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Abstract

Graph neural networks (GNNs) have been used in various works for learning
heuristics to guide search for planning. However, they are hindered by their
slow evaluation speed and their limited expressiveness. It is also a known fact
that the expressiveness of common GNNs is bounded by the Weisfeiler-Lehman
(WL) algorithm for testing graph isomorphism, and for generating features for
graphs. Thus, one may ask how do GNNs compare against machine learning
models operating on WL features of planning problems represented as graphs? Our
experiments show that linear models with WL features outpeform GNN models
for learning heuristics for planning in the learning track of the 2023 International
Planning Competition (IPC). Most notably, our model WL-GOOSE is the first
model in the learning for planning literature which can reliably learn heuristics
from scratch that are competitive with hFF on problem sizes much larger than those
seen in the training set.

1 Introduction

There has been an increasing interest in the field of learning for planning due to the high computational
complexity of classical planning, the rising popularity of deep learning, and the availability of compute
resources. Learning for planning focuses on learning domain knowledge in an automated, domain-
independent fashion for specified planning domains in order to speed up the solving process and/or
improve the quality of plans returned. Learning for planning methods generally include learning
heuristics [11, 27, 10, 17, 9], policies [35, 31] or sketches [7] for guiding search, and performing
problem transformations such as learning to partially ground [13] and identifying useful objects [29].
For older works using more classical machine learning methods we refer to [3]. There have also been
attempts with large language models but with mostly negative results [36, 30].

Most recent works (but not all) leverage neural network architectures such as graph neural networks
(GNNs) for learning domain knowledge. However, we argue that in their current form, they are not
best suited for providing domain knowledge due to various factors:

• GNNs have slow evaluation time which become a large bottleneck when called many times
such as when using them as learned heuristic functions;

• GNNs are limited in their expressive power for learning to solve planning problems, as
their simplest form is bounded by the expressiveness of the WL algorithm [37], a test for
distinguishing non-isomorphic graphs; more expressive GNNs generally have marginally
more expressiveness at a prohibitive cost,

• being a neural network architecture, GNNs have a large number of hyperparameters which
are difficult to tune especially for planning where both acquiring data for training and
validating models is expensive, and
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• similarly, there is no silver bullet for the parameters used for training a GNN, including
determining sufficient time for training. In contrast, classical learning models usually have
a well defined optimisation procedure which does not require choosing parameters for
determining termination criteria.

In our study we describe a classical machine learning architecture using graph kernels with the same
theoretical expressivity as GNNs as motivated by [37], but is much faster and simpler to train and
evaluate in Sec. 3. We evaluate our method against two previous graph neural network architectures,
Muninn [33] and GOOSE [6], on the learning track benchmarks of the 2023 International Planning
Competition [26] in Sec. 4. Our model, WL-GOOSE, trains in under a minute for any domain and
achieves overall better performance than Muninn, GOOSE and also the hFF heuristic on the IPC2023
benchmarks. We conclude this paper in Sec. 5 by discussing some current issues and open questions
in the general field of learning for planning beyond just neural network architectures.

2 Background and Notation

2.1 Planning

A classical planning task [12] is a state transition model Π = ⟨S,A, s0, G⟩ where S is a set of
states, A is a set of actions, s0 ∈ S is an initial state and G ⊆ S is a set of goal states. Each action
a ∈ A is a function a : S → S ∪ ⊥ where a(s) = ⊥ means that action a is not applicable at state
s, and otherwise, a(s) is the successor where a is applied to s. An action also has an associated
cost c(a) ∈ N. A solution or plan in this model is a sequence of actions π = a1 · . . . · an such that
si = ai(si−1) ̸= ⊥ for i = 1, . . . , n and sn ∈ G. In other words, a plan is a sequence of applicable
actions which progresses the initial state to a goal state when executed. The cost of a plan π is
c(π) =

∑n
i=1 c(ai). A planning task is solvable if there exists at least one plan. A plan is optimal if

there does not exist any other plan with strictly lower cost.

We will represent planning tasks in a compact form which does not require enumerating all states and
actions. A lifted planning task [18] is a tuple Π = ⟨P,O,A, s0, G⟩ where P is a set of first-order
predicates, O is a set of objects, A is a set of action schema, s0 is the initial state, and G is the goal
condition. A predicate P ∈ P has a set of parameters x1, . . . , xnP

where nP ∈ N depends on P ,
and it is possible for a predicate to have no parameters. A predicate can be instantiated by assigning
all of the xi with objects from O or other defined variables and in this case is known as a ground
proposition. An action schema a ∈ A is a tuple ⟨∆(a),pre(a), add(a),del(a)⟩ where ∆(a) is a set
of parameter variables, and the preconditions pre(a), add effects add(a), and delete effects del(a)
are sets of predicates from P instantiated with elements from ∆(a) ∪ O. An action schema where
each variable is instantiated with an object is an action.

States, including the initial state, in a lifted planning task are represented as sets of ground propositions.
Note that all of the following are sets of ground propositions: states, the goal condition, and the
preconditions, add effects, and delete effects of all actions. An action a is applicable in a state s if
pre(a) ⊆ s, in which case we define a(s) = (s \ del(a))∪ add(a) and otherwise we have a(s) = ⊥.
The cost of an action is given by the cost of its corresponding action schema. A state s is a goal state
if G ⊆ s.

2.2 WL algorithm for generating graph features

We write ⟨V,E, c, l⟩ for a graph with coloured nodes and edges, where V is a set of nodes, E ⊆
(
V
2

)
is a set of undirected edges, c : V → ΣV maps nodes to a set of colours ΣV , and l : E → ΣE maps
edges to a set of colours ΣE . The edge neighbourhood of a node u under edge colour ι is Nι(u) =
{e = ⟨u, v⟩ ∈ E | l(e) = ι}1. The neighbourhood of a node u in a graph is N (u) =

⋃
ι∈ΣE

Nι(u).

The k-Weisfeiler-Lehman (k-WL) algorithms [19] are a class of algorithms which provide tests for
whether pairs of graphs are isomorphic or not. It operates by iteratively updating colours assigned to
all size k subsets of nodes of the graphs based on neighbours of such subsets. However, they cannot
distinguish all pairs of non-isomorphic graphs, meaning that there exist pairs of non-isomorphic
graphs appear isomorphic to the k-WL algorithm for any k ∈ N \ {0}. The k + 1-WL algorithm

1We assume undirected edges so ⟨u, v⟩ = ⟨v, u⟩.
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G1 G2

Figure 1: Two non-isomorphic graphs G1 (6-cycle) and G2 (two disjoint 3-cycles) which the WL
algorithm returns the same outputs.

subsumes the k-WL algorithm as it can distinguish a greater class of non-isomorphic graphs, and
furthermore is in correspondence with k-variable counting logics [2]. However, the complexity of the
k-WL algorithm is exponential in k. We will focus on the 1-WL algorithm which is also known as
colour refinement or just the WL algorithm. The original WL algorithm takes as input graphs without
edge colours, i.e. ∀e ∈ E, l(e) = 0, and outputs a canonical form in terms of a multiset of colours,
a set which is allowed to have duplicate elements. It has also been used to construct a kernel for
graphs [28] which converts the multiset of colours in the WL algorithm into a feature vector and then
uses the simple dot product kernel. We denote a multiset of elements by {{. . .}}.

Algorithm 1: WL algorithm
Data: A graph G = ⟨V,E, c⟩, hash function f , and number of WL iterations h.
Result: Multiset of colours.

1 c(0)(v)← c(v), ∀v ∈ V

2 for j = 1, . . . , h do c(j)(v)← f
(
c(j−1)(v), {{c(j−1)(u) | u ∈ N (v)}}

)
, ∀v ∈ V ;

3 return
⋃

j=0,...,h{{c(j)(v) | v ∈ V }}

The method of constructing features for a given graph is given in Alg. 1 which takes as input a graph
G with coloured nodes only, an injective hash function f(·, ·) which takes as input a tuple of a colour
and multiset of colours and outputs a single colour, and a predefined number of WL iterations h.
The algorithm begins in Line 1 by initialising the current colours of each node with the initial node
colours. If no node colours are given in the graph, we can set them to 0. Line 2 iteratively updates
each node’s colour by collecting their neighbouring colours and hashing them with the injective f
function. In practice, f is built lazily by using a map dataset and multisets are represented as sorted
strings. The algorithm returns a multiset of the node colours seen over all iterations in Line 3.

If the WL algorithm outputs two different multisets for two graphs G1 and G2, then the graphs are
non-isomorphic. However, if the algorithm outputs the same multisets for two graphs we cannot say
for sure whether they are isomorphic or not. One such example is illustrated in Fig. 1 where the two
graphs are not isomorphic but the WL algorithm returns the same output for both graphs because it
views all nodes as the same since they have degree 2.

3 Method

In this section we describe how to generate features for planning states in order to learn heuristics.
The process involves two main steps: (1) converting planning states into graphs with coloured nodes
and edges, and then (2) running a variant of the WL algorithm on the states in order to generate
features. The features are then used in classical learning models for predicting heuristics in Sec. 4.

3.1 Graph representation of planning tasks

We introduce the Instance Learning Graph (ILG) in Defn 3.1 for representing planning tasks. This is
a modified subgraph of the Lifted Learning Graph (LLG) [6] which was used for learning domain-
independent heuristics with GNNs. Fig. 2 provides an illustrative example of the ILG. Note that it
only considers the propositions given in the state and goal condition, and ignores action schema and
actions. Denote [n] = {1, . . . , n}.
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on(a,b) on(b,c) on(c,a)

a b c
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Figure 2: ILG subgraph of facts and goal condition corresponding to the on predicate of a Blocksworld
instance. The current state contains a stacked on b, which is stacked on c, and the goal condition is
for c to be stacked on a.

Definition 3.1. Let T ∈ N. The instance learning graph (ILG) of a lifted planning problem
Π = ⟨P,O,A, s0, G⟩ is the graph G = ⟨V,E, c, l⟩ with

• V = P ∪ O ∪ s0 ∪G

• E =
⋃

p=P (o1,...,onP
)∈s0∪G

({
⟨p, oi⟩ | i∈ [nP ]

}
∪
{
⟨p, P ⟩

})
• c : V → P ∪ {object, achieved_prop, unachieved_goal, achieved_goal} defined by

u 7→



u, if u ∈ P
object, if u ∈ O
achieved_goal, if u ∈ s0 ∩G

achieved_prop, if u ∈ s0 \G
unachieved_goal, if u ∈ G \ s0

• l : E → N ∪ {0} with ⟨p, P ⟩ 7→ 0 and ⟨p, oi⟩ 7→ i.

The graph consists of a node for each object, predicate and the union of propositions that are true
in the state s0 and the goal condition G. A proposition is connected to its corresponding arity n
predicate with an edge of label 0 and also to the n object nodes which instantiates the proposition.
The labels of the n edges correspond to the position of the object in the predicate argument. The
colours of the nodes indicate whether the node corresponds to an object or predicate of the problem,
or determines whether it is a proposition belonging to s0 or G only or both. Note that each predicate
has a unique colour while all objects have the same colour.

3.2 WL for edge coloured graphs and constructing features

There is no canonical WL algorithm for edge coloured graphs. We modify the WL algorithm to make
use of edge coloured graphs by replacing Line 2 in Alg. 1 with the update function

c(j)(v)← f

(
c(j−1)(v),

⋃
ι∈ΣE

{{
(ι, c(j−1)(u)) | u ∈ Nι(v)

}})
. (1)

Note that edge colours do not update during this modified WL algorithm. It is possible to run a variant
of the WL algorithm which modifies edge colours but this comes at an additional computational cost
given that usually |E| ≫ |V |.
We follow the procedure of generating WL features [28] by representing multisets of colours as
a histogram vector. The feature vector of a graph is a vector v with size the number of seen
colours, where v[c] counts how many times the WL algorithm has seen colour c over all its iterations.
Formally, let ⟨V1, E1, c1, l1⟩ , . . . , ⟨Vn, En, cn, ln⟩ be the set of training graphs. Then the colours the
WL algorithm sees in the training graphs are given by

C = {c(j)i (v) | i = 1, . . . , n; j = 0, . . . , h; v ∈ Vi} (2)
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where c
(j)
i (v) is the colour of node v in graph i during the j-th iteration of WL for j > 0 and

c
(0)
i (v) = ci(v). Let I be an enumeration of C which maps a colour into an integer from 1, . . . , |C|.

Then given any graph (not necessarily a training graph), we construct a feature v of size |C| from a
multiset M returned by WL: for each element κ in M , if κ ∈ C, then vI(κ) is set to be the count of κ
in M , while elements κ not in M are ignored and do not contribute to v.

4 Experiments

In this section, we conduct experiments to study the effectiveness of our method for learning
heuristic functions in comparison to graph neural networks architectures. We name our architecture
which combines the aforementioned methods for learning domain-dependent heuristic functions for
classical planning problems WL-GOOSE 2. WL-GOOSE views states s in search of a given planning
instance ⟨S,A, s0, G⟩ as new individual planning tasks ⟨S,A, s,G⟩. The planning tasks are then
converted into ILGs as input into the modified WL algorithm (Eq. 1) for generating vector features.
The vector features are then trained using support vector regression using the dot product kernel.
Experiments with nonlinear kernels, linear regression and neural networks yielded worse results. The
learned heuristics are used for eager GBFS search in version 22.12 of the Fast Downward planning
system [14].

4.1 Benchmarks

We consider the domains and training and test sets from the learning track of the 2023 International
Planning Competition (IPC) [26]. The domains are Blocksworld, Childsnack, Ferry, Floortile,
Miconic, Rovers, Satellite, Sokoban, Spanner, and Transport. Each domain contains instances
categorised into easy, medium and hard difficulties depending on the number of objects of the
instance. The training set of each domain consists of at most 99 easy instances which are disjoint
from the easy testing instances. The test set of each domain consists of exactly 30 instances from
each of the three easy, medium and hard difficulties that are not seen in the training set. Table 1
summarises the problem sizes of each difficulty of each domain. We test against GBFS with the hFF

heuristic [15], and two other GNN architectures which learn heuristics: Muninn [33] and GOOSE [6].

Muninn is a GNN architecture based on previous work by the authors of [31] which learns a heuristic
for use both as a greedy policy and for A∗ search and was a participant in the competition. Their
paper is motivated by the well known result that the expressivity of GNNs is bounded by the
WL algorithm [37] and can distinguish counting logics with 2 variables [1]. The authors provide
theoretical insights into the expressiveness limits of GNNs and methods to deal with suboptimality of
learned heuristic functions [32] as opposed to experimental performance.

GOOSE [6] is our approach of learning heuristics using GNNs. We introduced the Lifted Learning
Graph (LLG) and our approach is the first domain-independent graph representation of the lifted
planning tasks used for learning heuristics. We also introduced results concerning which domain-
independent heuristics GOOSE can or cannot learn, such as hadd, hmax, h+ and h∗. For the following
experiments, GOOSE uses 4 message passing layers, while Muninn uses 30 message passing layers.
In our experiments, we will run GOOSE with the ILG instead of the LLG given that the latter graph
representation is focused on domain-independent training while the former is a smaller graph than the
LLG and is focused on domain-dependent training. Experimental results show that GOOSE with ILG
performs better than with LLG across the board, although at the expense of being able to generalise
across domains. Furthermore, we tested both the mean and max message passing aggregators. We
will refer to GOOSE as GNN-GOOSE from here on.

The other planners in the competition either learn a policy or policy sketches, or a problem transforma-
tion of a planning instance for use with a base domain-independent planner. Given that we are focused
on the effectiveness of learned heuristics, we exclude these planners and other domain-independent
satisficing planners from the experimental evaluation. For all planners except GNN-GOOSE, we
run experiments on a cluster with single Intel Xeon 3.2 GHz CPU cores, memory limit of 8GB, and
timeout of 1800 seconds. For GNN-GOOSE we use Intel Xeon Gold 5218R 2.1GHz CPU cores, an
NVIDIA RTX A6000 GPU with 48GB memory, and a timeout of 1800 seconds. However, we note
that GNN-GOOSE never uses more than 8GB of GPU or main memory before reaching the timeout.

2Weisfeiler-Lehman Graphs Optimised fOr Search Evaluation
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Table 1: Sizes of problems in the easy, medium and hard difficulties of each domain in the IPC 2023
Learning Track benchmarks [26]. Training problems have size in the easy category.

Domain Objects Easy Medium Hard

Blocksworld b blocks b ∈ [5, 30] b ∈ [35, 150] b ∈ [160, 500]

Childsnack s sandwiches s ∈ [4, 15] s ∈ [15, 60] s ∈ [50, 450]
c children c ∈ [4, 10] c ∈ [15, 40] c ∈ [50, 300]
t trays t ∈ [1, 3] t ∈ [2, 5] t ∈ [4, 10]

Ferry c cars c ∈ [1, 20] c ∈ [10, 100] c ∈ [200, 1000]
l locations l ∈ [5, 15] l ∈ [20, 50] l ∈ [100, 500]

Floortile n grid size n ∈ [3, 8] n ∈ [10, 22] n ∈ [25, 37]
r robots r ∈ [1, 3] r ∈ [4, 15] r ∈ [15, 35]

Miconic p passengers p ∈ [1, 10] p ∈ [20, 80] p ∈ [50, 500]
f floors f ∈ [4, 20] f ∈ [30, 60] f ∈ [80, 200]

Rovers r rovers r ∈ [1, 4] r ∈ [5, 10] r ∈ [15, 30]
o objectives o ∈ [1, 10] o ∈ [15, 80] o ∈ [100, 200]
c cameras c ∈ [1, 4] c ∈ [5, 50] c ∈ [60, 100]
w waypoints w ∈ [4, 10] w ∈ [15, 90] w ∈ [100, 200]

Satellite s satellites s ∈ [3, 10] s ∈ [15, 40] s ∈ [50, 100]
i instruments i ∈ [3, 20] i ∈ [15, 80] i ∈ [50, 200]
m modes m ∈ [1, 3] m ∈ [3, 5] m ∈ [5, 10]
d directions d ∈ [4, 10] d ∈ [15, 30] d ∈ [40, 100]

Sokoban n grid size n ∈ [8, 13] n ∈ [20, 50] n ∈ [60, 100]
b boxes b ∈ [1, 4] b ∈ [5, 35] b ∈ [40, 80]

Spanner l locations l ∈ [4, 10] l ∈ [15, 45] l ∈ [50, 100]
s spanners s ∈ [1, 10] s ∈ [30, 90] s ∈ [100, 500]
n nuts n ∈ [1, 5] n ∈ [15, 50] n ∈ [50, 250]

Transport p packages p ∈ [1, 15] p ∈ [5, 45] p ∈ [20, 200]
l locations l ∈ [5, 15] l ∈ [20, 40] l ∈ [50, 100]
v vehicles v ∈ [3, 6] v ∈ [10, 20] v ∈ [30, 50]
m capacity m = 2 m = 4 m = 10

4.2 Training

For all models, training was done in a domain-dependent fashion. This means that models are trained
on data from a specific domain and are evaluated only from problems within that specific domain. We
use the optimal planner scorpion [25] to return optimal plans on training instances with a 30 minute
time out on each instance. We use the states and the corresponding cost to the goal from each plan as
training data. All inference models are trained with the scikit-learn package [24], which makes
use of libsvm [4] for training the support vector regression models.

We do not train Muninn but instead used the trained weights from the competition. Muninn uses as
training data all reachable states in as many training problems as possible given the time limit and the
corresponding optimal costs to the goal from each state. Its training process involves first trying to
learn an optimal value function on the training data where possible, and if it fails switches to learn a
suboptimal value function.

4.3 Results

We used the same metric in the competition for scoring planners. If a planner does not solve an
instance, it is given a score 0 for that instance. Otherwise, it is given a score min(1, C∗/C) where
C is the cost of the plan returned by the planner on that instance, and C∗ is the cost of a reference
plan, which is not necessarily optimal. A planner’s total score is the sum of its scores for all tasks.
Tab. 2 highlights these scores alongside the coverage of planners. Fig. 3 displays plots of number of
expanded nodes and plan quality of WL-GOOSE against hFF and GNN-GOOSE.
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Table 2: Coverage (left) and competition score (right) of planners over various domains and difficulties.
The competition score of a planner for an instance is min(1, C∗/C) if it returns a valid plan of cost
C, where C∗ is the cost of a reference plan, and 0 otherwise. The first/second/third/fourth row of
each domain corresponds to metric values on easy/medium/hard/all difficulties. The best planner is
highlighted in bold, and the top three planners in each row is indicated by the intensity of the cell
shading. - indicates zero coverage in the corresponding entry. WL is the new main contribution of
this paper. The bottom tables are condensed version of the top tables by omitting the rows based on
difficulties.

GOOSE

Domain bl
in

d

h
FF

M
un

in
n

G
N

N
(m

ax
)

G
N

N
(m

ea
n)

W
L

blocksworld
8 28 30 30 30 30
- - 10 16 24 19
- - - 3 4 -
8 28 40 49 58 49

childsnack
9 26 11 19 20 20
- - - - - -
- - - - - -
9 26 11 19 20 20

ferry
10 30 30 30 30 30
- 30 16 30 30 30
- 8 - 4 12 14
10 68 46 64 72 74

floortile
2 12 - - - 2
- - - - - -
- - - - - -
2 12 - - - 2

miconic
30 30 30 30 30 30
- 30 - 30 30 30
- 30 - 30 30 30
30 90 30 90 90 90

rovers
15 29 15 25 28 30
- 5 - - 1 15
- - - - - -
15 34 15 25 29 45

satellite
12 30 16 29 27 30
- 30 2 2 2 7
- 5 - - - -
12 65 18 31 29 37

sokoban
27 30 26 30 30 30
- 6 - 2 3 7
- - - - - -
27 36 26 32 33 37

spanner
30 30 30 30 30 30
- - 2 - 3 -
- - - - - -
30 30 32 30 33 30

transport
9 30 17 30 30 30
- 11 - 8 5 19
- - - - - -
9 41 17 38 35 49

sum
152 275 205 253 255 262
- 112 30 88 98 127
- 43 - 37 46 44
152 430 235 378 399 433

GOOSE

Domain bl
in

d

h
FF

M
un

in
n

G
N

N
(m

ax
)

G
N

N
(m

ea
n)

W
L

blocksworld
8.0 14.1 30.0 28.1 27.2 26.7
- - 10.0 14.8 21.9 17.8
- - - 2.7 3.6 -
8.0 14.1 40.0 45.6 52.7 44.4

childsnack
9.0 20.1 11.0 17.6 19.9 18.9
- - - - - -
- - - - - -
9.0 20.1 11.0 17.6 19.9 18.9

ferry
10.0 29.6 30.0 29.9 29.9 29.6
- 30.0 16.0 30.0 30.0 30.0
- 8.0 - 4.0 12.0 14.0
10.0 67.6 46.0 63.9 71.9 73.6

floortile
2.0 11.2 - - - 1.8
- - - - - -
- - - - - -
2.0 11.2 - - - 1.8

miconic
30.0 28.7 30.0 29.2 29.1 29.0
- 30.0 - 30.0 30.0 30.0
- 29.9 - 30.0 30.0 30.0
30.0 88.5 30.0 89.2 89.1 89.0

rovers
15.0 27.7 14.2 19.7 23.8 24.9
- 5.0 - - 1.0 11.4
- - - - - -
15.0 32.7 14.2 19.7 24.8 36.4

satellite
12.0 28.8 16.0 22.6 19.6 25.9
- 30.0 2.0 2.0 2.0 7.0
- 5.0 - - - -
12.0 63.8 18.0 24.6 21.6 32.9

sokoban
27.0 23.2 24.3 26.3 27.0 26.1
- 3.1 - 2.0 3.0 7.0
- - - - - -
27.0 26.3 24.3 28.3 30.0 33.1

spanner
30.0 30.0 30.0 30.0 30.0 27.6
- - 2.0 - 3.0 -
- - - - - -
30.0 30.0 32.0 30.0 33.0 27.6

transport
9.0 28.3 17.0 27.9 27.5 28.3
- 11.0 - 7.8 4.1 18.0
- - - - - -
9.0 39.3 17.0 35.6 31.6 46.3

sum
152.0 241.5 202.4 231.2 234.2 238.8
- 109.1 30.0 86.6 94.9 121.2
- 42.9 - 36.7 45.5 44.0
152.0 393.5 232.4 354.5 374.6 404.0

GOOSE

Domain bl
in

d

h
FF

M
un

in
n

G
N

N
(m

ax
)

G
N

N
(m

ea
n)

W
L

blocksworld 8 28 40 49 58 49
childsnack 9 26 11 19 20 20

ferry 10 68 46 64 72 74
floortile 2 12 - - - 2
miconic 30 90 30 90 90 90
rovers 15 34 15 25 29 45

satellite 12 65 18 31 29 37
sokoban 27 36 26 32 33 37
spanner 30 30 32 30 33 30
transport 9 41 17 38 35 49

sum 152 430 235 378 399 433

GOOSE

Domain bl
in

d

h
FF

M
un

in
n

G
N

N
(m

ax
)

G
N

N
(m

ea
n)

W
L

blocksworld 8.0 14.1 40.0 45.6 52.7 44.4
childsnack 9.0 20.1 11.0 17.6 19.9 18.9

ferry 10.0 67.6 46.0 63.9 71.9 73.6
floortile 2.0 11.2 - - - 1.8
miconic 30.0 88.5 30.0 89.2 89.1 89.0
rovers 15.0 32.7 14.2 19.7 24.8 36.4

satellite 12.0 63.8 18.0 24.6 21.6 32.9
sokoban 27.0 26.3 24.3 28.3 30.0 33.1
spanner 30.0 30.0 32.0 30.0 33.0 27.6
transport 9.0 39.3 17.0 35.6 31.6 46.3

sum 152.0 393.5 232.4 354.5 374.6 404.0
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Figure 3: Number of expanded nodes (top) and length of plans (bottom) of various solvers over
various domains. If a planner does not solve a problem, its corresponding data point is set to the
maximum axis value. Points in the upper left triangle benefit WL-GOOSE, while points in the bottom
right triangle benefit the corresponding model indicated on the y-axis.

4.3.1 Planning performance

We see from Tab. 2 that WL-GOOSE overall has the highest coverage and competition score with
433 and 404.0 respectively, outperforming both its GNN counterparts GNN-GOOSE with mean (399
and 374.6) and max (378 and 354.5) aggregators, and hFF (430 and 393.5). However, performance is
specific to domains. GNN-GOOSE performs best on Blocksworld and marginally better on Spanner,
and hFF performs best on Childsnack, Floortile and Satellite. WL-GOOSE performs best on the
remaining domains (Ferry, Rovers, Sokoban and Transport). Miconic is solved by all planners except
Muninn and blind search.

4.3.2 Heuristic and plan quality

Fig. 3 show that the number of node expansions and plan quality of WL-GOOSE in comparison to
hFF and GNN-GOOSE varies depending on the domain. However, it is generally the case that the
model with the better coverage on the domain expands fewer nodes and returns better quality plans.
For example, GNN-GOOSE performs better than WL-GOOSE which in turns performs better than
hFF on Blocksworld and this ranking of planners is the same as with the number of expanded nodes
and plan quality. Meanwhile, WL-GOOSE has the overall best performance on Transport and also
the fewest node expansions. Sokoban is an exception where WL-GOOSE expands more nodes than
hFF but due to WL-GOOSE’s fast heuristic evaluations it solves one more problem (37 vs 36).

4.3.3 Runtime of GNNs vs graph kernels

WL-GOOSE has much faster evaluation time than graph neural networks which balances out its poorer
learned heuristic quality in order to achieve the same coverage as GNN-GOOSE. The complexity of
the WL-GOOSE for producing a heuristic estimate is O(ndh) where h is the number of iterations of
the WL-algorithm, n is the number of nodes in the graph and d is the degree of the graph. This is
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because the WL algorithm performs h iterations of updating n nodes’ colours by collecting colours
from each node’s neighbours of size at most d. A heuristic estimate performed on a linear combination
of the returned colours is upper bounded by ndh. This is in contrast to GNNs which has the same
complexity multiplied with at least an additional cubic term arising from matrix operations on high
dimensional feature vectors when run on a single core CPU. For example, GNN-GOOSE has over
100000 weight parameters which have to be multiplied with latent embeddings. In Fig.3, we see that
GNN-GOOSE expands up to 106 nodes before it solves a problem or times out when using GPUs,
in comparison to WL-GOOSE which expands up to 107 nodes. However, GNN-GOOSE is up to
10-100x times slower when run on single core CPUs compared to GPUs.

5 Discussion

In this section we comment about other open problems and prevalent issues in the field of learning for
planning, beyond the current limitations of neural network architectures for planning. The learning
track of the 2023 IPC was a welcome addition to the field of learning for planning, which aimed
to provide an even playing field for works in this field and proposing a consistent benchmark of
domains and training splits for evaluating such works. It also provided many insights and conversely
also highlighted many open problems and issues in this field. Most notably is that classical planners
are still outperforming planners which make use of learned domain knowledge as seen in the full
competition results. Furthermore, in most domains, learning planners generally struggle to generalise
to unseen problem sizes as seen in the low coverage on medium and hard problems on almost
all domains. Being a programming competition, this could be attributed to bugs in the submitted
planners but it is also reasonable to attribute the results to some currently open problems in the field.
Such problems are also applicable to learning as a whole, but are made especially difficult in the
computational difficult task of planning.

5.1 Learning planners are not robust

One difficulty of learning for planning is ensuring robustness of planners. Even in the domain-
dependent training setting, unseen test problems generally differ greatly than the training problems
as a result of the computational complexity of reasoning in planning. This is in contrast to classical
applications of machine learning to datasets which are generally drawn from a nice distribution. Some
methods such as validation by using learned domain knowledge for search [9, 31] have been attempted
for model selection but such methods have no theoretical backing and are generally expensive to
perform.

Besides the absence of generalisation results of learning planners, the results from the 2023 IPC
learning track also highlights the poor robustness of learning planners. Other learning planners which
outperform Muninn generally learn a transformation of the given planning task before providing the
transformation to a classical domain-independent planner for use, with the hope that the transformation
prunes the search space in order to return plans faster or return higher quality plans. However, the
competition results show that learning such transformations actually decrease the performance of the
base planner.

5.2 Absence of automatic training data selection methods

Another open question in learning for planning is an automatic and efficient method for select good
training data for arbitrary domains. There are many issues with acquiring training data for learning
for planning. Even if we can assume that we have a generator for any given domain, constructing
training data from generated instances is expensive as it usually requires solving the instances. It is
also quite unlikely that we can generate good training data efficiently, given that we cannot generate
useful labelled training data for NP-hard problems efficiently under the common assumption that
NP ̸= coNP [38], while propositional planning in general is PSPACE-complete [8].

Ignoring the cost of generating training data, it is also difficult to know how much training data
we need and whether a training instance is useful for our model. For example, how many Ferry
instances do we have to generate in order for a planner to learn a policy for this domain, and what size
instances do we need? Is five training problems with between 5-10 ferries enough? Is it redundant
to provide two training problems with the same number of ferries? Some experimental insights
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have been provided with the effect of training data size and sample strategies from given optimal
plans [10] although this was done for the case of a specific neural network architecture and in the
setting of learning to generalise on similar size problems. Methods such as bootstrapping can aid this
problem [16, 17, 9, 22] as it allows for continuously learning from increasingly difficult problems
and combining the training and solving process together. Nevertheless, such methods still require
hand choosing training problems a priori. One could also explore ideas of transfer learning, zero
shot or one shot learning, for example by learning from a model pretrained on a large set planning
instances [5] from different domains [27].

5.3 Forms of learned domain knowledge do not complement planners well

Most learning for planning works aim to learn a heuristic or policy with the aim of solving planning
problems quickly. The hope is that domain-dependent learners can learn the optimal heuristic or
complete policies for planning problems under the assumption that they only have to do so for a
specific domain. However, this is not possible for all domains for any learning models considered
so far [31, 7, 5], meaning that we have to resort to using search methods to aid suboptimal learned
domain knowledge [27, 32]. Nevertheless, classical planners are still outperforming learning planners
on computationally difficult domains.

Another issue concerning such works is the absence of well motivated loss functions for learning
models. Almost all works consider using common regression loss functions, such as mean squared
error loss, when optimising learned heuristic functions, or classification loss functions, such as cross
entropy, for learning policies. However, such optimisation problems are originally derived from a
statistical viewpoint which may not be best suited for combinatorially hard problems such as planning.
We may want to derive or study new learning for planning algorithms whose learning module’s
optimisation problem is better suited for its downstream task.

One recent approach in this direction is by modelling a heuristic as truncated Gaussians bounded
below by admissible heuristics [21] instead of a single Gaussian distribution as implicitly done
when optimising a mean squared error loss function. Levin Search [23, 22] offers a solution to this
problem as its optimisation problem involves directly minimising the number of node expansions for
search. Descending and dead-end avoiding heuristics can be learned with a mixed integer program
encoding [11] from description logic features [20]. The same description logic features can also be
used to learn policy sketches [7] which is used in conjunction with bounded width search, and for
learning domain-dependent dead-end detectors [34].

Alternatively, we could strive to learn other forms of domain knowledge for planning beyond
heuristics, policies and transformations of the planning task, or maybe a combination of all such
methods.

6 Conclusion

In this work we have proposed a classical machine learning architecture for learning to solve planning
problems. The architecture, WL-GOOSE, makes use of the WL algorithm for generating feature
vectors of planning tasks represented as graphs, which are then used for learning heuristic functions
with linear regression and kernel methods. An informal theoretical argument suggests that it has the
same inference power as GNNs but are orders of magnitude faster to evaluate and train. Experimental
results indeed support this as WL-GOOSE achieved overall better coverage than its GNN counterpart,
GNN-GOOSE. Furthermore, WL-GOOSE is the first model which can learn heuristics from scratch
that are competitive with hFF on greedy best first search on nontrivial problem sizes.
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