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Abstract
Learning 3D graph with spatial position as well
as node attributes has been recently actively stud-
ied, for its utility in different applications e.g.
3D molecules. Quantum computing is known
a promising direction for its potential theoretical
supremacy for large-scale graph and combinato-
rial problem as well as the increasing evidence for
the availability to physical quantum devices in the
near term. In this paper, for the first time to our
best knowledge, we propose a quantum 3D em-
bedding ansatz that learns the latent representation
of 3D structures from the Hilbert space composed
of the Bloch sphere of each qubit. Specifically,
the 3D Cartesian coordinates of nodes are con-
verted into rotation and torsion angles and then
encode them into the form of qubits. Moreover,
Parameterized Quantum Circuit (PQC) is applied
to serve as the trainable layers and the output of
the PQC is adopted as the final node embedding.
Experimental results on two downstream tasks,
molecular property prediction and 3D molecular
geometries generation, demonstrate the effective-
ness of our model. We show the capacity and
capability of our model with the evaluation on
the QM9 dataset (134k molecules) with very few
parameters, and its potential to be executed on a
real quantum device.

1. Introduction
Graph representation, or specifically 3D graph represen-
tation as considered in this paper, has received extensive
attention over the last decade. Beyond tasks like node
classification or link prediction, it further facilitates vari-
ous downstream applications such as molecular property
prediction (Liu et al., 2021) and drug design (Gaudelet
et al., 2021). Recently, machine learning approaches have
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been well developed for learning latent node embedding
on molecules (Schütt et al., 2017; Unke & Meuwly, 2019;
Gasteiger et al., 2019; 2021). However, the mainstream of
such researches is still facing the challenges of better pro-
cessing the 3D Cartesian coordinates and learning the latent
representation of the 3D graph structure.

On the other hand, there are also emerging lines of re-
searches in the area of quantum computing. State-of-the-
art quantum computing hardwares are now stepping into
the Noisy Intermediate-Scale Quantum (NISQ) era, which
leads to the possibility to implement applications in specific
scientific domains in the near term (Preskill, 2018; Arute
et al., 2019; Zhong et al., 2020; Huang et al., 2020). The
overlap between quantum computing and machine learn-
ing has emerged as one of the most encouraging areas for
quantum computing, as termed by quantum machine learn-
ing (Biamonte et al., 2017). Quantum paradigms or hybrid
paradigms have been carefully designed to fulfill quantum
supremacy in quantum chemistry problems (Aspuru-Guzik
et al., 2005; O’Malley et al., 2016). Existing approaches
mainly focus on the quantum simulation of molecular ener-
gies, which enables effective prediction of chemical reaction
rates. However, these quantum approaches (Romero et al.,
2018; Peruzzo et al., 2014; O’Malley et al., 2016; Yung
et al., 2014) are still simulating the energies of certain small
molecules like H2, LiH, BeH2, etc.

In this paper, we aim to develop a full quantum algorithm,
and shed lights on quantum machine learning approaches
solving molecular problems instead of showing supremacy
over the classical molecule learning approaches. The pro-
posed method is totally different from the mainstream quan-
tum approach Unitary Coupled Cluster (UCC), which is
a unsupervised learning approach with uniquely designed
circuit for each molecule. Graph learning may not be as
precise as molecular simulation approaches for property
prediction, but they have the ability to learn hundreds or
thousands of molecules and predict the properties for more
complex molecules.

Specifically, we first convert the 3D Cartesian coordinates
of the atoms into three geometries: distance, rotation angle,
and torsion angle. Then we encode the angles and distance
as well as the atom type (a discrete variable), into qubits. A
distance threshold is used so that each time a focal atom is
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picked to learn the embedding, one only need to consider
the neighboring atoms within the threshold, which forms a
group of atoms similar to the definition of moiety. Limited
by the computational power to simulate the quantum circuits,
we are only able to simulate a circuit of 16 qubits, which
means we can have a maximum of 7 neighbors for each
focal to learn the representation. Analog to the hardware
efficient ansatz (Kandala et al., 2017; Huang et al., 2021),
we apply a Parameterized Quantum Circuit (PQC) after the
encoding stage. The trainable parameters are the θs of the
rotation gates Rx and Ry in the PQC. The gradient of each
parameter θ is calculated by the shifting technique (Mitarai
et al., 2018), and those parameters are updated by gradient
backpropagation analog to classical neural networks. We
apply a Pauli-Z measurement at the end of the circuit and
then take it as the node embedding. We conducted numer-
ical experiments on the QM9 dataset for both molecular
property prediction task and molecular geometries gener-
ation task. Experimental results show that compared with
classical state-of-the-art baseline models, our quantum 3D
embedding model achieves comparable results with much
fewer network parameters and much faster convergence rate.
Our contributions are as follows:

1) To the best of our knowledge, we are the first to use
qubits to encode 3D relative positional information, which
aims to effectively preserve the property of equivariance
and invariance. In fact, using a qubit on a Bloch sphere to
encode the rotation and torsion angle of two atoms is more
intuitive than using 3D Cartesian coordinates, which is also
supported by the success of spherical representation on not
only in molecules but also point clouds in recent studies.

2) The proposed method is fully capable of being executed
on a NISQ device. We are using angle encoding for state
preparation, hardware efficient ansatz to learn the embed-
ding, Pauli-Z measurement to obtain the final embedding,
and parameter shift rule to update the gradients. Moreover,
we use two qubits to represent each atom, and we only
consider the focal atom and its neighbors at each iteration,
which makes the proposed method also very efficient in the
usage of qubits (only 16 qubits are needed by now).

3) The numerical experiments on two different well-studied
molecular tasks show that our embedding approach is able
to extract geometry and neighborhood information with
very few parameters (384 parameters in the PQC) and can
achieve relatively good results. The fact that we are able
to process all 134k molecules from QM9 demonstrates the
capacity of our model.

2. Preliminaries and Related Works
We first briefly review basic concepts of quantum comput-
ing as well as quantum machine learning, especially the

Variational Quantum Eigensolver method Unitary Coupled
Cluster which is designed for estimating ground-state en-
ergy of molecules. We further present previous works on
quantum graph learning.

2.1. Quantum Computing

In quantum computing, qubit (abbreviation of quantum bit)
is a key concept which is similar to a classical bit with a
binary state. The two possible states for a qubit are the
state |0〉 and |1〉, which correspond to the state 0 and 1
for a classical bit respectively. We refer the readers to the
textbook (Nielsen & Chuang, 2002) for comprehension of
quantum information and quantum computing. Here we
give a compact description of background.

A quantum state is commonly denoted in bracket notation.
It is also common to form a linear combinations of states,
which we call a superposition: |ψ〉 = α|0〉 + β|1〉. For-
mally, a quantum system on n qubits is an n-fold tensor
product Hilbert spaceH = (C2)⊗d with dimension 2d. For
any |ψ〉 ∈ H, the conjugate transpose 〈ψ| = |ψ〉†. The
inner product 〈ψ|ψ〉 = ||ψ||22 denotes the square of the 2-
norm of ψ. The outer product |ψ〉〈ψ| is a rank 2 tensor.
Computational basis states are given by |0〉 = (1, 0), and
|1〉 = (0, 1). The composite basis states are defined by e.g.
|01〉 = |0〉 ⊗ |1〉 = (0, 1, 0, 0).

Analog to a classical computer, a quantum computer is built
from a quantum circuit containing wires and elementary
quantum gates to carry around and manipulate the quantum
information. A quantum gate is a unitary operation U on
Hilbert space H. When we simulate the quantum circuit
on a classical computer, we can obtain the overall unitary
transformation by tensoring and multiplying those unitary
gate operators together.

A projective measurement is described by an observable,
M , a Hermitian operator on the state space of the system
being observed. The observable has a spectral decomposi-
tion, M =

∑
mmPm, where Pm is the projector onto the

eigenspace of M with eigenvalue m. When measuring the
state |ψ〉, the probability of getting results m is given by
p(m) = 〈ψ|Pm|ψ〉.

2.2. Quantum Machine Learning

(Cerezo et al., 2021) proposed the concept of Variational
Quantum Algorithms (VQA), which leverages quantum ad-
vantages to solve machine learning problems on a near-term
quantum device. Then, Parameterized Quantum Circuits
(PQC) are the concrete implementation of certain VQA. For
each qubit we have rotation operator Rx(θ) which rotate
through angle θ (radias) around the x-axis. A PQC is mainly
composed of Rx(θ), Ry(θ) and Rz(θ) with θ as the param-
eters. The parameters θ are updated by a classical optimizer
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to minimize the loss function L(θ) which evaluates the dis-
similarity between the output of PQC and the target result.
The derivative of the i-th parameter θ(i) can be computed
by using the shifting technique proposed by (Mitarai et al.,
2018). It requires running the whole circuit twice but with
shifting θ(i) to θ(i) + π/2 and θ(i)− π/2

∂L
(
θ)

∂θ(i)
=

1

2
×
(
L
(
θ(1), · · · ,θ(i) +

π

2
, · · ·

)
− L

(
θ(1), · · · ,θ(i)− π

2
, · · ·

))
(1)

Also using gradient backpropagation, classical learning
models are adapted into their quantum version, e.g.
QCNN (Cong et al., 2019), QRNN (Bausch, 2020),
QGAN (Huang et al., 2021), QLSTM (Chen et al., 2022),
and etc, which yet show that the quantum counterparts on
NISQ device may not be as powerful as the SOTA classical
ones (usually with millions of parameters). Involving quan-
tum computing is an interesting experiment to seek potential
supremacy and the connection between latent space and the
mystery quantum entanglement.

2.3. Unitary Coupled-cluster

One of the most promising area to demonstrate the quan-
tum computing supremacy is quantum chemistry. There
have been continuous work in this research area and the
mainstream of these work is Unitary Coupled-Cluster
(UCC) (Romero et al., 2018; Peruzzo et al., 2014; O’Malley
et al., 2016; Yung et al., 2014). UCC focused on solving
the time-independent Schrödinger equation for molecular
system to predict the chemical properties. The coupled-
cluster theory is used to obtain the Hamiltonian of a certain
molecule and then use Trotter-Suzuki decomposition to ap-
proximate the Hamiltonian on a quantum circuit. The param-
eters in the rotation gates allow us to train for the minimal
ground-state energy. This method provides a hierarchy of
wave functions that can be prepared on a quantum computer.
It is believed that UCC can provide better accuracy than
classical coupled cluster (Wierschke, 1994; Hoffmann &
Simons, 1988; Bartlett et al., 1989), which is also regarded
as the ”gold standard” of quantum chemistry (Bartlett &
Musiał, 2007). However, UCC is an unsupervised learn-
ing method with no ground truth and can only evolve one
molecule at a time since the circuit is uniquely designed for
a certain molecule. There are also evidence showing that
the number of parameters in UCC might be still too large to
allow practical calculations for large molecules.

2.4. Quantum Graph Learning

Different from evolving Hamiltonian and solving the
Schrödinger equation with the quantum circuit, we also
have quantum graph learning approaches trying to learn

the latent representation of the vertex and the graph. A
hierarchical architecture based on quantum random walks
is employed to extract multi-scale properties of the graph
(Dernbach et al., 2018). However, it is vague that how to
efficiently construct the diffusion matrix from the quantum
states generated by the quantum walkers. The information
aggregation is performed by the classical system, which fur-
ther incurs additional expenses as a consequence of the inter-
action between quantum and classical environment. (Zhang
et al., 2019) and (Ai et al., 2022) suggest to exploit the quan-
tum Hilbert space to rebuild the quantum representation of
the graph in the quantum state. But the number of qubits
to represent a graph with its node attributes scales linearly
with the number of nodes, and the encoding strategy is not
carefully designed. (Bai et al., 2021) and (Chen et al., 2021)
develop a hybrid graph learning model which consists of
quantum layer and classical layer aimed at reflecting richer
graph characteristics. But they both lack formal justifica-
tions for the quantum model selections, which lead us to
question whether the quantum layer is necessary. Thus, we
propose a full quantum paradigm with quantum friendly
encoding specially designed for molecular problems.

3. Methodology
3.1. Problem Setting and Approach Overview

Problem Setting. In this paper, we aim to develop a quan-
tum machine learning approach for learning node embed-
ding with node-wise 3D coordinates. We take molecules
with 3D graph structures as an example. Let G denotes the
graph of a certain molecule and V denotes the node set of
graph G. The number of nodes (in other words atoms) is
n = |V|. Each node vi ∈ V has an attribute ai, which is the
atom type in our setting. Our target is to learn the embed-
ding for each atom and then obtain the final embedding for
the molecule. The embeddings are then tested on different
molecular tasks (e.g. molecular property prediction, 3D
molecular geometries generation, etc.).

Method Overview. We develop a quantum machine learn-
ing approach to learn the embedding on 3D graph. The
trainable parameter refers to the θ in those rotation gates in
the PQC. Specifically, we first encode the 3D coordinates
and the atom types into qubits. We use relative coordi-
nates instead of the 3D Cartesian coordinates to ensure both
equivariance and invariance. The relative coordinates can
be written in the form of a position tuple (d,θ,ϕ), where
d,θ and ϕ denote the radial distance, polar angle, and the
azimuthal angle, respectively. We set up a distance thresh-
old to pick the neighbors which can interact with the focal
atom. A PQC is then used to learn the latent variables and
entangle the qubits together. We further apply a tomography
at the end of the PQC and then concatenate the real part and
the imaginary part. The overall pipeline is shown in Fig. 1.

3



Quantum 3D Graph Learning with Applications to Molecule Embedding

x

y

z

θ

φ

d

In
p

u
t 

L
ay

er

E
n

ta
n

gl
em

en
t 

L
ay

er

…

T
ra

in
ab

le
 L

ay
er

E
n

ta
n

gl
em

en
t 

L
ay

er

T
ra

in
ab

le
 L

ay
er

(𝑑) Parameterized Quantum Circuit

atom type

(𝑓) 3D Molecular Geometries Generation

position tuple

R
ea

l P
ar

t

(𝑒) Molecular Property Predicition

embedding
multilayer 
perceptron prediction

Im
ag

in
ar

y
 P

ar
t

𝑄1

𝑄2

𝑄𝑁−1

𝑄𝑁

(𝑏)

(𝑎)

(𝑐)

Figure 1. The quantum 3D embedding scheme. (a) The 3D molecular graph with the gray node (in the black circle) is picked as the
focal atom and three white nodes within the distance threshold as the neighbors. (b) We convert the 3D Cartesian coordinates of the
atoms into the relative position tuple (d,θ,ϕ). (c) We encode the position tuple as well as the atom type into two qubits for each atom.
(d) The PQC for our model, the input layer includes Rx and Ry on each qubit, which encodes the up mentioned data. Trainable layers with
parameters θs and entanglement layers are applied alternately to analog the classical machine learning layers. (e) The task of property
prediction. We use the embeddings from the PQC to predict chemical properties and compare them with the labels. (f) The task of 3D
molecular geometries generation. We generate a molecule from scratch based on autogressive flow model with picking one focal atom and
then deciding the relative position.

3.2. The Proposed Atom2Qubit

Considering a molecule with n atoms, we take it mathemati-
cally as a graph G with n nodes. For each node vi, we have a
corresponding attribute ai, which denotes the atom type and
a 3D Cartesian coordinate set {xi, yi, zi}. Without loss of
generality, we first pick vi as the focal atom and learn the em-
bedding of node vi. The distance between vi and other nodes
vj ∈ V is dij =

√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2.

Note that not all of the node pairs in the graph have inter-
action in the pairs, we set a maximum distance threshold
dmax as a hyperparameter. So that vj ∈ N (vi), if i 6= j
and dij ≤ dmax, which means only the nodes vj with
dij ≤ dmax are considered as the neighbors of vi. We then
need to convert the 3D Cartesian coordinates of vj ∈ N (vi)
into the position tuple (dij ,θij ,ϕij). The calculation of
rotation angle θ and torsion angle ϕ are using the spher-
ical coordinate system as stated in (Liu et al., 2021) to
ensure the invariance and equivariance of the molecules.
Now each node vj ∈ N (vi) can be uniquely defined by
{aj , dij ,θij ,ϕij}.

When we encode classical information into the quantum

form, we have many different ways. Two main streams
of quantum encoding is the amplitude encoding and angle
encoding. The amplitude encoding can encode a classical
one-hot vector of dimension n with only log2(n) qubits, but
it is quite hard to encode continuous variables while requires
O(n) times to encode the information. On the contrary, the
angle encoding requires a minimum of n/3 qubits to encode
n classical information, but it is capable of encoding both
discrete and continuous variables. Furthermore, the angle
encoding is a better fit for the rotation parameters in the
circuit. In this paper, we pick angle encoding as our way to
encode the information set {aj , dij ,θij ,ϕij} into qubits.

For each qubit, we have three rotation operators Rx, Ry and
Rz. We can theoretically encode three different pieces of
information on one qubit. However, if we consider the qubit
on a Bloch sphere, we can uniquely define the rotation track
on the Bloch sphere using only two dimensions of rotation
operators. To avoid the decomposition of the third input,
we only use two of the rotation operators Rx and Ry in this
paper (Rz does not change the outputs of our measurement
method). Therefore, we need two qubits |Ψ1〉 and |Ψ2〉 to
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Figure 2. The circuit for our quantum 3D embedding ansatz. Each
layer includes trainable parameters block Ul and entanglement
block Uent. We have N qubits in the circuit so there are 3 ×N
parameters in each layer. The entanglement layer is composed of
CNOT gates to pairwisely entangle all the N qubits.

encode each node vj ,

|Ψ1〉 = Ux(θij)×Uy(ϕij)× |0〉 (2)

|Ψ2〉 = Ux(
dij
dmax

× 2π)×Uy(
aj

anum
× 2π)× |0〉 (3)

where anum denotes the number of atoms occurred in the
dataset and aj is an integer ∈ [1, anum]. |Ψ1〉 ⊗ |Ψ2〉 is the
quantum encoding state of one node generated from initial
state |00〉. If n = |vi ∪N (vi)|, the initial state |Ψ0〉 for the
PQC in Sec. 3.3 after the Atom2Qubit encoding stage is

|Ψ0〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ · · · ⊗ |Ψ2n−1〉 ⊗ |Ψ2n〉 (4)

3.3. Quantum 3D Embedding Ansatz

We first discuss the number of qubits we need for our ap-
proach on molecule problems. Each time we learn the em-
bedding of node vi, we need to encode the information
of vi ∪ N (vi) into qubits. Therefore the qubit number is
linear with the size of N (vi). The interaction between
atoms in a molecule is bounded by the bond length between
atoms. As the bond length increases, the interaction be-
comes much weaker. This gives us the possibility to run the
test on an existing near-term quantum device. Therefore,
we choose hardware-efficient ansatz that has been proved
on a superconducting quantum processor with six fixed-
frequency transmon qubits by (Kandala et al., 2017) and
a 66-bit superconducting quantum processor Zuchongzhi
by (Huang et al., 2021).

Analog to classical neural networks, the PQC is constructed
by layers and each layer has an identical arrangement of
quantum gates. Fig. 2 shows the general framework of the
quantum 3D embedding ansatz. The overall unitary is

U(θ) =

L∏
l=1

(
UentUl(θ)

)
(5)

where Uent is the entanglement layer and Ul(θ) is the l-th
trainable layer. In particular, we have the l-th trainable layer

Ul(θ) =

2N⊗
k=N+1

(
Uz(θ

(k,l)
z )

)
×

N⊗
k=1

(
Uy(θ

(k,l)
y )

)
(6)

×
N⊗
k=1

(
Uz(θ

(k,l)
z )

)
where Uz is the unitary of gate Rz and θ(k,l)z is the parameter
for Rz at the l-th layer on the k-th qubit. The entanglement
layer Uent consists of CNOT gates and it entangles the
adjacent qubits together shown in Fig. 2. The quantum state
|Ψl〉 after l layers is

|Ψl〉 = Uent ×Ul ×
(
· · ·
(
Uent ×U1|Ψ0〉

))
(7)

The quantum state |Ψ0〉 is the initial state, which is also the
output of the Atom2Qubit stage.

With the parameters θ(k,l)z and θ(k,l)y , we can learn the la-
tent representation of each node. Note that the model we
proposed is a graph representation learning model, thus we
need to further attach downstream tasks to test the efficiency
of our model, and the loss function is also obtained from the
downstream model. The loss function L which is employed
to optimize the trainable parameters θ = θ

(k,l)
z � θ(k,l)y ,

where � is concatenation, for our modelM it yields:

min
θ
L(Mθ(|Ψ0〉)) (8)

The parameters θ are then updated at each iteration by gra-
dient decent from Eq. 1.

The essence of the ansatz is to learn a unitary transformation
from the input quantum state (which is the encoded tuple) to
the output quantum state (which is the embedding we need).
Therefore, we need an embedding ansatz with enough ex-
pressivity. We first discuss why we use the combination of
RzRyRz in the trainable layer.

Lemma 3.1. Any single-qubit quantum gate U can be de-
composed into a sequence of Rz, Ry and Rz gates, and a
phase (Barenco et al., 1995).

U = eiαRz(θ2)Ry(θ1)Rz(θ0) (9)

Proof. The matrices of all the basic quantum rotation gates
are unitary. Therefore, U can be rewritten as

U = eiα
[
a −b∗
b a∗

]
= eiαV, (10)

where i is the imaginary unit, a, b are complex numbers,
and α is a real number. Notice that the determinant of V
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satisfies detV = aa∗ + bb∗ = |a|2 + |b|2 = 1 (* denotes
the conjugate operator). Then, we have

detU = e2iα detV = e2iα. (11)

α =
1

2
arctan 2

(
Im(detU),Re(detU)

)
. (12)

where Re denotes the real part and Im denotes the imagi-
nary part. Now we decompose the unitary matrix V whose
determinant is 1 with parameterized rotation gates Ry and
Rz:

Ry =

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
, Rz =

[
e−i θ2 0

0 ei θ2

]

V =

[
e−i θ22 0

0 ei θ22

] [
cos θ12 − sin θ1

2

sin θ1
2 cos θ12

][
e−i θ02 0

0 ei θ02

]

=

[
e−i θ0+θ2

2 cos θ12 −ei θ0−θ2
2 sin θ1

2

ei θ2−θ0
2 sin θ1

2 ei θ0+θ2
2 cos θ12

]
.

(13)
Let each element of the 2 by 2 matrix V be denoted as
follows:

V =

[
V00 V01
V10 V11

]
(14)

Hence, we can derive the angles of rotation gates:

θ1 =2 arccos |V00|,
θ0 + θ2 =2 arctan 2

(
Im(|V11|),Re(|V11|)

)
,

θ2 − θ0 =2 arctan 2
(

Im(|V10|),Re(|V10|)
)
,

θ0 = arctan 2
(

Im(|V11|),Re(|V11|)
)

− arctan 2
(

Im(|V10|),Re(|V10|)
)
,

θ2 = arctan 2
(

Im(|V11|),Re(|V11|)
)

+ arctan 2
(

Im(|V10|),Re(|V10|)
)
.

(15)

Therefore, U is decomposed into a sequence of Rz, Ry and
Rz gates, and a phase.

Theorem 3.2. Any single-qubit quantum gate U can be
decomposed into a set of RzRyRz and phase shift gates.

Proof. Based on Lemma 3.1, we just need to decompose
eiα into a set of RzRyRz and the phase shift gates P:

U = eiαV =

[
eiα 0
0 eiα

]
V

=

[
eiα 0
0 e−iα

] [
1 0
0 e2iα

]
V

= Rz(−2α)P(2α)V

= Rz(−2α)Ry(0)Rz(0)P(2α)V

= Rz(−2α)Ry(0)Rz(0)P (2α)Rz(θ2)Ry(θ1)Rz(θ0).
(16)

We ignore the impact of phase as consensus. With the above
theorem, RzRyRz can represent any single qubit gate. Thus,
we use the combination of RzRyRz in the training layer.

3.4. Atom Embedding

The quantum circuit we mentioned above is an N qubit cir-
cuit and it works in a 2N dimensional Hilbert space. There-
fore, the quantum state in this Hilbert space can be written
as a vector ∈ C2N×2N . Each time we execute the quantum
circuit, we can obtain a vector ∈ {0, 1}N . In order to avoid
quantum state tomography, which is time consuming, we
apply a Pauli-Z measurement at the end of the circuit to
extract the information from quantum superposition. An-
other reason to use the Pauli-Z measurement is that this
kind of measurement keeps the output dimension linear to
the number of qubits we use. The final embedding at the
dimension of 2N might be too large if the circuit width N
gets larger.

We apply a Pauli-Z measurement for each qubit, and thus,
the embedding after measurement is an N dimensional real
vector. To obtain the embedding, we need N different
Hamiltonian, which is constructed by the following way:

Hi =
( i−1⊗
k=1

I
)
⊗ σz ⊗

( N⊗
k=i+1

I
)

(17)

where 1 ≤ i ≤ N , Hi denotes the i-th Hamiltonian with
a Pauli-Z measurement at the i-th qubit. The output of
Hamiltonian Hi is:

Ei = 〈Ψl|Hi |Ψl〉 (18)

where Ei ∈ R. By applying this set of N Hamiltonians, we
can obtain the final embedding E by concatenating all the
N dimensions of Ei.

Remarks on the NISQ device. We have been dedicated
to design a quantum molecular learning algorithm that is
capable of running on the NISQ device. Therefore, all the
circuits are designed for the purpose of hardware efficient.
For the data encoding part, we use angle encoding to avoid
the state preparation difficulty. The embedding ansatz is
hardware efficient which means all the rotation gates are
easy to conduct on a quantum device and all the entangle-
ment CNOT only connects two adjacent qubits. The readout
of the circuit is using Pauli-Z measurement to avoid state
tomography which is time consuming. The gradients are up-
dated through the parameter shift rule as in Eq. 1. Thus, we
can conclude that the proposed method is fully executable
on a NISQ device.
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Table 1. Performance comparison between the baselines and our proposed method on QM9 in terms of MAE and the std. MAE for all
twelve properties. We also list the number of parameters we need for all the methods.

Property Unit SchNet DimeNet++ SphereNet ComeNet EGNN Ours

εHOMO meV 41 24.6 22.8 23.1 29.0 28.9
εLUMO meV 34 19.5 18.9 19.8 25.0 27.1
∆ε meV 63 32.6 31.1 32.4 48.0 42.7
U0 meV 14 6.32 6.26 6.59 11 8.98
U meV 19 8.02 6.26 6.82 12 9.01
H meV 14 7.90 6.36 6.86 12 8.80
G meV 14 8.11 6.33 7.98 12 9.84

#params — 455,809 1,887,110 1,898,566 4,185,857 745,224
18,566 (linear predictor)

384 (quantum circuit)

4. Experiments
4.1. Protocols

All the experiments are performed on a single machine
with 1TB memory, one physical CPU with 28 cores In-
tel(R) Xeon(R) W-3175X CPU @ 3.10GHz), and two GPUs
(Nvidia Quadro RTX 8000). The source code is written by
PyTorch, and we use TorchQuantum (Wang et al., 2022a)
as the quantum simulator. Note that all our models are
not implemented on quantum hardware yet, but the model
and the circuit we proposed are easy to adapt to NISQ de-
vices. To test the performance of our embedding model,
we perform numerical experiments on two different tasks
and compare the results with state-of-the-art classical 3D
molecular representation learning models.

Dataset. The benchmark is QM9 (Ramakrishnan et al.,
2014), which is widely used for predicting various properties
of molecules and 3D molecules generating tasks. It includes
quantum chemistry structures and properties of up to 134k
stable small organic molecules. These molecules consist
of up to 9 heavy atoms CONF, not counting hydrogen, and
their corresponding 3D molecular geometries are computed
by density functional theory (DFT).

4.2. Molecular Property Prediction

We first conduct experiments on the task of molecular prop-
erty prediction to evaluate our embedding model. The down-
stream model we used is a simple multilayer perceptron
predictor, which can perform linear regression on the em-
beddings from the embedding model.

Setting. We follow the experimental setting as (Liu et al.,
2021). The dataset is split into training/validation/test sets.
The training set contains 110,000, the validation set contains
10,000, and the test set contains 10,831 molecules. Train-

Table 2. Performance on three properties in QM9 with different
number of qubits.

Property 10 qubits 12 qubits 14 qubits 16 qubits

εHOMO 39.7 38.6 35.6 28.9
εLUMO 47.1 34.8 29.1 27.1
∆ε 49.7 54.2 41.6 42.7

ing molecules are used to optimize the model parameters.
The validation molecules are used to fine-tune the hyper-
parameters as well as conduct the early stopping, and then
we report the results on test molecules. We select 7 energy
related properties out of 15 provided ones. The scales of
the values of all 15 properties vary too much, so we only
test on a subset of them. The other properties might need
a preprocessing to renormalize the values before training.
In line with (Liu et al., 2021), we report the mean absolute
error (MAE) for all these seven properties.

Baselines. To the best of our knowledge, there are no other
quantum models considering representation learning for 3D
graphs, thus we compare our method with five baselines in
the classical domain: the seminal work in SE(3)-invariant
NN: SchNet (Schütt et al., 2017), DimeNet++ (Klicpera
et al., 2020), SphereNet (Liu et al., 2021), ComENet (Wang
et al., 2022b), and SE(3)-equivariant GNN: EGNN (Sator-
ras et al., 2021). The results are extracted from the original
papers since we are using the exact same experimental set-
ting as these baselines, and more baselines can be directly
obtained from (Wang et al., 2022b; Satorras et al., 2021).

Prediction model. The obtained embeddings are fed to a
simple predictor, which is a multilayer perceptron reducing
the size of the embedding from N to 1. We use stochastic
gradient descent (SGD) with Adam optimizer (Kingma &
Ba, 2014) to train our model for a maximum of 100 epochs
with a batch size of 32 and a learning rate 0.01.
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Table 3. Performance on 500 randomly generated molecules for chemical validity and MMD distances of bond length distributions.

MMD distances ↓
Method Validity ↑ H-C H-N H-O C-C C-N C-O Average

G-SphereNet 68.55% 0.161 0.280 1.104 0.399 0.438 0.277 0.443
Ours 67.00% 0.237 0.409 0.770 0.326 0.407 0.378 0.421
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Figure 3. Training loss on the prediction task of QM9-∆ε.

Results. The results of the property prediction task are pre-
sented in Table 1. As illustrated in the table, we achieve
comparable results with all the classical baselines. We no-
tice that there is still a gap between our results and the SOTA
baselines. As stated in Sec. 2.2, QML algorithms barely take
SOTA classical ML algorithms as their baselines. Moreover,
we need to take into account the number of parameters we
use when evaluating the efficiency of the model. We can see
that our results are very close to EGNN, which uses 745,224
parameters. Our model uses only 384 rotation parameters
in the quantum circuits and 18,566 parameters in linear pre-
dictor (the rotation parameters are not defined exactly the
same as conventional parameters in neural networks, thus
we list them separately).

To further illustrate how the qubit number will affect the
results, we vary the qubit number from 10 to 16 and list
the results in Table 2. We can involve more neighbors of
the focal atom by increasing the number of qubits, which
is believed to bring in more neighboring information. The
results verify that adding more qubits, which means more
neighbor nodes, do increase the predicting accuracy.

Moreover, our model converges faster than the classical
baselines. As illustrated in Fig. 3, our model requires very
few epochs to converge. We omit the comparison between
the running time of each epoch since it varies a lot from the
simulator to a NISQ device. We think it is not convincing
to report the inference time per epoch on the simulator
against all the baseline methods. To sum up, the results can

demonstrate the efficiency and the capability of the proposed
quantum model.

4.3. 3D Molecular Geometries Generation

This study evaluates the performance of our proposed em-
bedding model when adapted to the existing random molec-
ular geometry generation method. To be more specific, the
embeddings from our model are used to extract 3D condi-
tional information in the generation process.

Setting. We use filtered QM9 for evaluation to save the
training time. Different from using the whole QM9 dataset,
we select 806 molecules that contain no more than 10 atoms
to form our dataset, 50 of them are used for validation and
the remaining are used for training. The generated molec-
ular geometries can be converted to molecular graphs ac-
cording to the approach proposed in (Gebauer et al., 2019).
As for metrics, we use the chemical validity percentage
(Validity) which is defined as the percentage of molecu-
lar graphs that obey the chemical valency rules to evaluate
the generation accuracy. In addition, we adopt Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012) distances
of bond length distributions to evaluate the 3D structural
accuracy of the generated molecular geometries. We cal-
culate the length distribution in the generated geometries
and in the dataset geometries separately for each type of
bond, then we can obtain the statistical discrepancy between
them with the MMD distance. In line with (Luo & Ji, 2022),
we compute the MMD on hydrogen-carbon single bonds
(H-C), hydrogen-nitrogen single bonds (H-N), hydrogen-
oxygen single bonds (H-O), carbon-carbon single bonds
(C-C), carbon-nitrogen single bonds (C-N), carbon-oxygen
single bonds (C-O) these six types of chemical bonds re-
spectively as they are most frequently appeared.

Baseline. We use G-SphereNet (Luo & Ji, 2022) as the base-
line in this molecular geometries generation task. We select
G-SphereNet produced by the same group as SphereNet,
which uses SphereNet as the embedding model to extract
3D conditional information.

Generation Model. As for generation model, we employ
the same generation pipeline as G-SphereNet, which adopts
a flexible sequential generation strategy by adding atoms in
3D space one by one based on autoregressive flow models.

8



Quantum 3D Graph Learning with Applications to Molecule Embedding

We use Adam optimizer to train the our model for 100
epochs, with a batch size of 64 and a learning rate of 0.001.
Also, we set the maximum number of atoms that can be
generated for each molecule as 13.

Results. We present the performance of our model against
G-SphereNet in Table 3. We reach comparable results with
baseline model on QM-gen. More specifically, our model
slightly outperforms the baseline model on MMD distances
for 3 types of bond length, which shows that our method
bears a strong capability of extracting the 3D conditional
information of molecular geometries.

5. Conclusion
3D information is important for graphs such as molecules in
quantum chemistry and learning the 3D representation for
those graphs has attracted increasing attention. Existing clas-
sical models face the inherent challenge of understanding
the physical meaning of the 3D Cartesian coordinates. To
our best knowledge, we are the first to use qubits to encode
3D spatial information and use a Parameterized Quantum
Circuit (PQC) to learn the representation of each node as the
embedding. Experiments on two well-studied downstream
tasks show the efficiency and capability of our model, and
the potential to execute on real quantum devices.

Limitation & future works. Our method is limited by the
time consumption when simulating quantum circuits, while
superconducting NISQ device is entering the 50+ qubit
era (Gong et al., 2021), which gives us the confidence to
test our model on one of them. Meanwhile, the noise on the
gates are not fatal with such shallow circuits. We will keep
working on this model and try to execute this algorithm on
superconducting quantum processors.
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A. Discussion about Barren Plateau
Barren Plateau is a commonly faced problem for all the quantum machine learning methods. We have to admit that barren
plateau is an infamous problem that haunts the development of quantum neural networks. However, according to (McClean
et al., 2018), barren plateau will occur when the number of quantum layers is larger than 50 (with the number of qubit at 8),
which is much more than the number of layers we use in our experiments (4 layers of rotation and entanglement). Apart
from that, the Hardware Efficient Ansatz (HEA) we use to learn the latent embedding is a well-known and well-studied
quantum ansatz, which has also been proved on real quantum devices (see also section 3.3). HEA to quantum neural network
is just like fully-connected layer to the classical neural network. Thus, we omit the theoretical analysis of convergence.

B. More Insights and Motivation
This work might not be very innovative from a classical NN perspective, but it is a new branch in quantum computing to
learn from molecules. It is totally different from the mainstream quantum ml approach UCC and saves us the effort to
simulate a Hamiltonian when using Bessel function etc in classical learning. We use the neighbors of a focal atom to learn
the embedding, which is similar to the definition of moieties. With the help of type, angles, and distance, we can encode the
whole group of atoms around the focal atom into a quantum presentation. The core of our method is more like subgraph
matching instead of message passing or GCN.

Classical algorithms using 3D coordinates can be summarized into two main categories. The first one is directly using them
as three real numbers and concatenating them as a new dimension of the atom feature. Another one is using the spherical
Bessel function to pre-process the coordinates. However, the spherical wave function or Bessel function is in the form of a
Hamiltonian (or to be more specific a Unitary) which is a perfect fit for quantum computing. If we encode the coordinates as
well as the distance and atom type into qubits, the circuit can be performed as a trainable Unitary. Setting all the encoding
and training processes into a quantum version seems to be more suitable for such a problem.

C. Discussion about the Bond Length
It might be a concern that we do not include 2-hop messages in the experiments. We do realize that 2-hop messages are very
important in quantum properties. But 2-hop messages can significantly increase the number of qubits we need. 1-hop is the
atoms directly linked by the chemical bond, and the number is closely related to valence. With the maximum degree of 5,
we can use 12 qubits to encode the whole group of atoms around the focal atom. If we take 2-hop messages into account, we
might need a maximum of 42 qubits to encode the whole neighborhood. We are unable to simulate the quantum circuits over
14 qubits with our classical computing unit. We use the neighbors of a focal atom to learn the embedding, which is similar
to the definition of moieties. With the help of type, angles, and distance, we can encode the whole group of atoms around
the focal atom into a quantum presentation. The core of our method is more like subgraph matching instead of message
passing or GCN, which is commonly used in SE(3)-invariant GNNs. As for the super parameter bond length in the paper,
we set it as 1.77 so that all the direct links by the chemical bond are included in the neighborhood.
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