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ABSTRACT

Label-flipping attacks, which corrupt training labels to induce misclassifications
at inference, remain a major threat to supervised learning models. This drives the
need for robustness certificates that provide formal guarantees about a model’s
robustness under adversarially corrupted labels. Existing certification frameworks
rely on ensemble techniques such as smoothing or partition-aggregation, but treat
the corresponding base classifiers as black boxes—yielding overly conservative
guarantees. We introduce EnsembleCert, the first certification framework for
partition-aggregation ensembles that utilizes white-box knowledge of the base
classifiers. Concretely, EnsembleCert yields tighter guarantees than black-box ap-
proaches by aggregating per-partition white-box certificates to compute ensemble-
level guarantees in polynomial time. To extract white-box knowledge from the
base classifiers efficiently, we develop ScaLabelCert, a method that leverages the
equivalence between sufficiently wide neural networks and kernel methods using
the neural tangent kernel. ScalLabelCert yields the first exact, polynomial-time
calculable certificate for neural networks against label-flipping attacks. Ensemble-
Cert is either on par, or significantly outperforms the existing partition-based black
box certificates. Exemplary, on CIFAR-10, our method can certify upto +26.5%
more label flips in median over the test set compared to the existing black-box
approach while requiring 100x fewer partitions, thus, challenging the prevailing
notion that heavy partitioning is a necessity for strong certified robustness.

1 INTRODUCTION

Machine learning models, especially those trained in supervised settings, are critically dependent on
the integrity of labeled data. This reliance exposes them to label-flipping attacks, where the training
labels are corrupted to degrade model performance, or induce targeted misclassifications (Biggio
et al., 2011; Xiao et al., 2015). In response, a range of empirical defenses have been proposed,
including data sanitization techniques that aim to identify and remove poisoned samples prior to
training (Paudice et al., 2018), and adversarial training methods that improve robustness by learning
on perturbed examples (Bal et al., 2025). However, these approaches often rely on heuristics and
have been shown to fail under adaptive attacks (Carlini & Wagner, 2017; Athalye et al., 2018; Koh
etal., 2021). This limitation has led to growing interest in robustness certificates, that provide formal
guarantees about the robustness of a model’s predictions under a given adversarial threat model.

Existing certificates against label-flipping poisoning attacks are predominantly derived using en-
semble methods. Techniques include randomized smoothing (Rosenfeld et al., 2020), where base
classifiers are trained on datasets with randomly perturbed labels, and partition aggregation (Levine
& Feizi, 2020), which trains base classifiers on disjoint partitions of the training data. Since these
certificates rely solely on the base classifier outputs, they are inherently black-box (Ashtiani et al.,
2020). Black-box treatment of the base classifiers often leads to overly conservative guarantees
and provides limited knowledge about the full extent of the ensemble’s robustness. One way to
understand the true robustness of the certified model is to utilize white-box information of the base
classifiers, i.e., white-box certificates, that leverage internal model information to yield tighter and
more informative guarantees. This raises the question: How can we leverage white-box knowledge
of the base classifiers to derive a stronger certificate for the ensemble?
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(a) Two-step approach of EnsembleCert. (b) EnsembleCert on CIFAR-10.

Figure 1: (a) Two-step approach of EnsembleCert to derive white-box guarantees for partition
aggregation ensembles. (b) Evaluation on CIFAR-10 using wide neural networks trained on a re-
gression loss as base classifiers. Using as few as 10 partitions with white-box knowledge enables the
ensemble to withstand up to 26.5% more label flips in median compared to using 1000 partitions.
For a definition of the metric median certified robustness we refer the reader to Sec. 4.

In this work, we answer this question by proposing EnsembleCert, a white-box certification frame-
work for partition-based aggregation ensembling techniques (Levine & Feizi, 2020). We focus
specifically on the partition-based approach since they are the current state-of-the-art certifiable de-
fense against general data poisoning attacks (Levine & Feizi, 2020; Rezaei et al., 2023; Wang et al.,
2022), including label-flipping. Additionally, neural networks can be used as base classifiers in
this approach, as opposed to only linear classifiers in the randomized smoothing method (Rosenfeld
et al., 2020). EnsembleCert yields tighter white-box guarantees by leveraging the model informa-
tion of the base classifiers following a simple two-step approach: (¢) Extract white-box certificates
! from the base classifiers for each partition; (ii) Aggregate the white-box certificates to derive an
ensemble-wide certificate (see Fig. 1a). The problem of aggregating the partition-wise guarantees
to obtain the certificate for the ensemble is formulated as an Integer Program (IP), which we show
can be solved efficiently in polynomial time.

Thus, given a base model and a certification method for extracting white-box knowledge from the
chosen base model, EnsembleCert aggregates the white-box knowledge of base classifiers to achieve
ensemble-wide guarantees. In this work, we focus on deriving ensemble-level guarantees when
neural networks are chosen as the base model. For certifying neural networks as base models in
EnsembleCert, existing white-box approaches face significant challenges as they either rely on com-
putationally intense Mixed Integer Linear Program (MILP) formulation (Sabanayagam et al., 2025)
or loose gradient-based parameter bounding approaches (Sosnin et al., 2024). To elaborate, solving
the MILP is NP-hard in the worst case, hence LabelCert (Sabanayagam et al., 2025) is practical only
for datasets with a few hundred training points and does not even scale to moderately sized datasets
like MNIST and CIFAR-10. On the other hand, the parameter-bounding technique (Sosnin et al.,
2024) provides overly loose guarantees, leading to vacuous bounds in just few training iterations,
especially for multi-class classification tasks. Furthermore, the latter method has so far been evalu-
ated only on small multi-layer perceptrons. These limitations make the existing methods unsuitable
for white-box injection into EnsembleCert, naturally raising a broader question: Can we derive
effective and scalable white-box certificates for neural networks against label-flipping attacks?

We answer this question by developing ScaLabelCert, a framework that builds on the exact white-
box method of LabelCert (Sabanayagam et al., 2025). LabelCert derives the first exact certificate for
neural networks against data poisoning by leveraging the equivalence between infinitely wide Neu-
ral Networks (NNs) trained with a soft-margin loss and Support Vector Machines (SVM) using the
Neural Tangent Kernel (NTK) of the network as their kernel (Chen et al., 2022; Sabanayagam et al.,
2023). ScaLabelCert shows that under certain conditions, the computation complexity of LabelCert
can be reduced from NP-hard to polynomial time, thus, significantly improving the scalability. Be-
yond the SVM formulation, ScalLabelCert further extends LabelCert by leveraging the equivalence
between infinitely-wide NNs trained with a regression loss and kernel regression under the NTK (Ja-
cotetal., 2018; Arora et al., 2019). With its ability to efficiently compute tight certificates, we adopt
ScalabelCert as our primary mechanism for injecting white-box knowledge into EnsembleCert.
The tightness of the resulting partition-wise guarantees reveals the full potential of EnsembleCert
and enables a reliable analysis of how partitioning contributes to robustness. Since ScalabelCert is

!The specifics of white box information extracted from each base classifier are provided in Sec. 3.1
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best suited for certifying infinite-width neural networks (see Sec. 5), we use this instantiation for our
primary evaluation. To demonstrate the applicability of EnsembleCert with finite-width networks as
base classifiers, we employ the gradient-based parameter bounding approach of (Sosnin et al., 2024)
for base-classifier certification. We detail the process of integrating the gradient-based certificate
into EnsembleCert and present the evaluation in App. C.4. Finally, to highlight that EnsembleCert is
not restricted to neural networks, we also instantiate it with a smoothed linear classifier as the base
model and apply randomized smoothing certificates (Rosenfeld et al., 2020) to each base classifier.
Our contributions are summarized as follows:

1. We present EnsembleCert in Sec. 3.1, the first white-box certification framework for partition
aggregation ensembles that leverages the knowledge about base-classifiers to provide white-box in-
formed certificates for the ensemble in polynomial time. In our experimental set-up, we evaluate
EnsembleCert with the following choices of base classifiers and corresponding certification meth-
ods: (i) Infinite-width neural networks with ScaLabelCert, (ii) Finite-width neural networks with
gradient-based parameter bounding certificate by Sosnin et al. (2024) and (i) Smoothed linear
classifier with randomized smoothing based certificate by Rosenfeld et al. (2020).

2. With ScaL.abelCert in Sec. 3.2, we derive the first polynomial-time solvable exact certificate for
infinite-width neural networks against label-flipping attacks and thus, it is the first exact certificate
for neural networks against a poisoning threat model that scales to common image benchmarks.

3. We show in Sec. 4 that for partition aggregation ensembles with a small number of partitions,
the infusion of white-box knowledge results in significant improvement in certified robustness. On
analyzing the dependence of certified robustness on the number of partitions, we demonstrate that in
certain cases, using as low as 10 partitions with white-box knowledge results in stronger robustness
guarantees in comparison to as high as 1000 partitions (see Fig. 1b). These findings call into question
the emphasis on using very large numbers of partitions to achieve good certified robustness (Levine
& Feizi, 2020), suggesting that excessively deep partitioning, which requires training a prohibitively
large number of neural networks, is not a necessity to yield strong guarantees.

2 PRELIMINARIES

Notation. Matrices are denoted by bold uppercase letters, M, and vectors by bold lowercase letters,
v. The (i, j)-th entry of a matrix M is denoted m]. For a positive integer C, we write [C] =
{1,...,C}. The £y norm is denoted by || - ||o, and Lcondition represents the indicator function of a
given condition. We use 1" for a vector of all 1s of size n. The floor operator is denoted by |-].

Label-flipping and Certification. In a supervised classification task, the training data S = (X,y)
consists of feature vectors aggregated in X € R™*? and labels y € [K]", where K is the number of
classes. A learning algorithm L, takes the training set S and a test sample t € T, where 7 is the
test set, as input to predict the label for t, i.e., Lo (S, t) € [K]. In a label-flipping attack, we assume
that the adversary is allowed to change at most » < n training labels. Formally, an adversary can
alter the clean labels y to y € B, (y) := {y € [K]" | ||y — yllo <} and get a perturbed training

setS = (X, ¥). As the certification objective, for every t € T, we aim to find the maximum number
of label flips 7 in the clean training data up to which the prediction of L, for t does not change, i.e.

F(t) =max r st Lag(S,t) = Lag(S,t) VS €{S' |y € B.(y))}.
S
We will refer to 7(t) as the certified radius for t. A point-wise certificate then would be a lower
bound on the certified radius for a particular sample. The certificate is exact if it gives the true
certified radius 7(t) rather than just a lower bound.

Semi-Supervised Deep Partition Aggregation (SS-DPA). Levine & Feizi (2020) introduce SS-
DPA, a framework that builds a certified defense against label-flipping poisoning attacks. The
framework certifies a partition aggregation ensemble gs, i.e , an ensemble consisting of INV,, base
classifiers fy1,... n,) trained on disjoint partitions Pry . x,} of the training data S. The motivation
behind training on disjoint partitions is simple: Poisoning one label in the training data affects the
prediction of only one of the base-classifiers. The training data S is first sorted without using the
labels and then partitioned based on the sorted order. This ensures that the partitioning is invariant
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to any label poisoning attack. As the unlabeled data is trustworthy, we can make use of a self-
supervised learning algorithm to extract features from the entire unlabeled training data and train
each f; using the extracted features and labels corresponding to P;. At inference time, each base
classifier f;, trained on its corresponding partition P; of S predicts the class for a given test sample
t € T as f;(t) € [K]. The prediction of the ensemble gs(t) is then determined by a majority vote:
gs(t) = argmax.c(x) nc(t), where n.(t) := [{i € [Ny] | fi(t) = c}| is the number of votes
received by class c. Ties are resolved deterministically by choosing the smaller index. If we denote
gs(t) as ¢*, the certificate p(t) for sample t is given as:

Nex (£) — maxer e (Ner (T 1o o

sty o | PO s (®)+ L))

The above guarantee says that for a poisoned dataset S obtained by changing the labels of at most p
samplesin S, gs(t) = c*. As each base classifier is treated as a black-box, the certificate derivation
follows from a key worst-case assumption: The prediction of a base classifier can be changed by
a single label flip. The formal description of the worst case scenario is presented in App. A.1. With
white-box knowledge about the base classifiers, one can improve upon this worst-case assumption,
leading to a tighter certificate for the ensemble.

3 METHODOLOGY: ENSEMBLECERT AND SCALABELCERT

3.1 ENSEMBLECERT

The underlying worst-case assumption in existing partition aggregation-based certificates, which
says that the prediction of a base classifiers can be changed with a single label flip, can be over-
come given that we have the following white-box information: for all base classifiers f( .. n,} and
Ve € [K], we have access to p¢, which is the minimum number of label flips in P; required to change
the prediction of the base classifier f; (trained on P;) to class c. Access to the white-box knowledge
through p§ enables verification of the worst-case assumption and provides the necessary information
to derive a tighter ensemble-level certificate. Note that the ensemble-level certificate p(t) that repre-
sents the maximum number of flips upto which the ensemble prediction for a sample t remains
unchanged, is simply one less than the minimum number of flips required to change the ensemble
prediction. To determine the ensemble certificate p(t), we first compute, for each class ¢, the least
number of flips needed to make c the majority class, and then take the minimum over all classes.

Integer Program Formulation for Ensemble-wide Certification. We denote the problem of find-
ing the minimum number of label flips in the training set required to change the prediction of the
ensemble to a particular class ¢’ as P; (c’). The white-box information p¢ is collected in p € RV» <K,
Given p, finding the optimal attack for the adversary, which is equivalent to solving P;(c’), poses
as a combinatorial optimization problem leading to an Integer Program (IP) formulation of Py (¢’).
We denote the ith base classifier as f; if trained on the clean data and f; if trained on the per-
turbed data. The predictions from f{; . n,; and f{1,..‘, ~,} on the sample t are collected in the
vote configurations V and V€ RM»*K respectively: Vi € N, ,c € [K] : of = 1{fi(t) =
¢}, = 1{fi(t) = ¢}. Note that " v¢ = 1and % & = 1 foralli € [N,]. Con-
cretely, to model P;(c’), the number of label flips required to reach the vote configuration V from

V is Zf\[:pl Zfil pS v¢. The constraint that ¢’ should be the majority class after adversarial ma-

nipulation of labels can be represented as vaz"l (@C, - ﬁf) > lece, forall ¢ # . Recollect

i

YK e=1, vie [N,] should also be satisfied. Thus, this gives the IP formulation of P; (¢’):

c=1"1

Ny, K Np
Pi(d): mjnZpr o st Ve# Z (f)f/ - @f) > 1ecy,
Voisie=1 i=1
K
Vie [Ny], Vee [K]: > 9¢=1, @€ {0,1}.
c=1
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The ensemble-level certificate 5(t) for a test sample t can then be derived, as mentioned in Sec. 3.1,
by simply subtracting one from the minimum over P (c), thatis, A(t) = mincergy\e+ Pi(c) — 1.

Reduction to Polynomial-time. Solving P (c) in its current form is computationally prohibitive,
scaling as O(2V»*K) in the worst case. Thus, deriving p is even more expensive, with complexity
O(K x 2N»*K) The problem becomes intractable even for small values of N, and K, motivating
the need for a more tractable alternative. We denote as P»(c’), a relaxation of P;(c’) that finds the
minimum number of label flips needed to make ¢’ surpass only ¢* (the original majority class) in the
number of votes, rather than making ¢’ the overall majority class. The formulation of P (c’) can be

obtained from P; (¢’) by relaxing the constraint Zfipl(ﬂf, —0f) > 1o Ve # ¢ to the constraint

(17? — 17{) > 1.+ ... Despite this relaxation, we have the following result proved in App. A.2.

Theorem 1 (Equivalence between problems P; and Ps).

cG?Il(l]l,\lc* 1(0) 061[111(1]1,\10* 2(6)

The intuition for the above result is as follows: while trying to make ¢’ surpass c*, if another class ¢/
becomes the majority class, then changing the ensemble prediction to ¢”” should be easier compared
to ¢’. This result is particularly important, as we show that P (c) can be reduced to an instance of the
Multiple Choice Knapsack Problem (MCKP). Since MCKP is solvable in pseudopolynomial-time
(Dudzinski & Walukiewicz, 1987), our approach achieves a complexity of (’)(Ng) for solving P» per
class (App. A.2). Consequently, the ensemble-wide certificate p(t) can be computed in polynomial
time by solving P;(c) for every class and finding the minimum, that is, 5(t) = min.cg\ o+ Po(c) —
1. This represents a substantial improvement over the naive ILP formulation with complexity O(K x
2Ne XKy "We refer to App. A.3 for details on the reduction of Py (c’) to MCKP.

3.2 EXTRACTION OF WHITE-BOX KNOWLEDGE THROUGH SCALABELCERT

The approach of our white-box certificate ScaLabelCert builds on the framework introduced by La-
belCert (Sabanayagam et al., 2025). LabelCert provides an exact certificate that determines whether
the model prediction remains unchanged when at most r training labels are flipped. This definition
of the certificate does not immediately align with the white-box knowledge that EnsembleCert uti-
lizes, which is the minimum number of label flips required to change the prediction of the classifier
to a particular class. Even more problematic, the computation of the certificate by LabelCert is
NP-hard and only scales to a few hundred labeled datapoints. Scal.abelCert makes modifications to
the LabelCert approach to address these shortcomings, which result in the computation of an exact
certificate against label-flipping attacks in polynomial time. Next, we provide a brief overview of
the approach by LabelCert, and then introduce the developments leading to Scal.abelCert.

Infinite-Width Neural Networks and The Equivalence to Kernel Methods. The Neural Tangent
Kernel (NTK) of a neural network fg between two inputs ¢ and j with features x; and z; is defined as

Q! =E¢[(Vofo(zi), Vofo(z;))], where the expectation is taken over the parameter initialization.
When fy is an infinitely wide neural network, the dynamics of training fy for a classification task
using a soft-margin loss are the same as those of an SVM with fy’s NTK as kernel (Chen et al.,
2022). Similarly, if a regression loss (regularized mean-square) is used, the training dynamics are
equivalent to those of kernel regression using fg’s NTK as kernel (Jacot et al., 2018).

LabelCert. For a test sample t, LabelCert computes a point-wise certificate for sufficiently wide
neural networks, by deriving a certificate for a kernel SVM with fy’s NTK as kernel, which—due
to the above equivalence—extends to a certificate for fy. Recall that in the dual formulation of an
SVM, the parameters are the dual variables o € R"™ derived by solving the following problem:

n n n
. 1 j .
Pym(y) = min — Zai + 3 ZZaiajyiijg st. 0<q; <C, Vi=|n]
i=1 i=1 j=1
where n is the number of training data, C' is the regularization parameter that controls the trade-off

between maximizing the margin and minimizing classification error, and Qf is the chosen kernel
between inputs ¢ and j. Let the set of a vectors solving Pyym(y) be S(y). The prediction for a test
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sample t is given by p; = sign(> i, a;7;Q%). Let p; be the prediction of the SVM trained using
clean labels. The certificate is computed by converting the following problem Peert(y) to a MILP:

Peert(y) := min sign(p;) Z aiQb st g€ A(y), a€S(y)

y,o
¥ i=1

Whether the model prediction for t is robust up to r label flips or not is determined by the sign of
the solution to Peert(y), with a positive sign indicating robustness.

SVM Formulation for Sufficiently Small C. The complexity of solving Peert(y) comes largely
from replacing the inner optimization problem cv € S(y) with the KKT (Karush-Kuhn-Tucker) con-
ditions of Pyym(y), which can be done as Py (y) is convex (Dempe & Dutta, 2012; Sabanayagam
et al., 2025). We show that on using a sufficiently small C, we can entirely forego the inner opti-
mization problem and convert Peert(y) to a simpler, single-level problem based on Theorem 2.

Theorem 2. Given a soft margin SVM with regularization C, kernel entry between training samples
i, jas Q!, and o being the solution to Py (y), then if

max Z Q7| < l, it follows that  Vy € {-1,1}": a=C-1"
i€[n] c

The proof is presen]tgc[lnin App. A.4. When C satisfies the condition stated above, the alpha values are
equal to C' regardless of the labels. Thus, choosing C appropriately gives us the liberty to eliminate
the inner optimization problem @ € S(¥) as « is invariant to different labelings of the data. The
SVM prediction in this case simplifies to p; = sign( )., C7;Q}). As C' is a positive constant, this
further simplifies to p, = sign( Z;;l 7:Q%). Integrating this insight into ScaLabelCert, we develop
an efficient computation scheme for exact white-box certificates for infinite-width networks below
that calculates the minimum number of label flips needed to change the prediction of the model.

ScaLabelCert For The Binary Setting. Our objective is to find the minimum number of label
flips required to change the SVM prediction, i.e., to make sign(p;) >, ;7;Q} negative. Under
sufficiently small C', the above objective can be formulated as:

n

. 1 - = ) -
O1(y) : yefrflﬂ}n 3 ;(1 —yi¥;) st sign(py) ;yiQt <0, Vien]:g €{-1,1}.

O1(y) can be solved in polynomial time (App. A.5). The intuition is that the labels corresponding
to the largest positive contributions in sign(p;) (>, y;Q}) are the most influential in determining
the prediction, so flipping these labels greedily till the prediction changes is the optimal attack from
the adversary’s point of view. Thus, solving O(y) leads to a polynomial time computable exact
certificate for sufficiently-wide neural networks, if fy’s NTK is chosen as the SVM’s kernel.

ScaLabelCert For The Multi-Class Setting. For the multi-class case, we use the one-vs-all strategy
by decomposing the problem with K classes into K separate binary classification tasks. For each
class ¢ € [K], a binary classifier is trained to distinguish between samples of class ¢ and samples
from all other classes. Assume that p, is the prediction score of a classifier for the learning problem
corresponding to class c¢. Then, the class prediction ¢* for a test sample is constructed by ¢* =
arg max.c[x) Pc- The labels are collected in the vector y where y§ = 1 if the class of the ith
sample is ¢, and 0 otherwise. Recall that for each base classifier, EnsembleCert requires white-box
certificates that determine, for every class, the minimum number of label flips needed to change the
model’s prediction to that class. Using a soft-margin kernel SVM with a sufficiently small C' as our
base model, the certificate computing minimum number of label flips required to change the
prediction of the model to a particular class ¢’ can be formulated as (derived in App. A.6):

O1(c): min Y (1= wege | st D grQi> > #Q Ve,
y 1€[N] c€[K] 1€[N] 1€[N] (1)
Vie [N,ce[K]: Y gf=1,5 €{0,1}.
cE[K]
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Figure 2: EnsembleCert evaluation using the NTK for (i) kernel SVM with a sufficiently small C
(a, b); (4¢) kernel regression under strong regularization (c, d). Median certified robustness either re-
mains largely invariant across partitions or exhibits a decay until the white-box certificate converges
to the black-box certificate. The tightness of our bounds on the exact certificate for the ensemble
is evident, as the upper (EnsembleCert UB) and lower (EnsembleCert LB) bounds largely coincide
across all plots.

While solving O;(c’) is NP-hard, we show that right lower and upper bounds for the solution of
0O1(c’) can be computed in polynomial time (see App. A.7).

Certificate for Kernel Regression. With minor modifications, we can leverage the above formula-
tion to certify a kernel regression model. Specifically, the adjustment is to replace (); with

(Qeﬂf)i = [(Qtrain + )\I)_th,:]i

where Qirain 18 the kernel matrix for the training samples; ;. . is the vector of kernel entries for test
sample t and the training samples; and A is the regularization parameter. Deriving the certificate
for kernel regression with the above modifications, we certify a sufficiently wide NN trained on a
regularized mean-squared loss by using the network’s NTK as the kernel.

Exact Certificate Given No Partitioning (N, = 1). When there is no partitioning, we do not
need to solve O;(c’) exactly for every ¢’ to get an exact certificate for a stand-alone model. As
O1(¢") represents the number of flips required to change the prediction to a particular class ¢/, the
exact certificate for the stand-alone model can be derived by simply computing the minimum over
O1(c') ie, p(t) = minc[g)\ e O1(c) — 1. We show that with ScaLabelCert, this can be solved in
polynomial time, by employing a similar line of argument as Theorem 1. The proof is presented in
App. A.6. This results in the first exact certificate for neural networks against a poisoning attack
that scales to common image benchmark datasets like MNIST or CIFAR-10.

4 EXPERIMENTS AND RESULTS

Implementation Details. We perform experiments on MNIST, CIFAR-10, and binary MNIST 1-
vs-7. Following SS-DPA (Levine & Feizi, 2020), before training the base-classifiers we extract un-
supervised features using RotNet (Gidaris et al., 2018) for MNIST and SimCLR (Chen et al., 2020)
for CIFAR-10, using pretrained models from Levine & Feizi (2020). For the supervised training
of base-classifiers, the extracted RotNet features for MNIST are used as input to an infinitely-wide
convolutional network with a one convolutional layer and no pooling for supervised classification.
For CIFAR-10, SimCLR features are fed to an infinitely-wide fully-connected network with one
hidden layer and no non-linear activation. NTK computations are performed using the Google
neural-tangents library (Novak et al., 2020). Using the NN-kernel equivalence (Sec. 3.2),
the NTK is then used either with a kernel SVM for wide NN trained on the soft-margin loss or
with kernel regression for wide NN trained on the regularized mean-squared loss. On CIFAR-10,
we evaluate EnsembleCert additionally on two different types of base classifiers (i) Finite-width
networks and (7¢) Smoothed linear classifiers. The relevant implementation details can be found in
App. C.4 and App. B respectively. Solving the MCKP for ensemble-level certificates as described
in Sec. 3.1 is implemented using standard dynamic programming. The metrics used for evaluation
are certified accuracy, with certified accuracy at r label flips being the fraction of test samples for
which the model prediction is correct and robust up to r label flips; and median certified robustness
(MCR), which denotes the number of label flips upto which the model prediction for 50% of the
correctly classified samples is robust. We provide further implementation details and certification
runtimes in App. C.1.
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Figure 3: Comparing certified accuracies of stand-alone base models and their partition aggregation
ensembles. Results with the base model as kernel SVM are in (a) and (b). (c): Using a stand-alone
kernel regression model on MNIST 1-vs-7 maintains a certified accuracy of close to 80% when
the certified accuracy for the corresponding best performing ensemble (/V,, = 10) reaches 0. (d):
Smoothed linear regression as base model, comparing the stand-alone case and the ensembling.

Experiments. We instantiate EnsembleCert with sufficiently wide NNs trained on the soft-margin
loss (equivalent to kernel SVMs with NTK) and the regularized mean square loss (equivalent to ker-
nel ridge regression with NTK). Although regression losses may seem ill-suited for classification,
they work well in practice (Mika et al., 1999; Rifkin et al., 2003). Moreover, Arora et al. (2019)
showed that kernel ridge regression with the NTK of convolutional NNs achieves competitive per-
formance on image datasets. As noted in our contributions, we additionally perform experiments on
CIFAR-10 to evaluate EnsembleCert while using finite-width networks as base classifier. For base
classifier certification in this case, we employ the gradient-based parameter bounding technique by
Sosnin et al. (2024). The relevant details and plots can be found in App. C.4. We also evaluate En-
sembleCert on CIFAR-10 using a smoothed linear regression model as the base classifier, certified
via the smoothing-based method of Rosenfeld et al. (2020), which applies to smoothed linear mod-
els and yields analytic certificates without requiring the sampling process in randomized smoothing.
The details of how we derive the necessary white-box knowledge for EnsembleCert by leveraging
the smoothing approach can be found in the App. B. For every choice of base classifier, we observe
that injecting white-box knowledge into the ensemble substantially increases certified robustness
for low to intermediate numbers of partitions, highlighting the relative looseness of guarantees ob-
tained using the black-box approach. The substantial improvement in certified robustness achieved
by our white-box certificate for kernel methods as base classifiers is evident in Fig. 2. Further re-
sults demonstrating the same for every choice of base classifier can be found in App. C. The gap
between the white-box and black-box certificates narrows as the number of partitions grows, with
the white-box certificate eventually converging to the black-box certificate. This convergence re-
flects the realization of the worst-case scenario, where a single label flip can alter the prediction of a
base classifier. Beyond the point of convergence, our method performs on par with the black-box ap-
proach. This behavior is a direct consequence of our method’s design and holds consistently across
all experiments. In the next sections, we present some crucial insights that can be derived from our
evaluation of EnsembleCert and ScaLabelCert.

Invariance to Number of Partitions with Kernel SVM. For the instantiation of EnsembleCert
with kernel SVM, we use a regularization parameter C' that is small enough to satisfy the condition
in Theorem 2, as it is the key to computing scalable certificates for kernel SVM. We observe that
the MCR of the white-box certificate remains largely invariant to the number of partitions for
CIFAR-10 (Fig. 2a) and MNIST 1-vs-7 (Fig. 13a) until the point of convergence. On MNIST,
there is a sharp decline initially on increasing the number of partitions, followed by plateauing
(Fig. 2b). These findings indicate that strong guarantees can be achieved without requiring overly
large ensembles.

Robustness Decay with Kernel Regression. For our instantiation of EnsemblCert with kernel ridge
regression, we study the effect of the regularization parameter A on certified robustness of the ensem-
ble. For each dataset, we observe that the trend of certified robustness varies with the regularization
parameter A. As we increase A from very small values, MCR initially improves with the number of
partitions. Beyond a dataset-specific threshold, however, the trend reverses—increasing the num-
ber of partitions leads to lower certified robustness. For example, on CIFAR-10, when A = 100
(which lies beyond the threshold for this dataset), EnsembleCert certifies a median of 219 label
flips with just 10 partitions, whereas using 1000 partitions reduces this to 173 (Fig. 2c). Similarly,
on MNIST with A = 0.1, EnsembleCert certifies 356 label flips using only 12 partitions, whereas
using 1200 partitions lowers the certified robustness to 82 (Fig. 2d).We present plots for low values
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of X\ and discuss the behavioral change across the spectrum of A in App. C.5. As robust kernel re-
gression is associated with the use of higher values of A (Hu et al., 2021), the decreasing trend of the
MCR observed with high A suggests that deeper partitioning limits the true robustness potential
of the ensemble when the underlying base classifier has a high degree of robustness.

To Partition or Not to Partition? The polynomial-time calculable exact certification method de-
rived by ScalabelCert allows us to analyze the robustness of sufficiently wide neural networks
without employing an ensemble, that is, IV, = 1. While the simplification under small C' eliminates
the need to calculate the training kernel for kernel SVM, making it easily scalable to datasets such
as CIFAR-10 and MNIST, it remains an essential component of the pipeline for kernel regression.
Thus, performing kernel regression on such datasets without partitioning is computationally chal-
lenging due to the need to compute the entire training kernel. Hence, in the no-partition setting,
we evaluate ScalabelCert using the efficient kernel SVMs on all datasets and evaluate using kernel
regression only on the relatively small MNIST 1-vs-7 binary dataset. On CIFAR-10, ScalLabelCert
achieves non-trivial certified accuracy for up to 1000 label flips, which amounts to 2% of the train-
ing data Fig. 3a. In contrast, the evaluation by Levine & Feizi (2020) fails to certify any test sample
beyond 500 label flips. Additionally, we compare our method with the gradient-based parameter
bounding technique from Sosnin et al. (2024) and show that ScaLabelCert significantly outperforms
their method on CIFAR-10 in certified accuracy. Refer to App. C.3 for details. Motivated by the
observation that deeper partitioning may limit the ensemble’s true robustness potential, we further
investigate the role of partitioning by comparing the certified accuracy of a single base model against
that of its partition-aggregated ensemble. Our experiments across multiple datasets and base model
choices, as shown in Fig. 3, reveal that a single base model trained on the entire training dataset
achieves significantly higher certified accuracy as compared to its partition-aggregation ensemble.
This raises an important question: Does partition aggregation enhance or diminish the robustness
potential of a given base model?

5 DISCUSSION AND CONCLUSION

Scarcity of relevant white-box certificates. Our evaluations of EnsembleCert demonstrate signif-
icant improvement in certified robustness when the white-box knowledge of the base classifiers is
utilised. Notably, EnsembleCert demands white-box certificates deriving minimum number of sam-
ples that need to be tampered with to change the prediction to a particular class. The dearth in works
exploring certification of this nature pose an imminent challenge in the way of realising the true
potential of EnsembleCert.

Certificate validity for finite-width neural networks. Scal.abelCert leverages the equivalence
of infinite-width kernel methods with kernel methods induced by the NTK. This equivalence in
training dynamics and model outputs is exact only in the infinite-width case. For a finite-width neural
network however, where w denotes the smallest layer width of the network, the output difference of

the network to the SVM is bounded by O (h‘—\/ui)’) with probability p = 1 — exp(—Q(w)), as shown

in Gosch et al. (2025), Liu et al. (2021). As w approaches infinity, the output difference approaches
0 and p approaches 1. Consequently, there must exist some width w’ such that the output difference
between a network with width larger than w’ and the corresponding kernel SVM is small enough for
the certificate to remain exact. To concretely compute w’, one would have to compute the constants

associated with the approximation error O (mﬁ) . Unfortunately, the literature on the NTK so far is

mainly concerned with providing convergence statements in big-O notation and not with calculating
the individually involved constants. Hence, for a sufficiently wide network, the exact certificate
holds with probability p and does not apply with probability 1 — p. Thus, our certificates obtained
by utilizing the neural network and NTK equivalence based on kernel SVM and regression represent
an asymptotically exact certificate as the width w approaches infinity.

On Using Sufficiently Small C' in Kernel SVM. The choice of the parameter C, which controls
the penalty for misclassifications, introduces a robustness—accuracy trade-off in soft-margin SVMs.
Smaller values of C' improve robustness to label noise and adversarial perturbations, as they en-
courage larger margins and reduce the influence of individual (potentially corrupted) points on the
decision boundary. Thus, our choice of C' for the SVM simplification in Theorem 2 aligns with
building robust base-classifiers. Although this choice may not be optimal for clean accuracy, We
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show that performance remains competitive. We ask the reader to refer to App. C.2 for a discussion
on the robustness-accuracy trade-off and the corresponding experiments.

Versatility of ScaLabelCert. Through the formulation O;(¢’) (Eq. (1)), ScaLabelCert derives ef-
ficient certificates for sufficiently wide networks that compute the minimum number of label flips
needed to change the prediction of the classifier to a particular class ¢’. Although these certificates
are not exact, we compute sufficiently tight bounds (see Sec. 4). Note that the certificate definition
is different from the certified radius, which represents the minimum label flips needed to change
the classifier’s prediction to any class. We remind the reader that our certificate for computing the
certified radius for a stand-alone model is exact and polynomial-time calculable (App. A.6). More-
over, ScalLabelCert provides a general framework for certifying kernel SVMs and kernel regression
models against label-flipping. Using the NTK is one instance of this framework, enabling efficient
certification for sufficiently wide NNs. Finally, a kernel SVM with a sufficiently small C' and kernel
regression-based classifiers can be interpreted as weighted nearest-neighbor models, where Q¢ and
(Qes): denote the weight of the ith neighbor of the test sample t for kernel SVM and kernel regres-
sion, respectively. From this perspective, ScalLabelCert can also certify weighted nearest-neighbor
models against label-flipping attacks in polynomial time, demonstrating its broad applicability.

Potential of EnsembleCert for Certifying Against Clean-Label Attacks. In this work, we uti-
lize EnsembleCert to certify against label-flipping attacks. However, EnsembleCert can also lever-
age white-box knowledge of base-classifiers to provide robustness guarantees against clean-label
attacks. Specifically, consider an adversary capable of corrupting only the features of a training
sample within an £, ball. Under this threat model, the white-box information p§ can denote the
number of samples that must be corrupted to change the prediction of the ith base classifier to class
c. EnsembleCert can aggregate this white-box information from the base classifiers to compute the
number of samples in the entire training dataset that need to be corrupted to alter the prediction of
the ensemble. In this way, EnsembleCert can be adapted to derive white-box certificates for parti-
tion aggregation ensembles under multiple threat models. However, deriving efficient and scalable
white-box clean-label certificates for certifying the base classifiers is still an open challenge.

Related Work. Current ensemble-based poisoning certificates typically use the following ensem-
bling techniques: (¢) randomized smoothing (Rosenfeld et al., 2020; Wang et al., 2020; Zhang et al.,
2022; Weber et al., 2023), where the randomization is over the training dataset, (i7) partition-based
aggregation (Levine & Feizi, 2020; Wang et al., 2022; Rezaei et al., 2023), and (447) bootstrap ag-
gregation (Jia et al., 2021), where the base classifiers are trained on independently sampled subsets
of the training data. None of these works use white-box knowledge of the base classifiers, making
them inherently black-box methods. Apart from the white-box certificates discussed in the introduc-
tion (Sabanayagam et al., 2025; Sosnin et al., 2024), Gosch et al. (2025) is the only other white-box
certification method that certifies NNs against clean-label attacks, notably using the NTK approach
similar to ours and to Sabanayagam et al. (2025). The remaining white-box certificates in the litera-
ture do not extend to NNs and apply to only decision trees (Meyer et al., 2021; Drews et al., 2020),
nearest neighbor models (Jia et al., 2022) or naive Bayes classifiers (Bian et al., 2024).

Conclusion. We introduce EnsembleCert, a framework that leverages model information from
base-classifiers to yield significantly tighter ensemble-level certificates against label-flipping attacks
in polynomial time . To efficiently extract the white-box information, we develop ScaLabelCert, a
framework for the exact certification of sufficiently-wide NNs against label-flipping attacks. Scal-
abelCert computes exact certificates against label flipping attacks in polynomial time, making it the
first polynomial-time exact certification method that can certify (wide) NNs against data poison-
ing attacks. Through our evaluation of EnsembleCert instantiated with sufficiently wide NNs, we
observe that with robust base-classifiers, the partition aggregation ensemble can achieve stronger
guarantees using notably few partitions, outperforming excessively deep partitioning. This is cru-
cial, as excessively deep partitioning requires training a very large number of base-classifiers, in-
troducing significant computational overhead and limiting scalability. The experiments evaluating
Scal.abelCert on stand-alone models indicate that employing partition aggregation ensembles does
not always bring out the true robustness potential of the chosen base classifier architecture. Over-
all, our findings motivate the development of effective white-box certificates for finite-width neural
networks to bring out the true robustness of a partition aggregation ensemble and to understand the
role of partition-based ensembling itself in achieving strong robustness guarantees.

10



Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Our work introduces EnsembleCert and ScalabelCert, which, for the first time, leverage white-
box information to quantify the worst-case robustness of partition aggregation ensembles of neural
networks against label poisoning. Although such capabilities could, in principle, be misapplied by
adversaries, we contend that understanding these vulnerabilities is essential for the trustworthy and
safe use of neural networks. We therefore hold that the advantages of advancing robustness research
outweigh the potential downsides, and we do not anticipate any immediate risks arising from our
contributions. Radhakrishnan et al. (2022)

7 REPRODUCIBILITY STATEMENT

The full codebase, along with configuration files for every experiment, is available at https://
figshare.com/s/f4££623f9c47e63b8ef9, which will be made public upon acceptance.
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A THEORETICAL DETAILS

A.1 THE FORMAL DESCRIPTION OF THE WORST CASE SCENARIO

Recall that the prediction of the partition aggregation ensemble gs(t) is determined by a major-
ity vote over the prediction by the base classifiers f(, . n,}: gs(t) = arg max (k) n.(t), where
ne(t) := [{¢ € [Np] | fi(t) = c}| is the number of votes received by class c. Ties are resolved deter-
ministically by choosing the smaller index. If we denote gs(t) as ¢*, the certificate p(t) for sample
t, that computes the number of adversarial label flips upto which the prediction of the ensemble will
not change, as derived by black-box treatment of the base classifier is given as:

A(t) = an* (t) — maxc/;ec;(ncl(t) + 10/<C*)J.

As each base classifier is treated as a black box, the certificate derivation follows from a key worst-
case assumption: The prediction of certain base classifiers can be altered by a single label flip.
The formal description of the worst-case scenario is given below.

Formalising the worst-case scenario: Let Cy. := arg maxcc+ (n¢(t) + lo<c+ ). One can think of
Csec as the set of runner-up classes. We define Pp,; as the set of base classifiers that voted for c*.
The worst-case scenario can be represented as:

3 € Cype s.1. the prediction of at least p + 1 base classifiers in Punaj can be changed from c* to c
with one label flip in their corresponding partitions. In such a scenario, attacking the corresponding
base classifiers with one label flip each would change the prediction of the ensemble to ¢'.

Note that the numerator in p: N — mMaXe £ (ne(t) + 1o ), is the difference in the number
of the votes received by the majority class ¢* and ¢’. Flipping the vote of a base classifier from
c* to ¢’ bridges the gap between c¢* and ¢’ by 2 votes, explaining the 2 in the denominator. In
light of the worst-case assumption, the reader can now see that the certificate actually calculates
the number of base classifiers whose prediction needs to be flipped in order to change the ensemble
prediction. With white-box knowledge about the base classifiers, we can improve upon the worst-
case assumption, leading to a tighter certificate for the ensemble. One could argue that we need
the white-box information solely about the base classifiers in Py, and classes in Cy to challenge
the assumption. The point to note is that if information about Py,; indicates that the worst-case
scenario cannot be realized, we cannot assume that the adversary will attack partitions only in Ppy;
and change the prediction to a class in Cs.. Hence, to derive a tighter certificate, we would need this
information for all base classifiers and classes.

A.2 THEOREM I: min P;(¢) = min Ps(c)

Intuition. Recall that P;(c¢’) denotes the minimum number of label flips needed to make ¢’ the
majority class, whereas P (c’) denotes the minimum number of label flips needed to make ¢’ surpass
the current majority class ¢* in number of votes. Intuitively, if ¢’ is the class that requires the fewest
flips to become the new prediction, then making it just beat c¢* will already make it the majority
class.

Vote Configuration Let V € {0,1}V»*X denote the perturbed vote configuration, where v§ =
1 if partition ¢ votes for class c after label flips, and 0 otherwise. Let V denote the clean vote
configuration. We define O(V) as the number of label flips required to reach configuration V
starting from the clean configuration V.

Restatement of P;(c’). Recall that P; (¢’) is defined as the minimum number of label flips needed
to make ¢’ the majority class. In Sec. 3.1, the contraint was formulated through the set of inequalities

NP

So(5 =) 2 lecer, Ve,

i=1
which constraints ¢’ to be the majority class (with deterministic tie-breaking). For brevity, we
now re-express this condition using the function majVote(V) := arg maxe (k] ZZV:“’I 05, as d =

majVote('V) where ties are resolved deterministically by choosing the class with the smaller index.
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With this shorthand notation, we write
Pi(¢) = min O(V)
AV

s.t. ¢ = majVote(V),
o5 =1, Vie [N,

1
¢ €{0,1}, Vi€ [N,], Ve € [K].

Restatement of P> (c’). Problem P, (c’) relaxes the above by requiring ¢’ to surpass only the original
majority class c*, instead of all classes:

Py(d) = m\j,n O(V)

=

P

"’Cl "’C*
S.t. (’UZ- —; > leoce,
1

o
Il

o5 =1, Vie [N,

M=

(&

€ {0,1}, Vie[N,], Vce [K].

ol

v

<7

Theorem (Restating Theorem 1). min  Pi(d)= min P ()
c'€[K]\{c*} c'€[K]\{c*}

Proof. We first state three lemmas and then combine them to prove the theorem.
Lemma 1. V¢’ € [K]\ ¢*, Pi(c) > Py(c).

Proof. The feasible region of P;(c’) is contained within that of P(c’) since the latter has a weaker
constraint. Hence, P> (c’) can only be smaller (or equal) to P (). O

Lemma 2. Vci € argmingcge- Pi(c/), Pi(c}) = Pa(c}).

Proof. By contradiction. Suppose Py (c}) > Py(c}). Let S be the optimal solution for Ps(c}), i.e.,

O(8) = Pa(cy)- 2
Since O(S) < Py(c*), S is not feasible for P;(c}). As the feasibility for P (c}) requires c* to be
the majority class, there must exist some ¢ # ¢} such that ¢& = majVote(S). Note that S is feasible
for Py (c%) as ¢! is the majority class for the vote configuration (S), so

O(S) > Pi(cj)- 3)
Combining (2) and (3) with the assumption that P (c}) > Pa(cy) gives Pi(c}) > Pi(c%), contra-
dicting the assumption that ¢ minimizes P (¢’). O

Lemma 3. 32" € argming e\ o+ P2(c’) such that Py(2*) = Py(2").

Proof. Let ¢ € argming g\ o+ P(c’) and let S be the vote configuration in the optimal solution
for Py(c3), i.e,

O(8) = Py(c3). )

15
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Let z* = majVote(S). Then S is feasible for both P; (z*), that requires z* to be the majority class
and P (z*), that requires z* to have higher votes than ¢*, implying

O(8S) > Py(z*) and ®)

0(8) > Pi(="). (©)

With (4), (5) and the minimality of c3, we have z* € arg min. ¢[g)\ .+ P2(c) and O(g) = Py(z%).
Combining this result with (6) and using Lemma 1.1 we conclude P; (z*) = Pa(2*). O
Proof of Theorem 1. Let ¢} € argming g+ Pi(¢’) and 2 €

argming g\ P2(c’) s.t. Pi(2*) = Pa(z*). . Using Lemmas 1.2 and 1.3, we obtain
Pi(27) = Po(27) < Po(ey) = Pi(e7),

which implies
Pi(ct) = Pi(z") = Po(27),
thus proving that

min  Pi(d)= min P(d)|
c’€[K\{c} c/e[KN\{c}

A.3 REDUCTION TO MCKP AND COMPLEXITY ANALYSIS

In this section, we will use the terms base classifiers and partitions interchangeably, and discuss
the optimal attack from an adversary’s point of view to make ¢’ surpass c*. Let’s denote the set of
partitions that voted for c¢* originally as Pp;;, the ones that voted for ¢’ originally as Prarger and rest
of the partitions as Pie. Formally:

Prmaj = {ie [Np} | Uz‘c* =1}, Prarget = {ie [Np] | Uz‘Cl =1}, Pres = [Np}\(Ptarget UPmaj)-

The adversary will not attack partitions in Prareec. If a partition in Preg is attacked, the vote can
change only to ¢’. Changing the vote to any other class will deem the label perturbation pointless.
Let C; be the set of classes that partition ¢ could vote for after the optimal attack:

Vi€ Pres: Ci={ce€K | c=c or vf =1} , Vi € Paper : C; = {'}.

Note that Vi € [INp], we need the binary variable ¢ only if ¢ € C;. Attacking a partition in P,
could change the vote to ¢’ or to the class with the minimal number of flips required for a prediction
change to that class. Formalizing the above notion, we define cpiy as: Vi € Py : Cmin(1) =
arg min ¢ g\ .- pi- Given this we have:
Vi€ Pmyj: Ci={ceK | c=c or ¢=cmn(i) or c=c"}.

We model the constraint C; := Zf-vz”l(f;f/ — 9¢7) > 1< differently. Let d be the original
difference between the number of votes for ¢’ and ¢*: d = fol (v§" — vf/). We define 7§ to be
the reduction in the gap between ¢’ and c¢* caused by flipping the vote of partition 7 to class c. For
partitions in Py, if the vote changes to ¢’ , the difference will decrease by 2. If the vote goes to
any other class, the reduction is by 1. It is trivial to see that Vi € Pugger,c € C; : 7§ = 0. We can
similarly define these values for partitions in Pres; and get:

2 ife=¢ , ,
. c . . . c 1 ifec=c¢
Vi € Pmaj,c €Ci: 1 =41 elseifc=cuin(i) , Vi € Preg,c€Ci: 1§ =
. N 0 else
0 elseifc=c

For ¢’ to have higher number of votes than ¢*, the total reduction in the difference should be greater
than or equal to d + 1.« .. Remodeling C with the above idea, we can reformulate P (c’) as:

16
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NP
(c): manZp S.t. Zerﬁde—i—lc*@/,
i=1 ceC; i=1 ceC;
Vi€ [Ny, VeeCi: > of=1, o €{0,1}.

ceC;

This problem can be easily converted to a MCKP (multiple choice knapsack problem). To arrive
at the excact formulation of MCKP, we need to change the min objective to a max objective and

reverse the sign of the constraint inequality . Note that solving ming O(V) is same as solving

A —maxz(A — O(V)) , where A is a positive constant. We choose the constant A to be N}, * prax
where pmax = maxien, cec; p§- Lets denote P3(c’) as follows .

Np
P3(d) = m?X(Np * Pmax — Z Z p5f)

i=1 ceC;
Z Zr y>d+ 1o <y,
=0 ceC;
Y =1, Vie[N,,

ceC;
o¢ € {0,1}, Vi [N,], Ve e C;

As ZCEC ° =1, we can rewrite N}, % pmax as (Zﬁvz”o_l Zceci Pmax * 0F) . Using this trick, we
reformulate P3( ') as

5XZ > (Prmax — 5)

i=1ceC;
ZZT )2 d+1ece,
i=0 ceC;
D=1, Vie[N),
ceC;
0§ €{0,1}, Vi€ [Ny, Ve e C;

We use the same trick to reverse the sign of the inequality. We will skip through the construction for
the trick as it is exactly the same. Reformulating it finally gives us :

Np
= mgxz Z (Pmax — pF) VF

i=1 ceC;

s.1. Z Z Tmax — T ’U <N *rmax_(d+ 1c*<c’)a
=0 ceC;

Y ir=1, VielN,),

ceCy
05 €{0,1}, Vie [Ny, Vee C;

As we have explicitly specified the r{ values, we can see that rn, is 2. The value of d is upper
bounded by N, as it is the difference in the number of votes. Thus, just as a sanity check, we can
confirm that N}, * rmax - (d + 1) is positive.

17
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We can define peff = pmax — p and 7eff = Tmax — r . Note that 7.y ¢ and p.s¢ are non-negative.
Hence we have a MCKP with positive weights and profits .

NP
Py(¢) = max 3" 3 (peg )6 ¢

=1 ceC;

N,—1
s.1. Z Z(Teff)f’ljlc S Np*rmax - (d+1C*<C')7
i=0 ceC;

=1, VielN,),
ceC;

o¢ € {0,1}, Vi€ [N,], Yee C;

Complexity. The worst case complexity for solving the above problem is O((Np, * rmax — (d +
Lovce)) * vagl |Ci]) (Dudzinski & Walukiewicz, 1987). Note that vaz”l ICy| < 3 % Np. Hence,
the worst case complexity of solving the MCKP for our use case is O(N7). P»(c’) can be computed
as Np, * pmax — P3(c’). We derive the certificate for the ensemble by solving P»(c’) for every class

and finding the minimum. Thus, we derive ensemble-level guarantees by aggregating the white-box
certificates from the base classifiers in O(K * Ng).

18
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A.4 SVM SIMPLIFICATION FOR SUFFICIENTLY SMALL C'

Theorem (Restating Theorem 2). Given a soft-margin SVM with penalty parameter C, kernel ma-
trix entries Q}, and dual solution o to Py (y), if

n

C r_naxZ|Qf| -1<0,

then for all label assignments y € {—1,1}" we have:
a=C 1"

That is, all dual variables are equal to C, independent of the choice of labels.

Proof. We restate the dual formulation of the soft-margin SVM optimization problem for complete-
ness. Given training labels y € {—1,1}" and kernel matrix entries )7, the dual problem is:

n n

Punly) = mln Z o; + Z Zylyjazoz] st. 0<a; <C Vi€ |[n]

lel

The gradient of the objective Py, (y) with respect to o is:

aPsvm J
870/7 Zyzyjan — 1.

Over the feasible domain 0 < a; < C'Vj € [n], we can bound the derivative as:

apsvm
N <CZIQJI—1

Now, if C (maxie[n] > i1 \Qﬂ) —1<0,, then for every i € [n]:

apwm Z YilY; Q

This implies that Py, (y) is monotonically decreasing in each «; over the feasible set. Hence, the
minimum is attained at the boundary:

=C Vie|n].

Thus, under the stated condition on C, the solution is a = C' - 1", regardless of the choice of labels
ye{-1,1}" O

A.5 SCALABELCERT FOR THE BINARY SETTING

Recall that for the binary setting, we wish to find the minimum number of label flips required to
change the prediction of a soft-margin SVM that uses a sufficient small C' (as described in App. A.4).
Under sufficiently small C, the SVM prediction p; on a test sample t simplifies to p, = >+ ; i Qui-
We denote the perturbed training labels as y. Then, the number of label flips required to get the
perturbed labels y from the clean labels y can be formulated as % Dy (1 —Yi gjz) For the prediction
p¢ to change when the model is trained on the perturbed labels, the sign of the clean prediction p;
and the tamperd prediction p; = Z?=1 7;Q¢; should be opposite. With this information we can
formulate our objective as:
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n

1 n
O(y): _ min = "(1—yfi) st sign(p) Y §:Qu <0.
=1

ye{—1,1} 2
ye{-11}m 27—

We show that O(y) can be solved in polynomial time. The intuition being: The labels corresponding
to the largest positive contributions in sign(p;)(>_ -, y;Q;) are the most influential in determining
the prediction, so flipping these labels greedily till the prediction changes is the optimal attack from
the adversary’s point of view.

Proof. We define the prediction margin to be the sum S = >, sign(p;)y;Q;. Note that S is
always positive as we have included the sign(p;) inside the sum. The prediction for the SVM
trained on the perturbed labels y will change when S = Z?:l sign(p;) - ;% becomes negative.
Let a; = sign(py) - yi - Qi Vi € [n]. Thus, S = Y7, a; . Flipping a subset of the clean training
labels F' € 2] to get the perturbed labels ¥ changes the ith term a; to —a; for i € F, resulting in

S =5-2 Z ;.
ieF
The prediction changes when S is negative, i.e, > icr @i > S/2. Hence, O(y) reduces to finding
the smallest subset F' such that satisfies the above condition.

Greedy algorithm. Construct W = (ay, .. .,a,) and sort it in descending order: a(1y > a(z) >

© 2 a(p). Let Py, = 2?21 a(;) be the cumulative sum of the largest & elements. We find the
smallest k" such that Py, > S/2 and construct the set F' by including the labels corresponding to
acy, - - -, Qg Note that VE < k' : P, < S/2. We claim that F" is the minimal set that we want and
k is the minimum number of flips required to change the prediction of the SVM. By construction we
ensure that S corresponding to the label flips in F' is negative. We prove that that F' is the minimal
set by contradiction. Assume there exists a subset F’ € 2["] with |[F| = m < k' — 1 such that
flipping the labels in F results in changing the prediction of the SVM , i.e, > . a; > S/2. Note
that ) ;> a; can be only as large as Py, 1, which is the sum of the k' —1 largest elements in T¥. But
Py —y is less than S/2 as Vk < k' : P, < S/2. This contradicts the requirement ) _, », a; > S/2.
Thus, F' is the minimal subset and k is the minimum number of label flips required to change the
SVM prediction.

Complexity. Sorting W requires O(n logn), and scanning for k is O(n). Hence O(y) is solvable
in O(nlogn) time, i.e., in polynomial time. Thus, ScaLabelCert provides a polynomial-time com-
putable exact certificate for sufficiently-wide neural networks, when their NTK is used as the SVM
kernel. The certificate for kernel regression can be derived similarly by replacing Qi by (Qcys),
where (Q.f): can be obtained by a minor modification described in Sec. 3.2.
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A.6  EXACT CERTIFICATE FOR MULTICLASS WITHOUT PARTITIONING PROOF

For the multi-class case, we use the one-vs-all strategy by decomposing the problem with K classes
into K separate binary classification tasks. For each class ¢ € [K], a binary classifier is trained to
distinguish between samples of class ¢ and samples from all other classes. Assume that p. is the
prediction score of a classifier for the learning problem corresponding to class c¢. Then, the class
prediction ¢* for a test sample is constructed by ¢* = arg max.¢[x) p.. The labels are collected in
the vector y € {0,1}"*K where y¢ = 1 if the class of the ith sample is ¢ and 0 otherwise. Recall
that for a test sample t, the certificate p( ) denotes the maximum number of label flips up to which
the prediction for the classifier does not change. We derive the certificate by finding for every class
¢ € [K], the minimum number of label flips required to change the prediction of the classifier to
a particular class ¢/, and then taking the minimum over ¢’. The number of label flips to reach the
perturbed label y from the clean labels y can be represented as Zi]\il(l — Zﬁil y$ys). For the
class ¢’ to be the predicted class, the score p. for class ¢’ should exceed the score p,. for every other
class c¢. Using a soft-margin kernel SVM with a sufficiently small C' as our base model, the score
P can be written as p, = Zfil y§ Qti, . With this information, the minimum number of label flips
required to change the prediction of the model to a particular class ¢’ can be formulated as:

Or(c): min 3o (1= 3 gl | st Y 0Q> D 5Qp Vetd,

i€[N] ce[K] i€[n] i€[N] @)
Vien,ce K] Y gi=1,5 €{0,1}.
c€[K]

The certificate /(t) can be calculated as: p(t) = ming (g (e-y O1(¢’) — 1. O1(c’) is a Integer
Linear Program(ILP) with n x K binary variables. Hence, the complexity for solving O;(¢’) the
problem is O(2"* ). Consequently, the complexity for deriving 5(t), which is calculated by taking
the minimum over O (¢’), is O(K x 27*K). This prompts us to solve a simpler alterative Ox(c’)
instead, that relaxes the constraint in O (¢’) requiring ¢’ to be the predicted class:

05(c) : mlnz leyfl s.t. Z?jf/Qi>Z§f*in
i€[N] ce[K] i i (8)

V’LE[ Zy1_17gzce{071}

c€[K]

Ox(c’) calculates the minimum number of label flips needed to make the prediction score p, for
class ¢’ exceed the prediction score p.- for the original predicted class c*. Notably, this relaxation
is similar to the relaxation of Pj(c¢’) to Py(c’) in the context of computing the certificate for the
ensemble. Despite the relaxation, we show that the minimum over O (¢’) is preserved, i.e.:

Theorem 3.
min O:(c)= min Os(¢
¢ €[K]\c* 1( ) c’€[K]\c* 2( )

The intuition being — while trying to make ¢’ surpass ¢*, if another class ¢’ becomes the pre-
dicted class, then changing the classifier prediction to ¢” should be easier compared to ¢’. As
the design of the relaxation and the intuition are similar to the ensemble case, the proof strat-
egy for this result is exactly the same as Theorem 1. The only difference would be that the no-
tation majVote(V), that finds the majority class for a vote configuration V will be replaced by
the majScore notation that predicts the class when the model is trained on the perturbed labels
y. i.e, majScore(y) = argmax.c(x] Zie{n] 75Q%. Hence, we direct the reader to the proof for
Theorem 1 provided in App. A.2. With the above result, we can derive the certificate p(t) as
p(t) = ming (g {ery O2(c’) — 1
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Solving O2(c’). We focus our attention on solving Oz (c’). Recall that O3 (c’) denotes the minimum
number of label flips needed to make the prediction score p+ for class ¢’ exceed the prediction score
pe~ for the original predicted class c*.

We denote the training samples that were labeled c* originally as P, and samples that were labeled
¢ originally as Piarget- Prest denote the set of remaining samples

Pmaj = {Z S [N] ‘ y;* = 1}7 Ptarget = {Z € [Np] | yf/ = 1}7 Prest = [n] \Pmaj U Ptarget

Let d be the original difference between score for ¢ and ¢*: d = 3, (¢ — y¢ )Qui. We define 7§
to be the reduction caused by flipping label of the 7 th sample to class c in the difference between
score for ¢’ and ¢*. For the score p. exceed the score p.«, the total reduction caused by the label
flipping attack should exceed d. Lets see what these values will be for different ¢ and c. For samples
in Py,j. For samples that were originally labeled c¢*, if the label is flipped to ¢’ , reduction will be
2 % @y;. If the label is flipped from c* to any other class, the reduction is only by Jy; as it affects
the score only for c*. If Qy; is positive, flipping the label to ¢’ will cause the maximum reduction
possible by flipping the ith label. Hence, an optimal attack will flip the ith label to ¢’ (if it chooses
to flip the label). If Qy; is negative, an optimal attack will not flip the label for the ith sample as it
will further increase the gap between ¢’ and c*.

2%xQy ifc=c
Vi € Pj,c€ K], =<0 elseifc = c¢*
Q1 else

For samples in Pigei. Following a similar line of argument as above, we can safely say that
Vi € Plarget, if Q¢ < 0, an optimal attack will flip the label for sample 7 to ¢* (if it chooses to flip the
label). If Q)y; is positive, an optimal attack will not flip the label for the ith sample as it will further
increase the gap between ¢’ and ¢*.

—2%xQy ifc=c*
Vi € Parget, ¢ € [K], 15 =14¢0 elseifc=¢
—Q4 else
For samples in Py. For samples with the true label other than ¢’ or ¢*, if QQ;; > 0, an optimal

attack will flip the ith label to ¢’. If Qy; is negative, the optimal attack will flip the 4th label to ¢*, if
it chooses to flip the label.

Qti ife=¢
Vi € Pes,c € Cy, 15 =4¢—Q ifc=c*
0 else

With this, we can define r(¢) as the reduction in the difference between scores for ¢’ and ¢* in the
optimal attack, if the attacker chooses to flip the ith label: Vi € [N],7(i) = max.c[x)7§. Note
that if r; is 0, the 7th label will not be flipped. Hence we define the set of candidates for flipping the
labelsas Ey: Ey ={i € [N] | r(i)>0}

We employ a greedy strategy similar to the one used in the computation of the certificate for the
binary case (App. A.5). We first sort the candidate flipping labels E; based on their () values in
the descending order,i.e., Ty = T = ... Let P, = Zle T(j) be the cumulative sum of the

largest k elements. We find the smallest &’ such that Py, > d and construct Gy by including the
indices corresponding to the &’ largest (i) values. We claim that &’ is the minimum number of label
flips required to make the score for ¢’ exceed ¢* and G is the minimal set of the labels that need to
be flipped to make it happen. The greedy algorithm is illustrated in Algorithm 1.

We prove optimality by contradiction. Recall that G, = {(1),...,(k)} is the greedy choice of k
largest r(i) and P, = Z§=1 7(;)- Suppose there exists a set ' C Ey with [F| = m <k -1
such that flipping labels in F" achieves the objective, i.e, ), - r(i) > d. But G, consists of the m
largest (i), 80 Y ;e p7(1) < i 7(i) = Py < Py < d, a contradiction.

m
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Algorithm 1 Greedy Certificate Computation

Input: Score gap d, reductions (1), ...,r(n)

Output: Minimum number of flips &

: total_red < 0

sorted < sort(r, descending)

1+ 0

while total_red < d do
total red < total_red + sorted|[i]
11+ 1

end while

return ¢

A A

Complexity. Sorting based on the reduction values takes O(n log n), and scanning for the minimal
k' takes O(n). Solving Oz (c’) for all ¢ € [K] \ ¢* can be done in O(Knlogn), resulting in a
polynomial-time exact certificate for test sample t: 5(t) = ming .- Oa2(¢’) — 1.
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A.7 EXTRACTING WHITE-BOX KNOWLEDGE FOR THE MULTI-CLASS SETTING

Recollect that EnsembleCert utilizes the white-box knowledge p§ for all base classifiers i € [IN,)]
and all classes ¢ € [K] where p$ denotes the minimum number of flips required to change the
prediction of the ith base classifier to c. For each base classifier, using a soft-margin kernel SVM
with a sufficiently small C' as our base model, we formulate the problem of finding the minimum
number flips required to change the prediction of the classifier to ¢’ is formulated as:

Ou(): min 37 (1= 3 wigf | st D 97Q> D 5Qp Ve#d,

1€[N] c€[K] i€[n] 1€[N] 9)
Vienl,ce K] Y gi=1,5 €{0,1}.
c€[K]

The above problem is an ILP with n x K binary variables, resulting in a computational complex-
ity of (’)(Q”K ). For each base classifier, we need to solve this problem for all classes. Consider
an ensemble with N, base classifiers. We would need to solve N, x K ILPs with the computa-
tional complexity of O (c’), making the problem intractable. Hence, instead of solving the problem
01 (c’) exactly, we bound the problem efficiently, and show that our bounds are sufficiently tight on
empirical evaluation.

A.7.1 LOWER BOUND

For the purpose of computing the exact certificate for the multiclass case in the no partition case, we
formulated an alternate problem Oy (c’) (Eq. (8)), a relaxed version of Oy (c¢’) which only requires
the score p. for class ¢’ to exceed the score p,- for class ¢*. We showed in App. A.6 that O (c’) can
be solved in polynomial time. As the constraint set of Oz(¢’) is a subset of O1(¢’), the solution for
04 (") will always be less than or equal to O1(c’). Hence, O2(c’) represents a valid lower bound on
01(), that is polynomial-time calculable. Notably, O2(c’) is also a certificate by definition, as it is
a lower bound on the certified radius.

A.7.2 UPPER BOUND

To compute a valid upper bound on O;(¢’), finding an instance of perturbed labels y that satisfies
the constraints of Oy (c’), i.e, majScore(y) = ¢/, is sufficient. The number of label flips needed to
reach any such y from the clean labels y represents a valid upper bound on O1(c’). To compute
this upper bound efficiently, we adopt a greedy strategy that iteratively flips training labels to reach a
feasible solution of Eq. (1). At the beginning of each iteration, we compute the current majority class

*

¢* = argmax, S., where S, = Y7, §¢Q} is the score of class c. Note that ¢* may change after
each label flip, and our method accounts for this by re-evaluating ¢* and all per-sample damages
d; after every label flip. Let S = max,c (K]\¢+ Sec denote the score of the runner-up class. For
each sample ¢, we define the per-sample damage d; as the maximum possible reduction in the gap

between ¢’ and the majority class achievable by flipping i:
min(QQ;‘, Qi + S, — S(2>), if ¢ =1and Qi > 0,
min(2|Qﬂ7 |Qi| + Sex — 5(2)), else if ¢ = 1 and Q! < 0,

Ql, ifg¢" =0, 3¢ =0, and Q! > 0,

0, otherwise.

Intuitively, d; captures the maximal contribution that flipping sample ¢ can make toward satisfying
the class-change constraint of Eq. (1).

Cases explained
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1. Case l(gjf* = 1,Q! > 0): Flipping a positively contributing c*-labeled sample to ¢’ both
reduces S.- and increases S, leading to a decrease of 2Q%. The possibility that the runner-
up class becomes the majority is considered by the term Q! + S, — S(?), which accounts
for the score gap to the second-highest class.

2. Case 2 (gjf/ =1,Q¢ < 0): Flipping a negatively contributing ¢’ -labeled sample to ¢’ helps
both by increasing S and decreasing S.-, giving a decrease of 2|Q%|. The possibility of
runner-up class becoming the majority class is handled as above.

3. Case 3 (neutral sample, Q¢ > 0): Flipping such a sample to ¢’ only increases S/, so the
reduction in the gap is exactly Q);.

In each iteration, we select i* = arg max; d;, flip the corresponding label to ¢’ or ¢*, re-evaluate
the majority class, and repeat this process until ¢’ becomes the majority class. Hence, by design,
the greedy algorithm results in a feasible y satisfying Eq. (1), and the number of flips performed
constitutes a valid upper bound on O (¢’). Our greedy approach is illustrated in Algorithm 2.

Complexity. We choose the label to flip by calculating the possible reduction each label flip can
cause in the gap between ¢* and ¢/, and choosing the one that causes the maximum reduction. This
involves scanning the dataset at every iteration. Hence the worst case complexity in computing the
upper bound for O1(¢’) is O(n?).

Algorithm 2 Greedy Upper Bound Computation for Oy (¢’)

1:

g
PRI NRE® N2

NN N
wye

24
25:
26:
27:
28:

R A A

e}
T2

Input: Clean labels y, kernel entries corresponding to the ith training sample and test sample
t: Qi Vi € [N], target class ¢/
Output: Upper bound on O1(¢’) (number of label flips)
Initialize y < y
Compute S, = SV, §¢Q forall ¢ € [K]
c* + argmax, S,
while c* # ¢’ do
5@ maXexer S¢
fori =1to N do
if 7" = 1 and Qi > 0 then
d; + min (2Q}, Q} + Se- — S@)
else if §¢' = 1 and Q! < 0 then
d; + min (2Q}], |Q}] + Ser — S@))
elseif ¢ = O and i = 0 and Q} > 0 then

end if
end for
1* < argmax; d;
if 5. = 1 then
g5 1
else
g5 1
end if
Update S. = Y | 5¢Qi forall ¢ € [K]
c* + arg max,. S,
end while
return Number of flips applied to reach y
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B DETAILS OF RANDOMIZED SMOOTHING INTEGRATION

B.1 SMOOTHED LINEAR CLASSIFIER AS THE BASE MODEL

In addition to ScalL.abelcert for sufficiently wide networks, we use the method from Rosenfeld et al.
(2020) for certification of base classifiers. Their approach uses a smoothed linear classifier as the
base classifier. The smoothing process involves independently flipping each label with probability ¢
and assigning a flipped label uniformly at random among the remaining K — 1 classes. To certify
robustness, the method bounds the probability that this randomized classifier switches its prediction
from one class to another.

B.2 PREDICTION BY THE SMOOTHED CLASSIFIER

The method by Rosenfeld et al. (2020) computes, for each pair of classes (¢, ¢’), a Chernoff bound
Pe,e (¢) that gives an upper-bound on the probability that the randomized classifier switches its
predicted class from ¢ to ¢’ under the randomized label flips.

For each class ¢, the method evaluates

MAX oo (q)

and defines the predicted class as

¢* = arg min maxp. ~(q),
gce[K] g Pe.c(q)

B.3 COMPUTING THE CERTIFICATE

The certified radius r is obtained by plugging the worst-case probability bound maxc e+ pex o (q)
into the robustness guarantee from a result in Rosenfeld et al. (2020), giving

oz (4p(1—p))
~ 2(1—29) log(l%q) '

where p = maxc/ e+ pe- s (q). This bound guarantees that if at most 7 labels were flipped byt the
adversary, the smoothed classifier would still predict c*.

B.4 ADAPTATION FOR OUR USE CASE

We follow the same prediction rule to obtain c*, However, instead of computing the radius that
certifies that the prediction will not change to any other class, we focus on certifying robustness
against a specific target class ¢’. This is because our objective is to compute the minimum number
of label flips required to change the prediction of a base classifier to every class. This white-
box information is then used by EnsembleCert to construct a white-box infused certificate for the
ensemble.

Concretely, we use the pairwise Chernoff bound p.~ ./ (¢) and compute

o < log (4pc*,c’(1 - Pc*,c’)) ’
2(1 —2q) log(1%;)

which gives the number of label flips required to change the prediction specifically from ¢* to ¢'.
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C ADDITIONAL PLOTS

C.1 FURTHER IMPLEMENTATION DETAILS AND CERTIFICATION RUNTIME

Hardware. All the experiments were done on an internal cluster. We used GPUs solely for the
NTK kernel computation, which was done using the Google neural-tangents library (Novak
etal., 2020). As the kernel computation is not the main focus of our work, we refer interested readers
to (Novak et al., 2020) for details on latency and memory requirements. All the following steps for
certificate derivation were executed on CPUs.

Certificate derivation. We process the test data in parallel batches of 100 samples. Recall that
for each test sample, EnsembleCert first computes pf for every base classifier i € [N,] and class
¢ € [K] using ScaLabelCert, which provides both upper and lower bounds. This requires computing
N, x K entries before passing this information to EnsembleCert for aggregation. In the current
implementation, white-box information is computed sequentially by iterating over the partitions
and classes. However, these computations are inherently parallelizable across both partitions and
classes because the certificates are independent. In particular, the lower bound calculation for each
p5 (App. A.7.1) can be fully vectorized, whereas the upper bound calculation (App. A.7.2) must
be performed independently for each sample. The aggregation step, which combines white-box
information to derive the ensemble-level certificate, is also executed independently per sample. This
step involves solving a Multiple-Choice Knapsack Problem (MCKP) for each test sample, which to
the best of our knowledge, cannot be vectorized efficiently.

Average Certification Time per Sample. As discussed, both EnsembleCert and ScalabelCert
yield polynomial-time computable certificates. Since lower bound computations are vectorized
within each batch, per-sample latency cannot be measured directly. Instead, we report average amor-
tized time, which refers to the total time taken to certify a batch divided by the number of samples
in that batch, providing a fair per-sample estimate. We present this average amortized certification
time per sample for EnsembleCert in Fig. 4. Latencies presented in the figure above also include
the training and prediction latencies, which are negligible owing to the simplification under small
C for kernel SVM and the closed form solution for kernel Regression. The total certification time
per sample is the sum of the latencies for the upper and lower bound computations. Importantly, the
upper bound latency is not amortized since the computation is performed sequentially per sample.

For small V,,, the number of samples per partition is high, which leads to a noticeable gap between
the latencies of upper and lower bound computations. This is because (i) the lower bound compu-
tation is linear in the number of samples whereas the upper bound computation is quadratic and (%)
lower bounds computation is vectorized whereas upper bound computation is done independently.
As N, increases, white-box aggregation latency for both computations becomes dominant due to
the quadratic complexity of MCKP in [V, thereby narrowing the gap between the upper and lower
bound curves. For CIFAR-10, the average (amortized) certification time per sample goes from as
low as 5 seconds for N, = 50 to as high as under 2 minutes for N, = 500. For MNIST, the average
amortized latency varies from 8 sec to a max of around 4 min.
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Figure 4: Figures (a) and (b) show the average latency per sample for kernel SVM on CIFAR-10 and
MNIST, respectively. Figures (c) and (d) present the corresponding results for kernel regression. We
report results for a single value of A for each dataset, as the trends are consistent across different A
values and do not provide any additional qualitative insight.

Choosing N,,. Sec. 4 discussed the invariance of robustness to partitioning observed for Ensem-
bleCert with kernel SVMs, and the robustness decay observed with sufficiently regularized kernel
regression. This raises questions about the practical utility of using heavy partitioning. Moreover,
the experiments in Fig. 4 show that larger ensembles are computationally more expensive to certify
using EnsembleCert. When robust base classifiers are employed, it becomes evident that using a low
to medium number of partitions offers the best trade-off between achieving high certified robustness
and minimizing computational costs.

C.2 ROBUSTNESS-ACCURACY TRADEOFF FOR SMALL C

Recall that the key to obtaining polynomial-time computable certificates by Scal.abelCert for
infintely-wide networks trained on the hinge loss is choosing a sufficiently small value of C'. Hence,
this introduces a robustness-accuracy tradeoff as we are constrained to choose C' that is sufficiently
small to achieve the polynomial-time certificate. To study this tradeoff, we perform 5-fold cross-
validation for different values of C'. For every number of partitions, the accuracy initially remains
constant up to a certain threshold, indicating the range of sufficiently small C, as SVM performance
does not depend on C in this regime. The results for CIFAR-10 are shown in Fig. 6. In addition
to studying the tradeoff on an ensemble level, we conduct experiments to study the performance
trade-off induced by “sufficiently small C” for stand-alone classifiers as a function of the training
set size Ng. For each value of Ng, we sub-sample the training set for 5 different random seeds
while keeping class balance. The models trained on the sub-sampled training data are evaluated on
the entire test dataset. The results can be seen in Fig. 5. It is evident from these experiments that
performance remains competitive in the small C' regime. We do not evaluate on MNIST, as for our
chosen kernel and RotNet preprocessing, the threshold for sufficiently small C is significantly larger
(order of 10?).
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Figure 5: Performance of an infinitely-wide neural network with a single trained on hinge loss
across different values of C' and the cardinality of the training dataset Ns. For each value of Vg,
we subsample the training set for 5 different random seeds. The accuracy for each value of N,
initially remains constant up to a certain threshold for C, indicating the range of sufficiently small
C, as the SVM performance does not depend on C in this regime. Shading around the central line
indicates the standard deviation. In each plot, the region of sufficiently small C' is colored blue for
distinction.For each plot, the accuracy initially remains constant up to a certain threshold, indicating
the range of sufficiently small C, as SVM performance does not depend on C' in this regime.
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Figure 6: Robustness-accuracy trade-off introduced by sufficiently small C. While Fig. 5 studies
empirical performance of stand-alone models, the impact of small C' ion the empirical performance
of the ensemble is studies here.
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C.3 COMPARISON OF SCALABELCERT WITH THE GRADIENT-BASED BOUNDING
CERTIFICATE (SOSNIN ET AL., 2024)

We compare the performance of ScalLabelCert with the gradient-based parameter bounding method
proposed by Sosnin et al. (2024) on CIFAR-10. The gradient-based approach uses convex relax-
ations to over-approximate all possible parameter updates under a given poisoning threat model.
The parameter bounds are then propagated to bound the logits for individual classes. The robustness
of the prediction for a particular sample can then be certified by checking if the lower bound on the
output logit for the predicted class is greater than the upper bounds of all other classes given the
perturbation budget. If this condition is satisfied, the prediction is certifiably robust under the given
budget. To evaluate this method, we add a linear layer on top of the CIFAR-10 features extracted via
SimCLR. We train the network for 2 epochs and keep other parameters consistent with the codebase
for Sosnin et al. (2024). For ScaLabelCert, the same SimCLR features are input to an infinitely wide
fully-connected network with a single hidden layer and no non-linear activation, as described in
Sec. 4. Although the models are not identical, the architectures are structurally aligned as both mod-
els rely on fully connected layers without activations, making the comparison meaningful. As shown
in App. C.3, ScalabelCert consistently outperforms the gradient-based method. This improvement
highlights the importance of exact certification: while the gradient-based approach is inherently lim-
ited by the looseness of its over-approximations, Scal.abelCert provides tight guarantees, resulting
in stronger certified robustness.
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Figure 7: Comparison of ScalLabelCert and gradient-based parameter bounding method. The pa-
rameter ~ represents the gradient clipping parameter. ScaLabelCert significantly outperforms the
gradient-based method for all values of .
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C.4 ENSEMBLECERT WITH FINITE-WIDTH NETWORKS AS BASE CLASSIFIERS

The certificates derived by ScalLabelCert are asymptotically exact and deterministic for neural net-
works as the width of the network goes to infinity. Hence, ScalabelCert is best suited for certifying
infinite-width neural networks. To demonstrate that EnsembleCert can provide deterministic cer-
tificates even when finite-width networks are used as base classifiers, we instantiate EnsembleCert
with a fully connected linear classifier as the base model and utilize the gradient-based parameter
bounding method by Sosnin et al. (2024), introduced in the previous section, to certify the base
classifiers. The gradient-based method certifies, for a given sample, whether the model’s prediction
remains unchanged when at most r training labels are flipped. However, this guarantee does not
directly match the white-box quantity required by EnsembleCert, which is the minimum number of
label flips needed to change the prediction to a particular class. In what follows, we explain how
this gradient-based certificate can be incorporated into EnsembleCert..

Certificate alignment. For any certificate that verifies whether a model’s prediction remains robust
under a fixed perturbation budget of 7 label flips, one can obtain a certificate for the minimum number
of label flips needed to change the prediction to some class by applying the fixed-budget certificate
incrementally—starting at » = 0 and increasing  until the certificate first indicates non-robustness.
Note that EnsembleCert requires white-box information quantifying the minimum number of label
flips needed to change the prediction of a base classifier to a specific target class. The certificate that
computes the minimum flips needed to change the prediction to some class then serves as a valid
lower bound on pf, the minimum number of label flips required to force the i-th base classifier to
predict a particular class c. This relationship enables us to incorporate the gradient-based certificate
into EnsembleCert.

Experiments. We evaluate EnsembleCert on ensembles with finite-width linear networks as base
classifiers by applying the gradient-based certificate to each base classifier. As described in the pre-
vious section, this certificate can be incorporated into EnsembleCert. Briefly, for each sample we
compute the minimum number of label flips required to change the prediction of base classifier ¢ to
some class by applying the gradient-based certificate over increasing budgets until robustness fails.
We then use this value as p; for every class c. Because this incremental application of the gradient-
based method is computationally demanding, our experiments on finite-width models are limited to
CIFAR-10 and a small number of partitions. Nevertheless, as shown in Fig. 8, incorporating white-
box information through EnsembleCert substantially improves certified accuracy. This demonstrates
that EnsembleCert extends naturally to ensembles built from finite-width neural networks. More-
over, the integration procedure highlights a broader utility: any certificate that determines whether a
model remains robust up to a given number of label flips can be adapted to certify the base classifiers
within EnsembleCert.
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Figure 8: EnsembleCert evaluated on ensembles with finite-width network as base classifiers. The
base classifiers are certified by applying the gradient-based bounding technique by Sosnin et al.
(2024). Evidently, EnsembleCert significantly outperforms SS-DPA, the black-box approach applied
to the ensemble.
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C.5 ROBUSTNESS TRENDS ACROSS A FOR ENSEMBLECERT WITH KERNEL REGRESSION

We study the effect of the L5 regularization parameter A on certified robustness. For low A, the
MCR increases with the number of partitions across all datasets. In contrast, for high A, the certi-
fied robustness appears to be negatively affected by increasing the number of partitions. The
contrasting behavior potentially arises due to the varying degree of robustness that the choice of A
imparts the base classifier. Low A makes kernel regression unstable, causing base classifiers to be
easily influenced by a few label flips, even with large partitions. In this regime, the ensemble is
closer to the black-box assumption - that a single label flip can change a base classifier’s prediction
- even when the number of partitions is small, resulting in white-box certificates that aren’t much
tighter than the black-box ones. In contrast, using a high degree of regularization exhibits a substan-
tial improvement in the certified accuracy on white-box infusion. Fig. 10 shows how the robustness
trend changes with varying A for CIFAR-10. While at A = 0.01, the median certified robustness
scales almost linearly with the number of partitions, the trend completely changes by the time we
reach A = 100. Empirical analysis suggests that the nature of the trend changes somewhere between
A = 1land A = 5. Interestingly, the change in trend also points towards the possibility that for
some value between A = 1 and A = 5, the median certified robustness could exhibit invariance to
the number of partitions, a phenomenon we observed with kernel SVMs. Similar behavior is seen
for experiments on MNIST as well (Fig. 9). As we mentioned in Sec. 4, the threshold A\, where the
behavior changes is data dependent.
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Figure 9: Robustness trends across different A values on MNIST using kernel regression.
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Figure 10: Robustness trends across different A values on CIFAR-10 using kernel regression.
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C.6 MNIST 1-vs-7

Kernel Regression. We present results for evaluation using kernel regression with NTK and the ¢
regularization parameter A = 0.1 in Fig. 11.
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Figure 11: MNIST binary kernel regression with A = 0.1 results for different number of partitions.

Kernel SVM
We present results for evaluation using kernel SVM with NTK and a sufficiently small C' in Fig. 12.
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Figure 12: MNIST binary kernel SVM results for different number of partitions.

MCR results Consistent with the results on MNIST and CIFAR10, Fig. 13 demonstrates the in-
variance of median certified robustness to the number of partitions, for both kernel Reg and kernel
SVM
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Figure 13: Invariance to number of partitions
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C.7 CIFAR-10

Kernel Regression

For low values of )\, the base classifier by itself is not robust and is closer to the worst-case black
box assumption described in App. A.1. Consequently, we do not see a significant improvement
on utilizing white-box knowledge of the base classifiers. This is illustrated in Fig. 14 , where we
evaluate EnsembleCert using kernel regression as base classifier and a low regularization parameter
A = 0.01. In contrast, using a high degree of regularization changes the trend as mentioned in the
experiments section. In this case, we see a substantial improvement in the certified accuracy on
white-box infusion. The results on using a high lambda can be seen in Fig. 15.
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Figure 14: CIFAR-10 kernel regression results for different numbers of partitions (A = 0.01).
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Figure 15: CIFAR-10 kernel regression with high regularization (A = 10).
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Substantial improvement can be observed in certified accuracy on white-box infusion, as seen in

Kernel SVM
Fig. 16.
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Figure 16: CIFAR-10 kernel SVM results for different numbers of partitions.

Smoothed linear classifier

Similar to kernel regression and kernel SVM, substantial improvement is observed in certified accu-
racy on white-box infusion, as shown in Fig. 17.
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Figure 17: CIFAR-10 Smoothed linear regression as base-classifier
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C.8 MNIST

Kernel Regression

We analyze the low and high regularization parameter A on MNIST. Similar to CIFAR-10, we ob-
serve that for low values of A, the base classifier by itself is not robust and is closer to the worst-case
black box assumption described in App. A.1. Consequently, we do not see a significant improve-
ment in utilizing white-box knowledge of the base classifiers. This is illustrated in Fig. 18 using low
A = 0.0001. In contrast, using a high degree of regularization changes the trend. In this case, we
see a substantial improvement in the certified accuracy on white-box infusion. The results on using
a high lambda can be seen using high A = 0.1 in Fig. 19.
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Figure 18: MNIST multi-class kernel regression results for different numbers of partitions (A =
0.0001).
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Figure 19: MNIST multi-class kernel regression results for different numbers of partitions (A = 0.1).
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Kernel SVM

Results showing substantial improvement in the certified accuracy on white-box infusion for kernel
SVM are observed in Fig. 20.

0.8 —+— EnsembleCert UB Zos e EnsembleCert UB 20,8 —~— EnsembleCert UB

£ —— EnsembleCert LB g —— EnsembleCert LB g —— EnsembleCert LB

S 06 —— SSDPA Z 06 —— SSDPA 306 —— SSDPA

<o o [

< << <

— 04 — 04 04

[} (] [}

=] = =

=02 =02 =02

—_ —_ —

) ) ©

O oo O oo O o0

D 100 200 300 400 500 0 100 200 300 400 500 0 10 20 a0 40 a0

Budget (Number of Flips) Budget (Number of Flips) Budget (Number of Flips)
(a) Partitions = 12 (b) Partitions = 30 (c) Partitions = 60

0.8 —=— EnsembleCert UB 0.8 —=— EnsembleCert UB 0.8 —=— EnsembleCert UB
—— EnsembleCert LB —=— EnsembleCert LB —— EnsembleCert LB
0.6 —— SS-DPA 0.6 —— SS-DPA 0.6 —— SS-DPA

Certified Accuracy

Certified Accuracy

Certified Accuracy

0.2 0.2 0.2
0.0 0.0 0.0
0 100 200 300 100 500 0 100 200 300 100 500 0 100 200 300 100 500
Budget (Number of Flips) Budget (Number of Flips) Budget (Number of Flips)
(d) Partitions = 120 (e) Partitions = 150 (f) Partitions = 200

0.8 —=— EnsembleCert UB 0.8 —=— EnsembleCert UB 0.8 —=— EnsembleCert UB
—— EnsembleCert LB —— EnsembleCert LB —— EnsembleCert LB
0.6 —— SS-DPA 0.6 —— SS-DPA 0.6 —s— SS-DPA

Certified Accuracy
Certified Accuracy

Certified Accuracy

.0 =
0 100 200 300 100 500 0 100 200 300 100 00 0 100 200 300 400 500

Budget (Number of Flips) Budget (Number of Flips) Budget (Number of Flips)
(g) Partitions = 300 (h) Partitions = 400 (i) Partitions = 600

Figure 20: MNIST multi-class kernel SVM results for different numbers of partitions.
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