservative guarantees and provides limited knowledge about the full extent of the ensemble's robustness. One way to understand the true robustness of the certified model is to utilize *white-box* information of the base classifiers, i.e., white-box certificates, that leverage internal model information to yield tighter and more informative guarantees. This raises the question: *How can we leverage white-box knowledge of the base classifiers to derive a stronger certificate for the ensemble?*

(a) Two-step approach of **EnsembleCert**.

(b) EnsembleCert on CIFAR-10.

Figure 1: (a) Two-step approach of **EnsembleCert** to derive white-box guarantees for partition aggregation ensembles. (b) Evaluation on CIFAR-10 using wide neural networks trained on a regression loss as base classifiers. Using as few as **10** partitions with white-box knowledge enables the ensemble to withstand up to **26.5**% more label flips in median compared to using **1000** partitions. For a definition of the metric *median certified robustness* we refer the reader to Sec. 4.

In this work, we answer this question by proposing **EnsembleCert**, a white-box certification framework for *partition-based aggregation* ensembling techniques (Levine & Feizi, 2020). We focus specifically on the partition-based approach since they are the current state-of-the-art certifiable defense against general data poisoning attacks (Levine & Feizi, 2020; Rezaei et al., 2023; Wang et al., 2022), including label-flipping. Additionally, neural networks can be used as base classifiers in this approach, as opposed to only linear classifiers in the randomized smoothing method (Rosenfeld et al., 2020). EnsembleCert yields tighter white-box guarantees by leveraging the model information of the base classifiers following a simple two-step approach: (*i*) Extract white-box certificates from the base classifiers for each partition; (*ii*) Aggregate the white-box certificates to derive an ensemble-wide certificate (see Fig. 1a). The problem of aggregating the partition-wise guarantees to obtain the certificate for the ensemble is formulated as an Integer Program (IP), which we show can be solved efficiently in *polynomial* time.

For base-classifier certification, existing white-box approaches face significant challenges as they either rely on computationally intense Mixed Integer Linear Program (MILP) formulation (Sabanayagam et al., 2025) or loose gradient-based parameter bounding approaches (Sosnin et al., 2024). To elaborate, solving the MILP is NP-hard in the worst case, hence LabelCert (Sabanayagam et al., 2025) is practical only for datasets with a few hundred training points and does not even scale to moderately sized datasets like MNIST and CIFAR-10. On the other hand, the parameter-bounding technique (Sosnin et al., 2024) provides overly loose guarantees, leading to vacuous bounds in just few training iterations, especially for multi-class classification tasks. Furthermore, the latter method has so far been evaluated only on small multi-layer perceptrons. These limitations make the existing methods unsuitable for white-box injection into EnsembleCert, naturally raising a broader question: Can we derive effective and scalable white-box certificates against label-flipping attacks?

We answer this question by developing **ScaLabelCert**, a framework that builds on the *exact* white-box method of LabelCert (Sabanayagam et al., 2025). LabelCert provides exact certificates by leveraging the equivalence between wide Neural Networks (NNs) trained with a soft-margin loss and Support Vector Machines (SVM) using the Neural Tangent Kernel (NTK) of the network as their kernel (Chen et al., 2022; Sabanayagam et al., 2023). ScaLabelCert shows that under certain conditions, the computation complexity of LabelCert can be reduced from NP-hard to polynomial time, thus, significantly improving the scalability. Beyond the SVM formulation, ScaLabelCert further extends LabelCert by leveraging the equivalence between wide NNs trained with a regression loss and kernel regression under the NTK (Jacot et al., 2018; Arora et al., 2019). With its ability to efficiently compute tight certificates, we adopt ScaLabelCert as our primary choice for injecting white-box knowledge into EnsembleCert. Hence, with this instantiation, EnsembleCert inherits the rigor of LabelCert (Sabanayagam et al., 2025), while also harnessing the scalability of DPA (Levine & Feizi, 2020), effectively combining the best of both worlds. To further demonstrate the generality of EnsembleCert, we also instantiate it with randomized smoothing certificates (Rosenfeld et al., 2020) applied to each base classifier. **Our contributions** are summarized as follows:

1. We present **EnsembleCert** in Sec. 3.1, the *first* white-box certification framework for partition aggregation ensembles that leverages the knowledge about base-classifiers to provide white-box informed certificates for the ensemble in **polynomial** time.

- 2. With **ScaLabelCert** in Sec. 3.2, we derive the *first exact certificate* for infinite-width neural networks against label-flipping attacks solved in **polynomial** time and thus, it is the first exact certificate for neural networks against a poisoning threat model that scales to common image benchmarks.
- 3. We show in Sec. 4 that for partition aggregation ensembles with a small number of partitions, the infusion of white-box knowledge results in significant improvement in certified robustness. On analyzing the dependence of certified robustness on the number of partitions, we demonstrate that in certain cases, using as low as 10 partitions with white-box knowledge results in stronger robustness guarantees in comparison to as high as 1000 partitions (see Fig. 1b). These findings call into question the emphasis on using very large numbers of partitions to achieve good certified robustness (Levine & Feizi, 2020), suggesting that excessively deep partitioning, which requires training a prohibitively large number of neural networks, is not a necessity to yield strong guarantees.

2 Preliminaries

Notation. Matrices are denoted by bold uppercase letters, \mathbf{M} , and vectors by bold lowercase letters, \mathbf{v} . The (i,j)-th entry of a matrix \mathbf{M} is denoted m_i^j . For a positive integer C, we write $[C] = \{1, \ldots, C\}$. The ℓ_0 norm is denoted by $\|\cdot\|_0$, and $\mathbf{1}_{\text{condition}}$ represents the indicator function of a given condition. We use $\mathbf{1}^n$ for a vector of all 1s of size n. The floor operator is denoted by $|\cdot|$.

Label-flipping and Certification. In a supervised classification task, the training data $\mathcal{S} = (\mathbf{X}, \mathbf{y})$ consists of feature vectors aggregated in $\mathbf{X} \in \mathbb{R}^{n \times d}$ and labels $\mathbf{y} \in [K]^n$, where K is the number of classes. A learning algorithm \mathcal{L}_{alg} takes the training set \mathcal{S} and a test sample $\mathbf{t} \in \mathcal{T}$, where \mathcal{T} is the test set, as input to predict the label for \mathbf{t} , i.e., $\mathcal{L}_{\text{alg}}(\mathcal{S}, \mathbf{t}) \in [K]$. In a label-flipping attack, we assume that the adversary is allowed to change at most $r \leq n$ training labels. Formally, an adversary can alter the clean labels \mathbf{y} to $\tilde{\mathbf{y}} \in \mathcal{B}_r(\mathbf{y}) := \{\tilde{\mathbf{y}} \in [K]^n \mid \|\tilde{\mathbf{y}} - \mathbf{y}\|_0 \leq r\}$ and get a perturbed training set $\tilde{\mathcal{S}} = (\mathbf{X}, \tilde{\mathbf{y}})$. As the certification objective, for every $\mathbf{t} \in \mathcal{T}$, we aim to find the maximum number of label flips \tilde{r} in the clean training data up to which the prediction of \mathcal{L}_{alg} for \mathbf{t} does not change, i.e.

$$\tilde{r}(\mathbf{t}) = \max_{\tilde{\mathcal{S}}} \ r \quad s.t. \quad \mathcal{L}_{alg}(\mathcal{S}, \mathbf{t}) = \mathcal{L}_{alg}(\tilde{\mathcal{S}}, \mathbf{t}) \ \ \forall \tilde{\mathcal{S}} \in \{\mathcal{S}' \mid \mathbf{y}' \in \mathcal{B}_r(\mathbf{y}))\}.$$

We will refer to $\tilde{r}(\mathbf{t})$ as the certified radius for \mathbf{t} . A point-wise certificate then would be a lower bound on the certified radius for a particular sample. The certificate is *exact* if it gives the true certified radius $\tilde{r}(\mathbf{t})$ rather than just a lower bound.

Semi-Supervised Deep Partition Aggregation (SS-DPA). Levine & Feizi (2020) introduce SS-DPA, a framework that builds a certified defense against label-flipping poisoning attacks. The framework certifies a partition aggregation ensemble $g_{\mathcal{S}}$, i.e., an ensemble consisting of N_p base classifiers $f_{\{1,\dots,N_p\}}$ trained on disjoint partitions $P_{\{1,\dots,N_p\}}$ of the training data \mathcal{S} . The motivation behind training on disjoint partitions is simple: Poisoning one label in the training data affects the prediction of only one of the base-classifiers. The training data \mathcal{S} is first sorted without using the labels and then partitioned based on the sorted order. This ensures that the partitioning is invariant to any label poisoning attack. As the unlabeled data is trustworthy, we can make use of a self-supervised learning algorithm to extract features from the entire unlabeled training data and train each f_i using the extracted features and labels corresponding to P_i . At inference time, each base classifier f_i , trained onto its corresponding partition P_i of \mathcal{S} predicts the class for a given test sample $\mathbf{t} \in \mathcal{T}$ as $f_i(\mathbf{t}) \in [K]$. The prediction of the ensemble $g_{\mathcal{S}}(\mathbf{t})$ is then determined by a majority vote: $g_{\mathcal{S}}(\mathbf{t}) = \arg\max_{c \in [K]} n_c(\mathbf{t})$, where $n_c(\mathbf{t}) := |\{i \in [N_p] \mid f_i(\mathbf{t}) = c\}|$ is the number of votes received by class c. Ties are resolved deterministically by choosing the smaller index. If we denote $g_{\mathcal{S}}(\mathbf{t})$ as c^* , the certificate $\tilde{\rho}(\mathbf{t})$ for sample \mathbf{t} is given as:

$$\tilde{\rho}(\mathbf{t}) := \big\lfloor \frac{n_{c^*}(\mathbf{t}) - \max_{c' \neq c^*} (n_{c'}(\mathbf{t}) + \mathbf{1}_{c' < c^*})}{2} \big\rfloor.$$

The above guarantee says that for a poisoned dataset $\tilde{\mathcal{S}}$ obtained by changing the labels of at most $\tilde{\rho}$ samples in \mathcal{S} , $g_{\tilde{\mathcal{S}}}(\mathbf{t})=c^*$. As each base classifier is treated as a black-box, the certificate derivation follows from a key worst-case assumption: **The prediction of a base classifier can be changed by a** single label flip. The formal description of the worst case scenario is presented in App. A.1. With white-box knowledge about the base classifiers, one can *improve* upon this worst-case assumption, leading to a tighter certificate for the ensemble.

3 METHODOLOGY: ENSEMBLECERT AND SCALABELCERT

3.1 EnsembleCert

The underlying worst-case assumption in existing partition aggregation-based certificates, which says that the prediction of a base classifiers can be changed with a single label flip, can be overcome given that we have the following white-box information: for all base classifiers $f_{\{1,\dots,N_p\}}$ and $\forall c \in [K]$, we have access to ρ_i^c , which is the minimum number of label flips in P_i required to change the prediction of the base classifier f_i (trained on P_i) to class c. Access to the white-box knowledge through ρ_i^c enables verification of the worst-case assumption and provides the necessary information to derive a tighter ensemble-level certificate. Note that the ensemble-level certificate $\tilde{\rho}(\mathbf{t})$ that represents the **maximum number of flips upto which the ensemble prediction for a sample t remains unchanged**, is simply one less than the minimum number of flips required to change the ensemble prediction. To determine the ensemble certificate $\tilde{\rho}(\mathbf{t})$, we first compute, for each class c, the least number of flips needed to make c the majority class, and then take the minimum over all classes.

Integer Program Formulation for Ensemble-wide Certification. We denote the problem of finding the minimum number of label flips in the training set required to change the prediction of the ensemble to a particular class c' as $P_1(c')$. The white-box information ρ_i^c is collected in $\rho \in \mathbb{R}^{N_p \times K}$. Given ρ , finding the optimal attack for the adversary, which is equivalent to solving $P_1(c')$, poses as a combinatorial optimization problem leading to an Integer Program (IP) formulation of $P_1(c')$. We denote the ith base classifier as f_i if trained on the clean data and \tilde{f}_i if trained on the perturbed data. The predictions from $f_{\{1,\ldots,N_p\}}$ and $\tilde{f}_{\{1,\ldots,N_p\}}$ on the sample \mathbf{t} are collected in the vote configurations \mathbf{V} and $\tilde{\mathbf{V}} \in \mathbb{R}^{N_p \times K}$ respectively: $\forall i \in N_p$, $c \in [K]$: $v_i^c = \mathbf{1}\{f_i(\mathbf{t}) = c\}$, $\tilde{v}_i^c = \mathbf{1}\{\tilde{f}_i(\mathbf{t}) = c\}$. Note that $\sum_{c=1}^K v_i^c = 1$ and $\sum_{c=1}^K \tilde{v}_i^c = 1$ for all $i \in [N_p]$. Concretely, to model $P_1(c')$, the number of label flips required to reach the vote configuration $\tilde{\mathbf{V}}$ from \mathbf{V} is $\sum_{i=1}^{N_p} \sum_{c=1}^K \rho_i^c \tilde{v}_i^c$. The constraint that c' should be the majority class after adversarial manipulation of labels can be represented as $\sum_{i=1}^{N_p} \left(\tilde{v}_i^{c'} - \tilde{v}_i^c \right) \geq \mathbf{1}_{c < c'}$, for all $c \neq c'$. Recollect $\sum_{c=1}^K \tilde{v}_i^c = 1$, $\forall i \in [N_p]$ should also be satisfied. Thus, this gives the IP formulation of $P_1(c')$:

$$\begin{split} P_1(c'): & \quad \min_{\tilde{\mathbf{V}}} \sum_{i=1}^{N_p} \sum_{c=1}^K \rho_i^c \, \tilde{v}_i^c \quad \text{s.t.} \quad \forall c \neq c': \, \sum_{i=1}^{N_p} \left(\tilde{v}_i^{c'} - \tilde{v}_i^c \right) \geq \mathbf{1}_{c < c'}, \\ & \quad \forall i \in [N_p], \, \forall c \in [K]: \, \sum_{c=1}^K \tilde{v}_i^c = 1, \quad \tilde{v}_i^c \in \{0,1\}. \end{split}$$

The ensemble-level certificate $\tilde{\rho}(\mathbf{t})$ for a test sample \mathbf{t} can then be derived, as mentioned in Sec. 3.1, by simply subtracting one from the minimum over $P_1(c)$, that is, $\tilde{\rho}(\mathbf{t}) = \min_{c \in [K] \setminus c^*} P_1(c) - 1$.

Reduction to Polynomial-time. Solving $P_1(c)$ in its current form is computationally prohibitive, scaling as $\mathcal{O}(2^{N_p \times K})$ in the worst case. Thus, deriving $\tilde{\rho}$ is even more expensive, with complexity $\mathcal{O}(K \times 2^{N_p \times K})$. The problem becomes intractable even for small values of N_p and K, motivating the need for a more tractable alternative. We denote as $P_2(c')$, a relaxation of $P_1(c')$ that finds the minimum number of label flips needed to make c' surpass $only\ c^*$ (the original majority class) in the number of votes, rather than making c' the overall majority class. The formulation of $P_2(c')$ can be obtained from $P_1(c')$ by relaxing the constraint $\sum_{i=1}^{N_p} (\tilde{v}_i^{c'} - \tilde{v}_i^c) \geq \mathbf{1}_{c < c'} \ \forall c \neq c'$ to the constraint $(\tilde{v}_i^{c'} - \tilde{v}_i^{c^*}) \geq \mathbf{1}_{c^* < c'}$. Despite this relaxation, we have the following result proved in App. A.2.

Theorem 1 (Equivalence between problems P_1 and P_2).

$$\min_{c \in [K] \setminus c^*} P_1(c) = \min_{c \in [K] \setminus c^*} P_2(c)$$

The intuition for the above result is as follows: while trying to make c' surpass c^* , if another class c'' becomes the majority class, then changing the ensemble prediction to c'' should be easier compared to c'. This result is particularly important, as we show that $P_2(c)$ can be reduced to an instance of the

Multiple Choice Knapsack Problem (MCKP). Since MCKP is solvable in pseudopolynomial-time (Dudzinski & Walukiewicz, 1987), our approach achieves a complexity of $\mathcal{O}(N_p^2)$ for solving P_2 per class (App. A.2). Consequently, the ensemble-wide certificate $\tilde{\rho}(\mathbf{t})$ can be computed in *polynomial* time by solving $P_2(c)$ for every class and finding the minimum, that is, $\tilde{\rho}(\mathbf{t}) = \min_{c \in [K] \setminus c^*} P_2(c) - 1$. This represents a substantial improvement over the naive ILP formulation with complexity $\mathcal{O}(K \times 2^{N_p \times K})$. We refer to App. A.3 for details on the reduction of $P_2(c')$ to MCKP.

3.2 EXTRACTION OF WHITE-BOX KNOWLEDGE THROUGH SCALABELCERT

The approach of our white-box certificate ScaLabelCert builds on the framework introduced by LabelCert (Sabanayagam et al., 2025). LabelCert provides an exact certificate that determines whether the model prediction remains unchanged when at most r training labels are flipped. This definition of the certificate does not immediately align with the white-box knowledge that EnsembleCert utilizes, which is the minimum number of label flips required to change the prediction of the classifier to a particular class. Even more problematic, the computation of the certificate by LabelCert is NP-hard and only scales to a few hundred labeled datapoints. ScaLabelCert makes modifications to the LabelCert approach to address these shortcomings, which result in the computation of an exact certificate against label-flipping attacks in polynomial time. Next, we provide a brief overview of the approach by LabelCert, and then introduce the developments leading to ScaLabelCert.

Infinite-Width Neural Networks and The Equivalence to Kernel Methods. The Neural Tangent Kernel (NTK) of a neural network f_{θ} between two inputs i and j with features x_i and x_j is defined as $Q_i^j = \mathbb{E}_{\theta}[\langle \nabla_{\theta} f_{\theta}(x_i), \nabla_{\theta} f_{\theta}(x_j) \rangle]$, where the expectation is taken over the parameter initialization. When f_{θ} is an infinitely wide neural network, the dynamics of training f_{θ} for a classification task using a soft-margin loss are the same as those of an SVM with f_{θ} 's NTK as kernel (Chen et al., 2022). Similarly, if a regression loss (regularized mean-square) is used, the training dynamics are equivalent to those of kernel regression using f_{θ} 's NTK as kernel (Jacot et al., 2018).

LabelCert. For a test sample t, LabelCert computes a point-wise certificate for sufficiently wide neural networks, by deriving a certificate for a kernel SVM with f_{θ} 's NTK as kernel, which—due to the above equivalence—extends to a certificate for f_{θ} . Recall that in the dual formulation of an SVM, the parameters are the dual variables $\alpha \in \mathbb{R}^n$ derived by solving the following problem:

$$P_{\text{svm}}(\mathbf{y}) = \min_{\alpha} - \sum_{i=1}^n \alpha_i + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j Q_i^j \quad \text{s.t.} \quad 0 \leq \alpha_i \leq C, \ \forall i = [n]$$

where n is the number of training data, C is the regularization parameter that controls the trade-off between maximizing the margin and minimizing classification error, and Q_i^j is the chosen kernel between inputs i and j. Let the set of α vectors solving $P_{\text{svm}}(\mathbf{y})$ be $\mathcal{S}(\mathbf{y})$. The prediction for a test sample \mathbf{t} is given by $p_t = \text{sign}(\sum_{i=1}^n \alpha_i \tilde{y}_i Q_t^i)$. Let \hat{p}_t be the prediction of the SVM trained using clean labels. The certificate is computed by converting the following problem $P_{\text{cert}}(\mathbf{y})$ to a MILP:

$$P_{\operatorname{cert}}(\mathbf{y}) := \min_{\tilde{\mathbf{y}}, \boldsymbol{\alpha}} \ \operatorname{sign}(\hat{p}_t) \sum_{i=1}^n \alpha_i \tilde{y}_i Q_t^i \quad \text{s.t.} \quad \tilde{y} \in \mathcal{A}_r(\mathbf{y}), \ \ \boldsymbol{\alpha} \in S(\tilde{\mathbf{y}})$$

Whether the model prediction for \mathbf{t} is robust up to r label flips or not is determined by the sign of the solution to $P_{\text{cert}}(\mathbf{y})$, with a positive sign indicating robustness.

SVM Formulation for Sufficiently Small C. The complexity of solving $P_{\text{cert}}(\mathbf{y})$ comes largely from replacing the inner optimization problem $\alpha \in S(\tilde{\mathbf{y}})$ with the KKT (Karush-Kuhn-Tucker) conditions of $P_{\text{svm}}(\mathbf{y})$, which can be done as $P_{\text{svm}}(\mathbf{y})$ is convex (Dempe & Dutta, 2012; Sabanayagam et al., 2025). We show that on using a sufficiently small C, we can entirely forego the inner optimization problem and convert $P_{\text{cert}}(\mathbf{y})$ to a simpler, single-level problem based on Theorem 2.

Theorem 2. Given a soft margin SVM with regularization C, kernel entry between training samples i, j as Q_i^j , and α being the solution to $P_{svm}(\mathbf{y})$, then if

$$\max_{i \in [n]} \sum_{j \in [n]} |Q_i^j| \le \frac{1}{C}, \quad \text{it follows that} \quad \forall \mathbf{y} \in \{-1, 1\}^n : \ \alpha = C \cdot \mathbf{1}^n$$

271

272

273

274 275

276 277

278

279

280 281

283 284

285

289

290

291

292

293

295

296

297

298

299 300 301

303

304

305 306 307

308

309

310

311

312 313 314

315

316 317

318

319

320

321

322

323

The proof is presented in App. A.4. When C satisfies the condition stated above, the alpha values are equal to C regardless of the labels. Thus, choosing C appropriately gives us the liberty to eliminate the inner optimization problem $\alpha \in S(\tilde{y})$ as α is invariant to different labelings of the data. The SVM prediction in this case simplifies to $p_t = \text{sign}(\sum_{i=1}^n C\tilde{y}_i Q_t^i)$. As C is a positive constant, this further simplifies to $p_t = \text{sign}(\sum_{i=1}^n \tilde{y}_i Q_t^i)$. Integrating this insight into ScaLabelCert, we develop an efficient computation scheme for exact white-box certificates for infinite-width networks below that calculates the minimum number of label flips needed to change the prediction of the model.

ScaLabelCert For The Binary Setting. Our objective is to find the minimum number of label flips required to change the SVM prediction, i.e., to make $sign(\hat{p}_t) \sum_{i=1}^n \alpha_i \tilde{y}_i Q_t^i$ negative. Under sufficiently small C, the above objective can be formulated as:

$$O(\mathbf{y}): \quad \min_{\tilde{\mathbf{y}} \in \{0,1\}^n} \frac{1}{2} \sum_{i=1}^n (1 - y_i \tilde{y}_i) \quad \text{s.t.} \quad \text{sign}(\hat{p}_t) \sum_{i=1}^n \tilde{y}_i Q_t^i < 0, \ \forall i \in [n]: \tilde{y}_i \in \{-1,1\}.$$

 $O_1(y)$ can be solved in polynomial time (App. A.5). The intuition is that the labels corresponding to the largest positive contributions in $\operatorname{sign}(\hat{p}_t)(\sum_{i=1}^n y_i Q_t^i)$ are the most influential in determining the prediction, so flipping these labels greedily till the prediction changes is the optimal attack from the adversary's point of view. Thus, solving O(y) leads to a polynomial time computable exact certificate for sufficiently-wide neural networks, if f_{θ} 's NTK is chosen as the SVM's kernel.

ScaLabelCert For The Multi-Class Setting. For the multi-class case, we use the one-vs-all strategy by decomposing the problem with K classes into K separate binary classification tasks. For each class $c \in [K]$, a binary classifier is trained to distinguish between samples of class c and samples from all other classes. Assume that p_c is the prediction score of a classifier for the learning problem corresponding to class c. Then, the class prediction c^* for a test sample is constructed by $c^* =$ $\arg\max_{c\in[K]}p_c$. The labels are collected in the vector y where $\mathbf{y}_i^c=1$ if the class of the ith sample is c, and 0 otherwise. Recall that for each base classifier, EnsembleCert requires white-box certificates that determine, for every class, the minimum number of label flips needed to change the model's prediction to that class. Using a soft-margin kernel SVM with a sufficiently small C as our base model, the certificate computing minimum number of label flips required to change the prediction of the model to a particular class c' can be formulated as (derived in App. A.6):

$$O_{1}(c'): \quad \min_{\tilde{\mathbf{y}}} \sum_{i \in [N]} \left(1 - \sum_{c \in [K]} y_{i}^{c} \tilde{y}_{i}^{c} \right) \quad \text{s.t.} \quad \sum_{i \in [N]} \tilde{y}_{i}^{c'} Q_{t}^{i} > \sum_{i \in [N]} \tilde{y}_{i}^{c} Q_{t}^{i} \quad \forall c \neq c',$$

$$\forall i \in [N], c \in [K]: \sum_{c \in [K]} \tilde{y}_{i}^{c} = 1 , \tilde{y}_{i}^{c} \in \{0, 1\}.$$

$$(1)$$

While solving $O_1(c')$ is NP-hard, we show that tight lower and upper bounds for the solution of $O_1(c')$ can be computed in polynomial time (see App. A.7).

Certificate for Kernel Regression. With minor modifications, we can leverage the above formulation to certify a kernel regression model. Specifically, the adjustment is to replace Q_t^i with

$$(Q_{\text{eff}})_t^i = [(Q_{\text{train}} + \lambda I)^{-1} Q_t]$$

 $(Q_{\text{eff}})_t^i = [(Q_{\text{train}} + \lambda I)^{-1}Q_{t,:}]_i$ where Q_{train} is the kernel matrix for the training samples; $Q_{t,:}$ is the vector of kernel entries for test sample t and the training samples; and λ is the regularization parameter. Deriving the certificate for kernel regression with the above modifications, we certify a sufficiently wide NN trained on a regularized mean-squared loss by using the network's NTK as the kernel.

Exact Certificate Given No Partitioning $(N_p = 1)$. When there is no partitioning, we do not need to solve $O_1(c')$ exactly for every c' to get an exact certificate for a stand-alone model. As $O_1(c')$ represents the number of flips required to change the prediction to a particular class c', the exact certificate for the stand-alone model can be derived by simply computing the minimum over $O_1(c')$ i.e, $\tilde{\rho}(\mathbf{t}) = \min_{c \in [K] \setminus c^*} O_1(c) - 1$. We show that with ScaLabelCert, this can be solved in polynomial time, by employing a similar line of argument as Theorem 1. The proof is presented in App. A.6. This results in the **first exact certificate** for neural networks against a poisoning attack that scales to common image benchmark datasets like MNIST or CIFAR-10.

327 328

330 331

332

333

334

335

336 337 338

339 340

341

342

343

344

345

346

347

348

349

350

351

352

353

354 355

356

357

358

359

360

361

362

363

364

366

367

368

369

370

371

372

373

374

375

376

377

Figure 2: EnsembleCert evaluation using the NTK for (i) kernel SVM with a sufficiently small C (a, b); (ii) kernel regression under strong regularization (c, d). Median certified robustness either remains largely invariant across partitions or exhibits a decay until the white-box certificate converges to the black-box certificate. The tightness of our bounds on the *exact* certificate for the ensemble is evident, as the upper (EnsembleCert UB) and lower (EnsembleCert LB) bounds largely coincide across all plots.

4 EXPERIMENTS AND RESULTS

Implementation Details. We perform experiments on MNIST, CIFAR-10, and binary MNIST 1vs-7. Following SS-DPA (Levine & Feizi, 2020), before training the base-classifiers we extract unsupervised features using RotNet (Gidaris et al., 2018) for MNIST and SimCLR (Chen et al., 2020) for CIFAR-10, using pretrained models from Levine & Feizi (2020). For the supervised training of base-classifiers, the extracted RotNet features for MNIST are used as input to an infinitely-wide convolutional network with a one convolutional layer and no pooling for supervised classification. For CIFAR-10, SimCLR features are fed to an infinitely-wide fully-connected network with one hidden layer and no non-linear activation. NTK computations are performed using the Google neural-tangents library (Novak et al., 2020). Using the NN-kernel equivalence (Sec. 3.2), the NTK is then used either with a kernel SVM for wide NNs trained on the soft-margin loss or with kernel regression for wide NNs trained on the regularized mean-squared loss. Solving the MCKP for ensemble-level certificates as described in Sec. 3.1 is implemented using standard dynamic programming. The metrics used for evaluation are *certified accuracy*, with certified accuracy at r label flips being the fraction of test samples for which the model prediction is correct and robust up to r label flips; and median certified robustness (MCR), which denotes the number of label flips upto up to which the model prediction for 50% of the correctly classified samples is robust.

Experiments. We instantiate EnsembleCert with sufficiently wide NNs trained on the soft-margin loss (equivalent to kernel SVMs with NTK) and the regularized mean square loss (equivalent to kernel ridge regression with NTK). Although regression losses may seem ill-suited for classification, they work well in practice (Mika et al., 1999; Rifkin et al., 2003). Moreover, Arora et al. (2019) showed that kernel ridge regression with the NTK of convolutional NNs achieves competitive performance on image datasets. We also evaluate EnsembleCert on CIFAR-10 using a smoothed linear regression model as the base classifier, certified via the smoothing-based method of Rosenfeld et al. (2020), which applies to smoothed linear models and yields analytic certificates without requiring the sampling process in randomized smoothing. The details of how we derive the necessary whitebox knowledge for EnsembleCert by leveraging the smoothing approach can be found in the App. B. For every choice of base classifier, we observe that *injecting white-box knowledge into the ensemble* substantially increases certified robustness for low to intermediate numbers of partitions, highlighting the relative looseness of guarantees obtained using the black-box approach. The substantial improvement in certified robustness achieved by our white-box certificate for kernel methods as base classifiers is evident in Fig. 2. Further results demonstrating the same for every choice of base classifier can be found in App. C. The gap between the white-box and black-box certificates narrows as the number of partitions grows, with the white-box certificate eventually converging to the blackbox certificate. This convergence reflects the realization of the worst-case scenario, where a single label flip can alter the prediction of a base classifier. Beyond the point of convergence, our method performs on par with the black-box approach. This behavior is a direct consequence of our method's design and holds consistently across all experiments. In the next sections, we present some crucial insights that can be derived from our evaluation of EnsembleCert and ScaLabelCert.

Invariance to Number of Partitions with Kernel SVM. For the instantiation of Ensemble Cert with kernel SVM, we use a regularization parameter C that is small enough to satisfy the condition in Theorem 2, as it is the key to computing scalable certificates for kernel SVM. We observe that the

Figure 3: Comparing certified accuracies of stand-alone base models and their partition aggregation ensembles. Results with the base model as kernel SVM are in (a) and (b). (c): Using a stand-alone kernel regression model on MNIST 1-vs-7 maintains a certified accuracy of close to 80% when the certified accuracy for the corresponding best performing ensemble ($N_p=10$) reaches 0. (d): Smoothed linear regression as base model, comparing the stand-alone case and the ensembling.

MCR of the white-box certificate remains largely **invariant to the number of partitions** for CIFAR-10 (Fig. 2a) and MNIST 1-vs-7 (Fig. 9a) until the point of convergence. On MNIST, there is a **sharp decline initially on increasing the number of partitions, followed by plateauing** (Fig. 2b). These findings indicate that strong guarantees can be achieved without requiring overly large ensembles.

Robustness Decay with Kernel Regression. For our instantiation of EnsemblCert with kernel ridge regression, we study the effect of the regularization parameter λ on certified robustness of the ensemble. For each dataset, we observe that the trend of certified robustness varies with the regularization parameter λ . As we increase λ from very small values, MCR initially improves with the number of partitions. Beyond a dataset-specific threshold, however, the trend reverses—increasing the number of partitions leads to lower certified robustness. For example, on CIFAR-10, when $\lambda=100$ (which lies beyond the threshold for this dataset), EnsembleCert certifies a median of 219 label flips with just 10 partitions, whereas using 1000 partitions reduces this to 173 (Fig. 2c). Similarly, on MNIST with $\lambda=0.1$, EnsembleCert certifies 356 label flips using only 12 partitions, whereas using 1200 partitions lowers the certified robustness to 82 (Fig. 2d). We present plots for low values of λ and discuss the behavioral change across the spectrum of λ in App. C.2. As robust kernel regression is associated with the use of higher values of λ (Hu et al., 2021), the decreasing trend of the MCR observed with high λ suggests that deeper partitioning limits the true robustness potential of the ensemble when the underlying base classifier has a high degree of robustness.

To Partition or Not to Partition? The polynomial-time calculable exact certification method derived by ScaLabelCert allows us to analyze the robustness of sufficiently wide neural networks without employing an ensemble, that is, $N_p = 1$. While the simplification under small C eliminates the need to calculate the training kernel for kernel SVM, making it easily scalable to datasets such as CIFAR-10 and MNIST, it remains an essential component of the pipeline for kernel regression. Thus, performing kernel regression on such datasets without partitioning is computationally challenging due to the need to compute the entire training kernel. Hence, in the no-partition setting, we evaluate ScaLabelCert using the efficient kernel SVMs on all datasets and evaluate using kernel regression only on the relatively small MNIST 1-vs-7 binary dataset. On CIFAR-10, ScaLabel-Cert achieves non-trivial certified accuracy for up to 1000 label flips, which amounts to 2% of the training data Fig. 3a. In contrast, the evaluation by Levine & Feizi (2020) fails to certify any test sample beyond 500 label flips. Motivated by the observation that deeper partitioning may limit the ensemble's true robustness potential, we further investigate the role of partitioning by comparing the certified accuracy of a single base model against that of its partition-aggregated ensemble. Our experiments across multiple datasets and base model choices, as shown in Fig. 3, reveal that a single base model trained on the entire training dataset achieves significantly higher certified accuracy as compared to its partition-aggregation ensemble. This raises an important question: *Does* partition aggregation enhance or diminish the robustness potential of a given base model?

5 DISCUSSION AND CONCLUSION

On Using Sufficiently Small C in Kernel SVM. The choice of the parameter C, which controls the penalty for misclassifications, introduces a robustness–accuracy trade-off in soft-margin SVMs. Smaller values of C improve robustness to label noise and adversarial perturbations, as they encourage larger margins and reduce the influence of individual (potentially corrupted) points on the

decision boundary. Thus, our choice of \mathcal{C} for the SVM simplification in Theorem 2 aligns with building robust base-classifiers. Although this choice may not be optimal for clean accuracy, performance remains competitive as demonstrated in App. C.1.

Versatility of ScaLabelCert. Through the formulation $O_1(c')$ (Eq. (1)), ScaLabelCert derives efficient certificates for sufficiently wide networks that compute the minimum number of label flips needed to change the prediction of the classifier to a particular class c'. Although these certificates are not exact, we compute sufficiently tight bounds (see Sec. 4). Note that the certificate definition is different from the certified radius, which represents the minimum label flips needed to change the classifier's prediction to any class. We remind the reader that our certificate for computing the certified radius for a stand-alone model is exact and polynomial-time calculable (App. A.6). Moreover, ScaLabelCert provides a general framework for certifying kernel SVMs and kernel regression models against label-flipping. Using the NTK is one instance of this framework, enabling efficient certification for sufficiently wide NNs. Finally, a kernel SVM with a sufficiently small C and kernel regression-based classifiers can be interpreted as weighted nearest-neighbor models, where Q_t^i and $(Q_{\text{eff}})_t^i$ denote the weight of the ith neighbor of the test sample t for kernel SVM and kernel regression, respectively. From this perspective, ScaLabelCert can also certify weighted nearest-neighbor models against label-flipping attacks in polynomial time, demonstrating its broad applicability.

Potential of EnsembleCert for Certifying Against Clean-Label Attacks. In this work, we utilize EnsembleCert to certify against label-flipping attacks. However, EnsembleCert can also leverage white-box knowledge of base-classifiers to provide robustness guarantees against clean-label attacks. Specifically, consider an adversary capable of corrupting *only* the features of a training sample within an ℓ_p ball. Under this threat model, the white-box information ρ_i^c can denote the number of samples that must be corrupted to change the prediction of the *i*th base classifier to class c. EnsembleCert can aggregate this white-box information from the base classifiers to compute the number of samples in the *entire* training dataset that need to be corrupted to alter the prediction of the ensemble. In this way, EnsembleCert can be adapted to derive white-box certificates for partition aggregation ensembles under multiple threat models. However, deriving efficient and scalable white-box clean-label certificates for certifying the base classifiers is still an open challenge.

Related Work. Current ensemble-based poisoning certificates typically use the following ensembling techniques: (i) randomized smoothing (Rosenfeld et al., 2020; Wang et al., 2020; Zhang et al., 2022; Weber et al., 2023), where the randomization is over the training dataset, (ii) partition-based aggregation (Levine & Feizi, 2020; Wang et al., 2022; Rezaei et al., 2023), and (iii) bootstrap aggregation (Jia et al., 2021), where the base classifiers are trained on independently sampled subsets of the training data. None of these works use white-box knowledge of the base classifiers, making them inherently black-box methods. Apart from the white-box certificates discussed in the introduction (Sabanayagam et al., 2025; Sosnin et al., 2024), Gosch et al. (2025) is the only other white-box certification method that certifies NNs against clean-label attacks, notably using the NTK approach similar to ours and to Sabanayagam et al. (2025). The remaining white-box certificates in the literature do not extend to NNs and apply to only decision trees (Meyer et al., 2021; Drews et al., 2020), nearest neighbor models (Jia et al., 2022) or naive Bayes classifiers (Bian et al., 2024).

Conclusion. We introduce **EnsembleCert**, a framework that leverages model information from base-classifiers to yield significantly tighter ensemble-level certificates against label-flipping attacks in polynomial time. To efficiently extract the white-box information, we develop ScaLabelCert, a framework for the exact certification of sufficiently-wide NNs against label-flipping attacks. ScaLabelCert computes exact certificates against label flipping attacks in polynomial time, making it the first polynomial-time exact certification method that can certify (wide) NNs against data poisoning attacks. Through our evaluation of EnsembleCert instantiated with sufficiently wide NNs, we observe that with robust base-classifiers, the partition aggregation ensemble can achieve stronger guarantees using notably few partitions, outperforming excessively deep partitioning. This is crucial, as excessively deep partitioning requires training a very large number of base-classifiers, introducing significant computational overhead and limiting scalability. The experiments evaluating ScaLabelCert on stand-alone models indicate that employing partition aggregation ensembles does not always bring out the true robustness potential of the chosen base classifier architecture. Overall, our findings motivate the development of effective white-box certificates for finite-width neural networks to bring out the true robustness of a partition aggregation ensemble and to understand the role of partition-based ensembling itself in achieving strong robustness guarantees.

ETHICS STATEMENT

Our work introduces EnsembleCert and ScaLabelCert, which, for the first time, leverage white-box information to quantify the worst-case robustness of partition aggregation ensembles of neural networks against label poisoning. Although such capabilities could, in principle, be misapplied by adversaries, we contend that understanding these vulnerabilities is essential for the trustworthy and safe use of neural networks. We therefore hold that the advantages of advancing robustness research outweigh the potential downsides, and we do not anticipate any immediate risks arising from our contributions.

7 REPRODUCIBILITY STATEMENT

The full codebase, along with configuration files for every experiment, is available at https://figshare.com/s/f4ff623f9c47e63b8ef9, which will be made public upon acceptance.

REFERENCES

- Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact computation with an infinitely wide neural net. In *Advances in Neural Information Processing Systems*, volume 32, pp. 8139–8149, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/dbc4d84bfcfe2284ballbeffb853a8c4-Abstract.html.
- Hassan Ashtiani, Vinayak Pathak, and Ruth Urner. Black-box certification and learning under adversarial perturbations. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 388–398. PMLR, 2020. URL https://proceedings.mlr.press/v119/ashtiani20a.html.
- Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In *International Conference on Machine Learning (ICML)*, pp. 274–283, 2018.
- Melis Ilayda Bal, Volkan Cevher, and Michael Muehlebach. Adversarial training for defense against label poisoning attacks, 2025. URL https://arxiv.org/abs/2502.17121.
- Song Bian, Xiating Ouyang, Zhiwei Fan, and Paraschos Koutris. Naive bayes classifiers over missing data: Decision and poisoning. In *Proceedings of the 41st International Conference on Machine Learning (ICML/PMLR)*, volume 235, pp. 3913–3934, 2024.
- Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector machines under adversarial label noise. In *Proceedings of the 3rd Asian Conference on Machine Learning, ACML 2011, Taoyuan, Taiwan, November 13-15, 2011*, JMLR Proceedings, 2011. URL http://proceedings.mlr.press/v20/biggio11/biggio11.pdf.
- Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *IEEE Symposium on Security and Privacy (S&P)*, pp. 39–57, 2017.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International Conference on Machine Learning (ICML)*, pp. 1597–1607. PMLR, 2020.
- Yilan Chen, Wei Huang, Lam M. Nguyen, and Tsui-Wei Weng. On the equivalence between neural network and support vector machine, 2022. URL https://arxiv.org/abs/2111.06063.
- Stephan Dempe and Joydeep Dutta. Is bilevel programming a special case of a mathematical program with complementarity constraints? *Mathematical Programming*, 131(1):37–48, 2012.
- Samuel Drews, Aws Albarghouthi, and Loris D'Antoni. Proving data-poisoning robustness in decision trees. In *Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)*, pp. 1083–1097, 2020. doi: 10.1145/3385412.3385975.

- Kazimierz Dudzinski and Stanislaw Walukiewicz. Exact methods for the knapsack problem and its generalizations. *European Journal of Operational Research*, 28(1):3–21, 1987. doi: 10.1016/0377-2217(87)90165-2.
- Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting image rotations. In *International Conference on Learning Representations (ICLR)*, 2018.
- Lukas Gosch, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar, and Stephan Günnemann. Provable robustness of (graph) neural networks against data poisoning and backdoor attacks. *Transactions on Machine Learning Research*, 2025-June, 2025. Accepted / Published in TMLR.
- Tianyang Hu, Wenjia Wang, Cong Lin, and Guang Cheng. Regularization matters: A nonparametric perspective on overparametrized neural network. In *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 130, pp. 829–837. PMLR, 2021. URL https://proceedings.mlr.press/v130/hu21a.html.
- Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In *Advances in Neural Information Processing Systems*, volume 31, pp. 8571–8580, 2018.
- Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrinsic certified robustness of bagging against data poisoning attacks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 7961–7969, 2021. doi: 10.1609/aaai.v35i9.16971.
- Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of nearest neighbors against data poisoning and backdoor attacks. In *Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)*, pp. 9575–9583, 2022. doi: 10.1609/aaai.v36i9.21191.
- Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data sanitization defenses. *Machine Learning*, 111(1):1–47, 2021. doi: 10.1007/s10994-021-06119-y.
- Alexander Levine and Soheil Feizi. Deep partition aggregation: Provable defense against general poisoning attacks. *arXiv preprint arXiv:2006.14768*, 2020.
- Anna P. Meyer, Aws Albarghouthi, and Loris D'Antoni. Certifying robustness to programmable data bias in decision trees. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 26276–26288, 2021.
- S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. R. Müller. Fisher discriminant analysis with kernels. In *Proceedings of the 1999 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing (NNSP'99)*, pp. 41–48, 1999. doi: 10.1109/NNSP.1999.788121.
- Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In *International Conference on Learning Representations*, 2020. URL https://github.com/google/neural-tangents.
- Andrea Paudice, Luis Muñoz-González, Andras Gyorgy, and Emil C Lupu. Label sanitization against label flipping poisoning attacks. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pp. 5–15. Springer, 2018.
- Keivan Rezaei, Kiarash Banihashem, Atoosa Chegini, and Soheil Feizi. Run-off election: Improved provable defense against data poisoning attacks. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*, 2023. URL https://arxiv.org/abs/2302.02300.
- Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares classification. Technical Report MIT-CSAIL-TR-2003-110, MIT Artificial Intelligence Laboratory and Center for Biological and Computational Learning, 2003. URL https://www.cs.toronto.edu/~urtasun/courses/CSC411/tutorials/Rifkin.pdf.
- Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. Certified robustness to label-flipping attacks via randomized smoothing. *arXiv preprint arXiv:2002.03018*, 2020.

- Mahalakshmi Sabanayagam, Pascal Mattia Esser, and Debarghya Ghoshdastidar. Analysis of convolutions, non-linearity and depth in graph neural networks using neural tangent kernel. *Transactions on Machine Learning Research*, 2023. URL https://openreview.net/forum?id=xqYqDEof29.
- Mahalakshmi Sabanayagam, Lukas Gosch, Stephan Günnemann, and Debarghya Ghoshdastidar. Exact certification of (graph) neural networks against label poisoning, 2025. URL https://arxiv.org/abs/2412.00537.
- Philip Sosnin, Mark N. Müller, Maximilian Baader, Calvin Tsay, and Matthew Wicker. Certified robustness to data poisoning in gradient-based training. *arXiv preprint arXiv:2406.05670*, 2024. v2.
- Binghui Wang, Xiaoyu Cao, Jinyuan jia, and Neil Zhenqiang Gong. On certifying robustness against backdoor attacks via randomized smoothing, 2020. URL https://arxiv.org/abs/2002.11750.
- Wenxiao Wang, Alexander J Levine, and Soheil Feizi. Improved certified defenses against data poisoning with (deterministic) finite aggregation. In *Proceedings of the 39th International Conference on Machine Learning (ICML)*, pp. 22769–22783, 2022. URL https://arxiv.org/abs/2202.02628.
- Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. Rab: Provable robustness against backdoor attacks. In *Proceedings of the IEEE Symposium on Security and Privacy (SP)*, 2023. doi: 10.1109/SP46215.2023.10179451. arXiv preprint arXiv:2003.08904 (initial preprint).
- Han Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli. Adversarial label flips attack on support vector machines. In 20th European Conference on Artificial Intelligence (ECAI), pp. 870–875. IOS Press, 2015.
- Yuhao Zhang, Aws Albarghouthi, and Loris D'Antoni. Bagflip: A certified defense against data poisoning. In *Proceedings of NeurIPS (Advances in Neural Information Processing Systems)*, 2022. arXiv:2205.13634 / NeurIPS 2022.

A THEORETICAL DETAILS

A.1 THE FORMAL DESCRIPTION OF THE WORST CASE SCENARIO

Recall that the prediction of the partition aggregation ensemble $g_{\mathcal{S}}(\mathbf{t})$ is determined by a majority vote over the prediction by the base classifiers $f_{\{1,\dots,N_p\}}\colon g_{\mathcal{S}}(\mathbf{t})=\arg\max_{c\in[K]}n_c(\mathbf{t})$, where $n_c(\mathbf{t}):=|\{i\in[N_p]\mid f_i(\mathbf{t})=c\}|$ is the number of votes received by class c. Ties are resolved deterministically by choosing the smaller index. If we denote $g_{\mathcal{S}}(\mathbf{t})$ as c^* , the certificate $\tilde{\rho}(\mathbf{t})$ for sample \mathbf{t} , that computes the number of adversarial label flips upto which the prediction of the ensemble will not change, as derived by black-box treatment of the base classifier is given as:

$$\tilde{\rho}(\mathbf{t}) := \big\lfloor \frac{n_{c^*}(\mathbf{t}) - \max_{c' \neq c^*} (n_{c'}(\mathbf{t}) + \mathbf{1}_{c' < c^*})}{2} \big\rfloor.$$

As each base classifier is treated as a black box, the certificate derivation follows from a key worst-case assumption: **The prediction of certain base classifiers can be altered by a** *single* **label flip**. The formal description of the worst-case scenario is given below.

Formalising the worst-case scenario: Let $C_{\text{sec}} := \arg\max_{c \neq c^*} (n_c(t) + \mathbf{1}_{c < c^*})$. One can think of C_{sec} as the set of runner-up classes. We define \mathcal{P}_{maj} as the set of base classifiers that voted for c^* . The worst-case scenario can be represented as:

 $\exists c' \in \mathcal{C}_{sec}$ s.t. the prediction of at least $\tilde{\rho} + 1$ base classifiers in \mathcal{P}_{maj} can be changed from c^* to c' with one label flip in their corresponding partitions. In such a scenario, attacking the corresponding base classifiers with one label flip each would change the prediction of the ensemble to c'.

Note that the numerator in $\tilde{\rho}$: $n_{c^*} - \max_{c' \neq c^*} (n_{c'}(t) + \mathbf{1}_{c' < c^*})$, is the difference in the number of the votes received by the majority class c^* and c'. Flipping the vote of a base classifier from c^* to c' bridges the gap between c^* and c' by 2 votes, explaining the 2 in the denominator. In light of the worst-case assumption, the reader can now see that the certificate actually calculates the number of base classifiers whose prediction needs to be flipped in order to change the ensemble prediction. With *white-box* knowledge about the base classifiers, we can improve upon the worst-case assumption, leading to a tighter certificate for the ensemble. One could argue that we need the white-box information solely about the base classifiers in \mathcal{P}_{maj} and classes in \mathcal{C}_{sec} to challenge the assumption. The point to note is that if information about \mathcal{P}_{maj} indicates that the worst-case scenario cannot be realized, we cannot assume that the adversary will attack partitions only in \mathcal{P}_{maj} and change the prediction to a class in \mathcal{C}_{sec} . Hence, to derive a tighter certificate, we would need this information for all base classifiers and classes.

A.2 THEOREM 1: $\min P_1(c) = \min P_2(c)$

Intuition. Recall that $P_1(c')$ denotes the minimum number of label flips needed to make c' the majority class, whereas $P_2(c')$ denotes the minimum number of label flips needed to make c' surpass the current majority class c^* in number of votes. Intuitively, if c' is the class that requires the fewest flips to become the new prediction, then making it just beat c^* will already make it the majority class

Vote Configuration Let $\tilde{\mathbf{V}} \in \{0,1\}^{N_p \times K}$ denote the perturbed vote configuration, where $\tilde{v}^c_i = 1$ if partition i votes for class c after label flips, and 0 otherwise. Let \mathbf{V} denote the clean vote configuration. We define $O(\tilde{\mathbf{V}})$ as the number of label flips required to reach configuration $\tilde{\mathbf{V}}$ starting from the clean configuration \mathbf{V} .

Restatement of $P_1(c')$. Recall that $P_1(c')$ is defined as the minimum number of label flips needed to make c' the majority class. In Sec. 3.1, the contraint was formulated through the set of inequalities

$$\sum_{i=1}^{N_p} \left(\tilde{v}_i^{c'} - \tilde{v}_i^c \right) \ge \mathbf{1}_{c < c'}, \quad \forall c \neq c',$$

which constraints c' to be the majority class (with deterministic tie-breaking). For brevity, we now re-express this condition using the function majVote($\tilde{\mathbf{V}}$) := $\arg\max_{c\in[K]}\sum_{i=1}^{N_p}\tilde{v}_i^c$, as c'= majVote($\tilde{\mathbf{V}}$) where ties are resolved deterministically by choosing the class with the smaller index.

With this shorthand notation, we write

$$\begin{split} P_1(c') &= \min_{\tilde{\mathbf{V}}} O(\tilde{\mathbf{V}}) \\ \text{s.t.} \quad c' &= \text{majVote}(\tilde{\mathbf{V}}), \\ &\sum_{c=1}^K \tilde{v}_i^c = 1, \quad \forall i \in [N_p], \\ &\tilde{v}_i^c \in \{0,1\}, \quad \forall i \in [N_p], \ \forall c \in [K]. \end{split}$$

Restatement of $P_2(c')$. Problem $P_2(c')$ relaxes the above by requiring c' to surpass *only* the original majority class c^* , instead of all classes:

$$\begin{split} P_2(c') &= \min_{\tilde{\mathbf{V}}} O(\tilde{\mathbf{V}}) \\ \text{s.t.} \quad &\sum_{i=1}^{N_p} \left(\tilde{v}_i^{c'} - \tilde{v}_i^{c^*} \right) \geq \mathbf{1}_{c^* < c'}, \\ &\sum_{c=1}^K \tilde{v}_i^c = 1, \quad \forall i \in [N_p], \\ \tilde{v}_i^c \in \{0,1\}, \quad \forall i \in [N_p], \ \forall c \in [K]. \end{split}$$

Theorem (Restating Theorem 1). $\overline{\min_{c' \in [K] \setminus \{c^*\}} P_1(c') = \min_{c' \in [K] \setminus \{c^*\}} P_2(c') }$

Proof. We first state three lemmas and then combine them to prove the theorem.

Lemma 1. $\forall c' \in [K] \setminus c^*, P_1(c') \ge P_2(c').$

Proof. The feasible region of $P_1(c')$ is contained within that of $P_2(c')$ since the latter has a weaker constraint. Hence, $P_2(c')$ can only be smaller (or equal) to $P_1(c')$.

Lemma 2. $\forall c_1^* \in \arg\min_{c' \in [K] \setminus c^*} P_1(c'), \quad P_1(c_1^*) = P_2(c_1^*).$

Proof. By contradiction. Suppose $P_1(c_1^*) > P_2(c_1^*)$. Let $\tilde{\mathbf{S}}$ be the optimal solution for $P_2(c_1^*)$, i.e.,

$$O(\tilde{\mathbf{S}}) = P_2(c_1^*). \tag{2}$$

Since $O(\tilde{\mathbf{S}}) < P_1(c_1^*)$, $\tilde{\mathbf{S}}$ is not feasible for $P_1(c_1^*)$. As the feasibility for $P_1(c_1^*)$ requires c^* to be the majority class, there must exist some $c_s^* \neq c_1^*$ such that $c_s^* = \text{majVote}(\tilde{\mathbf{S}})$. Note that $\tilde{\mathbf{S}}$ is feasible for $P_1(c_s^*)$ as c_s^* is the majority class for the vote configuration $(\tilde{\mathbf{S}})$, so

$$O(\tilde{\mathbf{S}}) \ge P_1(c_s^*).$$
 (3)

Combining (2) and (3) with the assumption that $P_1(c_1^*) > P_2(c_1^*)$ gives $P_1(c_1^*) > P_1(c_s^*)$, contradicting the assumption that c_1^* minimizes $P_1(c')$.

Lemma 3. $\exists z^* \in \arg\min_{c' \in [K] \setminus c^*} P_2(c')$ such that $P_1(z^*) = P_2(z^*)$.

Proof. Let $c_2^* \in \arg\min_{c' \in [K] \setminus c^*} P_2(c')$ and let $\tilde{\mathbf{S}}$ be the vote configuration in the optimal solution for $P_2(c_2^*)$, i.e,

$$O(\tilde{\mathbf{S}}) = P_2(c_2^*). \tag{4}$$

Let $z^* = \text{majVote}(\tilde{\mathbf{S}})$. Then $\tilde{\mathbf{S}}$ is feasible for both $P_1(z^*)$, that requires z^* to be the majority class and $P_2(z^*)$, that requires z^* to have higher votes than c^* , implying

$$O(\tilde{\mathbf{S}}) \ge P_2(z^*)$$
 and (5)

$$O(\tilde{\mathbf{S}}) \ge P_1(z^*). \tag{6}$$

With (4), (5) and the minimality of c_2^* , we have $z^* \in \arg\min_{c' \in [K] \setminus c^*} P_2(c')$ and $O(\tilde{\mathbf{S}}) = P_2(z^*)$. Combining this result with (6) and using Lemma 1.1 we conclude $P_1(z^*) = P_2(z^*)$.

Proof of Theorem 1. Let $c_1^* \in \arg\min_{c' \in [K] \setminus c^*} P_1(c')$ and $z^* \in \arg\min_{c' \in [K] \setminus c^*} P_2(c')$ s.t. $P_1(z^*) = P_2(z^*)$. Using Lemmas 1.2 and 1.3, we obtain

$$P_1(z^*) = P_2(z^*) \le P_2(c_1^*) = P_1(c_1^*),$$

which implies

$$P_1(c_1^*) = P_1(z^*) = P_2(z^*),$$

thus proving that

$$\min_{c' \in [K] \setminus \{c^*\}} P_1(c') = \min_{c' \in [K] \setminus \{c^*\}} P_2(c')$$

A.3 REDUCTION TO MCKP AND COMPLEXITY ANALYSIS

In this section, we will use the terms base classifiers and partitions interchangeably, and discuss the optimal attack from an adversary's point of view to make c' surpass c^* . Let's denote the set of partitions that voted for c^* originally as \mathcal{P}_{maj} , the ones that voted for c' originally as $\mathcal{P}_{\text{target}}$ and rest of the partitions as $\mathcal{P}_{\text{rest}}$. Formally:

$$\mathcal{P}_{\mathrm{maj}} = \{i \in [N_p] \ | \ v_i^{c^*} = 1\}, \quad \mathcal{P}_{\mathrm{target}} = \{i \in [N_p] \ | \ v_i^{c'} = 1\}, \quad \mathcal{P}_{\mathrm{rest}} = [N_p] \setminus (\mathcal{P}_{\mathrm{target}} \cup \mathcal{P}_{\mathrm{maj}}).$$

The adversary will not attack partitions in $\mathcal{P}_{\text{target}}$. If a partition in $\mathcal{P}_{\text{rest}}$ is attacked, the vote can change only to c'. Changing the vote to any other class will deem the label perturbation pointless. Let \mathcal{C}_i be the set of classes that partition i could vote for after the optimal attack:

$$\forall i \in \mathcal{P}_{\text{rest}}: \ \mathcal{C}_i = \{c \in K \mid c = c' \ or \ v_i^c = 1\}, \ \forall i \in \mathcal{P}_{\text{target}}: \ \mathcal{C}_i = \{c'\}.$$

Note that $\forall i \in [N_p]$, we need the binary variable \tilde{v}_i^c only if $c \in \mathcal{C}_i$. Attacking a partition in \mathcal{P}_{maj} could change the vote to c' or to the class with the minimal number of flips required for a prediction change to that class. Formalizing the above notion, we define c_{\min} as: $\forall i \in \mathcal{P}_{\text{maj}} : c_{\min}(i) = \arg\min_{c \in [K] \setminus c^*} \rho_i^c$. Given this we have:

$$\forall i \in \mathcal{P}_{\text{maj}}: \ \mathcal{C}_i = \{c \in K \mid c = c' \ or \ c = c_{\min}(i) \ or \ c = c^*\}.$$

We model the constraint $C_1:=\sum_{i=1}^{N_p}(\tilde{v}_i^{c'}-\tilde{v}_i^{c^*})\geq \mathbf{1}_{c^*< c'}$ differently. Let d be the original difference between the number of votes for c' and $c^*\colon d=\sum_{i=1}^{N_p}(v_i^{c^*}-v_i^{c'})$. We define r_i^c to be the reduction in the gap between c' and c^* caused by flipping the vote of partition i to class c. For partitions in \mathcal{P}_{maj} , if the vote changes to c', the difference will decrease by 2. If the vote goes to any other class, the reduction is by 1. It is trivial to see that $\forall i \in \mathcal{P}_{\text{target}}, c \in \mathcal{C}_i: r_i^c=0$. We can similarly define these values for partitions in $\mathcal{P}_{\text{rest}}$ and get:

$$\forall i \in \mathcal{P}_{\text{maj}}, c \in \mathcal{C}_i: \quad r_i^c = \begin{cases} 2 & \text{if } c = c' \\ 1 & \text{else if } c = c_{\min}(i) \\ 0 & \text{else if } c = c^* \end{cases}, \quad \forall i \in \mathcal{P}_{\text{rest}}, c \in \mathcal{C}_i: \quad r_i^c = \begin{cases} 1 & \text{if } c = c' \\ 0 & \text{else} \end{cases}$$

For c' to have higher number of votes than c^* , the total reduction in the difference should be greater than or equal to $d + \mathbf{1}_{c^* < c'}$. Remodeling C_1 with the above idea, we can reformulate $P_2(c')$ as:

$$\begin{split} P_2(c'): \quad \min_{\tilde{\mathbf{V}}} \sum_{i=1}^{N_p} \sum_{c \in \mathcal{C}_i} \rho_i^c \, \tilde{v}_i^c \quad \text{s.t.} \quad \sum_{i=1}^{N_p} \sum_{c \in \mathcal{C}_i} r_i^c \, \tilde{v}_i^c \geq d + \mathbf{1}_{c^* < c'}, \\ \forall i \in [N_p], \ \forall c \in \mathcal{C}_i: \ \sum_{c \in \mathcal{C}_i} \tilde{v}_i^c = 1, \ \tilde{v}_i^c \in \{0, 1\}. \end{split}$$

This problem can be easily converted to a MCKP (multiple choice knapsack problem). To arrive at the excact formulation of MCKP, we need to change the min objective to a max objective and reverse the sign of the constraint inequality . Note that solving $\min_{\tilde{v}} O(\tilde{\mathbf{V}})$ is same as solving $A - \max_{\tilde{v}} (A - O(\tilde{\mathbf{V}}))$, where A is a positive constant. We choose the constant A to be $N_p * \rho_{\max}$, where $\rho_{\max} = \max_{i \in N_p, c \in C_i} \rho_i^c$. Lets denote $P_3(c')$ as follows .

$$P_3(c') = \max_{\tilde{v}}(N_p * \rho_{\max} - \sum_{i=1}^{N_p} \sum_{c \in C_i} \rho_i^c \, \tilde{v}_i^c)$$

$$s.t. \quad (\sum_{i=0}^{N_p-1} \sum_{c \in C_i} r_i^c \, \tilde{v}_i^c) \ge d + \mathbf{1}_{c^* < c'},$$

$$\sum_{c \in C_i} \tilde{v}_i^c = 1, \quad \forall i \in [N_p],$$

$$\tilde{v}_i^c \in \{0, 1\}, \quad \forall i \in [N_p], \ \forall c \in C_i$$

As $\sum_{c \in C_i} \tilde{v}^c_i = 1$, we can rewrite $N_p * \rho_{\max}$ as $(\sum_{i=0}^{N_p-1} \sum_{c \in C_i} \rho_{\max} * \tilde{v}^c_i)$. Using this trick, we reformulate $P_3(c')$ as :

$$P_3(c') = \max_{\tilde{v}} \sum_{i=1}^{N_p} \sum_{c \in C_i} (\rho_{\text{max}} - \rho_i^c) \, \tilde{v}_i^c$$

$$s.t. \quad (\sum_{i=0}^{N_p-1} \sum_{c \in C_i} r_i^c \, \tilde{v}_i^c) \ge d + \mathbf{1}_{c^* < c'},$$

$$\sum_{c \in C_i} \tilde{v}_i^c = 1, \quad \forall i \in [N_p],$$

$$\tilde{v}_i^c \in \{0, 1\}, \quad \forall i \in [N_p], \, \forall c \in C_i$$

We use the same trick to reverse the sign of the inequality. We will skip through the construction for the trick as it is exactly the same. Reformulating it finally gives us:

$$\begin{split} P_{3}(c') &= \max_{\tilde{v}} \sum_{i=1}^{N_{p}} \sum_{c \in C_{i}} (\rho_{\text{max}} - \rho_{i}^{c}) \, \tilde{v}_{i}^{c} \\ \text{s.t.} \quad &\sum_{i=0}^{N_{p}-1} \sum_{c \in C_{i}} (r_{\text{max}} - r_{i}^{c}) \, \tilde{v}_{i}^{c} \leq N_{p} * r_{\text{max}} - (d + \mathbf{1}_{c^{*} < c'}), \\ &\sum_{c \in C_{i}} \tilde{v}_{i}^{c} = 1, \quad \forall i \in [N_{p}], \\ \tilde{v}_{i}^{c} \in \{0, 1\}, \quad \forall i \in [N_{p}], \, \forall c \in C_{i} \end{split}$$

As we have explicitly specified the r_i^c values, we can see that r_{\max} is 2. The value of d is upper bounded by N_p as it is the difference in the number of votes. Thus, just as a sanity check, we can confirm that $N_p * r_{\max} - (d+1)$ is positive.

We can define $\rho_{eff}=\rho_{\max}-\rho$ and $r_{eff}=r_{\max}-r$. Note that r_{eff} and ρ_{eff} are non-negative. Hence we have a MCKP with positive weights and profits .

$$\begin{split} P_{3}(c') &= \max_{\tilde{v}} \sum_{i=1}^{N_{p}} \sum_{c \in C_{i}} (\rho_{eff})_{i}^{c} \, \tilde{v}_{i}^{c} \\ s.t. \quad \sum_{i=0}^{N_{p}-1} \sum_{c \in C_{i}} (r_{eff})_{i}^{c} \, \tilde{v}_{i}^{c} \leq N_{p} * r_{\max} - (d + \mathbf{1}_{c^{*} < c'}), \\ \sum_{c \in C_{i}} \tilde{v}_{i}^{c} &= 1, \quad \forall i \in [N_{p}], \\ \tilde{v}_{i}^{c} &\in \{0, 1\}, \quad \forall i \in [N_{p}], \ \forall c \in C_{i} \end{split}$$

Complexity. The worst case complexity for solving the above problem is $\mathcal{O}((N_p*r_{\max}-(d+\mathbf{1}_{c^*< c'}))*\sum_{i=1}^{N_p}|\mathcal{C}_i|)$ (Dudzinski & Walukiewicz, 1987). Note that $\sum_{i=1}^{N_p}|\mathcal{C}_i|\leq 3*N_p$. Hence, the worst case complexity of solving the MCKP for our use case is $\mathcal{O}(N_p^2)$. $P_2(c')$ can be computed as $N_p*\rho_{\max}-P_3(c')$. We derive the certificate for the ensemble by solving $P_2(c')$ for every class and finding the minimum. Thus, we derive ensemble-level guarantees by aggregating the white-box certificates from the base classifiers in $\mathcal{O}(K*N_p^2)$.

A.4 SVM SIMPLIFICATION FOR SUFFICIENTLY SMALL C

Theorem (Restating Theorem 2). Given a soft-margin SVM with penalty parameter C, kernel matrix entries Q_i^j , and dual solution α to $P_{svm}(\mathbf{y})$, if

$$C\left(\max_{i\in[n]}\sum_{j=1}^{n}|Q_{i}^{j}|\right)-1\leq0,$$

then for all label assignments $\mathbf{y} \in \{-1, 1\}^n$ we have:

$$\alpha = C \cdot \mathbf{1}^n$$
.

That is, all dual variables are equal to C, independent of the choice of labels.

Proof. We restate the dual formulation of the soft-margin SVM optimization problem for completeness. Given training labels $\mathbf{y} \in \{-1, 1\}^n$ and kernel matrix entries Q_i^j , the dual problem is:

$$P_{\text{svm}}(\mathbf{y}) = \min_{\alpha} \left(-\sum_{i=1}^{n} \alpha_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j Q_i^j \right) \quad \text{s.t.} \quad 0 \le \alpha_i \le C \ \, \forall i \in [n].$$

The gradient of the objective $P_{\text{svm}}(\mathbf{y})$ with respect to α_i is:

$$\frac{\partial P_{\text{sym}}(\mathbf{y})}{\partial \alpha_i} = \sum_{j=1}^n y_i y_j \alpha_j Q_i^j - 1.$$

Over the feasible domain $0 \le \alpha_j \le C \ \forall j \in [n]$, we can bound the derivative as:

$$\frac{\partial P_{\text{svm}}(\mathbf{y})}{\partial \alpha_i} \le C \sum_{j=1}^n |Q_i^j| - 1.$$

Now, if $C\left(\max_{i\in[n]}\sum_{j=1}^{n}|Q_{i}^{j}|\right)-1\leq0$,, then for every $i\in[n]$:

$$\frac{\partial P_{\text{svm}}(\mathbf{y})}{\partial \alpha_i} = \sum_{j=1}^n y_i y_j \alpha_j Q_i^j - 1 \le 0.$$

This implies that $P_{\text{sym}}(\mathbf{y})$ is monotonically decreasing in each α_i over the feasible set. Hence, the minimum is attained at the boundary:

$$\alpha_i = C \quad \forall i \in [n].$$

Thus, under the stated condition on C, the solution is $\alpha = C \cdot \mathbf{1}^n$, regardless of the choice of labels $\mathbf{y} \in \{-1,1\}^n$.

A.5 SCALABELCERT FOR THE BINARY SETTING

Recall that for the binary setting, we wish to find the minimum number of label flips required to change the prediction of a soft-margin SVM that uses a sufficient small C (as described in App. A.4). Under sufficiently small C, the SVM prediction \hat{p}_t on a test sample t simplifies to $\hat{p}_t = \sum_{i=1}^n y_i Q_{ti}$. We denote the perturbed training labels as $\tilde{\mathbf{y}}$. Then, the number of label flips required to get the perturbed labels $\tilde{\mathbf{y}}$ from the clean labels \mathbf{y} can be formulated as $\frac{1}{2} \sum_{i=1}^n \left(1 - y_i \tilde{y}_i\right)$. For the prediction p_t to change when the model is trained on the perturbed labels, the sign of the clean prediction \hat{p}_t and the tamperd prediction $p_t = \sum_{i=1}^n \tilde{y}_i Q_{ti}$ should be opposite. With this information we can formulate our objective as:

$$O(\mathbf{y}): \min_{\tilde{\mathbf{y}} \in \{-1,1\}^n} \frac{1}{2} \sum_{i=1}^n (1 - y_i \tilde{y}_i) \quad \text{s.t.} \quad \operatorname{sign}(\hat{p}_t) \sum_{i=1}^n \tilde{y}_i Q_{ti} < 0.$$

We show that $O(\mathbf{y})$ can be solved in polynomial time. The intuition being: The labels corresponding to the largest positive contributions in $\mathrm{sign}(\hat{p}_t)(\sum_{i=1}^n y_i Q_t^i)$ are the most influential in determining the prediction, so flipping these labels greedily till the prediction changes is the optimal attack from the adversary's point of view.

Proof. We define the prediction margin to be the sum $S = \sum_{i=1}^n \operatorname{sign}(\hat{p}_t) y_i Q_t^i$. Note that S is always positive as we have included the $\operatorname{sign}(\hat{p}_t)$ inside the sum. The prediction for the SVM trained on the perturbed labels $\tilde{\mathbf{y}}$ will change when $\tilde{S} = \sum_{i=1}^n \operatorname{sign}(\hat{p}_t) \cdot \tilde{y}_i Q_t^i$ becomes negative. Let $a_i = \operatorname{sign}(\hat{p}_t) \cdot y_i \cdot Q_{ti} \ \forall i \in [n]$. Thus, $S = \sum_{i=1}^n a_i$. Flipping a subset of the clean training labels $F \in 2^{[n]}$ to get the perturbed labels $\tilde{\mathbf{y}}$ changes the ith term a_i to $-a_i$ for $i \in F$, resulting in

$$\tilde{S} = S - 2\sum_{i \in F} a_i.$$

The prediction changes when \tilde{S} is negative, i.e, $\sum_{i \in F} a_i > S/2$. Hence, $O(\mathbf{y})$ reduces to finding the smallest subset F such that satisfies the above condition.

Greedy algorithm. Construct $W=(a_1,\ldots,a_n)$ and sort it in descending order: $a_{(1)}\geq a_{(2)}\geq\cdots\geq a_{(n)}$. Let $P_k=\sum_{j=1}^k a_{(j)}$ be the cumulative sum of the largest k elements. We find the smallest k' such that $P_{k'}>S/2$ and construct the set F by including the labels corresponding to $a_{(1)},\ldots,a_{(k')}$. Note that $\forall k< k': P_k< S/2$. We claim that F is the minimal set that we want and k is the minimum number of flips required to change the prediction of the SVM. By construction we ensure that \tilde{S} corresponding to the label flips in F is negative. We prove that that F is the minimal set by contradiction. Assume there exists a subset $F'\in 2^{[n]}$ with $|F|=m\leq k'-1$ such that flipping the labels in F' results in changing the prediction of the SVM, i.e, $\sum_{i\in F}a_i>S/2$. Note that $\sum_{i\in F}a_i$ can be only as large as $P_{k'-1}$, which is the sum of the k'-1 largest elements in W. But $P_{k'-1}$ is less than S/2 as $\forall k< k': P_k < S/2$. This contradicts the requirement $\sum_{i\in F'}a_i>S/2$. Thus, F is the minimal subset and k is the minimum number of label flips required to change the SVM prediction.

Complexity. Sorting W requires $O(n \log n)$, and scanning for k is O(n). Hence $O(\mathbf{y})$ is solvable in $O(n \log n)$ time, i.e., in polynomial time. Thus, ScaLabelCert provides a polynomial-time computable exact certificate for sufficiently-wide neural networks, when their NTK is used as the SVM kernel. The certificate for kernel regression can be derived similarly by replacing Q_t^i by $(Q_{eff})_t^i$, where $(Q_{eff})_t^i$ can be obtained by a minor modification described in Sec. 3.2.

A.6 EXACT CERTIFICATE FOR MULTICLASS WITHOUT PARTITIONING PROOF

For the multi-class case, we use the one-vs-all strategy by decomposing the problem with K classes into K separate binary classification tasks. For each class $c \in [K]$, a binary classifier is trained to distinguish between samples of class c and samples from all other classes. Assume that p_c is the prediction score of a classifier for the learning problem corresponding to class c. Then, the class prediction c^* for a test sample is constructed by $c^* = \arg\max_{c \in [K]} p_c$. The labels are collected in the vector $\mathbf{y} \in \{0,1\}^{n \times K}$ where $\mathbf{y}_i^c = 1$ if the class of the ith sample is c and 0 otherwise. Recall that for a test sample \mathbf{t} , the certificate $\rho(\mathbf{t})$ denotes the maximum number of label flips up to which the prediction for the classifier does not change. We derive the certificate by finding for every class $c' \in [K]$, the minimum number of label flips required to change the prediction of the classifier to a particular class c', and then taking the minimum over c'. The number of label flips to reach the perturbed label $\tilde{\mathbf{y}}$ from the clean labels \mathbf{y} can be represented as $\sum_{i=1}^{N} (1 - \sum_{c=1}^{K} y_i^c \tilde{y}_i^c)$. For the class c' to be the predicted class, the score $p_{c'}$ for class c' should exceed the score p_c for every other class c. Using a soft-margin kernel SVM with a sufficiently small C as our base model, the score p_c can be written as $p_c = \sum_{i=1}^{N} y_i^c Q_{ti}$, . With this information, the minimum number of label flips required to change the prediction of the model to a particular class c' can be formulated as:

$$O_{1}(c'): \quad \min_{\tilde{\mathbf{y}}} \sum_{i \in [N]} \left(1 - \sum_{c \in [K]} y_{i}^{c} \tilde{y}_{i}^{c} \right) \quad \text{s.t.} \quad \sum_{i \in [n]} \tilde{y}_{i}^{c'} Q_{t}^{i} > \sum_{i \in [N]} \tilde{y}_{i}^{c} Q_{t}^{i} \quad \forall c \neq c',$$

$$\forall i \in [n], c \in [K]: \sum_{c \in [K]} \tilde{y}_{i}^{c} = 1 , \tilde{y}_{i}^{c} \in \{0, 1\}.$$

$$(7)$$

The certificate $\tilde{\rho}(\mathbf{t})$ can be calculated as: $\tilde{\rho}(\mathbf{t}) = \min_{c' \in [K] \setminus \{c^*\}} O_1(c') - 1$. $O_1(c')$ is a Integer Linear Program(ILP) with $n \times K$ binary variables. Hence, the complexity for solving $O_1(c')$ the problem is $O(2^{n \times K})$. Consequently, the complexity for deriving $\tilde{\rho}(\mathbf{t})$, which is calculated by taking the minimum over $O_1(c')$, is $O(K \times 2^{n \times K})$. This prompts us to solve a simpler alterative $O_2(c')$ instead, that relaxes the constraint in $O_1(c')$ requiring c' to be the predicted class:

$$O_{2}(c'): \quad \min_{\tilde{\mathbf{y}}} \sum_{i \in [N]} \left(1 - \sum_{c \in [K]} y_{i}^{c} \tilde{y}_{i}^{c} \right) \quad \text{s.t.} \quad \sum_{i \in [n]} \tilde{y}_{i}^{c'} Q_{t}^{i} > \sum_{i \in [N]} \tilde{y}_{i}^{c^{*}} Q_{t}^{i} ,$$

$$\forall i \in [n], c \in [K]: \quad \sum_{c \in [K]} \tilde{y}_{i}^{c} = 1 , \tilde{y}_{i}^{c} \in \{0, 1\}.$$
(8)

 $O_2(c')$ calculates the minimum number of label flips needed to make the prediction score $p_{c'}$ for class c' exceed the prediction score p_{c^*} for the original predicted class c^* . Notably, this relaxation is similar to the relaxation of $P_1(c')$ to $P_2(c')$ in the context of computing the certificate for the ensemble. Despite the relaxation, we show that the minimum over $O_1(c')$ is preserved, i.e.:

Theorem 3.

$$\min_{c' \in [K] \setminus c^*} O_1(c') = \min_{c' \in [K] \setminus c^*} O_2(c')$$

The intuition being — while trying to make c' surpass c^* , if another class c'' becomes the predicted class, then changing the classifier prediction to c'' should be easier compared to c'. As the design of the relaxation and the intuition are similar to the ensemble case, the proof strategy for this result is exactly the same as Theorem 1. The only difference would be that the notation $\mathbf{majVote}(\tilde{\mathbf{V}})$, that finds the majority class for a vote configuration $\tilde{\mathbf{V}}$ will be replaced by the $\mathbf{majScore}$ notation that predicts the class when the model is trained on the perturbed labels $\tilde{\mathbf{y}}$, i.e, $\mathbf{majScore}(\tilde{\mathbf{y}}) = \arg\max_{c \in [K]} \sum_{i \in [n]} \tilde{y}_i^c Q_i^i$. Hence, we direct the reader to the proof for Theorem 1 provided in App. A.2. With the above result, we can derive the certificate $\tilde{\rho}(\mathbf{t})$ as: $\tilde{\rho}(\mathbf{t}) = \min_{c' \in [K] \setminus \{c^*\}} O_2(c') - 1$

Solving $O_2(c')$. We focus our attention on solving $O_2(c')$. Recall that $O_2(c')$ denotes the minimum number of label flips needed to make the prediction score $p_{c'}$ for class c' exceed the prediction score p_{c^*} for the original predicted class c^* .

We denote the training samples that were labeled c^* originally as P_{maj} and samples that were labeled c' originally as P_{target} . P_{rest} denote the set of remaining samples

$$P_{\text{maj}} = \{i \in [N] \mid y_i^{c^*} = 1\}, \quad P_{\text{target}} = \{i \in [N_p] \mid y_i^{c'} = 1\}, \quad P_{\text{rest}} = [n] \setminus P_{\text{maj}} \cup P_{\text{target}} = \{i \in [N_p] \mid y_i^{c'} = 1\}, \quad P_{\text{rest}} = [n] \setminus P_{\text{maj}} \cup P_{\text{target}} = \{i \in [N_p] \mid y_i^{c'} = 1\}, \quad P_{\text$$

Let d be the original difference between score for c' and c^* : $d = \sum_i (y_i^{c^*} - y_i^{c'}) Q_{ti}$. We define r_i^c to be the **reduction** caused by flipping label of the i th sample to class c in the difference between score for c' and c^* . For the score $p_{c'}$ exceed the score p_{c^*} , the total reduction caused by the label flipping attack should exceed d. Lets see what these values will be for different i and c. For samples in P_{maj} . For samples that were originally labeled c^* , if the label is flipped to c', reduction will be $2 * Q_{ti}$. If the label is flipped from c^* to any other class, the reduction is only by Q_{ti} as it affects the score only for c^* . If Q_{ti} is positive, flipping the label to c' will cause the maximum reduction possible by flipping the ith label. Hence, an optimal attack will flip the ith label to c' (if it chooses to flip the label). If Q_{ti} is negative, an optimal attack will not flip the label for the ith sample as it will further increase the gap between c' and c^* .

$$\forall i \in P_{\text{maj}}, c \in [K], \quad r_i^c = \begin{cases} 2 * Q_{ti} & \text{if } c = c' \\ 0 & \text{else if } c = c^* \\ Q_{ti} & \text{else} \end{cases}$$

For samples in P_{target} . Following a similar line of argument as above, we can safely say that $\forall i \in P_{\text{target}}$, if $Q_{ti} < 0$, an optimal attack will flip the label for sample i to c^* (if it chooses to flip the label). If Q_{ti} is positive, an optimal attack will not flip the label for the ith sample as it will further increase the gap between c' and c^* .

$$\forall i \in P_{\text{target}}, c \in [K], \quad r_i^c = \begin{cases} -2 * Q_{ti} & \text{if } c = c^* \\ 0 & \text{else if } c = c' \\ -Q_{ti} & \text{else} \end{cases}$$

For samples in P_{rest} . For samples with the true label other than c' or c^* , if $Q_{ti} > 0$, an optimal attack will flip the ith label to c'. If Q_{ti} is negative, the optimal attack will flip the ith label to c^* , if it chooses to flip the label.

$$\forall i \in P_{\text{rest}}, c \in C_i, \quad r_i^c = \begin{cases} Q_{ti} & \text{if } c = c' \\ -Q_{ti} & \text{if } c = c^* \\ 0 & \text{else} \end{cases}$$

With this, we can define r(i) as the reduction in the difference between scores for c' and c^* in the optimal attack, if the attacker chooses to flip the ith label: $\forall i \in [N], r(i) = \max_{c \in [K]} r_i^c$. Note that if r_i is 0, the ith label will not be flipped. Hence we define the set of candidates for flipping the labels as E_f : $E_f = \{i \in [N] \mid r(i) > 0\}$

We employ a greedy strategy similar to the one used in the computation of the certificate for the binary case (App. A.5). We first sort the candidate flipping labels E_f based on their r(i) values in the descending order,i.e., $r(1) \geq r(2) \geq \ldots$ Let $P_k = \sum_{j=1}^k r_{(j)}$ be the cumulative sum of the largest k elements. We find the smallest k' such that $P_{k'} > d$ and construct $G_{k'}$ by including the indices corresponding to the k' largest r(i) values. We claim that k' is the minimum number of label flips required to make the score for c' exceed c^* and $G_{k'}$ is the minimal set of the labels that need to be flipped to make it happen. The greedy algorithm is illustrated in Algorithm 1.

We prove optimality by contradiction. Recall that $G_k = \{(1), \ldots, (k)\}$ is the greedy choice of k largest r(i) and $P_k = \sum_{j=1}^k r_{(j)}$. Suppose there exists a set $F \subseteq E_f$ with $|F| = m \le k' - 1$ such that flipping labels in F achieves the objective, i.e, $\sum_{i \in F} r(i) > d$. But G_m consists of the m largest r(i), so $\sum_{i \in F} r(i) \le \sum_{i \in G_m} r(i) = P_m \le P_{k'-1} \le d$, a contradiction.

```
1134
         Algorithm 1 Greedy Certificate Computation
1135
         Input: Score gap d, reductions r(1), \ldots, r(n)
1136
         Output: Minimum number of flips k
1137
          1: total_red \leftarrow 0
1138
          2: sorted \leftarrow sort(r, descending)
1139
          3: i \leftarrow 0
1140
          4: while total_red < d do
1141
                  total\_red \leftarrow total\_red + sorted[i]
1142
          6:
                  i \leftarrow i + 1
1143
          7: end while
          8: return i
1144
1145
```

Complexity. Sorting based on the reduction values takes $\mathcal{O}(n \log n)$, and scanning for the minimal k' takes $\mathcal{O}(n)$. Solving $O_2(c')$ for all $c' \in [K] \setminus c^*$ can be done in $\mathcal{O}(Kn \log n)$, resulting in a polynomial-time **exact** certificate for test sample $\mathbf{t} : \tilde{\rho}(\mathbf{t}) = \min_{c' \neq c^*} O_2(c') - 1$.

A.7 EXTRACTING WHITE-BOX KNOWLEDGE FOR THE MULTI-CLASS SETTING

Recollect that EnsembleCert utilizes the white-box knowledge ρ_i^c for all base classifiers $i \in [N_p]$ and all classes $c \in [K]$ where ρ_i^c denotes the minimum number of flips required to change the prediction of the *i*th base classifier to c. For each base classifier, using a soft-margin kernel SVM with a sufficiently small C as our base model, we formulate the problem of finding the minimum number flips required to change the prediction of the classifier to c' is formulated as:

$$O_{1}(c'): \quad \min_{\tilde{\mathbf{y}}} \sum_{i \in [N]} \left(1 - \sum_{c \in [K]} y_{i}^{c} \tilde{y}_{i}^{c} \right) \quad \text{s.t.} \quad \sum_{i \in [n]} \tilde{y}_{i}^{c'} Q_{t}^{i} > \sum_{i \in [N]} \tilde{y}_{i}^{c} Q_{t}^{i} \quad \forall c \neq c',$$

$$\forall i \in [n], c \in [K]: \sum_{c \in [K]} \tilde{y}_{i}^{c} = 1 , \tilde{y}_{i}^{c} \in \{0, 1\}.$$
(9)

The above problem is an ILP with $n \times K$ binary variables, resulting in a computational complexity of $\mathcal{O}(2^{nK})$. For each base classifier, we need to solve this problem for all classes. Consider an ensemble with N_p base classifiers. We would need to solve $N_p \times K$ ILPs with the computational complexity of $O_1(c')$, making the problem intractable. Hence, instead of solving the problem $O_1(c')$ exactly, we bound the problem efficiently, and show that our bounds are sufficiently tight on empirical evaluation.

A.7.1 LOWER BOUND

 For the purpose of computing the exact certificate for the multiclass case in the no partition case, we formulated an alternate problem $O_2(c')$ (Eq. (8)), a relaxed version of $O_1(c')$ which only requires the score $p_{c'}$ for class c' to exceed the score p_{c^*} for class c^* . We showed in App. A.6 that $O_2(c')$ can be solved in polynomial time. As the constraint set of $O_2(c')$ is a subset of $O_1(c')$, the solution for $O_2(c')$ will always be less than or equal to $O_1(c')$. Hence, $O_2(c')$ represents a valid lower bound on $O_1(c')$, that is polynomial-time calculable. Notably, $O_2(c')$ is also a certificate by definition, as it is a lower bound on the certified radius.

A.7.2 UPPER BOUND

To compute a valid upper bound on $O_1(c')$, finding an instance of perturbed labels $\tilde{\mathbf{y}}$ that satisfies the constraints of $O_1(c')$, i.e, $\mathbf{majScore}(\tilde{\mathbf{y}}) = c'$, is sufficient. The number of label flips needed to reach any such $\tilde{\mathbf{y}}$ from the clean labels \mathbf{y} represents a valid upper bound on $O_1(c')$. To compute this upper bound efficiently, we adopt a greedy strategy that iteratively flips training labels to reach a feasible solution of Eq. (1). At the beginning of each iteration, we compute the current majority class $c^* = \arg\max_c S_c$, where $S_c = \sum_{i=1}^n \tilde{y}_i^c Q_i^i$ is the score of class c. Note that c^* may change after each label flip, and our method accounts for this by re-evaluating c^* and all per-sample damages d_i after every label flip. Let $S^{(2)} = \max_{c \in [K] \setminus c^*} S_c$ denote the score of the runner-up class. For each sample i, we define the per-sample damage d_i as the maximum possible reduction in the gap between c' and the majority class achievable by flipping i:

$$d_i = \begin{cases} \min\Bigl(2Q_t^i, \ Q_t^i + S_{c^*} - S^{(2)}\Bigr), & \text{if } \tilde{y}_i^{c^*} = 1 \text{ and } Q_t^i > 0, \\ \min\Bigl(2|Q_t^i|, \ |Q_t^i| + S_{c^*} - S^{(2)}\Bigr), & \text{else if } \tilde{y}_i^{c'} = 1 \text{ and } Q_t^i < 0, \\ Q_t^i, & \text{if } \tilde{y}_i^{c^*} = 0, \ \tilde{y}_i^{c'} = 0, \text{ and } Q_t^i > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Intuitively, d_i captures the maximal contribution that flipping sample i can make toward satisfying the class-change constraint of Eq. (1).

Cases explained

1243

1244

1245

1246

1247

1248

1249

1250

1251 1252

1253

1255

1256

1257

1258

1259

1260 1261

1290 1291

1293 1294 1295

- 1. Case $\mathbf{1}(\tilde{y}_i^{c^*}=1,Q_t^i>0)$: Flipping a positively contributing c^* -labeled sample to c' both reduces S_{c^*} and increases $S_{c'}$, leading to a decrease of $2Q_t^i$. The possibility that the runner-up class becomes the majority is considered by the term $Q_t^i+S_{c^*}-S^{(2)}$, which accounts for the score gap to the second-highest class.
- 2. Case 2 ($\tilde{y}_i^{c'} = 1, Q_t^i < 0$): Flipping a negatively contributing c'-labeled sample to c' helps both by increasing $S_{c'}$ and decreasing S_{c^*} , giving a decrease of $2|Q_t^i|$. The possibility of runner-up class becoming the majority class is handled as above.
- 3. Case 3 (neutral sample, $Q_t^i > 0$): Flipping such a sample to c' only increases $S_{c'}$, so the reduction in the gap is exactly Q_t^i .

In each iteration, we select $i^* = \arg \max_i d_i$, flip the corresponding label to c' or c^* , re-evaluate the majority class, and repeat this process until c' becomes the majority class. Hence, by design, the greedy algorithm results in a feasible $\tilde{\mathbf{y}}$ satisfying Eq. (1), and the number of flips performed constitutes a valid upper bound on $O_1(c')$. Our greedy approach is illustrated in Algorithm 2.

Complexity. We choose the label to flip by calculating the possible reduction each label flip can cause in the gap between c^* and c', and choosing the one that causes the maximum reduction. This involves scanning the dataset at every iteration. Hence the worst case complexity in computing the upper bound for $O_1(c')$ is $O(n^2)$.

Algorithm 2 Greedy Upper Bound Computation for $O_1(c')$

```
1262
               1: Input: Clean labels y, kernel entries corresponding to the ith training sample and test sample
1263
                   t: Q_t^i \ \forall i \in [N], \text{ target class } c'
1264
              2: Output: Upper bound on O_1(c') (number of label flips)
1265
              3: Initialize \tilde{\mathbf{y}} \leftarrow \mathbf{y}
              4: Compute S_c = \sum_{i=1}^N \tilde{y}_i^c Q_t^i for all c \in [K] 5: c^* \leftarrow \arg\max_c S_c
1266
1267
1268
              6: while c^* \neq c' do
1269
                         S^{(2)} \leftarrow \max_{c \neq c^*} S_c
              7:
1270
              8:
                         for i = 1 to N do
                              if \tilde{y}_i^{c^*} = 1 and Q_t^i > 0 then
              9:
                                    d_i \leftarrow \min\left(2Q_t^i, \ Q_t^i + S_{c^*} - S^{(2)}\right)
1272
             10:
1273
                              else if \tilde{y}_i^{c'} = 1 and Q_t^i < 0 then
             11:
1274
                                     d_i \leftarrow \min\left(2|Q_t^i|, |Q_t^i| + S_{c^*} - S^{(2)}\right)
             12:
1275
                              else if \tilde{y}_i^{c^*} = 0 and \tilde{y}_i^{c'} = 0 and Q_t^i > 0 then
             13:
1276
             14:
1277
             15:
                               else
1278
                                    d_i \leftarrow 0
             16:
1279
                              end if
             17:
1280
             18:
                         end for
1281
             19:
                         i^{\star} \leftarrow \arg \max_{i} d_{i}
                         if \tilde{y}_{i*}^{c'}=1 then
1282
             20:
                              \tilde{y}_{i^*}^{c^*} \leftarrow 1
1283
             21:
1284
             22:
                              \tilde{y}_{i^*}^{c'} \leftarrow 1
             23:
1285
             24:
1286
                         Update S_c = \sum_{i=1}^{N} \tilde{y}_i^c Q_t^i for all c \in [K] c^* \leftarrow \arg\max_c S_c
             25:
1287
             26:
1288
             27: end while
             28: return Number of flips applied to reach \tilde{\mathbf{y}}
```

B DETAILS OF RANDOMIZED SMOOTHING INTEGRATION

B.1 SMOOTHED LINEAR CLASSIFIER AS THE BASE MODEL

In addition to ScaLabelcert for sufficiently wide networks, we use the method from Rosenfeld et al. (2020) for certification of base classifiers. Their approach uses a smoothed linear classifier as the base classifier. The smoothing process involves independently flipping each label with probability q and assigning a flipped label uniformly at random among the remaining K-1 classes. To certify robustness, the method bounds the probability that this randomized classifier switches its prediction from one class to another.

B.2 PREDICTION BY THE SMOOTHED CLASSIFIER

The method by Rosenfeld et al. (2020) computes, for each pair of classes (c, c'), a Chernoff bound $p_{c,c'}(q)$ that gives an upper-bound on the probability that the randomized classifier switches its predicted class from c to c' under the randomized label flips.

For each class c, the method evaluates

$$\max_{c' \neq c} p_{c,c'}(q)$$

and defines the predicted class as

$$c^* = \arg\min_{c \in [K]} \max_{c' \neq c} p_{c,c'}(q),$$

B.3 COMPUTING THE CERTIFICATE

The certified radius r is obtained by plugging the worst-case probability bound $\max_{c' \neq c^*} p_{c^*,c'}(q)$ into the robustness guarantee from a result in Rosenfeld et al. (2020), giving

$$r \le \frac{\log\left(4p(1-p)\right)}{2(1-2q)\log\left(\frac{q}{1-q}\right)},$$

where $p = \max_{c' \neq c^*} p_{c^*,c'}(q)$. This bound guarantees that if at most r labels were flipped byt the adversary, the smoothed classifier would still predict c^* .

B.4 ADAPTATION FOR OUR USE CASE

We follow the same prediction rule to obtain c^* , However, instead of computing the radius that certifies that the prediction will not change to *any* other class, we focus on certifying robustness against a specific target class c'. This is because our objective is to compute the minimum number of label flips required to change the prediction of a base classifier to *every* class. This white-box information is then used by EnsembleCert to construct a white-box infused certificate for the ensemble.

Concretely, we use the pairwise Chernoff bound $p_{c^*,c'}(q)$ and compute

$$r_{c'} \leq \frac{\log \left(4 p_{c^*,c'} (1 - p_{c^*,c'})\right)}{2 (1 - 2q) \log \left(\frac{q}{1 - q}\right)},$$

which gives the number of label flips required to change the prediction specifically from c^* to c'.

C ADDITIONAL PLOTS

C.1 ACCURACY TRADEOFF FOR SMALL C

Recall that the key to obtaining polynomial-time computable certificates for ScaLabelCert is choosing a sufficiently small value of C. We show that the clean accuracy remains competitive under our choice of C. To study this, we perform 5-fold cross-validation for different values of C. For every number of partitions, the accuracy initially remains constant up to a certain threshold, indicating the range of sufficiently small C, as SVM performance does not depend on C in this regime. The results for CIFAR-10 are shown in Fig. 4. We do not evaluate on MNIST, as for our chosen kernel and RotNet preprocessing, the threshold for sufficiently small C is significantly larger.

Figure 4: Trade-off for using small C

C.2 Robustness trends across λ for EnsembleCert with Kernel Regression

We study the effect of the \mathcal{L}_2 regularization parameter λ on certified robustness. For low λ , the MCR increases with the number of partitions across all datasets. In contrast, for high λ , the **certi**fied robustness appears to be negatively affected by increasing the number of partitions. The contrasting behavior potentially arises due to the varying degree of robustness that the choice of λ imparts the base classifier. Low λ makes kernel regression unstable, causing base classifiers to be easily influenced by a few label flips, even with large partitions. In this regime, the ensemble is closer to the black-box assumption - that a single label flip can change a base classifier's prediction - even when the number of partitions is small, resulting in white-box certificates that aren't much tighter than the black-box ones. In contrast, using a high degree of regularization exhibits a substantial improvement in the certified accuracy on white-box infusion. Fig. 6 shows how the robustness trend changes with varying λ for CIFAR-10. While at $\lambda = 0.01$, the median certified robustness scales almost linearly with the number of partitions, the trend completely changes by the time we reach $\lambda = 100$. Empirical analysis suggests that the nature of the trend changes somewhere between $\lambda = 1$ and $\lambda = 5$. Interestingly, the change in trend also points towards the possibility that for some value between $\lambda = 1$ and $\lambda = 5$, the median certified robustness could exhibit invariance to the number of partitions, a phenomenon we observed with kernel SVMs. Similar behavior is seen for experiments on MNIST as well (Fig. 5). As we mentioned in Sec. 4, the threshold λ , where the behavior changes is data dependent.

Figure 5: Robustness trends across different λ values on MNIST using kernel regression.

Figure 6: Robustness trends across different λ values on CIFAR-10 using kernel regression.

C.3 MNIST 1-vs-7

Kernel Regression. We present results for evaluation using kernel regression with NTK and the ℓ_2 regularization parameter $\lambda = 0.1$ in Fig. 7.

Figure 7: MNIST binary kernel regression with $\lambda = 0.1$ results for different number of partitions.

Kernel SVM

We present results for evaluation using kernel SVM with NTK and a sufficiently small C in Fig. 8.

Figure 8: MNIST binary kernel SVM results for different number of partitions.

MCR results Consistent with the results on MNIST and CIFAR10, Fig. 9 demonstrates the invariance of median certified robustness to the number of partitions, for both kernel Reg and kernel SVM

Figure 9: Invariance to number of partitions

C.4 CIFAR-10

Kernel Regression

For low values of λ , the base classifier by itself is not robust and is closer to the worst-case black box assumption described in App. A.1. Consequently, we do not see a significant improvement on utilizing white-box knowledge of the base classifiers. This is illustrated in Fig. 10, where we evaluate EnsembleCert using kernel regression as base classifier and a low regularization parameter $\lambda=0.01$. In contrast, using a high degree of regularization changes the trend as mentioned in the experiments section. In this case, we see a substantial improvement in the certified accuracy on white-box infusion. The results on using a high lambda can be seen in Fig. 11.

Figure 10: CIFAR-10 kernel regression results for different numbers of partitions ($\lambda = 0.01$).

Figure 11: CIFAR-10 kernel regression with high regularization ($\lambda = 10$).

Kernel SVM

Substantial improvement can be observed in certified accuracy on white-box infusion, as seen in Fig. 12.

Figure 12: CIFAR-10 kernel SVM results for different numbers of partitions.

Smoothed linear classifier

Similar to kernel regression and kernel SVM, substantial improvement is observed in certified accuracy on white-box infusion, as shown in Fig. 13.

Figure 13: CIFAR-10 Smoothed linear regression as base-classifier

C.5 MNIST

Kernel Regression

We analyze the low and high regularization parameter λ on MNIST. Similar to CIFAR-10, we observe that for low values of λ , the base classifier by itself is not robust and is closer to the worst-case black box assumption described in App. A.1. Consequently, we do not see a significant improvement in utilizing white-box knowledge of the base classifiers. This is illustrated in Fig. 14 using low $\lambda = 0.0001$. In contrast, using a high degree of regularization changes the trend. In this case, we see a substantial improvement in the certified accuracy on white-box infusion. The results on using a high lambda can be seen using high $\lambda = 0.1$ in Fig. 15.

Figure 14: MNIST multi-class kernel regression results for different numbers of partitions ($\lambda = 0.0001$).

Figure 15: MNIST multi-class kernel regression results for different numbers of partitions ($\lambda = 0.1$).

Kernel SVM

Results showing substantial improvement in the certified accuracy on white-box infusion for kernel SVM are observed in Fig. 16.

Figure 16: MNIST multi-class kernel SVM results for different numbers of partitions.