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Figure 1: ViDAR provides a novel framework for Monocular Novel View Synthesis utilising a
diffusion-aware reconstruction framework.

Abstract

Dynamic Novel View Synthesis aims to generate photorealistic views of moving
subjects from arbitrary viewpoints. This task is particularly challenging when
relying on monocular video, where disentangling structure from motion is ill-posed
and supervision is scarce. We introduce Video Diffusion-Aware Reconstruction
(ViDAR), a novel 4D reconstruction framework that leverages personalised image
diffusion models to synthesise pseudo multi-view supervision signals for training
a Gaussian splatting representation. By conditioning on scene-specific features,
ViDAR recovers fine-grained appearance details while mitigating artefacts intro-
duced by monocular ambiguity. To address the spatio-temporal inconsistency of
diffusion-based supervision, we propose a diffusion-aware loss function and a
camera pose optimisation strategy that aligns synthetic views with the underlying
scene geometry. Experiments on DyCheck, a challenging benchmark with extreme
viewpoint variation, show that ViDAR outperforms all state-of-the-art baselines
in visual quality and geometric consistency. We further highlight ViDAR’s strong
improvement over baselines on dynamic regions and provide a new benchmark
to compare performance in reconstructing motion-rich parts of the scene. Project
page: https://vidar-4d.github.io/.
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1 Introduction

4D reconstruction from monocular inputs is a challenging problem where the goal is to recover a 3D
representation of a dynamic scene. It is increasingly important for modelling, comprehending, and
interacting with the physical world and supports a wide range of downstream applications, ranging
from augmented reality to generating data for training robust AI models [57].

Casually captured monocular videos are ubiquitous, however reconstructing 3D structure from them
remains an inherently ill-posed problem. Static regions of the scene can typically be reconstructed
well due to effective multi-view capture [5]. However for dynamic regions, depth information is
not directly observable from a single viewpoint; in other words, it is difficult to disentangle the
motion of the camera from motion within the scene. To mitigate this ambiguity many existing
approaches impose strong regularisation [7; 30; 58] in the form of geometric assumptions, such as
the object’s rigidity, that constrains the dynamics of the scene. Others [13; 25; 46; 65; 66] leverage
learned priors, particularly those derived from large-scale models (e.g. monocular depth), to guide the
reconstruction. While regularization based methods [13; 46] achieve geometrically compact scene
representations, they often fall short in rendering high-quality, photorealistic appearances. Conversely
recent generative approaches utilise powerful diffusion models to achieve higher visual quality in
tasks such as single image to 3D [21; 23; 24; 53; 54; 67] and monocular reconstruction [51] but
struggle to maintain spatio-temporal coherence, limiting their applicability in scenarios that demand
accurate spatial reconstruction and temporal consistency, particularly in dynamic, real-world settings.

To tackle these challenges, we present Video Diffusion-Aware 4D Reconstruction (ViDAR), a
monocular video reconstruction approach that leverages diffusion models as powerful appearance
priors through a novel diffusion-aware reconstruction framework, which allows for improving visual
fidelity without the loss of spatio-temporal consistency. We first train a monocular reconstruction
baseline and generate a set of typically degraded multi-view images by sampling diverse camera poses
and rendering the novel viewpoints. We then adopt a DreamBooth-style personalisation strategy [37],
and tailor a pretrained diffusion model to the input video, which we use as a generative enhancer
to inject rich visual information back into the degraded renders. This effectively generates a set
of high-fidelity pseudo-multi-view observations for our scene, although due to the nature of the
diffusion process, the resulting images are not necessarily spatially consistent. We observe that
naively using these views as supervision leads to reconstructions degraded by artefacts and geometric
inconsistencies. To mitigate this, we propose a method of diffusion-aware reconstruction, which
selectively applies diffusion-based guidance to dynamic regions of the scene while jointly optimising
the camera poses associated with the diffused views.

To the best of our knowledge, ViDAR is the first approach to incorporate a diffusion prior into
monocular video reconstruction in a geometrically consistent manner. We demonstrate substan-
tially improved qualitative and quantitative results compared to existing techniques (see Tabs. 1, 2,
Figs. 1, 4), highlighting the effectiveness of diffusion-guided supervision when integrated with a
reconstruction pipeline that accounts for geometric consistency.

We summarise our contributions as follows:
1. A personalised diffusion enhancement strategy that improves appearance quality by refining

newly sampled renderings using a DreamBooth-adapted model.
2. A diffusion-aware reconstruction framework that combines dynamic-region-focused dif-

fusion guidance with joint optimisation of the sampled camera poses for geometrically
consistent reconstruction.

3. An extensive experimental evaluation, including both quantitative and qualitative compar-
isons with prior work, the introduction of a dynamic-region specific benchmark, as well as
ablation studies isolating the impact of each component.

2 Related work

4D reconstruction Advances in novel view synthesis include the introduction of two seminal
reconstruction paradigms, namely Neural Radiance Fields (NeRF) [29] and 3D Gaussian Splatting
(3DGS) [11]. These developments in static scene reconstruction were quickly followed by several
works on dynamic content. NeRF-based methods for video reconstruction include D-NeRF [35],
StreamRF [15], HexPlane [2], K-Planes [3], Tensor4D [38], MixVoxels [45]. Similarly, Gaussian
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Figure 2: A high-level overview of ViDAR. The input video is used to create a 4D reconstruction with
a monocular approach. Further, novel camera views are sampled and enhanced with a personalised
diffusion model for each scene. This constitutes a set of pseudo-multi-view supervision examples.
Finally, our approach optimises the 4D representation with the use of original video and new multi-
view cues, in a diffusion-aware manner.

Splatting developments enabled research on dynamic novel view synthesis. Multi-view videos were
reconstructed by: GaussianFlow [22], 4DGS [49], STG [18], SWinGS [39], Ex4DGS [12].

Monocular reconstruction The task of 4D monocular video reconstruction can be seen as a special
case of 4D reconstruction under substantially more challenging conditions. This is due to the problem
often being ill-posed: many of the target object surfaces may be seen only from one viewpoint through-
out the video. Notably, among NeRF-based approaches, NSFF [16] proposes a time varying flow
field, whereas Nerfies [31], HyperNeRF [32], DyCheck (T-NeRF) [5], DyBluRF [1], RoDynRF [26],
CTNeRF [28] use a canonical representation with a time-dependent deformation. DynIBaR [17] uses
Image Based Rendering for reconstruction. With Gaussian Splatting advancements, Dynamic 3D
Gaussians [27] learn explicit motion of every Gaussian, whereas 4DGS [49], Deformable 3DGS [58],
SC-GS [7] use a deformation field for transformation from canonical space. SplineGS [30] constrains
the motion of Gaussians to splines to ensure temporal smoothness. DynPoint [65] and MotionGS [66]
use an optical flow estimator for additional supervision. PGDVS [64] and BTimer [19] propose
a transformer-based approach for generalisable reconstruction. Dynamic Gaussian Marbles [42]
adopt a divide-and-conquer strategy to merge sets of Gaussians and create long trajectories, and
restrict representation to isotropic Gaussians. MoDGS [25] improves the supervision from depth
priors. D-NPC [9] proposes the use of neural implicit point cloud as the representation for monocular
reconstruction. MoSca [13] and Shape of Motion [46] both utilise priors from pretrained foundational
models (depth, optical flow, 2D tracking). Similarly, they both reconstruct static and dynamic content
separately, and describe the motion of the Gaussians with lower dimensionality basis functions.

Diffusion enhanced reconstruction Several recent approaches explore the use of diffusion models
to guide the reconstruction. ReconFusion [52] trains a diffusion model on a set of object images, and
uses it to score the quality of sparse reconstruction, guiding it with RGB loss. DpDy [44] uses Score
Distillation Sampling (SDS) [34] to supervise reconstruction with the use of image and depth diffusion
model. CAT4D [51], uses a video-diffusion model to generate additional static cameras for the input
video, followed by the reconstruction process. Difix3D+ [50] proposes a generalisable enhancement
diffusion model to improve reconstruction quality. MVGD [6] proposes a direct rendering of novel
views and depth as a conditional generative task. Other diffusion-based approaches include text or a
single image to 3D generation [14; 20; 21; 23; 24; 40; 43; 48; 53; 54; 55; 59; 61; 62; 67]. Notably,
our approach uses a monocular video as an input, and uses a personalised diffusion model along with
our diffusion-aware reconstruction for accurate geometry modelling.

3 Method

Our method incorporates several stages which can be seen in Figure 2. Firstly, we use a monocular
reconstruction baseline to obtain a 4D representation of the scene (Sec. 3.1), and generate a set of
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degraded multi-view renders from sampled novel camera poses. Next, we personalise a diffusion
model using the input video (Sec. 3.2), which is used to enhance the degraded renders (Sec. 3.2.1).
Finally, we use the new set of enhanced pseudo-multi-view images to supervise and refine the 4D
representation of the scene (Sec. 3.3), in a diffusion-aware manner.

3.1 Monocular Reconstruction

Given a casual monocular video of a dynamic scene with T frames I = [I1, I2, . . . IT ], we perform
the initial reconstruction of the scene using an off-the-shelf 4D monocular reconstruction method,
specifically, we use MoSca [13] in our implementation. The method reconstructs two sets of Gaussians
for the given scene, namely static Gaussians Gs, and dynamic Gaussians Gd, that together create the
scene representation: G = Gd ∪ Gs. MoSca leverages several priors in the reconstruction process:
depth, optical flow, 2D tracking. Firstly, the optical flow is used to estimate the epipolar error and to
determine the likelihood of image regions belonging to dynamic or static content. This is followed by
the joint reconstruction of the static part of the scene Gs and fine-tuning of the input camera pose cinp.
With that, a scaffold, a low dimensionality motion representation, is built through lifting 2D tracklets
belonging to dynamic regions into 3D using depth information. Finally, a photometric reconstruction
is performed to optimise the scene G, enabling rendering of novel views R of the scene.

3.1.1 Track Anything Gaussian Classification

We note that the epipolar error analysis introduced by MoSca for classification of dynamic parts of
the image leads to occurrences of floater artefacts due to the inclusion of background among dynamic
Gaussians. This may not be reflected heavily in quantitative performance, but leads to a decrease
in the quality of generated pseudo-multi-view samples (Sec. 3.2.1). To improve the constraint on
dynamic Gaussians’ locations, we use dynamic masks Dt obtained from Track Anything [56] to
reconstruct the static part of the scene Gs and generate motion scaffolds (as in MoSca [13]).

3.2 Diffusion Enhancement

We utilise a Stable Diffusion [36] model, specifically the pretrained Stable Diffusion XL (SDXL) [33]
to improve the quality of rendered images and guide the reconstruction process. Following the
observations of ReconFusion [52], we decide to use a multistep denoising process, in contrast to
Score Distillation Sampling [34]. Conversely, given a sampled image Rm,t from camera cm at the
time t, we follow a standard text-to-image [36] process and encode the image into latent space:
x0 = E (Rm,t). Further, instead of generating the noisy latent for image generation, we introduce
k steps of noise into the image-sourced latent x0 → xk using the original noise scheduler (here,
Discrete Euler [10]). We then follow the denoising process for k steps to achieve a denoised latent x̂0

which is then decoded to an enhanced version of the input image: Em,t = D (x̂0).

Personalisation Similarly to some of the recent reconstruction approaches, e.g. Wang et al. [44],
we apply the Dreambooth [37] fine-tuning approach to the SDXL model. To this end, we treat an
input video I as a collection of images and fine-tune the diffusion model for a given scene such that a
specific text token triggers the model to follow the appearance of the scene.

3.2.1 View Sampling and Rendering Enhancement

Given the scene-personalised diffusion model, we utilise the previously trained monocular recon-
struction to generate a set of pseudo-multi-view ground truth images. Firstly, we sample M sets
of images for each timestep t ∈ [0, T ], effectively adding M new cameras with parameters cm
where m ∈ [0,M ] and cm ∈ Csample, where Csample constitutes a set of new camera trajectories.
To this end, we select two existing views (as a camera position and rotation): a random one, and
a challenging view (with the furthest distance from the mean), and sample a new view as their
weighted linear combination. To introduce variety in the difficulty of the sampled views, we gradually
increase the blending weight of the views towards the most challenging ones from the input trajectory.
Simultaneously, we introduce noise of an increasing amplitude to the new camera poses.

Thereafter, we use our trained monocular reconstruction to render a set of M new camera views Rm,t

for each timestep. Further, we use our personalised diffusion model to enhance the rendered images
Rm,t → Em,t. This constitutes a new set of supervision images in a multi-view setting. We have
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chosen to generate a whole multi-view dataset in a single step instead of performing the enhancement
on-the-fly. This enables the samples to be reused and reduces the computational demands (especially
on GPU memory).

3.3 Diffusion-Aware Reconstruction

We use our generated dataset {Em,t} as additional supervision to re-train our 4D monocular recon-
struction method to predict a higher quality output Îm,t. However using these sampled views for
training is challenging. The outputs Em,t of our personalised video diffusion models are high-fidelity
and also preserve structure and coarse geometry, but due to the nature of the diffusion process and
random noise schedule, they are not spatio-temporally consistent at the level of fine-grained detail
and texture. This manifests as flickering and shifts of textures between consecutive frames. In some
cases, coarse geometry may also be hallucinated, e.g. in novel viewpoints not seen during training. If
we naively used these outputs to supervise monocular 4D reconstruction, the lack of spatio-temporal
consistency in the training data would cause the model to either converge to a mean radiance value
and cause blurry renderings, or to overfit to individual frames and learn a temporally inconsistent
reconstruction. We propose the following mechanisms to overcome these challenges.

3.3.1 Dynamic Reconstruction

While dynamic regions of a scene are under-observed, static regions may be captured from multiple
viewpoints across time, effectively creating multi-view supervision. Hence supervision is unnecessary
in static regions and in fact could cause the quality to decrease, particularly if spatially inconsistent.
We compute a mask of the dynamic regions of the scene Dm,t using Track Anything [56], and
apply this mask to our data to mask out the static regions Edyn

m,t = Em,t ⊙Dm,t, where ⊙ denotes
element-wise multiplication, and also to our predicted output Îdynm,t = Îm,t ⊙ Dm,t. This ensures
that only the dynamic regions of the scene are supervised by our generated data, which reduces the
convergence to the mean effect in the static reconstruction and reduces floaters. For dynamic regions,
we introduce a perceptual loss [63] to encourage our reconstruction to be texturally rich and reduce
blur caused by training on spatially misaligned pseudo-GTs. During training we compute the loss as
Ldyn = |Edyn

m,t − Îdynm,t |1 + λp|Edyn
m,t − Îdynm,t |vgg + λs|Edyn

m,t − Îdynm,t |ssim, where |·|1 is the L1 loss,
|·|vgg is the perceptual loss using a pretrained VGG network [41], |·|ssim is the SSIM [47] loss and λp

and λs are hyperparameters set to 0.1. The dynamic loss, Ldyn, is applied in addition to the default
losses from the monocular reconstruction method, and is backpropagated to update G and Cinp.

3.3.2 Sampled Camera Pose Optimisation

Camera poses of casually captured monocular videos are typically noisy due to the difficulty of
disentangling scene motion from camera motion, thus the need to optimise Cinp in many monocular
reconstruction methods [13; 46]. Our sampled camera poses Csample are interpolated from Cinp and
so are also noisy. As our pseudo-GTs corresponding to Csample are not always spatially consistent,
it is even more difficult to disentangle scene motion from camera motion. To compensate for this,
it is necessary to optimise our sampled camera poses during training to ensure the pseudo-GTs are
aligned with the underlying scene geometry. However unlike dynamic reconstruction (Sec. 3.3.1)
where we only use the dynamic masked region for supervision, we use the entire image Et,m as
supervision for sampled camera pose optimisation. Despite fine-grained textural flickering, the coarse
structure present in static regions provides a more consistent supervision signal for localisation than
using only dynamic regions. We compute the loss as Lcam = |Em,t− Îm,t|1+λp|Em,t− Îm,t|vgg +
λs|Em,t − Îm,t|ssim. The camera loss, Lcam, is backpropagated separately to other losses and only
updates Csample.

4 Results

4.1 Datasets

We evaluate the performance of ViDAR on the DyCheck dataset [5]. DyCheck was introduced as a
real world benchmark for evaluating monocular to 4D methods and is extremely challenging: the
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Table 1: Quantitative results on co-visibility masked regions of scenes from the DyCheck (iPhone)
dataset. Best, second and third results are highlighted in red, orange and yellow respectively. SoM-5
is full-res with wheel and space-out excluded.

Method PSNR-m ↑↑ SSIM-m ↑↑ LPIPS-m ↓↓
H

al
f-

R
es

T-NeRF [5] 16.96 0.5772 0.3789
NSFF [16] 15.46 0.5510 0.3960
Nerfies [31] 16.45 0.5699 0.3389
HyperNeRF [32] 16.81 0.5693 0.3319
4DGS [49] 13.64 - 0.4280
PGDVS [64] 15.88 0.5480 0.3400
DynPoint [65] 16.89 0.5730 -
DyBluRF [1] 17.37 0.5910 0.3730
D-NPC [9] 16.41 0.5820 0.3190
RoDynRF [26] 17.10 0.5340 0.5170
Gaussian Marbles [42] 16.02 0.5416 0.3398
SoM [46] 18.62 0.6820 0.2382
MoSca [13] 19.32 0.7060 0.2640
Ours 19.69 0.7126 0.2231

Fu
ll-

R
es Gaussian Marbles [42] 15.84 0.5434 0.5681

SoM [46] 17.98 0.6422 0.3718
MoSca [13] 18.44 0.6560 0.4193
Ours 19.00 0.6672 0.3623

So
M

-5

T-NeRF [5] 15.60 0.5500 0.5500
HyperNeRF [32] 15.99 0.5900 0.5100
DynIBaR [17] 13.41 0.4800 0.5500
Gaussian Marbles [42] 16.03 0.5425 0.5807
SoM [46] 16.72 0.6300 0.4500
CAT4D [51] 17.39 0.6070 0.3410
MoSca [13] 18.34 0.6636 0.4321
Ours 18.76 0.6751 0.3774

Table 2: Quantitative results on dynamic regions of scenes from the DyCheck (iPhone) dataset. Best,
second and third results are highlighted in red, orange and yellow respectively. SoM-5 is full-res with
wheel and space-out excluded.

Method PSNR-D ↑↑ SSIM-D ↑↑ LPIPS-D ↓↓

H
al

f-
R

es

T-NeRF [5] 13.86 0.8546 0.3491
Nerfies [31] 12.89 0.8425 0.3811
HyperNeRF [32] 13.27 0.8484 0.3558
Gaussian Marbles [42] 9.99 0.8175 0.3926
SoM [46] 14.80 0.8582 0.3008
MoSca [13] 15.63 0.8755 0.2904
Ours 16.46 0.8850 0.2793

Fu
ll-

R
es Gaussian Marbles [42] 12.75 0.8607 0.5058

SoM [46] 14.82 0.8709 0.4347
MoSca [13] 15.39 0.8821 0.4413
Ours 16.32 0.8893 0.3921

So
M

-5

Gaussian Marbles [42] 13.66 0.8658 0.4919
SoM [46] 12.50 0.8648 0.4890
MoSca [13] 15.83 0.8872 0.4404
Ours 16.69 0.8941 0.3778
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Table 3: Quantitative results on NVIDIA dataset, full image and dynamic region included. Best,
second and third results are highlighted in red, orange and yellow respectively.

Method PSNR ↑↑ SSIM ↑↑ LPIPS ↓↓ PSNR-D ↑↑ SSIM-D ↑↑ LPIPS-D ↓↓

DynNeRF [4] 26.10 0.8370 0.0798 19.90 0.9536 0.1268
RoDynRF [26] 25.89 0.8538 0.0648 19.59 0.9544 0.1280
NSFF [16] 24.33 0.7511 0.1939 19.51 0.9522 0.1928
MoSca [13] 26.72 0.8507 0.0708 21.16 0.9405 0.1238
Ours 27.20 0.8610 0.0613 21.35 0.9613 0.1059

Table 4: Intersection of co-visibility mask with dynamic
regions with respect to co-visibility mask area

Scene Dyn/Co-vis Intersection (%)

apple 4.42
block 27.46
paper-windmill 3.58
space-out 20.63
spin 19.76
teddy 81.33
wheel 24.65
mean 25.97

Co-visibility mask Dynamic mask

Figure 3: An example of co-visibility
and dynamic mask comparison.

test views are far away from training views, camera poses are often inaccurate, depths are noisy and
training views have issues such as overexposure and autofocus. The dataset consists of 14 casually
captured scenes, 7 of which have no ground truth test views and are used for qualitative evaluation
only and 7 with test views available. Due to the difficulty of obtaining accurate camera poses for
all scenes, some methods choose to quantitatively evaluate on only 5 of the available 7 scenes and
discard ‘space-out’ and ‘wheel’. To our knowledge, this is currently the widely used benchmark
which is the most appropriate for evaluating our method. As described in DyCheck [5], other datasets
such as Nerfies [31] , HyperNeRF [32] and NSFF [16] suffer from teleporting cameras which makes
them effectively multi-view. We quantitatively and qualitatively evaluate our method and other
state-of-the-art baselines across all 14 scenes. In addition, we provide an evaluation of ViDAR on the
NVIDIA dataset [60]. Notably, it is a forward-facing capture with small-baseline static cameras, thus
significantly easier than DyCheck.

4.2 Metrics

Following previous works [5; 13], we compute PSNR, SSIM and LPIPS on the co-visibility masked
regions of the test views, which we denote with an -m addendum to each metric. We compute metrics
at both half-resolution and full-resolution, and following [46], we also report results on a subset of 5
scenes which we label SoM-5. For the NVIDIA dataset we follow the setup of MoSca proposed in
RoDynRF [26].

4.2.1 Limitations of Metrics and A New Benchmark

We note that the static regions of a scene are often observed from several viewpoints across different
time steps in the captured monocular video. This effectively provides multi-view supervision for these
regions, and although we are interested in reconstructing the entire scene which includes the static
regions, the dynamic regions are arguably the area of most interest and also the most under-observed.
In order to better evaluate performance in the dynamic regions of the scene, we compute a set of
dynamic masks for each scene using Track Anything [56]. We compute the intersection between the
co-visibility masks and the dynamic regions of the scene and present results in Table 4. We find that
on average only 26% of the co-visibility masked pixels correspond to the dynamic region. Some
scenes such as apple and paper-windmill have an intersection as low as 4%. We show an example of
this in Figure 3. The co-visibility masked metrics are heavily weighted towards the static regions of
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T-NeRF [5] Gaussian
Marbles [42]

Shape Of
Motion [46]

MoSca [13] Ours GT

Figure 4: Qualitative evaluation of our method against benchmark methods on the DyCheck test set.
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DynNeRF [4] NSFF [16] RoDynRF [26] MoSca [13] Ours GT

Figure 5: Qualitative evaluation of our method against benchmark methods on the NVIDIA test set.

Table 5: Quantitative results of an ablation study of the components of ViDAR.
Method PSNR-m SSIM-m LPIPS-m

Ours 19.00 0.6672 0.3623
W/o Tracking Based Gaussian Classification (TGS) 18.88 0.6651 0.3693
W/o Sampled Camera Optimisation (SO) 18.39 0.6514 0.4040
W/o Dynamic Reconstruction (DR) 18.93 0.6274 0.4497
W/o SO + DR + TGS 18.46 0.6075 0.4656
W/o diffusion (TGS only) 18.65 0.6596 0.4075
MoSca 18.44 0.6560 0.4193

the scene. Although this is useful for evaluating overall reconstruction performance, it underweights
the reconstruction performance of methods in the most difficult dynamic regions. We provide a
complementary new benchmark for the evaluation of monocular to 4D reconstruction methods, where
our computed dynamic masks can be used in place of the commonly used co-visibility masks. We
use these masks to compute the PSNR, SSIM and LPIPS, which we denote with a -D addendum, for
a range of baseline methods in Table 2.

4.3 Evaluation

Baselines We compare against a wide range of baselines, including a number of recent state-of-the-
art methods such as MoSca [13], CAT4D [51], Shape Of Motion [46], Dynamic Gaussian Marbles
[42] and 4DGS [49], which are based upon Gaussian Splatting [11]. We also compare against NeRF-
based approaches T-NeRF [5], Nerfies [31], HyperNeRF [32], DyBluRF [1] and RoDynRF [26],
neural point clouds approaches DynPoint [65] and D-NPC [9], generalized pre-trained transformer
PGDVS [64], neural scene flow NSFF [16] and volumetric image-based rendering DynIBaR [17].

Quantitative and Qualitative Evaluation We present quantitative results of our method in Tables
1 and 2. Our method outperforms all state-of-the-art baselines in PSNR and SSIM and all but
one in LPIPS, across all settings and resolutions. We typically improve PSNR by a large margin,
achieving a minimum of 1dB improvement over all methods, except for MoSca where we average
0.94dB and 0.56dB higher in dynamic and co-visibility masked regions respectively. This indicates
our method particularly improves dynamic region reconstruction. We note that CAT4D achieves

W/o SO/DR/TGS W/o DR W/o SO W/o TGS Ours GT

Figure 6: Qualitative evaluation of our ablation study with settings corresponding to Tab. 5.
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Table 6: Quantitative results of an ablation study of the number of input frames used to personalise
the diffusion model.

Method PSNR-m SSIM-m LPIPS-m PSNR-D SSIM-D LPIPS-D

3 frames 18.40 0.6577 0.3731 15.40 0.8832 0.4165
6 frames 18.51 0.6590 0.3714 15.59 0.8849 0.4132
Full sequence 19.00 0.6672 0.3623 16.32 0.8941 0.3921

a lower LPIPS score than our method, but the improved perceptual quality comes at the cost of
reduced spatio-temporal consistency, which is reflected in the PSNR and SSIM scores, and also
clearly shown in our supplementary video. In Table 3 we present quantitative results of ViDAR on
the NVIDIA dataset [60]. Even though our method was designed to tackle highly ill-posed settings,
it outperforms other methods on this simpler, forward-facing dataset. Similarly to DyCheck, we
observe improvements both in full image and dynamic regions evaluations. We present a qualitative
evaluation in Figure 4 (DyCheck) and Figure 5, where ViDAR demonstrates consistently superior
visual quality and geometric consistency when compared to the best existing approaches. Although
2D image comparisons are indicative of performance, we encourage viewing our supplementary video
results to appreciate the improvement in spatio-temporal consistency and visual quality over baselines.
Moreover, we run ViDAR on the in-the-wild videos. We refer the reader to the Supplementary
Material, where we present qualitative examples and no-reference metrics (VBench [8]) regarding
this experiment. Similarly, the Supplementary Material shows the no-reference metrics evaluated
on DyCheck dataset, indicating high temporal consistency of ViDAR outputs when compared to the
state of the art.

Ablations - Contributions We quantitatively evaluate each of our contributions in an ablation
study presented in Table 5. The penultimate row, w/o diffusion isolates the contribution of Tracking
Based Gaussian Classification. The row w/o SO + DR + TGS shows a naive approach of using the
diffused novel views directly as supervision for our monocular baseline without diffusion-aware
reconstruction. Due to the spatio-temporal inconsistencies of the diffused outputs, this leads to a
poor quality reconstruction, as shown in Figure 6. We show that removing dynamic reconstruction
leads to blurry reconstruction in static regions, while removing sampled camera optimization leads
to geometric inconsistencies. We also show that using our tracking based Gaussian classification
reduces floaters. This ablation emphasises that all of the proposed contributions are important in
achieving the final rendering quality.

Ablations - Input Video We also evaluate ViDAR in a scarce input setting. Instead of using a
full input video sequence, we select 3 or 6 equally spaced frames in time (mimicking sparse static
approaches) to train the personalised diffusion model. We use such enhancement on the full video
sequence keeping all the other experiment settings unchanged from our full pipeline. We present the
quantitative analysis in Table 6. We observe an increase in performance across all metrics with the
increased number of frames saturating when using the whole video. Notably, both 3 and 6 frame
setting provide an improvement upon baseline MoSca. With a lower number of frames, fine-tuning
the personalised diffusion model can be performed quicker, thus providing a tradeoff between training
speed and rendering quality.

5 Conclusion

We present ViDAR, a novel method for 4D reconstruction of scenes from monocular inputs. ViDAR
leverages image diffusion models by conditioning on scene-specific features to recover fine-grained
appearance details of novel viewpoints. ViDAR overcomes the spatio-temporal inconsistency of
diffusion-based supervision via a diffusion-aware loss function and a camera pose optimisation
strategy. We show that ViDAR outperforms all state-of-the-art baselines on the challening DyCheck
dataset as well as the NVIDIA dataset, and we present a new benchmark to evaluate performance in
dynamic regions.

Limitations: ViDAR limits the scope of diffusion to enhancing rendered images, which are limited
by the initial accuracy of the 4D reconstruction, thus, cannot repair major geometrical artefacts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and the introduction (explicitly stated) reflect
the contributions and are validated through extensive experimentation (Tables 1, 2, 5, Figures
4, 6).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the main manuscript and supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] ,
Justification: Based on the method section of the main manuscript it would be possible
re-implement the approach described in the paper and achieve similar results. Regardless,
further implementation details are provided in the supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We plan to release code upon acceptance and pending internal approval
procedures.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Core details are provided in the main manuscript and all other details are
provided in the supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our paper builds upon MoSca [13] and DyCheck[5], among many other works,
and follows their experimental setup. In our approach we run the experiments with a fixed
seed (same as MoSca), which we report in the supplementary for reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] ,
Justification: Computational resources, memory and execution time are discussed in the
supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors reviewed the NeurIPS Code of Ethics and confirm that the
conducted research adheres to the code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts are discussed in the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

18

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All code, data and models used are properly credited and any license terms are
properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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ViDAR: Video Diffusion-Aware
4D Reconstruction From Monocular Inputs

Supplementary Material

A Additional Results

In this section, we include additional qualitative and quantitative evaluation of ViDAR.

A.1 Further Qualitative Evaluation

We present additional qualitative evaluation of ViDAR compared to MoSca and Shape Of Motion on
the qualitative example scenes from the DyCheck dataset in Fig. 7. Our results show consistently
greater geometric consistency and visual quality compared to the other approaches.

A.2 Per-Scene Results

We provide a detailed quantitative evaluation for every scene of the DyCheck dataset in Tables 7
and 8, in half and full resolution respectively. As in Tables 1 and 2, we compute PSNR, SSIM and
LPIPS on the co-visibility masked regions of the test views, which we denote with an -m addendum
to each metric, as well as on the dynamic masked regions of the test views which we denote with
a -D. With a few exceptions (e.g. Apple, co-visibility), ViDAR is consistently the best performing
method. Similarly, we show detailed results of the NVIDIA dataset in Table 9.

A.3 In-the-wild videos

Finally, we evaluated ViDAR on the set of in-the-wild videos proposed by MoSca. Table 10 presents
a selection of non-reference video quality metrics comparing the input sequence against MoSca and
ViDAR. The metrics were proposed by a comprehensive video quality assessment suite - VBench
and consist of Subject Consistency, Background Consistency, Motion Smoothness, Aesthetic Quality,
Imaging Quality. Further, the qualitative examples of the scenes are shown in Figure 8.

A.4 Ablation - generalisable enhancement

In addition, we test our pipeline with the use of a generalisable diffusion model for enhancement.
To this end, we substitute the personalised diffusion model with a generalisable one proposed in
Difix3D+. Further, we enhance the mutli-view supervision images as in the original experiment
and keep the rest of the pipeline intact. We use two available settings of Difix3D+, no-reference
enhancement, and a reference one, where we provide a frame from the input video as the enhancement
guidance. We show the results of this ablation in Table 11. This indicates that the use of personalised
diffusion provides samples more suitable for the reconstruction in the proposed pipeline.

A.5 DyCheck - video consistency metrics

In Table 12 we provide no-reference video consistency metrics on the DyCheck dataset. The results
indicate that while raw diffusion output is characterised by low temporal consistency, ViDAR is
capable of utilising strong support for ambiguous geometry from diffusion outputs in order to produce
high-quality and temporally consistent results.
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Table 7: Per-scene quantitative evaluation of ViDAR against state-of-the-art methods on the DyCheck
dataset at half resolution. Best, second and third results are highlighted in red, orange and yellow
respectively.

Method PSNR-m ↑↑ SSIM-m ↑↑ LPIPS-m ↓↓ PSNR-D ↑↑ SSIM-D ↑↑ LPIPS-D ↓↓
A

pp
le

T-NeRF [5] 17.43 0.7285 0.5081 13.63 0.9433 0.3108
Nerfies [31] 17.54 0.7505 0.4785 13.63 0.9437 0.3321
HyperNeRF [32] 17.64 0.7433 0.4775 13.36 0.9417 0.3362
Gaussian Marbles [42] 17.90 0.7328 0.4716 14.56 0.9370 0.3229
SoM [46] 18.95 0.8111 0.2917 14.88 0.9419 0.3016
MoSca [13] 19.40 0.8074 0.3392 16.97 0.9580 0.2176
Ours 19.18 0.8008 0.3149 17.75 0.9616 0.1893

B
lo

ck

T-NeRF [5] 17.52 0.6688 0.3460 14.07 0.8591 0.3474
Nerfies [31] 16.61 0.6393 0.3893 13.31 0.8433 0.4068
HyperNeRF [32] 17.54 0.6702 0.3312 13.73 0.8525 0.3483
Gaussian Marbles [42] 16.95 0.6509 0.3788 13.81 0.8480 0.3750
SoM [46] 17.99 0.6634 0.2608 15.23 0.8596 0.3378
MoSca [13] 18.11 0.6801 0.3416 15.32 0.8699 0.3499
Ours 18.91 0.6901 0.2168 15.93 0.8864 0.3052

Pa
pe

r

T-NeRF [5] 17.55 0.3672 0.2577 12.50 0.9730 0.3149
Nerfies [31] 17.34 0.3783 0.2111 10.84 0.9710 0.3929
HyperNeRF [32] 17.38 0.3819 0.2086 10.64 0.9706 0.4040
Gaussian Marbles [42] 16.62 0.3219 0.3517 11.68 0.9710 0.2680
SoM [46] 20.85 0.6725 0.1536 12.90 0.9738 0.2634
MoSca [13] 22.24 0.7450 0.1617 14.32 0.9789 0.2832
Ours 22.48 0.7516 0.1287 15.58 0.9807 0.3080

Sp
ac

e-
ou

t

T-NeRF [5] 17.71 0.5914 0.3768 14.52 0.8620 0.3649
Nerfies [31] 17.79 0.6217 0.3032 13.85 0.8578 0.3407
HyperNeRF [32] 17.93 0.6054 0.3203 14.26 0.8597 0.3379
Gaussian Marbles [42] 15.32 0.5512 0.4235 11.15 0.8488 0.4278
SoM [46] 19.64 0.6313 0.2374 15.72 0.8805 0.2429
MoSca [13] 20.35 0.6582 0.2702 17.57 0.8985 0.2073
Ours 21.58 0.6890 0.2010 18.77 0.9091 0.2306

Sp
in

T-NeRF [5] 19.16 0.5672 0.4427 15.65 0.9090 0.3394
Nerfies [31] 18.38 0.5846 0.3087 14.11 0.8899 0.3868
HyperNeRF [32] 19.20 0.5614 0.3254 15.65 0.9060 0.3230
Gaussian Marbles [42] 18.31 0.5461 0.3558 15.68 0.8963 0.3950
SoM [46] 21.05 0.7798 0.1698 18.44 0.9180 0.2815
MoSca [13] 21.06 0.7100 0.2084 18.85 0.9240 0.2688
Ours 21.28 0.7209 0.1853 19.37 0.9327 0.2566

Te
dd

y

T-NeRF [5] 13.71 0.5695 0.4286 13.49 0.6198 0.3730
Nerfies [31] 13.65 0.5572 0.3716 13.33 0.6050 0.3280
HyperNeRF [32] 13.97 0.5678 0.3498 13.65 0.6168 0.3028
Gaussian Marbles [42] 13.65 0.5432 0.4369 13.29 0.5972 0.3961
SoM [46] 14.00 0.5462 0.3399 13.68 0.5998 0.3335
MoSca [13] 15.09 0.6133 0.3587 14.84 0.6679 0.3146
Ours 15.97 0.6416 0.3096 15.62 0.6844 0.2901

W
he

el

T-NeRF [5] 15.65 0.5481 0.2925 13.19 0.8162 0.3937
Nerfies [31] 13.82 0.4580 0.3097 11.15 0.7870 0.4805
HyperNeRF [32] 13.99 0.4550 0.3102 11.60 0.7913 0.4385
Gaussian Marbles [42] 16.02 0.5416 0.3398 9.99 0.8175 0.3926
SoM [46] 17.86 0.6695 0.2144 12.75 0.8338 0.3446
MoSca [13] 17.95 0.6852 0.2309 11.57 0.8310 0.3918
Ours 18.46 0.6943 0.2058 12.23 0.8402 0.3754
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Input Shape Of Motion [46] MoSca [13] Ours

Figure 7: Qualitative evaluation of our method against benchmark methods on the DyCheck qualitative
example set. 24



Table 8: Per-scene quantitative evaluation of ViDAR against state-of-the-art methods on the DyCheck
dataset at full resolution. Best, second and third results are highlighted in red, orange and yellow
respectively.

Method PSNR-m ↑↑ SSIM-m ↑↑ LPIPS-m ↓↓ PSNR-D ↑↑ SSIM-D ↑↑ LPIPS-D ↓↓
A

pp
le

Gaussian Marbles [42] 16.84 0.7022 0.6849 14.65 0.9495 0.4281
SoM [46] 17.74 0.7535 0.4946 14.88 0.9540 0.4036
MoSca [13] 18.19 0.7486 0.5651 17.21 0.9681 0.3073
Ours 18.02 0.7466 0.5359 18.07 0.9694 0.2559

B
lo

ck

Gaussian Marbles [42] 16.50 0.6492 0.5065 13.49 0.8660 0.4987
SoM [46] 17.42 0.6566 0.3879 14.60 0.8759 0.4667
MoSca [13] 17.56 0.6710 0.4658 14.97 0.8848 0.4808
Ours 18.43 0.6722 0.3932 15.54 0.8898 0.4100

Pa
pe

r

Gaussian Marbles [42] 15.96 0.2959 0.5778 11.30 0.9722 0.5094
SoM [46] 19.65 0.5518 0.2035 13.03 0.9737 0.4861
MoSca [13] 20.82 0.6289 0.2412 14.04 0.9770 0.5498
Ours 21.06 0.6477 0.1923 14.99 0.9777 0.5003

Sp
ac

e-
ou

t Gaussian Marbles [42] 15.19 0.5603 0.5434 11.07 0.8671 0.5334
SoM [46] 19.54 0.6178 0.3667 16.11 0.8939 0.3363
MoSca [13] 19.93 0.6280 0.4060 17.17 0.8988 0.3207
Ours 21.15 0.6443 0.3278 18.56 0.9079 0.3356

Sp
in

Gaussian Marbles [42] 17.84 0.5154 0.4784 15.79 0.9143 0.4420
SoM [46] 20.57 0.7323 0.2663 18.65 0.9339 0.3535
MoSca [13] 20.61 0.6769 0.3108 18.50 0.9371 0.3657
Ours 20.69 0.6851 0.2868 19.37 0.9445 0.3094

Te
dd

y

Gaussian Marbles [42] 13.01 0.5496 0.6559 13.05 0.6269 0.5815
SoM [46] 13.58 0.5518 0.5377 13.40 0.6251 0.4928
MoSca [13] 14.52 0.5925 0.5777 14.41 0.6692 0.4986
Ours 15.63 0.6238 0.4786 15.46 0.6892 0.4133

W
he

el

Gaussian Marbles [42] 15.55 0.5310 0.5295 9.89 0.8291 0.5473
SoM [46] 17.38 0.6318 0.3456 13.05 0.8393 0.5037
MoSca [13] 17.49 0.6460 0.3684 11.42 0.8395 0.5665
Ours 18.00 0.6505 0.3215 12.21 0.8469 0.5203

B Implementation Details

In this section, we provide any implementation details not included in the main manuscript.

B.1 Monocular Reconstruction

We implement the monocular reconstruction step directly as MoSca [13], keeping the original
hyperparameters intact. We substitute dynamic masks estimated from epipolar error by masks
obtained from Track Anything [56].

B.2 Personalised Diffusion Model

We train our personalised diffusion model with a Dreambooth [37] approach implemented in the
diffusers2 library as a LoRA fine-tuning process. We use the default implementation of the SDXL
model with default parameters. We change the resolution to match our input resolution (720x960).
Similarly, we change the number of training iterations from the default 500 to 5000, in response
to the default model being suitable for personalisation with a smaller number of images (5-40), as
opposed to our inputs (ranging above 400).

2https://huggingface.co/docs/diffusers
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Table 9: Per-scene quantitative evaluation of ViDAR against state-of-the-art methods on the NVIDIA
dataset at full resolution. Best, second and third results are highlighted in red, orange and yellow
respectively.

Method PSNR-m ↑↑ SSIM-m ↑↑ LPIPS-m ↓↓ PSNR-D ↑↑ SSIM-D ↑↑ LPIPS-D ↓↓

B
al

lo
on

1

DynNeRF [4] 22.36 0.7748 0.1015 18.68 0.8805 0.1950
RoDynRF [26] 22.37 0.7818 0.0998 18.95 0.8800 0.1876
NSFF [16] 21.96 0.7013 0.2119 18.66 0.8858 0.2573
MoSca [13] 23.58 0.8008 0.1002 19.80 0.8811 0.2149
Ours 23.98 0.8173 0.0817 20.07 0.8953 0.1686

B
al

lo
on

2

DynNeRF [4] 27.06 0.8591 0.0496 20.73 0.9640 0.0543
RoDynRF [26] 26.19 0.8459 0.0532 19.87 0.9549 0.0654
NSFF [16] 24.27 0.7314 0.2144 19.88 0.9528 0.1448
MoSca [13] 27.80 0.8755 0.0538 21.98 0.9696 0.0633
Ours 28.30 0.8857 0.0490 22.14 0.9722 0.0519

Ju
m

pi
ng

DynNeRF [4] 24.68 0.8417 0.0863 18.35 0.9372 0.1603
RoDynRF [26] 25.66 0.8532 0.0691 19.49 0.9450 0.1322
NSFF [16] 24.65 0.8125 0.1465 18.27 0.9359 0.2090
MoSca [13] 25.02 0.8135 0.0914 18.74 0.9368 0.1452
Ours 25.74 0.8355 0.0715 19.02 0.9449 0.1422

Pl
ay

gr
ou

nd

DynNeRF [4] 24.15 0.8492 0.0767 17.10 0.9775 0.1110
RoDynRF [26] 24.96 0.8993 0.0464 16.28 0.9732 0.1136
NSFF [16] 21.22 0.7047 0.2168 16.76 0.9790 0.1629
MoSca [13] 24.25 0.8872 0.0500 17.13 0.9773 0.1036
Ours 24.79 0.8939 0.0479 17.28 0.9776 0.1023

Sk
at

in
g

DynNeRF [4] 32.66 0.9514 0.0328 21.05 0.9908 0.1202
RoDynRF [26] 28.68 0.9394 0.0387 14.88 0.9842 0.2283
NSFF [16] 29.29 0.8890 0.1208 20.03 0.9908 0.1768
MoSca [13] 33.41 0.9502 0.0305 22.35 0.9927 0.0988
Ours 34.07 0.9554 0.0248 22.34 0.9929 0.0959

Tr
uc

k

DynNeRF [4] 28.56 0.8722 0.0811 26.32 0.9702 0.0832
RoDynRF [26] 29.13 0.8996 0.0616 27.85 0.9779 0.0681
NSFF [16] 25.96 0.7750 0.1724 26.38 0.9699 0.1362
MoSca [13] 27.77 0.8608 0.0792 27.77 0.8608 0.0802
Ours 28.34 0.8760 0.0724 28.08 0.9793 0.0544

U
m

br
el

la

DynNeRF [4] 23.26 0.7107 0.1303 17.08 0.9548 0.1638
RoDynRF [26] 24.26 0.7572 0.0850 19.78 0.9653 0.1006
NSFF [16] 22.97 0.6439 0.2743 16.57 0.9510 0.2625
MoSca [13] 25.18 0.7669 0.0907 20.36 0.9656 0.1609
Ours 25.19 0.7630 0.0817 20.51 0.9672 0.1260
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Table 10: No-reference evaluation (VBench) of ViDAR against MoSca and the input video. The
provided metrics are part of VBench suite.

Method Subj. cons. ↑↑ Bg. cons. ↑↑ Motion ↑↑ Aesthetic ↑↑ Imaging ↑↑

breakdance
Input 0.9199 0.9577 0.9931 0.4507 0.7052
MoSca 0.8795 0.9506 0.9924 0.4259 0.5565
Ours 0.8963 0.9528 0.9925 0.4313 0.5843

duck
Input 0.9860 0.9447 0.9944 0.6272 0.7236
MoSca 0.9561 0.9204 0.9937 0.5855 0.7045
Ours 0.9653 0.9221 0.9939 0.5870 0.6966

shiba
Input 0.8907 0.9690 0.9976 0.4913 0.7470
MoSca 0.8724 0.9596 0.9959 0.4363 0.6846
Ours 0.8891 0.9657 0.9966 0.4842 0.6910

train
Input 0.9585 0.9790 0.9968 0.6858 0.7319
MoSca 0.9464 0.9709 0.9953 0.6386 0.6730
Ours 0.9521 0.9772 0.9955 0.6782 0.6835

Average
Input 0.9388 0.9626 0.9955 0.5637 0.7269
MoSca 0.9136 0.9504 0.9943 0.5216 0.6547
Ours 0.9257 0.9544 0.9947 0.5452 0.6638

Input MoSca [13] Ours

Figure 8: Qualitative evaluation of our method against MoSca on in-the-wild videos.

Table 11: Quantitative results of an ablation study with the use of generalisable enhancement model -
Difix3D+.

Method PSNR-m SSIM-m LPIPS-m PSNR-D SSIM-D LPIPS-D

Difix3D+ - no ref 18.30 0.6558 0.3600 15.26 0.8837 0.3917
Difix3D+ - ref 18.27 0.6555 0.3625 15.25 0.8883 0.3923
Ours 19.00 0.6672 0.3623 16.32 0.8941 0.3921
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Table 12: No-reference evaluation (VBench) of ViDAR against MoSca, CAT4D and raw diffusion
output. The provided metrics are part of VBench suite.
Method Subj. cons. ↑↑ Bg. cons. ↑↑ Motion ↑↑ Aesthetic ↑↑ Imaging ↑↑

Raw diffusion 0.9333 0.9273 0.9630 0.4020 0.5720
MoSca 0.9375 0.9323 0.9911 0.4197 0.5535
CAT4D 0.9440 0.9394 0.9939 0.3962 0.5521
Ours 0.9460 0.9439 0.9941 0.4262 0.5588

GT 0.9477 0.9489 0.9969 0.4577 0.7534

B.3 Camera Sampling

To obtain a set of varying samples for multi-view supervision, we propose a camera sampling strategy
based on extreme poses within the input trajectory.

Given the set of input camera poses (position and orientation), we calculate a mean camera pose.
Then, we establish a sphere approximating the surface established by the input trajectory, assuming
that a target dynamic object is being tracked by the recording. Finally, we select two views in the
input trajectory that, when projected on the sphere, are characterised by the largest longitudinal
displacement. These constitute the extreme camera poses.

Thereafter, for each time step spanning the whole time range of the input video, we sample the
following new cameras:

• Two random camera poses from the input trajectory are selected, and a new camera pose is
calculated as their mean, and random noise is added. Total cameras: 4

• For each of the two extreme views, a random camera pose from the input trajectory is
selected, and a new camera pose is calculated as their weighted average, and random noise
is added, with the weight increasing towards the extreme views. Total cameras: 12

• The extreme camera views. Total cameras: 2

This constitutes our set of 18 new training cameras for each timestep of the input video cm ∈ Csample.

B.4 Multi-View Sample Enhancement

Having sampled a set of new trajectories, we render them with the previously trained monocular
reconstruction model, in such way we obtain a set of degraded images {Rm,t}. To perform the
enhancement as described in Section 3.2, we utilise the Image2Image translation approach as
implemented in diffusers.

B.5 Diffusion-Aware Reconstruction

We increase the total number of iterations from 8000 to 40000 in order to train on the additional
generated data. During optimisation, we run two separate forward and backward passes, the first for
sampled camera pose optimisation and the second for optimising the Gaussians and input camera
poses. At each iteration, we randomly select two of the sampled camera poses which correspond to
the same time step as the input camera. During the first pass, we render the images and compute
the mean of the camera losses Lcam for both of the sampled cameras and update only the sampled
camera poses Csample. During the second pass, we re-render the images using the updated camera
poses and compute the dynamic loss Ldyn using the dynamic region masks. This loss is added to the
existing monocular losses and is used to update the input camera poses Cinp and the Gaussians G.

C Limitations

As mentioned in Section 5, the main limitation of our approach lies in the dependency on the
underlying monocular reconstruction model as a starting point. If the monocular reconstruction model
(in our work, MoSca) fails catastrophically, ViDAR will not be able to enhance the reconstruction,
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e.g. if MoSca reconstructs a human with a detached arm, ViDAR cannot reattach the arm if it is
too far away. This is due to the conditioning of the diffusion model on the rendering from initial
reconstruction. Similarly, our work does not explore the extrapolation of the scene reconstruction
through diffusion outpainting of the unseen areas.

D Broader Impacts

Our work focuses on improving the reconstruction of dynamic scenes in a monocular camera setting.
We believe this limits the potential negative societal impacts, namely, ViDAR does not hallucinate in
the regions outside the observed scene and requires a monocular prior on the geometry. This reduces
the potential for misuse via the generation of fake content.

E Computational Resources

Our approach does not require a large amount of computational resources, as we use a single graphics
card characterised by 60 TFLOPS at fp32. Our diffusion enhancement stage requires 2 hours to
finetune and generate the multi-view images and we perform diffusion-aware reconstruction for a
further 2 hours, bringing the total compute required to 4 GPU hours.
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