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ABSTRACT

Drawing inspiration from human learning behaviors, this work proposes a novel
approach to mitigate catastrophic forgetting in Prompt-based Continual Learning
models by exploiting the relationships between continuously emerging class data.
We find that applying human habits of organizing and connecting information
can serve as an efficient strategy when training deep learning models. Specifi-
cally, by building a hierarchical tree structure based on the expanding set of la-
bels, we gain fresh insights into the data, identifying groups of similar classes
could easily cause confusion. Additionally, we delve deeper into the hidden
connections between classes by exploring the original pretrained model’s behav-
ior through an optimal transport-based approach. From these insights, we pro-
pose a novel regularization loss function that encourages models to focus more
on challenging knowledge areas, thereby enhancing overall performance. Ex-
perimentally, our method demonstrated significant superiority over the most ro-
bust state-of-the-art models on various benchmarks. Our code is available at
https://anonymous.4open.science/r/HierC-089B/.

1 INTRODUCTION

Continual Learning (CL) (Wang et al., 2024; Lopez-Paz & Ranzato, 2017) is a research direction
focused on realizing the human dream of creating truly intelligent systems, where machines can
learn on the fly, accumulate knowledge, and operate in constantly changing environments as a hu-
man’s companion. Despite the impressive capabilities of A.I systems, continual learning remains
a challenging scenario due to the tendency to forget obtained knowledge when facing new ones,
known as catastrophic forgetting (French, 1999). In dealing with this challenge, traditional CL
methods often rely on storing past data for replaying during new tasks, which can raise concerns
about memory usage and privacy. To overcome this limitation, recent methods proposed leveraging
the generalizability of pre-trained models (Han et al., 2021; Jia et al., 2022) as frozen backbones to
solve sequences of CL tasks (Wang et al., 2022c; Smith et al., 2023; Li et al., 2024).

While these pre-trained-based methods have demonstrably achieved impressive results, only con-
sider forgetting caused by changes in learned prompts or differences between the (prompt-based)
models chosen for training and testing (Wang et al., 2023; Tran et al., 2023; Zhanxin Gao, 2024).
Further completing those arguments, we show that forgetting of old knowledge also comes from the
uncontrolled growth of new classes in the latent space. That is, models are confused in distinguish-
ing between old and new classes, which many methods overlook when training tasks independently
(Smith et al., 2023; Wang et al., 2022d). Furthermore, we find that current approaches only utilize
limited information from the training dataset and treat class labels equally during training, result-
ing in missing opportunities to further enhance model representations and mitigate forgetting more
effectively.

In addition, we find that human natural learning behavior has many valuable aspects, especially the
habit of analyzing data, organizing them in a meaningful way, and finding connections between old
and new knowledge (Schön, 1983; Bransford et al., 2000; Sweller, 1988; Mayer, 2005), thereby
improving the ability to understand, remember, and reproduce information. Inspired by this, we
investigate the characteristics of current common benchmark datasets as well as the behavior of
pre-trained-based CL models, showing that the incoming data classes over time can always be cat-
egorized into consistent groups. Each such group usually includes class data with similar semantic
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characteristics, which is easy to get confused by models and should be paid special attention to
during training.

Therefore, we propose a training strategy that constantly considers emerging data in groups, follow-
ing a hierarchical tree-like taxonomy developed based on expert/domain knowledge. During training
new tasks, the model references information from old classes in the tree. Especially, the feature ex-
tractor is encouraged to maximally contrast and distinguish concepts/labels within the same group,
promoting the learning of common features that can be transferred to new concepts/labels in the
same group in future tasks. This strategy not only mitigates forgetting when new classes emerge
but also consolidates domain-specific knowledge. Furthermore, we observe that images belonging
to concepts/labels within the same group in the hierarchical taxonomy share strong visual and se-
mantic correlations, leading to overlapping representations in the latent space, which compromises
performance. By encouraging the feature extractor to separate and contrast the representations of
images in these concepts/labels more distinctly, we effectively reduce the overlap of easily confused
classes, thereby improving performance.

Contribution. We name our method as Exploiting Hierarchical Taxonomies in Prompt-based
Continual Learning (TCL), and summarize our main contributions as follows:

• We introduce a new perspective to explain the reason for catastrophic forgetting in
pretrained-based Continual learning models, which potentially comes from the uncon-
trolled growth of incoming classes on the latent space.

• Originating from the research findings of Cognitive Science, we propose a novel approach
to reduce forgetting by exploiting relationships between data. By dynamically building
label-based hierarchical taxonomies and leveraging the initial behavior of the pretrained
model, we can identify the challenging knowledge areas that further focus, and determine
how to learn them during the sequence of tasks. Based on this taxonomical structure, our
testing strategy further improves model performance.

• We empirically evaluate the effectiveness of our method against current state-of-the-art
pre-trained-based baselines across various benchmarks.

Organization. The rest of the paper is structured as follows. In Section 2, we present related work.
Then in Section 3, we formulate the problem and introduce a new perspective to explain the cause of
forgetting in CL models. Section 4 transitions from the motivation provided by Cognitive Science
insights to the proposed training and testing strategy, emphasizing the importance of exploiting
relationships between class data. Section 5 presents the experimental results, and finally, we discuss
the limitations and suggest future directions in Section 6.

2 RELATED WORK

Class Incremental Learning. This is one of the most challenging and widely studied CL scenarios
(Van de Ven & Tolias, 2019; Wang et al., 2023), where task identity is unknown during testing, and
data of previous data is inaccessible during current training (Masana et al., 2023; Rebuffi et al.,
2017; Hou et al., 2019; Guo et al., 2022). This work follows the setting of CIL and proposes a novel
approach to mitigate forgetting and improve performance for prompt-based CL models.

Prompt-based Continual Learning. This line of work exploits the power of pre-trained backbone
to quickly adapt to the sequence of downstream tasks by updating just a small number of parameters
(prompts). Initial work like Wang et al. (2022d;c); Smith et al. (2023) typically assign a set of
prompts to tasks, enhancing the adaptability of the backbone to downstream tasks. However, the
absence of explicit constraints can lead to feature overlapping between classes from different tasks.
Therefore, recent methods employ some types of contrastive loss (Wang et al., 2023; Li et al., 2023)
or utilize Vision Language models (Wang et al., 2022a; Nicolas et al., 2024) to better separate
features from tasks. However, they treat all classes equally during training, missing the opportunity
to learn in challenging areas where classes have many similarities and are easily confused. In this
work, we propose a novel approach to exploit the relationships within data, allowing the model to
recognize groups of these classes, and develop a deeper understanding of the respective knowledge
areas, thereby reducing forgetting and enhancing its ability to learn new tasks.
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3 CLASS INCREMENTAL LEARNING AND FORGETTING IN PROMPT-BASED
MODELS

3.1 PROBLEM FORMULATION AND NOTATIONS

We consider the Class Incremental Learning setting (Zhou et al., 2024; Lopez-Paz & Ranzato, 2017;
Wang et al., 2023), where a model has to learn from a sequence of T visual classification tasks
without revisiting old task data during training or accessing task IDs during inference. Each task t ∈
{1, ..., T} has a respective dataset Dt, containing nt i.i.d. samples (xit, y

i
t)
nt

i=1. Let Dc = (Xc, Yc)
denote the data corresponding to the class label c.

In this work, we design our model as a composition of two components: a pre-trained ViT backbone
fΦ and a classification head hψ . That is, we have the model parameters θ = (Φ, ψ). Similar to
other existing prompt-based methods, we incorporate into the pre-trained ViT a set of prompts P .
We denote the overall network after incorporating the prompts as fΦ,P .

3.2 FORGETTING IN PROMPT-BASED CONTINUAL LEARNING

In CL models, changes in the dataset, including inputs X in the input space X and labels Y in the
label space, Y lead to the changes of model’s behavior (feature shift) and thus model’s performance
on previously learned tasks to decrease significantly (i.e., catastrophic forgetting). Current prompt-
based CL methods, which leverage the power of pretrained models, attribute forgetting/feature shift
either to (I) changes in parameters from the backbone when using the common prompt pool P for
all tasks (Wang et al., 2022d;c) or to (II) the inherent mismatch between the models used at training
and testing. Specifically, let t̂(x) and t(x) as the chosen promptID and the ground-truth promptID
for x, respectively. We may have fθ̂t = fΦ,Pt̂

̸= fθt = fΦ,Pt because there are chances that
the promptID t̂ ̸= t, where t̂ is predicted by pretrained backbone fΦ (Figure 1a), as discussed and
analyzed in Zhanxin Gao (2024); Tran et al. (2023). To complement these views, below we provide
an empirical study to offer new insights about the reason for forgetting in this type of model, which
arises from overlapping between old and new class representations.

Firstly, to completely eliminate concerns about changing learned parameters, we consider methods
that propose using a distinct set of prompts Pt to a specific task t. Then, the remaining potential
factor of forgetting by feature shift is the difference between the prompt chosen at inference time and
the one used during training (i.e., Pt ̸= Pt̂). Thus, we conduct experiments on HiDE (Wang et al.,
2023) (i.e., the latest SOTA in prompt-based CL) to measure the differences between the features
formed when using these two prompts. Particularly, we consider x ∈ D1 that belongs to the first task
and measure the L2 Wasserstein distance W2(Q, Q̂) (Kantorovich, 1939) between Q (i.e., the latent
distribution corresponding to Pt, which consists of fΦ,Pt(x)

(x) for x ∼ D1) and Q̂ (i.e., the latent
distribution corresponding Pt̂ after learning the last task, consists of fΦ,Pt̂(x)

(x) for for x ∼ D1).
The results in Table 1 show that the difference of these distributions is apparently negligible in many
cases.

For a closer look, besides the main classification head hψ used for all classes so far, at the end of
each task t, we set up a specific classifier st optimized on the frozen latent space ofDt and then kept
fixed. From now on, we refer to the accuracy measured on Dt using st as ’within task accuracy’,
and the accuracy using hψ as ’true accuracy’ of this task. The results in Figure 1b, show that
within task accuracy of the first task stays almost unchanged, which concurs with our observation
on the negligible shift between fΦ,Pt̂(x)

(x) and fΦ,Pt(x)
(x). Meanwhile, we observe a significant

decrease in the corresponding true performance in Figure 1c, raising the question of whether we
have overlooked additional factors contributing to final forgetfulness (Figure 1d), beyond the issue
of selecting incorrect task prompts during inference.

Considering the inference feature space of fΦ,Pt̂(x)
(x), we can see that as more tasks arrive, the

number of classes increase, making the space fuller and increasing the possibility of overlap be-
tween class distributions. To demonstrate this point, we provide t-SNE visualization of class repre-
sentations in Figure 4 and the respective illustration in Figure 5. In particular, after Task 1, we have
representations of ”oak tree”, ”mouse” and ”porcupine” located in quite separate locations. How-
ever, when Task 2 and then Task 3 arrive, the appearance of ”willow tree” and ”pine tree” makes the
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(a) PromptID accuracy

Sup21K DINO

Split-Imagenet-R 3.23× 10−6 5.8× 10−4

Split-CIFAR100 2.46× 10−6 4.7× 10−4

Split-CUB-200 2.15× 10−6 4.24× 10−3

Table 1: Distribution shift.
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Figure 2: Empirical study about forgetting (HiDE). (a) Average accuracy of promptID prediction
for all tasks; (b) Accuracy of the first task over time, using classification head s1; (c) Accuracy of
the first task over time, using classification head hψ; (d) Average accuracy on all tasks so far, after
learning each task. Table 1 (Distribution shift) reports L2 Wasserstein distance between the latent
distributions corresponding to Pt and Pt̂ of data task 1, after learning the final task.

latent space become fuller, and ”oak tree” no longer maintains the separation from the remaining
classes as before and even its representation may even be misassigned to other classes, leading to a
remarkable drop in performance.

Therefore, another key cause of catastrophic forgetting in prompt-based continual learning (CL)
that should be recognized is the addition of new classes, which gradually fills the latent space and
overlaps with existing ones. This overlap causes confusion in distinguishing between classes, thus
reducing performance over time. While existing CL methods emphasize the importance of repre-
sentation learning to keep classes distinct, none explicitly acknowledge the overlap between new
and old tasks as a source of forgetting. Recognizing this motivates us to propose a novel method,
focusing on identifying easily confused class pairs, thereby reducing forgetting and improving per-
formance.

4 PROPOSED METHOD

In the previous section, we noted that increased overlap in data representations as more tasks arrive is
one of the main reasons for greater confusion in predictions, leading to performance degradation. It
is crucial to identify easily confused classes/concepts to effectively enhance their distinguishability.
Inspired by cognitive science studies (Schön, 1983; Bransford et al., 2000; Mayer, 2005), showing
that organizing concepts in a tree-like taxonomy of visually and semantically related items aids
memory and retrieval, we propose using expert/domain knowledge to structure the concepts/labels of
continual learning (CL) tasks in a hierarchical taxonomy. Interestingly, we find that concepts/labels
within the same group in this taxonomy tend to be visually and semantically similar, potentially
causing more overlap in the latent space and confusion for the CL classifier. Motivated by this
observation, we propose group-based contrastive learning to maximize the distinguishability of these
concepts/labels.

4.1 MOTIVATION

Insights from Cognitive Science. Research in Cognitive Science highlights the importance of
reflection, organization, and linking information as critical components of effective learning. Studies
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show that when learners take time to reflect on their experiences, they deepen their understanding
and enhance retention (Schön, 1983). This reflective practice encourages individuals to connect new
information with existing knowledge, fostering a more integrated learning experience (Bransford
et al., 2000). Moreover, organizing information into coherent structures, such as outlines or concept
maps, allows learners to see relationships between concepts, making it easier to retrieve information
later (Mayer, 2005). Linking new material with relevant prior knowledge—often referred to as
associative learning—further strengthens memory retention (Sweller, 1988) and also benefits future
learning.

Our Approach. It is evident that besides reflection, comparison of old and new information, the
key factor in learning efficiently is to organize and exploit them in an insightful way, where concepts
are linked and arranged according to their semantic meanings. This observation motivates us to de-
velop a deep learning classifier that learns labels or concepts structured in a hierarchical taxonomy.
The aim is to enable the classifier to grasp relevant concepts more effectively, helping to mitigate
the challenge of catastrophic forgetting. More specifically, we propose structuring the data labels
in a hierarchical taxonomy, which can be dynamically constructed using domain expertise, adapt-
ing as needed based on the specific context and evolving understanding of the domain. Based on
this structure, we establish a reference framework for the relationships between classes, identifying
which classes belong to the same group with many shared characteristics, easily confused due to
overlap, and require more focus (see Figures 3, 4). This approach not only helps the model better
avoid forgetting, but also reinforces knowledge to facilitate future learning.

Root

Natural

Man-made

Animals

Plants

Environment

Mammals

"mouse", "porcupine",four-legged

"woman", "man"
two-legged

Aquatic

Reptiles
"trout", "aquarium_fish", 

Task 1
Task 2
Task 3

 "dolphin", "flatfish", "crab"

"otter", "hamster"

"shark", "seal", "lobster",

"oak_tree", "pine_tree""willow_tree",

Figure 3: The hierarchical taxonomy obtained when learning Task 3 on Split-CIFAR100.
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(a) Training tasks independently with LCE
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Figure 4: t-SNE visualization of classes within leaf groups of Four-legged animals (• circular points)
and Plants (▲ triangular points) when learning Task 3, Split-CIFAR100.
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Taking the learning process of Split-CIFAR100 as an example, when training on task t = 3, we
can construct a tree-like taxonomy of concepts/labels, as shown in Figure 3. We observe that the
concepts/classes under the same leaf in the tree-like taxonomy (e.g., oak tree, willow tree, and pine
tree in the ”plants” leaf group) exhibit stronger visual and semantic correlations. Consequently, as
shown in Figure 4a, their features in the feature space become more overlapping compared to those
from other leaf groups (e.g., otter and hamster under the ”four-legged” leaf group), leading to more
confusion and performance degradation when predicting these concepts/classes. This highlights the
impact of organizing concepts/labels in a tree-like taxonomy, where data examples within the same
leaf group share stronger visual and semantic relationships, causing greater overlap and increased
confusion during predictions. Linking to our analysis in Section 3.2, the tree-like taxonomy of
concepts/labels serves as a tool to help identify easily confused classes/concepts, facilitating the
subsequent process of making them more distinct and separable in the feature space.

Our approach aims to train the backbone network so that all class representations must be distinct,
especially those within each leaf group, to achieve maximum distinguishability. For the leaf group
of four-legged animals, we assume that ”mouse” and ”porcupine” arrive in Task 1, while ”otter” and
”hamster” are in Task 3. When learning Task 1, to classify ”mouse” and ”porcupine”, the backbone
is encouraged to capture the essential features of four-legged mammals to efficiently differentiate
between these two animals. We hope that the knowledge learned from ”mouse” and ”otter” in Task 1
can be beneficial for the next tasks. Then in Task 3, we again learn to distinguish ”hamster”, ”otter”
and these old ones in this group. In this way, the mechanism helps further strengthen the learning of
more efficient and robust features for the Mammals group.

To summarize, by grouping and categorizing, we expect the model to concentrate more on the de-
tailed features of each leaf group. This enhances its ability to distinguish related objects and rein-
forces the model’s knowledge of each group. Therefore, this strategy not only alleviates the forget-
ting of old knowledge—often caused by new classes that are difficult to distinguish from old ones
within the same leaf group, but also enables active knowledge transfer between tasks.

4.2 TRAINING PHASE

4.2.1 EXPLOITING HIERARCHICAL LABEL/CONCEPT TAXONOMY

During the training process, whenever a new class appears, its label name is automatically added to
the tree-like taxonomy, into a leaf group containing classes with similar characteristics (Figure 3). To
develop this hierarchical structure, we can rely on expert knowledge, for example, ChatGPT, which
can help us incrementally construct a meaningful and semantically-related tree (see Appendix B).
Structuring information in this way not only aligns with how the human brain effectively connects
and remembers information but also provides useful insights during training, indicating how each
knowledge is related to the other and which requires further focus.

pine tre
e

porcupine

oak tree

willow tree

hamster Plants

Fou
r-le

gg
ed

 an
im

als

Task 1
Task 2
Task 3

mouse

otter

When learning Task 3

learned class

learning class

inner-group constraint outter-group constraint

Figure 5: We focus on separate easily confused classes
within each leaf group.

As analyzed above, reflecting on and orga-
nizing knowledge is the key factor for ef-
ficient learning. That is, the model should
always be encouraged to identify the de-
cision boundary between all old and new
classes, especially those in the same leaf
group. Assume that we finished the task
t − 1 and are learning the prompt Pt for
task t, our aim is to learn the backbone
network fΦ,Pt that can minimize overlap
between all classes so far, especially fo-
cus on increasing the separability between
classes belonging to the same leaf group
extracted from the taxonomy (e.g., four-
legged mammals, plants, etc.,). Let g ∈ G
be a leaf group,Xg

k and Y gk denote the cor-
responding sets of input samples and la-
bels under the group g that belong to the
task k (k ≤ t). Besides Cross Entropy loss LCE , we propose using a regularization loss function for
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sample x (arrives in task t, belong leaf group g) as follows:

LG(ψ,Pt,x) = −α log
∑

x′∈Xg
t |yx′=yx

u(zx · zx′)∑
x̄∈Xg

1,t

u(zx · zx̄)
− βLall, (1)

where Lall = log
∑

x′∈Xg
t |yx′=yx

u(zx · zx′)∑
x̄∈X1,t

u(zx · zx̄)
is the Supervised Contrastive loss that we force

all class representations so far to separate from each other, u(zx · zx′) = exp(zx·zx′
τ ), with zx =

fΦ,Pt
(x) is the feature vector on the latent space of the prompt-based model, yx is the ground

truth label of x, τ is a temperature (τ = 0.1 for all experimental setting), and α is the coefficient
that controls how much we want to force on classes belonging to the same leaf group stay apart
further. For each data sample x|yx ∈ Yk<t, the corresponding representation zx is sampled from the
Gaussian Mixture model GMMyx = {N (µyx ,Σyx)}Kk=1 of the respective class, which is obtained
at the end of each corresponding task. This technique of using pseudo features of old data is also
employed in many existing prompt-based CL methods, as the shift of features is minimal (Table 1).

Equation 1 implies that when learning a new task, new classes/new knowledge will be compared
and contrasted with existing ones. That is, the model will be encouraged to identify the decision
boundary between old and new classes, especially focusing on those in the same leaf group via
controllable coefficient α (Figure 5). Furthermore, focusing on the specific knowledge within each
leaf group helps our model strengthen and consolidate its understanding of this domain, especially
when the current prompt is initialized by the previous ones. This is achieved by employing a prompt
ensemble strategy similar to that in (Wang et al., 2023): Pt = ηP ′

t + (1 − η)
∑t−1
i=1 P

′
i , where

{P ′
i }
t
i=1 is the set of learnable prompt elements which are used to adapt to corresponding tasks, the

prompt elements of previous tasks are kept fixed (η = 0.99 for all setting).

4.2.2 AN OPTIMAL TRANSPORT-BASED APPROACH TO FURTHER EXPLOITING PRIORI FROM
PRETRAINED MODEL
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0.00 21.18 22.24 35.93 38.96 37.64

21.18 0.00 26.16 37.24 39.54 37.89

22.24 26.16 0.00 37.48 40.23 38.58

35.93 37.24 37.48 0.00 26.05 38.12

38.96 39.54 40.23 26.05 0.00 39.30

37.64 37.89 38.58 38.12 39.30 0.00

Figure 6: Wasserterin distance between classes
(Split-CIFAR100) in latent space of pre-trained
backbone (Sup-21K).

Considering a leaf group, there may be data
classes with varying levels of overlap in the
latent space(Figure 4, 6). Although focusing
on classes within the same leaf group helps
improve the ability to recognize difficult-to-
identify classes, we still treat all classes in that
group equally. Thus, the algorithm may in-
advertently ignore important pairs of classes
that are easily confused and need to be fur-
ther distinguished. Besides, pretrained models
are known to have been extensively trained on
large datasets, resulting in a substantial repos-
itory of generalization ability. Therefore, the
prior knowledge from these models often pro-
vides a valuable starting point for the adapta-
tion to downstream tasks. However, we seem
to frequently overlook the initial behavior of
pretrained models on the training data, particu-
larly regarding relations between classes, which
classes are easily classified and which are prone
to confusion.

Therefore, in this work, we propose to exploit
the pre-trained model from a new perspective,
which can comprehend the use of the label-based tree-like taxonomy during training, where we can
take advantage of prior assumptions about the relationships between the image classes. Firstly, to
extract the relationship between the classes, we use L2 Wasserstein distance (WD) to compare the
distributions of feature vectors of each pair of class. In particular, let DΦ

ci be the distribution of class
ci on the latent space of the pretrained model fΦ, which is obtained in the form of a Gaussian Mixture
model at the end of the respective task. When t tasks have arrived, we have the corresponding sets
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of distributions {DΦ
c }c∈Y1,t

of allmt classes from all tasks so far. Therefore, we gradually complete
the WD-based matrix between pairs of classes:

M = [W2(D
Φ
ci , D

Φ
cj )]mt×mt

. (2)

We then compute the weight matrix Γ = [γij ]mt×mt
= [1/exp(Mij/δ)]mt×mt

, where δ is a tem-
perature. We then apply this information to obtain a weighted version of LG , in which the closer the
two class distributions are, the larger the weight assigned, and they will be focused to push away.
Consequently, our regularization loss becomes:

LG(ψ,Pt,x) = −α log
∑

x′∈Xg
t |yx′=yx

u(zx · zx′)∑
x̄∈Xg

1,t

γyxyx̃u(zx · zx̄)
− βLall. (3)

This strategy is completely economical and aligns well with the CL learning scheme as matric M
is continuously expanded and provides useful information for training new tasks. Practically, when
learning a new task, the first epoch is spent capturing information about the behavior of the pre-
trained model on the data for this task. Moreover, this approach is similar to the findings in Cog-
nitive Science (Osgood & Bower, 1953; Baltes, 1987), showing that the accumulated experiences
from past learning create momentum for learning new skills more effectively.

4.3 TESTING PHASE

We observe that classes within the same leaf group often share many common characteristics. There-
fore, we propose a testing strategy that leverages information from each leaf group to gain a new
perspective on the identification of data samples, especially those at the boundaries between different
leaf groups.

In particular, the final prediction for sample x will be modified based on the probability that x
belongs to a certain leaf group g ∈ G (i.e., p(g|x,Pt̂)). Intuitively, if the representation zx of x
has many similarities with class representations in group g, then p(g|x,Pt̂) will increase, thereby
raising the likelihood that x belongs to the corresponding classes in g (i.e., p(y|g,x,Pt̂)):

p(y|x) = p(y|x,Pt̂) =
∑
g∈G

p(g|x,Pt̂) · p(y|g,x,Pt̂) =
∑
g∈G

p(g|x,Pt̂) · p(y|x,Pt̂) · Iy∈Y g , (4)

where Iy∈Y g = 1 if y ∈ Y g , else 0. The value of p(g|x,Pt̂) is calculated based on the ”energy” of
x w.r.t group g, in relation to other group g′ ̸= g:

p(g|x,Pt̂) =
exp{E(x, g)}∑

g′∈G exp{E (x, g′)}
. (5)

In Eq. (5), E (x, g) indicates the ”energy” of x w.r.t leaf group g ∈ G. Remind that for each class c,
we maintain a GMM ofK mixtures {N (µc,i,Σc,i)}Ki=1. Based on the prototypes for a class, we can
define the distance from x to a class c as d(x, c) = min1≤i≤K cosine distance(zx,µc,i). Limiting
to the group g, we define ŷgx = argminc∈Y g d(x, c) (i.e., Y g is the set of all classes in g). We define
the energy of interest as

E(x, g) = −d(x, ŷgx)− ξ
∑
c∈Y g

γc,ŷgx

K∑
i=1

√
(zx − µc,i)TΣ

−1
c,i (zx − µc,i) (6)

where the first terms is the cosine similarity between zx and the closest class prototype within
group g and γc,ŷgx is the value obtained from the weight matrix Γ (Section 4.2.2) - indicating the
correlation between class c. This approach exploits the correlation between x and g while reducing
the disadvantage of large groups with many classes, whereby the distances of classes that are less
related to y will have less weight and vice versa. Finally, ξ is the hyperparameter, which controls
the amount of information referenced from the group.

By this strategy, features zx will have an additional point of view to determine which class that x
is more likely to belong to, especially for zx located at the boundary between leaf groups—such
as between the group of ”Plants” and the group of ”Four-legged animals”. This is similar to how
having more prior knowledge improves posterior probability in Bayes’ rule and how humans with
more in-depth knowledge in different fields have greater experience in solving problems.

8
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We examine widely used CIL benchmarks, including Split CIFAR-100, Split ImageNet-
R, 5-Datasets, and Split CUB-200 (please refer Appendix A.1 for more details).

Baselines. We compare our method with notable CL methods exploiting prompt-based approach
for pre-trained models, including the methods using shared prompts for all tasks: L2P (Wang et al.,
2022d), DualPrompt (Wang et al., 2022c), OVOR (Huang et al., 2024); and the methods dedicates
a distinct prompt set for each task like: S-Prompt++ (Wang et al., 2022b), CODA-Prompt (Smith
et al., 2023), HiDe-Prompt (Wang et al., 2023), CPP (Li et al., 2024).

Metrics. We use two main metrics, including the Final Average Accuracy (FAA), denoting the
average accuracy after learning the last task, and the Final Forgetting Measure (FFM) showing the
forgetting of all tasks after learning the sequence of tasks (see Appendices A.2 & A.3).

The implementation is described in detail in Appendix A.4.

5.2 EXPERIMENTAL RESULT

Our approach achieves superior results compared to baselines. Table 2 presents the overall
performance comparison between our proposed method and all the baselines. The key observation
is that our method is the strongest one with the gap between our method and the runner-up method
is about 2% in terms of FAA on all considered datasets. Additionally, the results show that our
method avoids forgetting better than all baselines, notably reducing forgetting by more than 2% on
the Split-CIFAR100 dataset compared to the strongest one.

Table 2: Overall performance comparison. We provide FAA and FFM of all methods, with standard
deviation taken over at least 3 runs of different random seeds. The results corresponding to the best
FAA among baselines are underlined.

.
Method

Split CIFAR-100 Split ImageNet-R 5-Datasets Split CUB-200

FAA (↑) FFM (↓) FAA (↑) FFM (↓) FAA (↑) FFM (↓) FAA (↑) FFM (↓)

L2P 83.06 ±0.17 6.58 ±0.40 63.65 ±0.12 7.51 ±0.17 81.84 ±0.95 4.58 ±0.53 74.52 ±0.92 11.25 ±0.23

DualPrompt 86.60 ±0.19 4.45 ±0.16 68.79 ±0.31 4.49 ±0.14 77.91±0.45 13.17 ±0.71 82.05±0.95 3.56 ±0.53

OVOR 86.68 ±0.22 5.25 ±0.12 75.61 ±0.82 5.77 ±0.12 82.34 ±0.48 4.83 ±0.35 78.12 ±0.0.65 8.13 ±0.52

S-Prompt++ 88.81 ±0.18 3.87 ±0.05 69.68 ±0.12 3.29 ±0.05 86.19±0.65 4.67 ±0.72 83.12 ±0.54 2.72 ±0.64

CODA-P 86.94 ±0.63 4.04 ±0.18 70.03 ±0.47 5.17 ±0.22 64.20 ±0.53 17.22 ±0.55 74.34 ±0.68 12.05 ±0.41

CPP 91.12 ±0.12 3.33 ±0.18 74.88 ±0.07 4.08 ±0.03 92.92 ±0.17 0.23 ±0.07 82.35 ±0.23 3.24 ±0.32

HiDe-Prompt 92.61 ±0.28 1.52 ±0.10 75.06 ±0.12 4.05 ±0.19 93.92 ±0.33 0.31 ±0.12 86.62 ±0.35 2.55 ±0.15

Ours (HCL) 94.52 ±0.22 1.02 ±0.18 77.01 ±0.12 4.03 ±0.25 95.35 ±0.18 0.20 ±0.16 88.33 ±0.18 1.98 ±0.22

Our training strategy improves model performance significantly. Figure 7 reports the ablation
studies demonstrating the effectiveness of our training strategy. Particularly, compared to training
tasks independently using Cross Entropy loss LCE like in DualP, L2P, and CODA-P, exploiting the
relationships between data classes with the label-based hierarchical taxonomy and the WD-based
cost matrix helps improve FAA by about 5% to 10% (Figure 7a). Besides, when examining the role
of exploiting additional prior information from pretrained backbones using the OT approach, we see
that FAA is improved from 0.6% to 0.8% (Figure 7b). These results demonstrate the positive impact
of this component, confirming the importance of exploiting correlations between class data during
training. In both figures, the improvements on Split-CIFAR100 and 5-Datasets are the lowest, while
it is more pronounced on Split-CUB-200. This may be because the groups of these two datasets
(Split-CIFAR100 and 5-Datasets) have fewer overlapping classes, as the classes in each group likely
have more recognizable features. Meanwhile, Split-CUB-200 is a dataset about birds, with images
that can be difficult for human eyes to recognize, thus so our method performs better.
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In addition, Figure 7c provides the experimental results on Split-CUB-200 dataset, when varying α
and β, which control the intensification of impact on each leaf group of LG during training. The
data shows that with a large enough value of β, our HiT is not sensitive to α within its acceptable
range. Conversely, if α is small, the quality of the model can change more significantly.

Furthermore, Figure 4 illustrates the effect of our method in improving model’s representation learn-
ing on Split-CIFAR100. Specifically, the classes are better clustered, and the separation between
them is more distinct. Especially, the classes ’oak tree,’ ’willow tree,’ and ’pine tree’ are divided
into clear clusters, rather than being mixed together as in the traditional training strategy, where
tasks are trained independently.
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Figure 7: Ablation study about our training strategy.

Our testing strategy has positive effects for final prediction Table 3 illustrates the improvement
of FAA on all considered datasets when applying our testing strategy, from about 0.4% to 0.6%.
This proves the approach to be effective, as the information from each cluster provides a reference
channel that helps determine the identity of the classes, offering a good suggestion for future studies.

Table 3: Effectiveness of our testing strategy.

Dataset Split CIFAR-100 Split Imagenet-R 5-Datasets Split CUB-200

Normal testing 93.94 76.41 95.02 87.93

Our testing strategy 94.52 77.01 95.35 88.33

6 CONCLUSION AND LIMITATION DISCUSSION

In this work, we demonstrate the importance of organizing and exploiting data meaningfully rather
than lumping it together for training. Organizing data into a tree-like taxonomy based on label in-
formation gives us a new perspective on the data. Particularly, we can divide them into small groups
containing the classes that are likely to confuse models. This approach encourages the model to
focus and build deeper knowledge for each group, thereby reducing forgetting and motivating more
effective learning in subsequent tasks. Additionally, we introduce a new perspective by leverag-
ing the initial behavior of pretrained models, providing an additional information channel to further
improve performance. Besides, our testing strategy has shown positive effects by exploiting group
knowledge during inference. Finally, experimental results demonstrate the effectiveness of these
components and our superiority over state-of-the-art baselines.

Despite this novel perspective, the quality of the hierarchical taxonomy depends on the quality of
expert knowledge. For example, if similar image classes are not assigned to the same leaf group in
this label-based taxonomy, the constraint we put on each such group may not perform as expected.
Furthermore, although the testing strategy shows positive results, to exploit group knowledge more
efficiently, it is necessary to further investigate to understand the characteristics and hidden structure
of data.
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Supplement to “Exploiting prior knowledge for pre-trained CL”

A EXPERIMENTAL SETTINGS

A.1 DATASETS

We adopt the following common benchmarks:

• Split CIFAR-100 (Krizhevsky et al., 2009): This dataset includes images from 100 differ-
ent classes, each being relatively small in size. The classes are randomly organized into 10
sequential tasks, with each task containing a unique set of classes.

• Split ImageNet-R (Krizhevsky et al., 2009): This dataset contains images from 200 exten-
sive classes. It includes difficult examples from the original ImageNet dataset, as well as
newly acquired images that display a variety of styles. The classes are randomly divided
into 10 distinct incremental tasks.

• 5-Datasets (Ebrahimi et al., 2020): This composite dataset incorporates CIFAR-10
(Krizhevsky et al., 2009), MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al.,
2017), SVHN (Netzer et al., 2011), and notMNIST (Bulatov, 2011). Each of these is
treated as a separate incremental task, enabling the evaluation of the impact of substantial
variations between tasks.

• Split CUB-200 (Wah et al., 2011): This dataset contains fine-grained images of 200 distinct
bird species. It is randomly divided into 10 incremental tasks, each with a unique subset of
classes.

A.2 BASELINES

In the main paper, we use CL methods with pre-trained ViT as the backbone. We group them into
(a) the group using a common prompt pool for all tasks, and (b) the group dedicating distinct prompt
sets for each task:

(1) L2P (Wang et al., 2022d): The first prompt-based work for continual learning (CL) suggested
using a common prompt pool, selecting the top k most suitable prompts for each sample during
training and testing. This approach might facilitate knowledge transfer between tasks but also risks
catastrophic forgetting. Unlike our approach, L2P doesn’t focus on training classifiers or setting
constraints on features from old and new tasks during training, which may limit the model’s pre-
dictability.

(2) DualPrompt (Wang et al., 2022c): The prompt-based method aims to address L2P’s limitations
by attaching complementary prompts to the pre-trained backbone, rather than only at input. DualP
introduces additional prompt sets for each task to leverage task-specific instructions alongside invari-
ant information from the common pool. However, like L2P, it does not focus on efficiently learning
the classification head. Additionally, selecting the wrong prompt ID for task-specific instructions
during testing can negatively impact model performance.

(3) OVOR (Huang et al., 2024): while using only a common prompt pool for all tasks, this work
introduces a regularization method for Class-incremental learning that uses virtual outliers to tighten
decision boundaries, reducing confusion between classes from different tasks. Experimental results
demonstrate the role of representation learning, which focuses on reducing overlapping between
class representations.

(4) S-Prompt++ (Wang et al., 2022b): S-Prompt was originally proposed for domain-incremental
learning, training a separate prompt and classifier head for each task. During evaluation, it infers
the domain ID using the nearest centroid from K-Means applied to the training data. To adapt S-
Prompt to class-incremental learning (CIL), S-Prompt++ uses a common classifier head for all tasks.
However, it shares limitations with DualP, such as efficient learning of the classification head and
predicting appropriate prompts during testing.

(5) CODA-Prompt (Smith et al., 2023): This prompt-based approach uses task-specific learnable
prompts for each task. Similar to L2P, CODA employs a pool of prompts and keys, computing a
weighted sum from these prompts to generate the real prompt. The weights are based on the cosine
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similarity between queries and keys. To avoid task prediction at the end of the task sequence, the
weighted sum always considers all prompts. CODA improves over DualP and L2P by optimizing
keys and prompts simultaneously, but it still hasn’t addressed the drawbacks mentioned for DualP.

(6) HiDe-Prompt (Wang et al., 2023): a recent SOTA prompt-based method that decomposes learn-
ing CIL into 3 modules: a task inference, a within-task predictor and a task-adaptive predictor. The
second module trains prompts for each task with a contrastive regularization that tries to push fea-
tures of new tasks away from prototypes of old ones. To predict task identity, it trains a classification
head on top of the pre-trained ViT. TAP is similar to a fine-tuning step that aims to alleviate classifier
bias using the Gaussian distribution of all classes seen so far. However, this method does not declare
the relationship between data during training, thereby missing the opportunity to improve model
performance.

(7) CPP (Li et al., 2024): This recent SOTA also uses a contrastive constraint to control features of
all tasks so far during representation learning and achieves roughly equivalent performance to HiDE
on the same settings. Nevertheless, this method still has the advantages that we pointed out in HiDE,
which we propose to address in our work.

A.3 METRICS

In our study, we employed two key metrics: the Final Average Accuracy (FAA) and the Final Forget-
ting Measure (FFM). To define these, we first consider the accuracy on the i-th task after the model
has been trained up to the t-th task, denoted as Ai,t. The average accuracy of all tasks observed
up to the t-th task is calculated as AAt = 1

t

∑t
i=1Ai,t. Upon the completion of all T tasks, we

report the Final Average Accuracy as FAA = AAT . Additionally, we calculate the Final Forgetting
Measure, defined as FFM = 1

T−1

∑T−1
i=1 maxt∈{1,...,T−1} (Ai,t −Ai,T ). The FAA serves as the

principal indicator for assessing the ultimate performance in continual learning models, while the
FFM evaluates the extent of catastrophic forgetting experienced by the model.

A.4 IMPLEMENTATION DETAILS

Our implementation basically aligns with the methodologies employed in prior research Wang et al.
(2022d;c); Smith et al. (2023). Specifically, our framework incorporates the use of a pre-trained
Vision Transformer (ViT-B/16) as the backbone architecture. For the optimization process, we uti-
lized the Adam optimizer, configured with hyper-parameters β1 set to 0.9 and β2 set to 0.999. The
training process was conducted using batches of 24 samples, and a fixed learning rate of 0.03 was
applied across all models except for CODA-Prompt. For CODA-Prompt, we employed a cosine
decaying learning rate strategy, starting at 0.001. Additionally, a grid search technique was imple-
mented to determine the most appropriate number of epochs for effective training. Regarding the
pre-processing of input data, images were resized to a standard dimension of 224 × 224 pixels and
normalized within a range of [0, 1] to ensure consistency in input data format. The detailed values
of the parameters can be found in our source code.

In Table 2 of the main paper, the results of L2P, DualPrompt, S-Prompt++, CODA-Prompt, and
HiDe-Prompt on Split CIFAR-100 and Split ImageNet-R are taken from (Wang et al., 2023). Their
results on the other two datasets are produced from the official code provided by the authors. For
CPP and OVOR, the reported results are also reproduced from their official code. It’s worth noting
that the reported forgetting of HiDE is reproduced from their official code.

B USING CHATGPT TO BUILD TREE-LIKE TAXONOMY DURING A SEQUENCE
OF TASKS INCREMENTALLY

We use the following prompt structure to generate the taxonomies:

Given the label list: [’· · ·’], provide me the taxonomy from this
list, based on their origin, type, and shape, so that the image
encoders can recognize their images.
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Example output, when the list [’· · · ’] is ["leopard", "rabbit", "mouse", "camel",
"trout", "aquarium fish", "snake", "rose", "lawn mower", "bottle"]:

taxonomy = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": ["leopard", "rabbit", "mouse", "camel"]
},
"Aquatic": ["trout", "aquarium_fish"],
"Reptiles": ["snake"]

},
"Plants": {

"Flowers": ["rose"]
}

},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower"],
"Containers": ["bottle"]

}
}

Below is an example of generated taxonomies for each task of Split-CIFAR100:

T1 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": ["leopard", "rabbit", "mouse", "camel"]
},
"Aquatic": ["trout", "aquarium_fish"],
"Reptiles": ["snake"]

},
"Plants": {

"Flowers": ["rose"]
}

},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower"],
"Containers": ["bottle"]

}
}

}

T2 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": ["leopard", "rabbit",
"mouse", "camel", "otter"]

},
"Aquatic": ["trout", "aquarium_fish",

"shark", "seal", "lobster"],
"Reptiles": ["snake"]

},
"Plants": {

"Flowers": ["rose", "tulip"],
"Trees": ["palm_tree"]
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}
},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower"],
"Containers": ["bottle", "bowl"]

},
"Vehicles": {

"Wheeled": ["motorcycle"]
},
"Structures": {

"Buildings": ["skyscraper", "house"]
}

}
}

T3 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": ["leopard", "rabbit", "mouse",
"camel", "otter", "chimpanzee", "squirrel"]

},
"Aquatic": ["trout", "aquarium_fish", "shark",

"seal", "lobster", "dolphin", "flatfish", "crab"],
"Reptiles": ["snake"]

},
"Plants": {

"Flowers": ["rose", "tulip"],
"Trees": ["palm_tree", "willow_tree"],
"Fruits": ["sweet_pepper"]

},
"Environment": {

"Natural Features": ["mountain", "forest"]
}

},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower"],
"Containers": ["bottle", "bowl"],
"Appliances": ["television"]

},
"Vehicles": {

"Wheeled": ["motorcycle"]
},
"Structures": {

"Buildings": ["skyscraper", "house"]
}

}
}

T4 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": [
"leopard", "rabbit", "mouse", "camel", "otter",
"chimpanzee", "squirrel", "porcupine", "shrew"

],
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"Two-legged": ["woman"]
},
"Aquatic": [

"trout", "aquarium_fish", "shark", "seal", "lobster",
"dolphin", "flatfish", "crab"

],
"Reptiles": ["snake", "lizard"]

},
"Plants": {

"Flowers": ["rose", "tulip"],
"Trees": ["palm_tree", "willow_tree",

"maple_tree", "pine_tree", "oak_tree"],
"Fruits": ["sweet_pepper"]

},
"Environment": {

"Natural Features": ["mountain", "forest"]
}

},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower", "tank"],
"Containers": ["bottle", "bowl"],
"Appliances": ["television"]

},
"Vehicles": {

"Wheeled": ["motorcycle", "bicycle"]
},
"Structures": {

"Buildings": ["skyscraper", "house"],
"Bridges": ["bridge"]

}
}

}

T5 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": [
"leopard", "rabbit", "mouse", "camel", "otter",
"chimpanzee", "squirrel", "porcupine", "shrew",
"hamster", "raccoon", "fox"

],
"Two-legged": ["woman"]

},
"Aquatic": [

"trout", "aquarium_fish", "shark", "seal", "lobster",
"dolphin", "flatfish", "crab"

],
"Reptiles": ["snake", "lizard"],
"Insects": ["caterpillar", "beetle"]

},
"Plants": {

"Flowers": ["rose", "tulip"],
"Trees": ["palm_tree", "willow_tree",

"maple_tree", "pine_tree", "oak_tree"],
"Fruits": ["sweet_pepper"]

},
"Environment": {
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"Natural Features": ["mountain", "forest", "cloud", "plain"]
}

},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower", "tank"],
"Containers": ["bottle", "bowl", "plate"],
"Appliances": ["television"],
"Instruments": ["keyboard", "lamp"]

},
"Vehicles": {

"Wheeled": ["motorcycle", "bicycle"]
},
"Structures": {

"Buildings": ["skyscraper", "house"],
"Bridges": ["bridge"]

}
}

}

T6 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": [
"leopard", "rabbit", "mouse", "camel", "otter",
"chimpanzee", "squirrel", "porcupine", "shrew",
"hamster", "raccoon", "fox", "kangaroo"

],
"Two-legged": ["woman", "man", "baby"]

},
"Aquatic": [

"trout", "aquarium_fish", "shark", "seal", "lobster",
"dolphin", "flatfish", "crab"

],
"Reptiles": ["snake", "lizard"],
"Insects": ["caterpillar", "beetle"],
"Others": ["worm"]

},
"Plants": {

"Flowers": ["rose", "tulip", "poppy"],
"Trees": ["palm_tree", "willow_tree",

"maple_tree", "pine_tree", "oak_tree"],
"Fruits": ["sweet_pepper"],
"Fungi": ["mushroom"]

},
"Environment": {

"Natural Features": ["mountain", "forest", "cloud", "plain"]
}

},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower", "tank"],
"Containers": ["bottle", "bowl", "plate", "can"],
"Appliances": ["television"],
"Instruments": ["keyboard", "lamp", "clock"]

},
"Vehicles": {

"Wheeled": ["motorcycle", "bicycle", "pickup_truck"]
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},
"Structures": {

"Buildings": ["skyscraper", "house"],
"Bridges": ["bridge"],
"Others": ["road"]

}
}

}

T7 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": [
"leopard", "rabbit", "mouse", "camel", "otter",
"chimpanzee", "squirrel", "porcupine", "shrew",
"hamster", "raccoon", "fox", "kangaroo", "cattle", "lion"

],
"Two-legged": ["woman", "man", "baby"]

},
"Aquatic": [

"trout", "aquarium_fish", "shark", "seal",
"lobster", "dolphin", "flatfish", "crab", "ray"

],
"Reptiles": ["snake", "lizard"],
"Insects": ["caterpillar", "beetle", "bee", "cockroach", "spider"],
"Others": ["worm"]

},
"Plants": {

"Flowers": ["rose", "tulip", "poppy", "sunflower"],
"Trees": ["palm_tree", "willow_tree",

"maple_tree", "pine_tree", "oak_tree"],
"Fruits": ["sweet_pepper"],
"Fungi": ["mushroom"]

},
"Environment": {

"Natural Features": ["mountain", "forest", "cloud", "plain"]
}

},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower", "tank"],
"Containers": ["bottle", "bowl", "plate", "can"],
"Appliances": ["television"],
"Instruments": ["keyboard", "lamp", "clock"],
"Furniture": ["bed", "chair"]

},
"Vehicles": {

"Wheeled": ["motorcycle", "bicycle", "pickup_truck"],
"Rail": ["train"]

},
"Structures": {

"Buildings": ["skyscraper", "house"],
"Bridges": ["bridge"],
"Others": ["road"]

}
}

}

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

T8 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": [
"leopard", "rabbit", "mouse", "camel", "otter",
"chimpanzee", "squirrel", "porcupine", "shrew",
"hamster", "raccoon", "fox", "kangaroo", "cattle", "lion"

],
"Two-legged": ["woman", "man", "baby"]

},
"Aquatic": [

"trout", "aquarium_fish", "shark", "seal", "lobster",
"dolphin", "flatfish", "crab", "ray", "whale"

],
"Reptiles": ["snake", "lizard", "turtle"],
"Insects": ["caterpillar", "beetle", "bee", "cockroach", "spider"],
"Others": ["worm", "snail"]

},
"Plants": {

"Flowers": ["rose", "tulip", "poppy", "sunflower"],
"Trees": ["palm_tree", "willow_tree",

"maple_tree", "pine_tree", "oak_tree"],
"Fruits": ["sweet_pepper", "apple", "pear", "orange"],
"Fungi": ["mushroom"]

},
"Environment": {

"Natural Features": ["mountain", "forest",
"cloud", "plain", "sea"]

}
},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower", "tank"],
"Containers": ["bottle", "bowl", "plate", "can"],
"Appliances": ["television"],
"Instruments": ["keyboard", "lamp", "clock"],
"Furniture": ["bed", "chair", "couch", "table"]

},
"Vehicles": {

"Wheeled": ["motorcycle", "bicycle", "pickup_truck", "tractor"],
"Rail": ["train"]

},
"Structures": {

"Buildings": ["skyscraper", "house"],
"Bridges": ["bridge"],
"Others": ["road"]

}
}

}

T9 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": [
"leopard", "rabbit", "mouse", "camel", "otter",
"chimpanzee", "squirrel", "porcupine", "shrew",
"hamster", "raccoon", "fox", "kangaroo", "cattle",
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"lion", "tiger", "wolf", "beaver", "possum", "skunk"
],
"Two-legged": ["woman", "man", "baby", "boy"]

},
"Aquatic": [

"trout", "aquarium_fish", "shark", "seal", "lobster",
"dolphin", "flatfish", "crab", "ray", "whale"

],
"Reptiles": ["snake", "lizard",

"turtle", "crocodile", "dinosaur"],
"Insects": ["caterpillar", "beetle",

"bee", "cockroach", "spider"],
"Others": ["worm", "snail"]

},
"Plants": {

"Flowers": ["rose", "tulip", "poppy", "sunflower", "orchid"],
"Trees": ["palm_tree", "willow_tree",

"maple_tree", "pine_tree", "oak_tree"],
"Fruits": ["sweet_pepper", "apple", "pear", "orange"],
"Fungi": ["mushroom"]

},
"Environment": {

"Natural Features": ["mountain", "forest",
"cloud", "plain", "sea"]

}
},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower", "tank"],
"Containers": ["bottle", "bowl", "plate", "can"],
"Appliances": ["television"],
"Instruments": ["keyboard", "lamp", "clock"],
"Furniture": ["bed", "chair", "couch", "table"]

},
"Vehicles": {

"Wheeled": ["motorcycle", "bicycle",
"pickup_truck", "tractor"],

"Air": ["rocket"],
"Rail": ["train"]

},
"Structures": {

"Buildings": ["skyscraper", "house"],
"Bridges": ["bridge"],
"Others": ["road"]

}
}

}

T10 = {
"Natural": {

"Animals": {
"Mammals": {

"Four-legged": [
"leopard", "rabbit", "mouse", "camel", "otter",
"chimpanzee", "squirrel", "porcupine", "shrew",
"hamster", "raccoon", "fox", "kangaroo", "cattle",
"lion", "tiger", "wolf", "beaver", "possum", "skunk",
"elephant", "bear"

],
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"Two-legged": ["woman", "man",
"baby", "boy", "girl"]

},
"Aquatic": [

"trout", "aquarium_fish", "shark", "seal", "lobster",
"dolphin", "flatfish", "crab", "ray", "whale"

],
"Reptiles": ["snake", "lizard",

"turtle", "crocodile", "dinosaur"],
"Insects": ["caterpillar", "beetle",

"bee", "cockroach", "spider", "butterfly"],
"Others": ["worm", "snail"]

},
"Plants": {

"Flowers": ["rose", "tulip", "poppy", "sunflower", "orchid"],
"Trees": ["palm_tree", "willow_tree",

"maple_tree", "pine_tree", "oak_tree"],
"Fruits": ["sweet_pepper", "apple", "pear", "orange"],
"Fungi": ["mushroom"]

},
"Environment": {

"Natural Features": ["mountain", "forest",
"cloud", "plain", "sea"]

}
},
"Man-Made": {

"Objects": {
"Tools": ["lawn_mower", "tank"],
"Containers": ["bottle", "bowl", "plate", "can", "cup"],
"Appliances": ["television"],
"Instruments": ["keyboard", "lamp", "clock", "telephone"],
"Furniture": ["bed", "chair", "couch", "table", "wardrobe"]

},
"Vehicles": {

"Wheeled": ["motorcycle", "bicycle",
"pickup_truck", "tractor", "bus"],

"Rail": ["train", "streetcar"],
"Air": ["rocket"]

},
"Structures": {

"Buildings": ["skyscraper", "house", "castle"],
"Bridges": ["bridge"],
"Others": ["road"]

}
}

}

The taxonomies for other datasets are available in our source code.

C ADDITIONAL EXPERIMENTS

The superiority of our proposed method on various types of pre-trained backbones. Table
4 illustrates that our method with the training strategy only consistently outperforms the strongest
baseline (HiDE) by the gap from about 0.5% to 1.5% in all cases.
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Table 4: Comparison when using different pre-trained backbones

Pretrained backbone
Split CIFAR-100 Split Imagenet-R

HiT HiDE HiT HiDE

Sup-21K 93.94 (↑ 1.33) 92.61 76.41 (↑ 1.35) 75.06

iBOT-21K 94.01 (↑ 0.99) 93.02 72.12 (↑ 1.29) 70.83

iBOT-1K 94.27 (↑ 0.79) 93.48 72.80 (↑ 1.47) 71.33

DINO-1K 94.12 (↑ 0.61) 93.51 69.25 (↑ 1.14) 68.11

MoCo-1K 92.32 (↑ 0.75) 91.57 64.23 (↑ 0.46) 63.77
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