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ABSTRACT

Label-flipping attacks, which corrupt training labels to induce misclassifications
at inference, remain a major threat to supervised learning models. This drives the
need for robustness certificates that provide formal guarantees about a model’s
robustness under adversarially corrupted labels. Existing certification frameworks
rely on ensemble techniques such as smoothing or partition-aggregation, but treat
the corresponding base classifiers as black boxes—yielding overly conservative
guarantees. We introduce EnsembleCert, the first certification framework for
partition-aggregation ensembles that utilizes white-box knowledge of the base
classifiers. Concretely, EnsembleCert yields tighter guarantees than black-box ap-
proaches by aggregating per-partition white-box certificates to compute ensemble-
level guarantees in polynomial time. To extract white-box knowledge from the
base classifiers efficiently, we develop ScaLabelCert, a method that leverages the
equivalence between sufficiently wide neural networks and kernel methods using
the neural tangent kernel. ScaLabelCert yields the first exact, polynomial-time
calculable certificate for neural networks against label-flipping attacks. Ensemble-
Cert is either on par, or significantly outperforms the existing partition-based black
box certificates. Exemplary, on CIFAR-10, our method can certify upto +26.5%
more label flips in median over the test set compared to the existing black-box
approach while requiring 100× fewer partitions, thus, challenging the prevailing
notion that heavy partitioning is a necessity for strong certified robustness.

1 INTRODUCTION

Machine learning models, especially those trained in supervised settings, are critically dependent on
the integrity of labeled data. This reliance exposes them to label-flipping attacks, where the training
labels are corrupted to degrade model performance, or induce targeted misclassifications (Biggio
et al., 2011; Xiao et al., 2015). In response, a range of empirical defenses have been proposed,
including data sanitization techniques that aim to identify and remove poisoned samples prior to
training (Paudice et al., 2018), and adversarial training methods that improve robustness by learning
on perturbed examples (Bal et al., 2025). However, these approaches often rely on heuristics and
have been shown to fail under adaptive attacks (Carlini & Wagner, 2017; Athalye et al., 2018; Koh
et al., 2021). This limitation has led to growing interest in robustness certificates, that provide formal
guarantees about the robustness of a model’s predictions under a given adversarial threat model.

Existing certificates against label-flipping poisoning attacks are predominantly derived using en-
semble methods. Techniques include randomized smoothing (Rosenfeld et al., 2020), where base
classifiers are trained on datasets with randomly perturbed labels, and partition aggregation (Levine
& Feizi, 2020), which trains base classifiers on disjoint partitions of the training data. Since these
certificates rely solely on the base classifier outputs, they are inherently black-box (Ashtiani et al.,
2020). Black-box treatment of the base classifiers often leads to overly conservative guarantees
and provides limited knowledge about the full extent of the ensemble’s robustness. One way to
understand the true robustness of the certified model is to utilize white-box information of the base
classifiers, i.e., white-box certificates, that leverage internal model information to yield tighter and
more informative guarantees. This raises the question: How can we leverage white-box knowledge
of the base classifiers to derive a stronger certificate for the ensemble?
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(b) EnsembleCert on CIFAR-10.

Figure 1: (a) Two-step approach of EnsembleCert to derive white-box guarantees for partition
aggregation ensembles. (b) Evaluation on CIFAR-10 using wide neural networks trained on a re-
gression loss as base classifiers. Using as few as 10 partitions with white-box knowledge enables the
ensemble to withstand up to 26.5% more label flips in median compared to using 1000 partitions.
For a definition of the metric median certified robustness we refer the reader to Sec. 4.

In this work, we answer this question by proposing EnsembleCert, a white-box certification frame-
work for partition-based aggregation ensembling techniques (Levine & Feizi, 2020). We focus
specifically on the partition-based approach since they are the current state-of-the-art certifiable de-
fense against general data poisoning attacks (Levine & Feizi, 2020; Rezaei et al., 2023; Wang et al.,
2022), including label-flipping. Additionally, neural networks can be used as base classifiers in
this approach, as opposed to only linear classifiers in the randomized smoothing method (Rosenfeld
et al., 2020). EnsembleCert yields tighter white-box guarantees by leveraging the model informa-
tion of the base classifiers following a simple two-step approach: (i) Extract white-box certificates
from the base classifiers for each partition; (ii) Aggregate the white-box certificates to derive an
ensemble-wide certificate (see Fig. 1a). The problem of aggregating the partition-wise guarantees
to obtain the certificate for the ensemble is formulated as an Integer Program (IP), which we show
can be solved efficiently in polynomial time.

For base-classifier certification, existing white-box approaches face significant challenges as they
either rely on computationally intense Mixed Integer Linear Program (MILP) formulation (Sa-
banayagam et al., 2025) or loose gradient-based parameter bounding approaches (Sosnin et al.,
2024). To elaborate, solving the MILP is NP-hard in the worst case, hence LabelCert (Sabanayagam
et al., 2025) is practical only for datasets with a few hundred training points and does not even scale
to moderately sized datasets like MNIST and CIFAR-10. On the other hand, the parameter-bounding
technique (Sosnin et al., 2024) provides overly loose guarantees, leading to vacuous bounds in just
few training iterations, especially for multi-class classification tasks. Furthermore, the latter method
has so far been evaluated only on small multi-layer perceptrons. These limitations make the existing
methods unsuitable for white-box injection into EnsembleCert, naturally raising a broader question:
Can we derive effective and scalable white-box certificates against label-flipping attacks?

We answer this question by developing ScaLabelCert, a framework that builds on the exact white-
box method of LabelCert (Sabanayagam et al., 2025). LabelCert provides exact certificates by
leveraging the equivalence between wide Neural Networks (NNs) trained with a soft-margin loss
and Support Vector Machines (SVM) using the Neural Tangent Kernel (NTK) of the network as
their kernel (Chen et al., 2022; Sabanayagam et al., 2023). ScaLabelCert shows that under certain
conditions, the computation complexity of LabelCert can be reduced from NP-hard to polynomial
time, thus, significantly improving the scalability. Beyond the SVM formulation, ScaLabelCert
further extends LabelCert by leveraging the equivalence between wide NNs trained with a regression
loss and kernel regression under the NTK (Jacot et al., 2018; Arora et al., 2019). With its ability
to efficiently compute tight certificates, we adopt ScaLabelCert as our primary choice for injecting
white-box knowledge into EnsembleCert. Hence, with this instantiation, EnsembleCert inherits the
rigor of LabelCert (Sabanayagam et al., 2025), while also harnessing the scalability of DPA (Levine
& Feizi, 2020), effectively combining the best of both worlds. To further demonstrate the generality
of EnsembleCert, we also instantiate it with randomized smoothing certificates (Rosenfeld et al.,
2020) applied to each base classifier. Our contributions are summarized as follows:

1. We present EnsembleCert in Sec. 3.1, the first white-box certification framework for partition
aggregation ensembles that leverages the knowledge about base-classifiers to provide white-box
informed certificates for the ensemble in polynomial time.
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2. With ScaLabelCert in Sec. 3.2, we derive the first exact certificate for infinite-width neural net-
works against label-flipping attacks solved in polynomial time and thus, it is the first exact certificate
for neural networks against a poisoning threat model that scales to common image benchmarks.

3. We show in Sec. 4 that for partition aggregation ensembles with a small number of partitions,
the infusion of white-box knowledge results in significant improvement in certified robustness. On
analyzing the dependence of certified robustness on the number of partitions, we demonstrate that in
certain cases, using as low as 10 partitions with white-box knowledge results in stronger robustness
guarantees in comparison to as high as 1000 partitions (see Fig. 1b). These findings call into question
the emphasis on using very large numbers of partitions to achieve good certified robustness (Levine
& Feizi, 2020), suggesting that excessively deep partitioning, which requires training a prohibitively
large number of neural networks, is not a necessity to yield strong guarantees.

2 PRELIMINARIES

Notation. Matrices are denoted by bold uppercase letters, M, and vectors by bold lowercase letters,
v. The (i, j)-th entry of a matrix M is denoted mj

i . For a positive integer C, we write [C] =
{1, . . . , C}. The ℓ0 norm is denoted by ∥ · ∥0, and 1condition represents the indicator function of a
given condition. We use 1n for a vector of all 1s of size n. The floor operator is denoted by ⌊·⌋.
Label-flipping and Certification. In a supervised classification task, the training data S = (X,y)
consists of feature vectors aggregated in X ∈ Rn×d and labels y ∈ [K]n, where K is the number of
classes. A learning algorithm Lalg takes the training set S and a test sample t ∈ T , where T is the
test set, as input to predict the label for t, i.e., Lalg(S, t) ∈ [K]. In a label-flipping attack, we assume
that the adversary is allowed to change at most r ≤ n training labels. Formally, an adversary can
alter the clean labels y to ỹ ∈ Br(y) :=

{
ỹ ∈ [K]n

∣∣ ∥ỹ − y∥0 ≤ r
}

and get a perturbed training
set S̃ = (X, ỹ). As the certification objective, for every t ∈ T , we aim to find the maximum number
of label flips r̃ in the clean training data up to which the prediction of Lalg for t does not change, i.e.

r̃(t) = max
S̃

r s.t. Lalg(S, t) = Lalg(S̃, t) ∀S̃ ∈ {S ′ | y′ ∈ Br(y))}.
We will refer to r̃(t) as the certified radius for t. A point-wise certificate then would be a lower
bound on the certified radius for a particular sample. The certificate is exact if it gives the true
certified radius r̃(t) rather than just a lower bound.

Semi-Supervised Deep Partition Aggregation (SS-DPA). Levine & Feizi (2020) introduce SS-
DPA, a framework that builds a certified defense against label-flipping poisoning attacks. The
framework certifies a partition aggregation ensemble gS , i.e , an ensemble consisting of Np base
classifiers f{1,...,Np} trained on disjoint partitions P{1,...,Np} of the training data S. The motivation
behind training on disjoint partitions is simple: Poisoning one label in the training data affects the
prediction of only one of the base-classifiers. The training data S is first sorted without using the
labels and then partitioned based on the sorted order. This ensures that the partitioning is invariant
to any label poisoning attack. As the unlabeled data is trustworthy, we can make use of a self-
supervised learning algorithm to extract features from the entire unlabeled training data and train
each fi using the extracted features and labels corresponding to Pi. At inference time, each base
classifier fi, trained on its corresponding partition Pi of S predicts the class for a given test sample
t ∈ T as fi(t) ∈ [K]. The prediction of the ensemble gS(t) is then determined by a majority vote:
gS(t) = argmaxc∈[K] nc(t), where nc(t) := |{i ∈ [Np] | fi(t) = c}| is the number of votes
received by class c. Ties are resolved deterministically by choosing the smaller index. If we denote
gS(t) as c∗, the certificate ρ̃(t) for sample t is given as:

ρ̃(t) :=
⌊nc∗(t)−maxc′ ̸=c∗(nc′(t) + 1c′<c∗)

2

⌋
.

The above guarantee says that for a poisoned dataset S̃ obtained by changing the labels of at most ρ̃
samples in S, gS̃(t) = c∗. As each base classifier is treated as a black-box, the certificate derivation
follows from a key worst-case assumption: The prediction of a base classifier can be changed by
a single label flip. The formal description of the worst case scenario is presented in App. A.1. With
white-box knowledge about the base classifiers, one can improve upon this worst-case assumption,
leading to a tighter certificate for the ensemble.
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3 METHODOLOGY: ENSEMBLECERT AND SCALABELCERT

3.1 ENSEMBLECERT

The underlying worst-case assumption in existing partition aggregation-based certificates, which
says that the prediction of a base classifiers can be changed with a single label flip, can be over-
come given that we have the following white-box information: for all base classifiers f{1,...,Np} and
∀c ∈ [K], we have access to ρci , which is the minimum number of label flips in Pi required to change
the prediction of the base classifier fi (trained on Pi) to class c. Access to the white-box knowledge
through ρci enables verification of the worst-case assumption and provides the necessary information
to derive a tighter ensemble-level certificate. Note that the ensemble-level certificate ρ̃(t) that repre-
sents the maximum number of flips upto which the ensemble prediction for a sample t remains
unchanged, is simply one less than the minimum number of flips required to change the ensemble
prediction. To determine the ensemble certificate ρ̃(t), we first compute, for each class c, the least
number of flips needed to make c the majority class, and then take the minimum over all classes.

Integer Program Formulation for Ensemble-wide Certification. We denote the problem of find-
ing the minimum number of label flips in the training set required to change the prediction of the
ensemble to a particular class c′ as P1(c

′). The white-box information ρci is collected in ρ ∈ RNp×K .
Given ρ, finding the optimal attack for the adversary, which is equivalent to solving P1(c

′), poses
as a combinatorial optimization problem leading to an Integer Program (IP) formulation of P1(c

′).
We denote the ith base classifier as fi if trained on the clean data and f̃i if trained on the per-
turbed data. The predictions from f{1,...,Np} and f̃{1,...,Np} on the sample t are collected in the
vote configurations V and Ṽ ∈ RNp×K respectively: ∀i ∈ Np , c ∈ [K] : vci = 1{fi(t) =

c} , ṽci = 1{f̃i(t) = c}. Note that
∑K

c=1 v
c
i = 1 and

∑K
c=1 ṽ

c
i = 1 for all i ∈ [Np]. Con-

cretely, to model P1(c
′), the number of label flips required to reach the vote configuration Ṽ from

V is
∑Np

i=1

∑K
c=1 ρ

c
i ṽ

c
i . The constraint that c′ should be the majority class after adversarial ma-

nipulation of labels can be represented as
∑Np

i=1

(
ṽc

′

i − ṽci

)
≥ 1c<c′ , for all c ̸= c′. Recollect∑K

c=1 ṽ
c
i = 1, ∀i ∈ [Np] should also be satisfied. Thus, this gives the IP formulation of P1(c

′):

P1(c
′) : min

Ṽ

Np∑
i=1

K∑
c=1

ρci ṽ
c
i s.t. ∀c ̸= c′ :

Np∑
i=1

(
ṽc

′

i − ṽci

)
≥ 1c<c′ ,

∀i ∈ [Np], ∀c ∈ [K] :

K∑
c=1

ṽci = 1, ṽci ∈ {0, 1}.

The ensemble-level certificate ρ̃(t) for a test sample t can then be derived, as mentioned in Sec. 3.1,
by simply subtracting one from the minimum over P1(c), that is, ρ̃(t) = minc∈[K]\c∗ P1(c) − 1.

Reduction to Polynomial-time. Solving P1(c) in its current form is computationally prohibitive,
scaling as O(2Np×K) in the worst case. Thus, deriving ρ̃ is even more expensive, with complexity
O(K × 2Np×K). The problem becomes intractable even for small values of Np and K, motivating
the need for a more tractable alternative. We denote as P2(c

′), a relaxation of P1(c
′) that finds the

minimum number of label flips needed to make c′ surpass only c∗ (the original majority class) in the
number of votes, rather than making c′ the overall majority class. The formulation of P2(c

′) can be
obtained from P1(c

′) by relaxing the constraint
∑Np

i=1(ṽ
c′

i − ṽci ) ≥ 1c<c′ ∀c ̸= c′ to the constraint
(ṽc

′

i − ṽc
∗

i ) ≥ 1c∗<c′ . Despite this relaxation, we have the following result proved in App. A.2.

Theorem 1 (Equivalence between problems P1 and P2).

min
c∈[K]\c∗

P1(c) = min
c∈[K]\c∗

P2(c)

The intuition for the above result is as follows: while trying to make c′ surpass c∗, if another class c′′
becomes the majority class, then changing the ensemble prediction to c′′ should be easier compared
to c′. This result is particularly important, as we show that P2(c) can be reduced to an instance of the
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Multiple Choice Knapsack Problem (MCKP). Since MCKP is solvable in pseudopolynomial-time
(Dudzinski & Walukiewicz, 1987), our approach achieves a complexity ofO(N2

p ) for solving P2 per
class (App. A.2). Consequently, the ensemble-wide certificate ρ̃(t) can be computed in polynomial
time by solving P2(c) for every class and finding the minimum, that is, ρ̃(t) = minc∈[K]\c∗ P2(c) −
1. This represents a substantial improvement over the naive ILP formulation with complexityO(K×
2Np×K). We refer to App. A.3 for details on the reduction of P2(c

′) to MCKP.

3.2 EXTRACTION OF WHITE-BOX KNOWLEDGE THROUGH SCALABELCERT

The approach of our white-box certificate ScaLabelCert builds on the framework introduced by La-
belCert (Sabanayagam et al., 2025). LabelCert provides an exact certificate that determines whether
the model prediction remains unchanged when at most r training labels are flipped. This definition
of the certificate does not immediately align with the white-box knowledge that EnsembleCert uti-
lizes, which is the minimum number of label flips required to change the prediction of the classifier
to a particular class. Even more problematic, the computation of the certificate by LabelCert is
NP-hard and only scales to a few hundred labeled datapoints. ScaLabelCert makes modifications to
the LabelCert approach to address these shortcomings, which result in the computation of an exact
certificate against label-flipping attacks in polynomial time. Next, we provide a brief overview of
the approach by LabelCert, and then introduce the developments leading to ScaLabelCert.

Infinite-Width Neural Networks and The Equivalence to Kernel Methods. The Neural Tangent
Kernel (NTK) of a neural network fθ between two inputs i and j with features xi and xj is defined as
Qj

i = Eθ[⟨∇θfθ(xi), ∇θfθ(xj)⟩], where the expectation is taken over the parameter initialization.
When fθ is an infinitely wide neural network, the dynamics of training fθ for a classification task
using a soft-margin loss are the same as those of an SVM with fθ’s NTK as kernel (Chen et al.,
2022). Similarly, if a regression loss (regularized mean-square) is used, the training dynamics are
equivalent to those of kernel regression using fθ’s NTK as kernel (Jacot et al., 2018).

LabelCert. For a test sample t, LabelCert computes a point-wise certificate for sufficiently wide
neural networks, by deriving a certificate for a kernel SVM with fθ’s NTK as kernel, which—due
to the above equivalence—extends to a certificate for fθ. Recall that in the dual formulation of an
SVM, the parameters are the dual variables α ∈ Rn derived by solving the following problem:

Psvm(y) = min
α
−

n∑
i=1

αi +
1

2

n∑
i=1

n∑
j=1

αiαjyiyjQ
j
i s.t. 0 ≤ αi ≤ C, ∀i = [n]

where n is the number of training data, C is the regularization parameter that controls the trade-off
between maximizing the margin and minimizing classification error, and Qj

i is the chosen kernel
between inputs i and j. Let the set of α vectors solving Psvm(y) be S(y). The prediction for a test
sample t is given by pt = sign(

∑n
i=1 αiỹiQ

i
t). Let p̂t be the prediction of the SVM trained using

clean labels. The certificate is computed by converting the following problem Pcert(y) to a MILP:

Pcert(y) := min
ỹ,α

sign(p̂t)
n∑

i=1

αiỹiQ
i
t s.t. ỹ ∈ Ar(y), α ∈ S(ỹ)

Whether the model prediction for t is robust up to r label flips or not is determined by the sign of
the solution to Pcert(y), with a positive sign indicating robustness.

SVM Formulation for Sufficiently Small C. The complexity of solving Pcert(y) comes largely
from replacing the inner optimization problem α ∈ S(ỹ) with the KKT (Karush-Kuhn-Tucker) con-
ditions of Psvm(y), which can be done as Psvm(y) is convex (Dempe & Dutta, 2012; Sabanayagam
et al., 2025). We show that on using a sufficiently small C, we can entirely forego the inner opti-
mization problem and convert Pcert(y) to a simpler, single-level problem based on Theorem 2.
Theorem 2. Given a soft margin SVM with regularization C, kernel entry between training samples
i , j as Qj

i , and α being the solution to Psvm(y), then if

max
i∈[n]

∑
j∈[n]

|Qj
i | ≤

1

C
, it follows that ∀y ∈ {−1, 1}n : α = C · 1n

5
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The proof is presented in App. A.4. When C satisfies the condition stated above, the alpha values are
equal to C regardless of the labels. Thus, choosing C appropriately gives us the liberty to eliminate
the inner optimization problem α ∈ S(ỹ) as α is invariant to different labelings of the data. The
SVM prediction in this case simplifies to pt = sign(

∑n
i=1 CỹiQ

i
t). As C is a positive constant, this

further simplifies to pt = sign(
∑n

i=1 ỹiQ
i
t). Integrating this insight into ScaLabelCert, we develop

an efficient computation scheme for exact white-box certificates for infinite-width networks below
that calculates the minimum number of label flips needed to change the prediction of the model.

ScaLabelCert For The Binary Setting. Our objective is to find the minimum number of label
flips required to change the SVM prediction, i.e., to make sign(p̂t)

∑n
i=1 αiỹiQ

i
t negative. Under

sufficiently small C, the above objective can be formulated as:

O(y) : min
ỹ∈{0,1}n

1

2

n∑
i=1

(1− yiỹi) s.t. sign(p̂t)
n∑

i=1

ỹiQ
i
t < 0, ∀i ∈ [n] : ỹi ∈ {−1, 1}.

O1(y) can be solved in polynomial time (App. A.5). The intuition is that the labels corresponding
to the largest positive contributions in sign(p̂t)(

∑n
i=1 yiQ

i
t) are the most influential in determining

the prediction, so flipping these labels greedily till the prediction changes is the optimal attack from
the adversary’s point of view. Thus, solving O(y) leads to a polynomial time computable exact
certificate for sufficiently-wide neural networks, if fθ’s NTK is chosen as the SVM’s kernel.

ScaLabelCert For The Multi-Class Setting. For the multi-class case, we use the one-vs-all strategy
by decomposing the problem with K classes into K separate binary classification tasks. For each
class c ∈ [K], a binary classifier is trained to distinguish between samples of class c and samples
from all other classes. Assume that pc is the prediction score of a classifier for the learning problem
corresponding to class c. Then, the class prediction c∗ for a test sample is constructed by c∗ =
argmaxc∈[K] pc. The labels are collected in the vector y where yc

i = 1 if the class of the ith
sample is c, and 0 otherwise. Recall that for each base classifier, EnsembleCert requires white-box
certificates that determine, for every class, the minimum number of label flips needed to change the
model’s prediction to that class. Using a soft-margin kernel SVM with a sufficiently small C as our
base model, the certificate computing minimum number of label flips required to change the
prediction of the model to a particular class c′ can be formulated as (derived in App. A.6):

O1(c
′) : min

ỹ

∑
i∈[N ]

1−
∑
c∈[K]

yci ỹ
c
i

 s.t.
∑
i∈[N ]

ỹc
′

i Qi
t >

∑
i∈[N ]

ỹciQ
i
t ∀c ̸= c′,

∀i ∈ [N ], c ∈ [K] :
∑
c∈[K]

ỹci = 1 , ỹci ∈ {0, 1}.
(1)

While solving O1(c
′) is NP-hard, we show that tight lower and upper bounds for the solution of

O1(c
′) can be computed in polynomial time (see App. A.7).

Certificate for Kernel Regression. With minor modifications, we can leverage the above formula-
tion to certify a kernel regression model. Specifically, the adjustment is to replace Qi

t with
(Qeff)

i
t = [(Qtrain + λI)−1Qt,:]i

where Qtrain is the kernel matrix for the training samples; Qt,: is the vector of kernel entries for test
sample t and the training samples; and λ is the regularization parameter. Deriving the certificate
for kernel regression with the above modifications, we certify a sufficiently wide NN trained on a
regularized mean-squared loss by using the network’s NTK as the kernel.

Exact Certificate Given No Partitioning (Np = 1). When there is no partitioning, we do not
need to solve O1(c

′) exactly for every c′ to get an exact certificate for a stand-alone model. As
O1(c

′) represents the number of flips required to change the prediction to a particular class c′, the
exact certificate for the stand-alone model can be derived by simply computing the minimum over
O1(c

′) i.e, ρ̃(t) = minc∈[K]\c∗ O1(c) − 1. We show that with ScaLabelCert, this can be solved in
polynomial time, by employing a similar line of argument as Theorem 1. The proof is presented in
App. A.6. This results in the first exact certificate for neural networks against a poisoning attack
that scales to common image benchmark datasets like MNIST or CIFAR-10.
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(c) CIFAR-10, λ = 100
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(d) MNIST, λ = 0.1

Figure 2: EnsembleCert evaluation using the NTK for (i) kernel SVM with a sufficiently small C
(a, b); (ii) kernel regression under strong regularization (c, d). Median certified robustness either re-
mains largely invariant across partitions or exhibits a decay until the white-box certificate converges
to the black-box certificate. The tightness of our bounds on the exact certificate for the ensemble
is evident, as the upper (EnsembleCert UB) and lower (EnsembleCert LB) bounds largely coincide
across all plots.

4 EXPERIMENTS AND RESULTS

Implementation Details. We perform experiments on MNIST, CIFAR-10, and binary MNIST 1-
vs-7. Following SS-DPA (Levine & Feizi, 2020), before training the base-classifiers we extract un-
supervised features using RotNet (Gidaris et al., 2018) for MNIST and SimCLR (Chen et al., 2020)
for CIFAR-10, using pretrained models from Levine & Feizi (2020). For the supervised training
of base-classifiers, the extracted RotNet features for MNIST are used as input to an infinitely-wide
convolutional network with a one convolutional layer and no pooling for supervised classification.
For CIFAR-10, SimCLR features are fed to an infinitely-wide fully-connected network with one
hidden layer and no non-linear activation. NTK computations are performed using the Google
neural-tangents library (Novak et al., 2020). Using the NN-kernel equivalence (Sec. 3.2),
the NTK is then used either with a kernel SVM for wide NNs trained on the soft-margin loss or with
kernel regression for wide NNs trained on the regularized mean-squared loss. Solving the MCKP
for ensemble-level certificates as described in Sec. 3.1 is implemented using standard dynamic pro-
gramming. The metrics used for evaluation are certified accuracy, with certified accuracy at r label
flips being the fraction of test samples for which the model prediction is correct and robust up to r
label flips; and median certified robustness (MCR), which denotes the number of label flips upto up
to which the model prediction for 50% of the correctly classified samples is robust.

Experiments. We instantiate EnsembleCert with sufficiently wide NNs trained on the soft-margin
loss (equivalent to kernel SVMs with NTK) and the regularized mean square loss (equivalent to ker-
nel ridge regression with NTK). Although regression losses may seem ill-suited for classification,
they work well in practice (Mika et al., 1999; Rifkin et al., 2003). Moreover, Arora et al. (2019)
showed that kernel ridge regression with the NTK of convolutional NNs achieves competitive per-
formance on image datasets. We also evaluate EnsembleCert on CIFAR-10 using a smoothed linear
regression model as the base classifier, certified via the smoothing-based method of Rosenfeld et al.
(2020), which applies to smoothed linear models and yields analytic certificates without requiring
the sampling process in randomized smoothing. The details of how we derive the necessary white-
box knowledge for EnsembleCert by leveraging the smoothing approach can be found in the App. B.
For every choice of base classifier, we observe that injecting white-box knowledge into the ensemble
substantially increases certified robustness for low to intermediate numbers of partitions, highlight-
ing the relative looseness of guarantees obtained using the black-box approach. The substantial
improvement in certified robustness achieved by our white-box certificate for kernel methods as
base classifiers is evident in Fig. 2. Further results demonstrating the same for every choice of base
classifier can be found in App. C. The gap between the white-box and black-box certificates narrows
as the number of partitions grows, with the white-box certificate eventually converging to the black-
box certificate. This convergence reflects the realization of the worst-case scenario, where a single
label flip can alter the prediction of a base classifier. Beyond the point of convergence, our method
performs on par with the black-box approach. This behavior is a direct consequence of our method’s
design and holds consistently across all experiments. In the next sections, we present some crucial
insights that can be derived from our evaluation of EnsembleCert and ScaLabelCert.

Invariance to Number of Partitions with Kernel SVM. For the instantiation of EnsembleCert with
kernel SVM, we use a regularization parameter C that is small enough to satisfy the condition in
Theorem 2, as it is the key to computing scalable certificates for kernel SVM. We observe that the
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(a) CIFAR-10: SVM
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(b) MNIST: SVM
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(c) MNIST 1-vs-7: Reg

0 200 400 600 800 1000

Budget (Number of Flips)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy Num Partitions

1

10

25

50

(d) CIFAR-10: RS

Figure 3: Comparing certified accuracies of stand-alone base models and their partition aggregation
ensembles. Results with the base model as kernel SVM are in (a) and (b). (c): Using a stand-alone
kernel regression model on MNIST 1-vs-7 maintains a certified accuracy of close to 80% when
the certified accuracy for the corresponding best performing ensemble (Np = 10) reaches 0. (d):
Smoothed linear regression as base model, comparing the stand-alone case and the ensembling.

MCR of the white-box certificate remains largely invariant to the number of partitions for CIFAR-
10 (Fig. 2a) and MNIST 1-vs-7 (Fig. 9a) until the point of convergence. On MNIST, there is a sharp
decline initially on increasing the number of partitions, followed by plateauing (Fig. 2b). These
findings indicate that strong guarantees can be achieved without requiring overly large ensembles.

Robustness Decay with Kernel Regression. For our instantiation of EnsemblCert with kernel ridge
regression, we study the effect of the regularization parameter λ on certified robustness of the ensem-
ble. For each dataset, we observe that the trend of certified robustness varies with the regularization
parameter λ. As we increase λ from very small values, MCR initially improves with the number of
partitions. Beyond a dataset-specific threshold, however, the trend reverses—increasing the num-
ber of partitions leads to lower certified robustness. For example, on CIFAR-10, when λ = 100
(which lies beyond the threshold for this dataset), EnsembleCert certifies a median of 219 label
flips with just 10 partitions, whereas using 1000 partitions reduces this to 173 (Fig. 2c). Similarly,
on MNIST with λ = 0.1, EnsembleCert certifies 356 label flips using only 12 partitions, whereas
using 1200 partitions lowers the certified robustness to 82 (Fig. 2d).We present plots for low values
of λ and discuss the behavioral change across the spectrum of λ in App. C.2. As robust kernel re-
gression is associated with the use of higher values of λ (Hu et al., 2021), the decreasing trend of the
MCR observed with high λ suggests that deeper partitioning limits the true robustness potential
of the ensemble when the underlying base classifier has a high degree of robustness.

To Partition or Not to Partition? The polynomial-time calculable exact certification method de-
rived by ScaLabelCert allows us to analyze the robustness of sufficiently wide neural networks
without employing an ensemble, that is, Np = 1. While the simplification under small C eliminates
the need to calculate the training kernel for kernel SVM, making it easily scalable to datasets such
as CIFAR-10 and MNIST, it remains an essential component of the pipeline for kernel regression.
Thus, performing kernel regression on such datasets without partitioning is computationally chal-
lenging due to the need to compute the entire training kernel. Hence, in the no-partition setting,
we evaluate ScaLabelCert using the efficient kernel SVMs on all datasets and evaluate using kernel
regression only on the relatively small MNIST 1-vs-7 binary dataset. On CIFAR-10, ScaLabel-
Cert achieves non-trivial certified accuracy for up to 1000 label flips, which amounts to 2% of the
training data Fig. 3a. In contrast, the evaluation by Levine & Feizi (2020) fails to certify any test
sample beyond 500 label flips. Motivated by the observation that deeper partitioning may limit the
ensemble’s true robustness potential, we further investigate the role of partitioning by comparing
the certified accuracy of a single base model against that of its partition-aggregated ensemble. Our
experiments across multiple datasets and base model choices, as shown in Fig. 3, reveal that a single
base model trained on the entire training dataset achieves significantly higher certified accu-
racy as compared to its partition-aggregation ensemble. This raises an important question: Does
partition aggregation enhance or diminish the robustness potential of a given base model?

5 DISCUSSION AND CONCLUSION

On Using Sufficiently Small C in Kernel SVM. The choice of the parameter C, which controls
the penalty for misclassifications, introduces a robustness–accuracy trade-off in soft-margin SVMs.
Smaller values of C improve robustness to label noise and adversarial perturbations, as they en-
courage larger margins and reduce the influence of individual (potentially corrupted) points on the
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decision boundary. Thus, our choice of C for the SVM simplification in Theorem 2 aligns with
building robust base-classifiers. Although this choice may not be optimal for clean accuracy, perfor-
mance remains competitive as demonstrated in App. C.1.

Versatility of ScaLabelCert. Through the formulation O1(c
′) (Eq. (1)), ScaLabelCert derives ef-

ficient certificates for sufficiently wide networks that compute the minimum number of label flips
needed to change the prediction of the classifier to a particular class c′. Although these certificates
are not exact, we compute sufficiently tight bounds (see Sec. 4). Note that the certificate definition
is different from the certified radius, which represents the minimum label flips needed to change
the classifier’s prediction to any class. We remind the reader that our certificate for computing the
certified radius for a stand-alone model is exact and polynomial-time calculable (App. A.6). More-
over, ScaLabelCert provides a general framework for certifying kernel SVMs and kernel regression
models against label-flipping. Using the NTK is one instance of this framework, enabling efficient
certification for sufficiently wide NNs. Finally, a kernel SVM with a sufficiently small C and kernel
regression-based classifiers can be interpreted as weighted nearest-neighbor models, where Qi

t and
(Qeff)

i
t denote the weight of the ith neighbor of the test sample t for kernel SVM and kernel regres-

sion, respectively. From this perspective, ScaLabelCert can also certify weighted nearest-neighbor
models against label-flipping attacks in polynomial time, demonstrating its broad applicability.

Potential of EnsembleCert for Certifying Against Clean-Label Attacks. In this work, we uti-
lize EnsembleCert to certify against label-flipping attacks. However, EnsembleCert can also lever-
age white-box knowledge of base-classifiers to provide robustness guarantees against clean-label
attacks. Specifically, consider an adversary capable of corrupting only the features of a training
sample within an ℓp ball. Under this threat model, the white-box information ρci can denote the
number of samples that must be corrupted to change the prediction of the ith base classifier to class
c. EnsembleCert can aggregate this white-box information from the base classifiers to compute the
number of samples in the entire training dataset that need to be corrupted to alter the prediction of
the ensemble. In this way, EnsembleCert can be adapted to derive white-box certificates for parti-
tion aggregation ensembles under multiple threat models. However, deriving efficient and scalable
white-box clean-label certificates for certifying the base classifiers is still an open challenge.

Related Work. Current ensemble-based poisoning certificates typically use the following ensem-
bling techniques: (i) randomized smoothing (Rosenfeld et al., 2020; Wang et al., 2020; Zhang et al.,
2022; Weber et al., 2023), where the randomization is over the training dataset, (ii) partition-based
aggregation (Levine & Feizi, 2020; Wang et al., 2022; Rezaei et al., 2023), and (iii) bootstrap ag-
gregation (Jia et al., 2021), where the base classifiers are trained on independently sampled subsets
of the training data. None of these works use white-box knowledge of the base classifiers, making
them inherently black-box methods. Apart from the white-box certificates discussed in the introduc-
tion (Sabanayagam et al., 2025; Sosnin et al., 2024), Gosch et al. (2025) is the only other white-box
certification method that certifies NNs against clean-label attacks, notably using the NTK approach
similar to ours and to Sabanayagam et al. (2025). The remaining white-box certificates in the litera-
ture do not extend to NNs and apply to only decision trees (Meyer et al., 2021; Drews et al., 2020),
nearest neighbor models (Jia et al., 2022) or naive Bayes classifiers (Bian et al., 2024).

Conclusion. We introduce EnsembleCert, a framework that leverages model information from
base-classifiers to yield significantly tighter ensemble-level certificates against label-flipping attacks
in polynomial time . To efficiently extract the white-box information, we develop ScaLabelCert, a
framework for the exact certification of sufficiently-wide NNs against label-flipping attacks. ScaL-
abelCert computes exact certificates against label flipping attacks in polynomial time, making it the
first polynomial-time exact certification method that can certify (wide) NNs against data poison-
ing attacks. Through our evaluation of EnsembleCert instantiated with sufficiently wide NNs, we
observe that with robust base-classifiers, the partition aggregation ensemble can achieve stronger
guarantees using notably few partitions, outperforming excessively deep partitioning. This is cru-
cial, as excessively deep partitioning requires training a very large number of base-classifiers, in-
troducing significant computational overhead and limiting scalability. The experiments evaluating
ScaLabelCert on stand-alone models indicate that employing partition aggregation ensembles does
not always bring out the true robustness potential of the chosen base classifier architecture. Over-
all, our findings motivate the development of effective white-box certificates for finite-width neural
networks to bring out the true robustness of a partition aggregation ensemble and to understand the
role of partition-based ensembling itself in achieving strong robustness guarantees.
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6 ETHICS STATEMENT

Our work introduces EnsembleCert and ScaLabelCert, which, for the first time, leverage white-
box information to quantify the worst-case robustness of partition aggregation ensembles of neural
networks against label poisoning. Although such capabilities could, in principle, be misapplied by
adversaries, we contend that understanding these vulnerabilities is essential for the trustworthy and
safe use of neural networks. We therefore hold that the advantages of advancing robustness research
outweigh the potential downsides, and we do not anticipate any immediate risks arising from our
contributions.

7 REPRODUCIBILITY STATEMENT

The full codebase, along with configuration files for every experiment, is available at https://
figshare.com/s/f4ff623f9c47e63b8ef9, which will be made public upon acceptance.

REFERENCES

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In Advances in Neural Information Process-
ing Systems, volume 32, pp. 8139–8149, 2019. URL https://proceedings.neurips.
cc/paper/2019/hash/dbc4d84bfcfe2284ba11beffb853a8c4-Abstract.
html.

Hassan Ashtiani, Vinayak Pathak, and Ruth Urner. Black-box certification and learning under ad-
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A THEORETICAL DETAILS

A.1 THE FORMAL DESCRIPTION OF THE WORST CASE SCENARIO

Recall that the prediction of the partition aggregation ensemble gS(t) is determined by a major-
ity vote over the prediction by the base classifiers f{1,...,Np}: gS(t) = argmaxc∈[K] nc(t), where
nc(t) := |{i ∈ [Np] | fi(t) = c}| is the number of votes received by class c. Ties are resolved deter-
ministically by choosing the smaller index. If we denote gS(t) as c∗, the certificate ρ̃(t) for sample
t, that computes the number of adversarial label flips upto which the prediction of the ensemble will
not change, as derived by black-box treatment of the base classifier is given as:

ρ̃(t) :=
⌊nc∗(t)−maxc′ ̸=c∗(nc′(t) + 1c′<c∗)

2

⌋
.

As each base classifier is treated as a black box, the certificate derivation follows from a key worst-
case assumption: The prediction of certain base classifiers can be altered by a single label flip.
The formal description of the worst-case scenario is given below.

Formalising the worst-case scenario: Let Csec := argmaxc̸=c∗(nc(t) + 1c<c∗). One can think of
Csec as the set of runner-up classes. We define Pmaj as the set of base classifiers that voted for c∗.
The worst-case scenario can be represented as:

∃ c′ ∈ Csec s.t. the prediction of at least ρ̃ + 1 base classifiers in Pmaj can be changed from c∗ to c′

with one label flip in their corresponding partitions. In such a scenario, attacking the corresponding
base classifiers with one label flip each would change the prediction of the ensemble to c′.

Note that the numerator in ρ̃: nc∗ − maxc′ ̸=c∗(nc′(t) + 1c′<c∗), is the difference in the number
of the votes received by the majority class c∗ and c′. Flipping the vote of a base classifier from
c∗ to c′ bridges the gap between c∗ and c′ by 2 votes, explaining the 2 in the denominator. In
light of the worst-case assumption, the reader can now see that the certificate actually calculates
the number of base classifiers whose prediction needs to be flipped in order to change the ensemble
prediction. With white-box knowledge about the base classifiers, we can improve upon the worst-
case assumption, leading to a tighter certificate for the ensemble. One could argue that we need
the white-box information solely about the base classifiers in Pmaj and classes in Csec to challenge
the assumption. The point to note is that if information about Pmaj indicates that the worst-case
scenario cannot be realized, we cannot assume that the adversary will attack partitions only in Pmaj
and change the prediction to a class in Csec. Hence, to derive a tighter certificate, we would need this
information for all base classifiers and classes.

A.2 THEOREM 1: minP1(c) = minP2(c)

Intuition. Recall that P1(c
′) denotes the minimum number of label flips needed to make c′ the

majority class, whereas P2(c
′) denotes the minimum number of label flips needed to make c′ surpass

the current majority class c∗ in number of votes. Intuitively, if c′ is the class that requires the fewest
flips to become the new prediction, then making it just beat c∗ will already make it the majority
class.

Vote Configuration Let Ṽ ∈ {0, 1}Np×K denote the perturbed vote configuration, where ṽci =
1 if partition i votes for class c after label flips, and 0 otherwise. Let V denote the clean vote
configuration. We define O(Ṽ) as the number of label flips required to reach configuration Ṽ
starting from the clean configuration V.

Restatement of P1(c
′). Recall that P1(c

′) is defined as the minimum number of label flips needed
to make c′ the majority class. In Sec. 3.1, the contraint was formulated through the set of inequalities

Np∑
i=1

(
ṽc

′

i − ṽci

)
≥ 1c<c′ , ∀c ̸= c′,

which constraints c′ to be the majority class (with deterministic tie-breaking). For brevity, we
now re-express this condition using the function majVote(Ṽ) := argmaxc∈[K]

∑Np

i=1 ṽ
c
i , as c′ =

majVote(Ṽ) where ties are resolved deterministically by choosing the class with the smaller index.
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With this shorthand notation, we write

P1(c
′) = min

Ṽ
O(Ṽ)

s.t. c′ = majVote(Ṽ),

K∑
c=1

ṽci = 1, ∀i ∈ [Np],

ṽci ∈ {0, 1}, ∀i ∈ [Np], ∀c ∈ [K].

Restatement of P2(c
′). Problem P2(c

′) relaxes the above by requiring c′ to surpass only the original
majority class c∗, instead of all classes:

P2(c
′) = min

Ṽ
O(Ṽ)

s.t.
Np∑
i=1

(
ṽc

′

i − ṽc
∗

i

)
≥ 1c∗<c′ ,

K∑
c=1

ṽci = 1, ∀i ∈ [Np],

ṽci ∈ {0, 1}, ∀i ∈ [Np], ∀c ∈ [K].

Theorem (Restating Theorem 1). min
c′∈[K]\{c∗}

P1(c
′) = min

c′∈[K]\{c∗}
P2(c

′)

Proof. We first state three lemmas and then combine them to prove the theorem.

Lemma 1. ∀c′ ∈ [K] \ c∗, P1(c
′) ≥ P2(c

′).

Proof. The feasible region of P1(c
′) is contained within that of P2(c

′) since the latter has a weaker
constraint. Hence, P2(c

′) can only be smaller (or equal) to P1(c
′).

Lemma 2. ∀c∗1 ∈ argminc′∈[K]\c∗ P1(c
′), P1(c

∗
1) = P2(c

∗
1).

Proof. By contradiction. Suppose P1(c
∗
1) > P2(c

∗
1). Let S̃ be the optimal solution for P2(c

∗
1), i.e.,

O(S̃) = P2(c
∗
1). (2)

Since O(S̃) < P1(c
∗
1), S̃ is not feasible for P1(c

∗
1). As the feasibility for P1(c

∗
1) requires c∗ to be

the majority class, there must exist some c∗s ̸= c∗1 such that c∗s = majVote(S̃). Note that S̃ is feasible
for P1(c

∗
s) as c∗s is the majority class for the vote configuration (S̃), so

O(S̃) ≥ P1(c
∗
s). (3)

Combining (2) and (3) with the assumption that P1(c
∗
1) > P2(c

∗
1) gives P1(c

∗
1) > P1(c

∗
s), contra-

dicting the assumption that c∗1 minimizes P1(c
′).

Lemma 3. ∃z∗ ∈ argminc′∈[K]\c∗ P2(c
′) such that P1(z

∗) = P2(z
∗).

Proof. Let c∗2 ∈ argminc′∈[K]\c∗ P2(c
′) and let S̃ be the vote configuration in the optimal solution

for P2(c
∗
2), i.e,

O(S̃) = P2(c
∗
2). (4)
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Let z∗ = majVote(S̃). Then S̃ is feasible for both P1(z
∗), that requires z∗ to be the majority class

and P2(z
∗), that requires z∗ to have higher votes than c∗, implying

O(S̃) ≥ P2(z
∗) and (5)

O(S̃) ≥ P1(z
∗). (6)

With (4), (5) and the minimality of c∗2, we have z∗ ∈ argminc′∈[K]\c∗ P2(c
′) and O(S̃) = P2(z

∗).
Combining this result with (6) and using Lemma 1.1 we conclude P1(z

∗) = P2(z
∗).

Proof of Theorem 1. Let c∗1 ∈ argminc′∈[K]\c∗ P1(c
′) and z∗ ∈

argminc′∈[K]\c∗ P2(c
′) s.t. P1(z

∗) = P2(z
∗). . Using Lemmas 1.2 and 1.3, we obtain

P1(z
∗) = P2(z

∗) ≤ P2(c
∗
1) = P1(c

∗
1),

which implies
P1(c

∗
1) = P1(z

∗) = P2(z
∗),

thus proving that
min

c′∈[K]\{c∗}
P1(c

′) = min
c′∈[K]\{c∗}

P2(c
′) .

A.3 REDUCTION TO MCKP AND COMPLEXITY ANALYSIS

In this section, we will use the terms base classifiers and partitions interchangeably, and discuss
the optimal attack from an adversary’s point of view to make c′ surpass c∗. Let’s denote the set of
partitions that voted for c∗ originally as Pmaj, the ones that voted for c′ originally as Ptarget and rest
of the partitions as Prest. Formally:

Pmaj = {i ∈ [Np] | vc
∗

i = 1}, Ptarget = {i ∈ [Np] | vc
′

i = 1}, Prest = [Np]\(Ptarget ∪ Pmaj).

The adversary will not attack partitions in Ptarget. If a partition in Prest is attacked, the vote can
change only to c′. Changing the vote to any other class will deem the label perturbation pointless.
Let Ci be the set of classes that partition i could vote for after the optimal attack:

∀i ∈ Prest : Ci = {c ∈ K | c = c′ or vci = 1} , ∀i ∈ Ptarget : Ci = {c′}.

Note that ∀i ∈ [Np], we need the binary variable ṽci only if c ∈ Ci. Attacking a partition in Pmaj
could change the vote to c′ or to the class with the minimal number of flips required for a prediction
change to that class. Formalizing the above notion, we define cmin as: ∀i ∈ Pmaj : cmin(i) =
argminc∈[K]\c∗ ρ

c
i . Given this we have:

∀i ∈ Pmaj : Ci = {c ∈ K | c = c′ or c = cmin(i) or c = c∗}.

We model the constraint C1 :=
∑Np

i=1(ṽ
c′

i − ṽc
∗

i ) ≥ 1c∗<c′ differently. Let d be the original
difference between the number of votes for c′ and c∗: d =

∑Np

i=1(v
c∗

i − vc
′

i ). We define rci to be
the reduction in the gap between c′ and c∗ caused by flipping the vote of partition i to class c. For
partitions in Pmaj, if the vote changes to c′ , the difference will decrease by 2. If the vote goes to
any other class, the reduction is by 1. It is trivial to see that ∀i ∈ Ptarget, c ∈ Ci : rci = 0. We can
similarly define these values for partitions in Prest and get:

∀i ∈ Pmaj, c ∈ Ci : rci =


2 if c = c′

1 else if c = cmin(i)

0 else if c = c∗
, ∀i ∈ Prest, c ∈ Ci : rci =

{
1 if c = c′

0 else

For c′ to have higher number of votes than c∗, the total reduction in the difference should be greater
than or equal to d+ 1c∗<c′ . Remodeling C1 with the above idea, we can reformulate P2(c

′) as:
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P2(c
′) : min

Ṽ

Np∑
i=1

∑
c∈Ci

ρci ṽ
c
i s.t.

Np∑
i=1

∑
c∈Ci

rci ṽ
c
i ≥ d+ 1c∗<c′ ,

∀i ∈ [Np], ∀c ∈ Ci :
∑
c∈Ci

ṽci = 1, ṽci ∈ {0, 1}.

This problem can be easily converted to a MCKP (multiple choice knapsack problem). To arrive
at the excact formulation of MCKP, we need to change the min objective to a max objective and
reverse the sign of the constraint inequality . Note that solving minṽ O(Ṽ) is same as solving
A−maxṽ(A−O(Ṽ)) , where A is a positive constant. We choose the constant A to be Np ∗ ρmax,
where ρmax = maxi∈Np,c∈Ci ρ

c
i . Lets denote P3(c

′) as follows .

P3(c
′) = max

ṽ
(Np ∗ ρmax −

Np∑
i=1

∑
c∈Ci

ρci ṽ
c
i )

s.t. (

Np−1∑
i=0

∑
c∈Ci

rci ṽ
c
i ) ≥ d+ 1c∗<c′ ,∑

c∈Ci

ṽci = 1, ∀i ∈ [Np],

ṽci ∈ {0, 1}, ∀i ∈ [Np], ∀c ∈ Ci

As
∑

c∈Ci
ṽci = 1 , we can rewrite Np ∗ ρmax as (

∑Np−1
i=0

∑
c∈Ci

ρmax ∗ ṽci ) . Using this trick, we
reformulate P3(c

′) as :

P3(c
′) = max

ṽ

Np∑
i=1

∑
c∈Ci

(ρmax − ρci ) ṽ
c
i

s.t. (

Np−1∑
i=0

∑
c∈Ci

rci ṽ
c
i ) ≥ d+ 1c∗<c′ ,∑

c∈Ci

ṽci = 1, ∀i ∈ [Np],

ṽci ∈ {0, 1}, ∀i ∈ [Np], ∀c ∈ Ci

We use the same trick to reverse the sign of the inequality. We will skip through the construction for
the trick as it is exactly the same. Reformulating it finally gives us :

P3(c
′) = max

ṽ

Np∑
i=1

∑
c∈Ci

(ρmax − ρci ) ṽ
c
i

s.t.
Np−1∑
i=0

∑
c∈Ci

(rmax − rci ) ṽ
c
i ≤ Np ∗ rmax − (d+ 1c∗<c′),∑

c∈Ci

ṽci = 1, ∀i ∈ [Np],

ṽci ∈ {0, 1}, ∀i ∈ [Np], ∀c ∈ Ci

As we have explicitly specified the rci values, we can see that rmax is 2. The value of d is upper
bounded by Np as it is the difference in the number of votes. Thus, just as a sanity check, we can
confirm that Np ∗ rmax - (d+ 1) is positive.
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We can define ρeff = ρmax − ρ and reff = rmax − r . Note that reff and ρeff are non-negative.
Hence we have a MCKP with positive weights and profits .

P3(c
′) = max

ṽ

Np∑
i=1

∑
c∈Ci

(ρeff )
c
i ṽ

c
i

s.t.
Np−1∑
i=0

∑
c∈Ci

(reff )
c
i ṽ

c
i ≤ Np ∗ rmax − (d+ 1c∗<c′),∑

c∈Ci

ṽci = 1, ∀i ∈ [Np],

ṽci ∈ {0, 1}, ∀i ∈ [Np], ∀c ∈ Ci

Complexity. The worst case complexity for solving the above problem is O((Np ∗ rmax − (d +

1c∗<c′)) ∗
∑Np

i=1 |Ci|) (Dudzinski & Walukiewicz, 1987). Note that
∑Np

i=1 |C⟩| ≤ 3 ∗ Np. Hence,
the worst case complexity of solving the MCKP for our use case isO(N2

p ). P2(c
′) can be computed

as Np ∗ ρmax − P3(c
′). We derive the certificate for the ensemble by solving P2(c

′) for every class
and finding the minimum. Thus, we derive ensemble-level guarantees by aggregating the white-box
certificates from the base classifiers in O(K ∗N2

p ).
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A.4 SVM SIMPLIFICATION FOR SUFFICIENTLY SMALL C

Theorem (Restating Theorem 2). Given a soft-margin SVM with penalty parameter C, kernel ma-
trix entries Qj

i , and dual solution α to Psvm(y), if

C

max
i∈[n]

n∑
j=1

|Qj
i |

− 1 ≤ 0,

then for all label assignments y ∈ {−1, 1}n we have:

α = C · 1n.

That is, all dual variables are equal to C, independent of the choice of labels.

Proof. We restate the dual formulation of the soft-margin SVM optimization problem for complete-
ness. Given training labels y ∈ {−1, 1}n and kernel matrix entries Qj

i , the dual problem is:

Psvm(y) = min
α

− n∑
i=1

αi +
1

2

n∑
i=1

n∑
j=1

yiyjαiαjQ
j
i

 s.t. 0 ≤ αi ≤ C ∀i ∈ [n].

The gradient of the objective Psvm(y) with respect to αi is:

∂Psvm(y)

∂αi
=

n∑
j=1

yiyjαjQ
j
i − 1.

Over the feasible domain 0 ≤ αj ≤ C ∀j ∈ [n], we can bound the derivative as:

∂Psvm(y)

∂αi
≤ C

n∑
j=1

|Qj
i | − 1.

Now, if C
(
maxi∈[n]

∑n
j=1 |Q

j
i |
)
− 1 ≤ 0,, then for every i ∈ [n]:

∂Psvm(y)

∂αi
=

n∑
j=1

yiyjαjQ
j
i − 1 ≤ 0.

This implies that Psvm(y) is monotonically decreasing in each αi over the feasible set. Hence, the
minimum is attained at the boundary:

αi = C ∀i ∈ [n].

Thus, under the stated condition on C, the solution is α = C · 1n, regardless of the choice of labels
y ∈ {−1, 1}n.

A.5 SCALABELCERT FOR THE BINARY SETTING

Recall that for the binary setting, we wish to find the minimum number of label flips required to
change the prediction of a soft-margin SVM that uses a sufficient small C (as described in App. A.4).
Under sufficiently small C, the SVM prediction p̂t on a test sample t simplifies to p̂t =

∑n
i=1 yiQti.

We denote the perturbed training labels as ỹ. Then, the number of label flips required to get the
perturbed labels ỹ from the clean labels y can be formulated as 1

2

∑n
i=1

(
1−yiỹi

)
. For the prediction

pt to change when the model is trained on the perturbed labels, the sign of the clean prediction p̂t
and the tamperd prediction pt =

∑n
i=1 ỹiQti should be opposite. With this information we can

formulate our objective as:
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O(y) : min
ỹ∈{−1,1}n

1

2

n∑
i=1

(
1− yiỹi

)
s.t. sign(p̂t)

n∑
i=1

ỹiQti < 0.

We show that O(y) can be solved in polynomial time. The intuition being: The labels corresponding
to the largest positive contributions in sign(p̂t)(

∑n
i=1 yiQ

i
t) are the most influential in determining

the prediction, so flipping these labels greedily till the prediction changes is the optimal attack from
the adversary’s point of view.

Proof. We define the prediction margin to be the sum S =
∑n

i=1 sign(p̂t)yiQi
t. Note that S is

always positive as we have included the sign(p̂t) inside the sum. The prediction for the SVM
trained on the perturbed labels ỹ will change when S̃ =

∑n
i=1 sign(p̂t) · ỹiQi

t becomes negative.
Let ai = sign(p̂t) · yi · Qti ∀i ∈ [n]. Thus, S =

∑n
i=1 ai . Flipping a subset of the clean training

labels F ∈ 2[n] to get the perturbed labels ỹ changes the ith term ai to −ai for i ∈ F , resulting in

S̃ = S − 2
∑
i∈F

ai.

The prediction changes when S̃ is negative, i.e,
∑

i∈F ai > S/2. Hence, O(y) reduces to finding
the smallest subset F such that satisfies the above condition.

Greedy algorithm. Construct W = (a1, . . . , an) and sort it in descending order: a(1) ≥ a(2) ≥
· · · ≥ a(n). Let Pk =

∑k
j=1 a(j) be the cumulative sum of the largest k elements. We find the

smallest k′ such that Pk′ > S/2 and construct the set F by including the labels corresponding to
a(1), . . . , a(k′). Note that ∀k < k′ : Pk < S/2. We claim that F is the minimal set that we want and
k is the minimum number of flips required to change the prediction of the SVM. By construction we
ensure that S̃ corresponding to the label flips in F is negative. We prove that that F is the minimal
set by contradiction. Assume there exists a subset F ′ ∈ 2[n] with |F | = m ≤ k′ − 1 such that
flipping the labels in F ′ results in changing the prediction of the SVM , i.e,

∑
i∈F ai > S/2. Note

that
∑

i∈F ai can be only as large as Pk′−1, which is the sum of the k′−1 largest elements in W . But
Pk′−1 is less than S/2 as ∀k < k′ : Pk < S/2. This contradicts the requirement

∑
i∈F ′ ai > S/2.

Thus, F is the minimal subset and k is the minimum number of label flips required to change the
SVM prediction.

Complexity. Sorting W requires O(n log n), and scanning for k is O(n). Hence O(y) is solvable
in O(n log n) time, i.e., in polynomial time. Thus, ScaLabelCert provides a polynomial-time com-
putable exact certificate for sufficiently-wide neural networks, when their NTK is used as the SVM
kernel. The certificate for kernel regression can be derived similarly by replacing Qi

t by (Qeff )
i
t,

where (Qeff )
i
t can be obtained by a minor modification described in Sec. 3.2.
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A.6 EXACT CERTIFICATE FOR MULTICLASS WITHOUT PARTITIONING PROOF

For the multi-class case, we use the one-vs-all strategy by decomposing the problem with K classes
into K separate binary classification tasks. For each class c ∈ [K], a binary classifier is trained to
distinguish between samples of class c and samples from all other classes. Assume that pc is the
prediction score of a classifier for the learning problem corresponding to class c. Then, the class
prediction c∗ for a test sample is constructed by c∗ = argmaxc∈[K] pc. The labels are collected in
the vector y ∈ {0, 1}n×K where yc

i = 1 if the class of the ith sample is c and 0 otherwise. Recall
that for a test sample t, the certificate ˜ρ(t) denotes the maximum number of label flips up to which
the prediction for the classifier does not change. We derive the certificate by finding for every class
c′ ∈ [K], the minimum number of label flips required to change the prediction of the classifier to
a particular class c′, and then taking the minimum over c′. The number of label flips to reach the
perturbed label ỹ from the clean labels y can be represented as

∑N
i=1(1 −

∑K
c=1 y

c
i ỹ

c
i ). For the

class c′ to be the predicted class, the score pc′ for class c′ should exceed the score pc for every other
class c. Using a soft-margin kernel SVM with a sufficiently small C as our base model, the score
pc can be written as pc =

∑N
i=1 y

c
i Qti, . With this information, the minimum number of label flips

required to change the prediction of the model to a particular class c′ can be formulated as:

O1(c
′) : min

ỹ

∑
i∈[N ]

1−
∑
c∈[K]

yci ỹ
c
i

 s.t.
∑
i∈[n]

ỹc
′

i Qi
t >

∑
i∈[N ]

ỹciQ
i
t ∀c ̸= c′,

∀i ∈ [n], c ∈ [K] :
∑
c∈[K]

ỹci = 1 , ỹci ∈ {0, 1}.
(7)

The certificate ρ̃(t) can be calculated as: ρ̃(t) = minc′∈[K]\{c∗} O1(c
′) − 1. O1(c

′) is a Integer
Linear Program(ILP) with n × K binary variables. Hence, the complexity for solving O1(c

′) the
problem isO(2n×K). Consequently, the complexity for deriving ρ̃(t), which is calculated by taking
the minimum over O1(c

′), is O(K × 2n×K). This prompts us to solve a simpler alterative O2(c
′)

instead, that relaxes the constraint in O1(c
′) requiring c′ to be the predicted class:

O2(c
′) : min

ỹ

∑
i∈[N ]

1−
∑
c∈[K]

yci ỹ
c
i

 s.t.
∑
i∈[n]

ỹc
′

i Qi
t >

∑
i∈[N ]

ỹc
∗

i Qi
t ,

∀i ∈ [n], c ∈ [K] :
∑
c∈[K]

ỹci = 1 , ỹci ∈ {0, 1}.
(8)

O2(c
′) calculates the minimum number of label flips needed to make the prediction score pc′ for

class c′ exceed the prediction score pc∗ for the original predicted class c∗. Notably, this relaxation
is similar to the relaxation of P1(c

′) to P2(c
′) in the context of computing the certificate for the

ensemble. Despite the relaxation, we show that the minimum over O1(c
′) is preserved, i.e.:

Theorem 3.
min

c′∈[K]\c∗
O1(c

′) = min
c′∈[K]\c∗

O2(c
′)

The intuition being — while trying to make c′ surpass c∗, if another class c′′ becomes the pre-
dicted class, then changing the classifier prediction to c′′ should be easier compared to c′. As
the design of the relaxation and the intuition are similar to the ensemble case, the proof strat-
egy for this result is exactly the same as Theorem 1. The only difference would be that the no-
tation majVote(Ṽ), that finds the majority class for a vote configuration Ṽ will be replaced by
the majScore notation that predicts the class when the model is trained on the perturbed labels
ỹ, i.e, majScore(ỹ) = argmaxc∈[K]

∑
i∈[n] ỹ

c
iQ

i
t. Hence, we direct the reader to the proof for

Theorem 1 provided in App. A.2. With the above result, we can derive the certificate ρ̃(t) as:
ρ̃(t) = minc′∈[K]\{c∗} O2(c

′)− 1
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Solving O2(c
′). We focus our attention on solving O2(c

′). Recall that O2(c
′) denotes the minimum

number of label flips needed to make the prediction score pc′ for class c′ exceed the prediction score
pc∗ for the original predicted class c∗.

We denote the training samples that were labeled c∗ originally as Pmaj and samples that were labeled
c′ originally as Ptarget. Prest denote the set of remaining samples

Pmaj = {i ∈ [N ] | yc∗i = 1}, Ptarget = {i ∈ [Np] | yc
′

i = 1}, Prest = [n] \ Pmaj ∪ Ptarget

Let d be the original difference between score for c′ and c∗: d =
∑

i(y
c∗

i − yc
′

i )Qti. We define rci
to be the reduction caused by flipping label of the i th sample to class c in the difference between
score for c′ and c∗. For the score pc′ exceed the score pc∗ , the total reduction caused by the label
flipping attack should exceed d. Lets see what these values will be for different i and c. For samples
in Pmaj. For samples that were originally labeled c∗, if the label is flipped to c′ , reduction will be
2 ∗ Qti. If the label is flipped from c∗ to any other class, the reduction is only by Qti as it affects
the score only for c∗. If Qti is positive, flipping the label to c′ will cause the maximum reduction
possible by flipping the ith label. Hence, an optimal attack will flip the ith label to c′ (if it chooses
to flip the label). If Qti is negative, an optimal attack will not flip the label for the ith sample as it
will further increase the gap between c′ and c∗.

∀i ∈ Pmaj, c ∈ [K], rci =


2 ∗Qti if c = c′

0 else if c = c∗

Qti else

For samples in Ptarget. Following a similar line of argument as above, we can safely say that
∀i ∈ Ptarget, if Qti < 0, an optimal attack will flip the label for sample i to c∗ (if it chooses to flip the
label). If Qti is positive, an optimal attack will not flip the label for the ith sample as it will further
increase the gap between c′ and c∗.

∀i ∈ Ptarget, c ∈ [K], rci =


−2 ∗Qti if c = c∗

0 else if c = c′

−Qti else

For samples in Prest. For samples with the true label other than c′ or c∗, if Qti > 0, an optimal
attack will flip the ith label to c′. If Qti is negative, the optimal attack will flip the ith label to c∗, if
it chooses to flip the label.

∀i ∈ Prest, c ∈ Ci, rci =


Qti if c = c′

−Qti if c = c∗

0 else

With this, we can define r(i) as the reduction in the difference between scores for c′ and c∗ in the
optimal attack, if the attacker chooses to flip the ith label: ∀i ∈ [N ], r(i) = maxc∈[K] r

c
i . Note

that if ri is 0 , the ith label will not be flipped. Hence we define the set of candidates for flipping the
labels as Ef : Ef = {i ∈ [N ] | r(i) > 0}
We employ a greedy strategy similar to the one used in the computation of the certificate for the
binary case (App. A.5). We first sort the candidate flipping labels Ef based on their r(i) values in
the descending order,i.e., r(1) ≥ r(2) ≥ . . . . Let Pk =

∑k
j=1 r(j) be the cumulative sum of the

largest k elements. We find the smallest k′ such that Pk′ > d and construct Gk′ by including the
indices corresponding to the k′ largest r(i) values. We claim that k′ is the minimum number of label
flips required to make the score for c′ exceed c∗ and Gk′ is the minimal set of the labels that need to
be flipped to make it happen. The greedy algorithm is illustrated in Algorithm 1.

We prove optimality by contradiction. Recall that Gk = {(1), . . . , (k)} is the greedy choice of k
largest r(i) and Pk =

∑k
j=1 r(j). Suppose there exists a set F ⊆ Ef with |F | = m ≤ k′ − 1

such that flipping labels in F achieves the objective, i.e,
∑

i∈F r(i) > d. But Gm consists of the m
largest r(i), so

∑
i∈F r(i) ≤∑

i∈Gm
r(i) = Pm ≤ Pk′−1 ≤ d, a contradiction.
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Algorithm 1 Greedy Certificate Computation
Input: Score gap d, reductions r(1), . . . , r(n)
Output: Minimum number of flips k

1: total red← 0
2: sorted← sort(r, descending)
3: i← 0
4: while total red < d do
5: total red← total red + sorted[i]
6: i← i+ 1
7: end while
8: return i

Complexity. Sorting based on the reduction values takesO(n log n), and scanning for the minimal
k′ takes O(n). Solving O2(c

′) for all c′ ∈ [K] \ c∗ can be done in O(Kn log n), resulting in a
polynomial-time exact certificate for test sample t: ρ̃(t) = minc′ ̸=c∗ O2(c

′)− 1.
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A.7 EXTRACTING WHITE-BOX KNOWLEDGE FOR THE MULTI-CLASS SETTING

Recollect that EnsembleCert utilizes the white-box knowledge ρci for all base classifiers i ∈ [Np]
and all classes c ∈ [K] where ρci denotes the minimum number of flips required to change the
prediction of the ith base classifier to c. For each base classifier, using a soft-margin kernel SVM
with a sufficiently small C as our base model, we formulate the problem of finding the minimum
number flips required to change the prediction of the classifier to c′ is formulated as:

O1(c
′) : min

ỹ

∑
i∈[N ]

1−
∑
c∈[K]

yci ỹ
c
i

 s.t.
∑
i∈[n]

ỹc
′

i Qi
t >

∑
i∈[N ]

ỹciQ
i
t ∀c ̸= c′,

∀i ∈ [n], c ∈ [K] :
∑
c∈[K]

ỹci = 1 , ỹci ∈ {0, 1}.
(9)

The above problem is an ILP with n × K binary variables, resulting in a computational complex-
ity of O(2nK). For each base classifier, we need to solve this problem for all classes. Consider
an ensemble with Np base classifiers. We would need to solve Np × K ILPs with the computa-
tional complexity of O1(c

′), making the problem intractable. Hence, instead of solving the problem
O1(c

′) exactly, we bound the problem efficiently, and show that our bounds are sufficiently tight on
empirical evaluation.

A.7.1 LOWER BOUND

For the purpose of computing the exact certificate for the multiclass case in the no partition case, we
formulated an alternate problem O2(c

′) (Eq. (8)), a relaxed version of O1(c
′) which only requires

the score pc′ for class c′ to exceed the score pc∗ for class c∗. We showed in App. A.6 that O2(c
′) can

be solved in polynomial time. As the constraint set of O2(c
′) is a subset of O1(c

′), the solution for
O2(c

′) will always be less than or equal to O1(c
′). Hence, O2(c

′) represents a valid lower bound on
O1(c

′), that is polynomial-time calculable. Notably, O2(c
′) is also a certificate by definition, as it is

a lower bound on the certified radius.

A.7.2 UPPER BOUND

To compute a valid upper bound on O1(c
′), finding an instance of perturbed labels ỹ that satisfies

the constraints of O1(c
′), i.e, majScore(ỹ) = c′, is sufficient. The number of label flips needed to

reach any such ỹ from the clean labels y represents a valid upper bound on O1(c
′). To compute

this upper bound efficiently, we adopt a greedy strategy that iteratively flips training labels to reach a
feasible solution of Eq. (1). At the beginning of each iteration, we compute the current majority class
c∗ = argmaxc Sc, where Sc =

∑n
i=1 ỹ

c
iQ

i
t is the score of class c. Note that c∗ may change after

each label flip, and our method accounts for this by re-evaluating c∗ and all per-sample damages
di after every label flip. Let S(2) = maxc∈[K]\c∗ Sc denote the score of the runner-up class. For
each sample i, we define the per-sample damage di as the maximum possible reduction in the gap
between c′ and the majority class achievable by flipping i:

di =



min
(
2Qi

t, Q
i
t + Sc∗ − S(2)

)
, if ỹc

∗

i = 1 and Qi
t > 0,

min
(
2|Qi

t|, |Qi
t|+ Sc∗ − S(2)

)
, else if ỹc

′

i = 1 and Qi
t < 0,

Qi
t, if ỹc

∗

i = 0, ỹc
′

i = 0, and Qi
t > 0,

0, otherwise.

Intuitively, di captures the maximal contribution that flipping sample i can make toward satisfying
the class-change constraint of Eq. (1).

Cases explained
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1. Case 1(ỹc
∗

i = 1, Qi
t > 0): Flipping a positively contributing c∗-labeled sample to c′ both

reduces Sc∗ and increases Sc′ , leading to a decrease of 2Qi
t. The possibility that the runner-

up class becomes the majority is considered by the term Qi
t + Sc∗ − S(2), which accounts

for the score gap to the second-highest class.

2. Case 2 (ỹc
′

i = 1, Qi
t < 0): Flipping a negatively contributing c′-labeled sample to c′ helps

both by increasing Sc′ and decreasing Sc∗ , giving a decrease of 2|Qi
t|. The possibility of

runner-up class becoming the majority class is handled as above.
3. Case 3 (neutral sample, Qi

t > 0): Flipping such a sample to c′ only increases Sc′ , so the
reduction in the gap is exactly Qi

t.

In each iteration, we select i⋆ = argmaxi di, flip the corresponding label to c′ or c∗, re-evaluate
the majority class, and repeat this process until c′ becomes the majority class. Hence, by design,
the greedy algorithm results in a feasible ỹ satisfying Eq. (1), and the number of flips performed
constitutes a valid upper bound on O1(c

′). Our greedy approach is illustrated in Algorithm 2.

Complexity. We choose the label to flip by calculating the possible reduction each label flip can
cause in the gap between c∗ and c′, and choosing the one that causes the maximum reduction. This
involves scanning the dataset at every iteration. Hence the worst case complexity in computing the
upper bound for O1(c

′) is O(n2).

Algorithm 2 Greedy Upper Bound Computation for O1(c
′)

1: Input: Clean labels y, kernel entries corresponding to the ith training sample and test sample
t: Qi

t ∀i ∈ [N ], target class c′
2: Output: Upper bound on O1(c

′) (number of label flips)
3: Initialize ỹ← y

4: Compute Sc =
∑N

i=1 ỹ
c
iQ

i
t for all c ∈ [K]

5: c∗ ← argmaxc Sc

6: while c∗ ̸= c′ do
7: S(2) ← maxc̸=c∗ Sc

8: for i = 1 to N do
9: if ỹc

∗

i = 1 and Qi
t > 0 then

10: di ← min
(
2Qi

t, Q
i
t + Sc∗ − S(2)

)
11: else if ỹc

′

i = 1 and Qi
t < 0 then

12: di ← min
(
2|Qi

t|, |Qi
t|+ Sc∗ − S(2)

)
13: else if ỹc

∗

i = 0 and ỹc
′

i = 0 and Qi
t > 0 then

14: di ← Qi
t

15: else
16: di ← 0
17: end if
18: end for
19: i⋆ ← argmaxi di
20: if ỹc

′

i∗ = 1 then
21: ỹc

∗

i∗ ← 1
22: else
23: ỹc

′

i∗ ← 1
24: end if
25: Update Sc =

∑N
i=1 ỹ

c
iQ

i
t for all c ∈ [K]

26: c∗ ← argmaxc Sc

27: end while
28: return Number of flips applied to reach ỹ
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B DETAILS OF RANDOMIZED SMOOTHING INTEGRATION

B.1 SMOOTHED LINEAR CLASSIFIER AS THE BASE MODEL

In addition to ScaLabelcert for sufficiently wide networks, we use the method from Rosenfeld et al.
(2020) for certification of base classifiers. Their approach uses a smoothed linear classifier as the
base classifier. The smoothing process involves independently flipping each label with probability q
and assigning a flipped label uniformly at random among the remaining K − 1 classes. To certify
robustness, the method bounds the probability that this randomized classifier switches its prediction
from one class to another.

B.2 PREDICTION BY THE SMOOTHED CLASSIFIER

The method by Rosenfeld et al. (2020) computes, for each pair of classes (c, c′), a Chernoff bound
pc,c′(q) that gives an upper-bound on the probability that the randomized classifier switches its
predicted class from c to c′ under the randomized label flips.

For each class c, the method evaluates
max
c′ ̸=c

pc,c′(q)

and defines the predicted class as

c∗ = arg min
c∈[K]

max
c′ ̸=c

pc,c′(q),

B.3 COMPUTING THE CERTIFICATE

The certified radius r is obtained by plugging the worst-case probability bound maxc′ ̸=c∗ pc∗,c′(q)
into the robustness guarantee from a result in Rosenfeld et al. (2020), giving

r ≤ log
(
4p(1− p)

)
2(1− 2q) log

(
q

1−q

) ,
where p = maxc′ ̸=c∗ pc∗,c′(q). This bound guarantees that if at most r labels were flipped byt the
adversary, the smoothed classifier would still predict c∗.

B.4 ADAPTATION FOR OUR USE CASE

We follow the same prediction rule to obtain c∗, However, instead of computing the radius that
certifies that the prediction will not change to any other class, we focus on certifying robustness
against a specific target class c′. This is because our objective is to compute the minimum number
of label flips required to change the prediction of a base classifier to every class. This white-
box information is then used by EnsembleCert to construct a white-box infused certificate for the
ensemble.

Concretely, we use the pairwise Chernoff bound pc∗,c′(q) and compute

rc′ ≤
log

(
4pc∗,c′(1− pc∗,c′)

)
2(1− 2q) log

(
q

1−q

) ,

which gives the number of label flips required to change the prediction specifically from c∗ to c′.
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C ADDITIONAL PLOTS

C.1 ACCURACY TRADEOFF FOR SMALL C

Recall that the key to obtaining polynomial-time computable certificates for ScaLabelCert is choos-
ing a sufficiently small value of C. We show that the clean accuracy remains competitive under our
choice of C. To study this, we perform 5-fold cross-validation for different values of C. For every
number of partitions, the accuracy initially remains constant up to a certain threshold, indicating
the range of sufficiently small C, as SVM performance does not depend on C in this regime. The
results for CIFAR-10 are shown in Fig. 4. We do not evaluate on MNIST, as for our chosen kernel
and RotNet preprocessing, the threshold for sufficiently small C is significantly larger.
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Figure 4: Trade-off for using small C

C.2 ROBUSTNESS TRENDS ACROSS λ FOR ENSEMBLECERT WITH KERNEL REGRESSION

We study the effect of the L2 regularization parameter λ on certified robustness. For low λ, the
MCR increases with the number of partitions across all datasets. In contrast, for high λ, the certi-
fied robustness appears to be negatively affected by increasing the number of partitions. The
contrasting behavior potentially arises due to the varying degree of robustness that the choice of λ
imparts the base classifier. Low λ makes kernel regression unstable, causing base classifiers to be
easily influenced by a few label flips, even with large partitions. In this regime, the ensemble is
closer to the black-box assumption - that a single label flip can change a base classifier’s prediction
- even when the number of partitions is small, resulting in white-box certificates that aren’t much
tighter than the black-box ones. In contrast, using a high degree of regularization exhibits a substan-
tial improvement in the certified accuracy on white-box infusion. Fig. 6 shows how the robustness
trend changes with varying λ for CIFAR-10. While at λ = 0.01, the median certified robustness
scales almost linearly with the number of partitions, the trend completely changes by the time we
reach λ = 100. Empirical analysis suggests that the nature of the trend changes somewhere between
λ = 1 and λ = 5. Interestingly, the change in trend also points towards the possibility that for
some value between λ = 1 and λ = 5, the median certified robustness could exhibit invariance to
the number of partitions, a phenomenon we observed with kernel SVMs. Similar behavior is seen
for experiments on MNIST as well (Fig. 5). As we mentioned in Sec. 4, the threshold λ, where the
behavior changes is data dependent.
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Figure 5: Robustness trends across different λ values on MNIST using kernel regression.
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(b) λ = 0.1
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(c) λ = 1
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(d) λ = 5
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(e) λ = 10
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Figure 6: Robustness trends across different λ values on CIFAR-10 using kernel regression.

C.3 MNIST 1-VS-7

Kernel Regression. We present results for evaluation using kernel regression with NTK and the ℓ2
regularization parameter λ = 0.1 in Fig. 7.
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Figure 7: MNIST binary kernel regression with λ = 0.1 results for different number of partitions.

Kernel SVM
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We present results for evaluation using kernel SVM with NTK and a sufficiently small C in Fig. 8.
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Figure 8: MNIST binary kernel SVM results for different number of partitions.

MCR results Consistent with the results on MNIST and CIFAR10, Fig. 9 demonstrates the invari-
ance of median certified robustness to the number of partitions, for both kernel Reg and kernel SVM
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(b) MNIST 1-vs-7: Reg

Figure 9: Invariance to number of partitions
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C.4 CIFAR-10

Kernel Regression

For low values of λ, the base classifier by itself is not robust and is closer to the worst-case black
box assumption described in App. A.1. Consequently, we do not see a significant improvement
on utilizing white-box knowledge of the base classifiers. This is illustrated in Fig. 10 , where we
evaluate EnsembleCert using kernel regression as base classifier and a low regularization parameter
λ = 0.01. In contrast, using a high degree of regularization changes the trend as mentioned in the
experiments section. In this case, we see a substantial improvement in the certified accuracy on
white-box infusion. The results on using a high lambda can be seen in Fig. 11.
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Figure 10: CIFAR-10 kernel regression results for different numbers of partitions (λ = 0.01).
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Figure 11: CIFAR-10 kernel regression with high regularization (λ = 10).
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Kernel SVM

Substantial improvement can be observed in certified accuracy on white-box infusion, as seen in
Fig. 12.
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Figure 12: CIFAR-10 kernel SVM results for different numbers of partitions.

Smoothed linear classifier

Similar to kernel regression and kernel SVM, substantial improvement is observed in certified accu-
racy on white-box infusion, as shown in Fig. 13.
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Figure 13: CIFAR-10 Smoothed linear regression as base-classifier
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C.5 MNIST

Kernel Regression

We analyze the low and high regularization parameter λ on MNIST. Similar to CIFAR-10, we ob-
serve that for low values of λ, the base classifier by itself is not robust and is closer to the worst-case
black box assumption described in App. A.1. Consequently, we do not see a significant improve-
ment in utilizing white-box knowledge of the base classifiers. This is illustrated in Fig. 14 using low
λ = 0.0001. In contrast, using a high degree of regularization changes the trend. In this case, we
see a substantial improvement in the certified accuracy on white-box infusion. The results on using
a high lambda can be seen using high λ = 0.1 in Fig. 15.
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Figure 14: MNIST multi-class kernel regression results for different numbers of partitions (λ =
0.0001).
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Figure 15: MNIST multi-class kernel regression results for different numbers of partitions (λ = 0.1).
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Kernel SVM

Results showing substantial improvement in the certified accuracy on white-box infusion for kernel
SVM are observed in Fig. 16.
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(c) Partitions = 60
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(d) Partitions = 120
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(e) Partitions = 150
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(f) Partitions = 200
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(g) Partitions = 300
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(h) Partitions = 400
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(i) Partitions = 600

Figure 16: MNIST multi-class kernel SVM results for different numbers of partitions.
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