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ABSTRACT

Machine unlearning aims to selectively remove specific knowledge from a model.
Current methods, such as task arithmetic, rely on fine-tuning models on the forget
set, generating a task vector, and subtracting it from the original model. However,
we argue the effectiveness of this approach is highly sensitive to hyperparameter
selection, necessitating careful validation to identify the best model among many
fine-tuned candidates. In this paper, we propose a novel method that leverages all
given fine-tuned models rather than selecting a single one. By constructing task
vectors from models trained with varied hyperparameters and merging only the
components of the task vectors with consistent signs, we perform unlearning by
negating the merged task vector from the original model. Given that existing meth-
ods also utilize multiple fine-tuned models, our approach delivers more effective
unlearning without incurring additional computational costs. We demonstrate the
effectiveness of our method on both vision-language models and standard image
classification models, showing improved unlearning performance with minimal
degradation on the retain set, outperforming state-of-the-art techniques.

1 INTRODUCTION

Recent advances in pre-training (Devlin, 2018; Dosovitskiy et al., 2021; Radford et al., 2021; Oquab
et al., 2023; Achiam et al., 2023; Liu et al., 2024) have achieved remarkable performance, primar-
ily driven by the use of large-scale datasets. However, the datasets often include underfiltered, un-
wanted, or sensitive private information, which raises critical concerns about privacy protection. The
Right to be Forgotten regulation (Hoofnagle et al., 2019) allows individuals to request the deletion
of their personal data. However, applying this concept to machine learning models is challenging
because the training process deeply embeds the data into the model’s parameters, making it difficult
to remove its influence. The most straightforward solution is to remove the data from the training set
and retrain the model from scratch, which requires enormous computational resources. As a result,
ensuring that models forget learned patterns becomes a challenging task. Machine unlearning (War-
necke et al., 2021; Golatkar et al., 2020; Thudi et al., 2022; Koh & Liang, 2017; Jia et al., 2023;
Chen et al., 2023; Fan et al., 2023) offers a solution by enabling models to erase specific knowledge
without the need for full retraining.

Despite promising results, many existing methods struggle to remove only the target knowledge
while preserving the rest. This challenge arises because fine-tuning often disrupts knowledge in
the retain set (i.e., remaining data) during attempts to erase knowledge from the forget set (i.e.,
data to be forgotten) (Chen et al., 2023; Fan et al., 2023). A known method robust to this issue
is task arithmetic (Ilharco et al., 2022a), where direct fine-tuning of the model is avoided. In-
stead, this method calculates a task vector – the parameter-wise difference between the original
model and a model fine-tuned on the forget set. The task vector is then subtracted from the orig-
inal model through a negation operation. This process, referred to as forgetting by negation, has
demonstrated strong unlearning performance while preserving the model’s knowledge, similar to
continual learning researches (Kirkpatrick et al., 2017; Aljundi et al., 2018) addressing catastrophic
forgetting (Kirkpatrick et al., 2017). However, we argue that task arithmetic has limitations; not all
fine-tuned models are suitable for task vectors, and thus, unlearning performance is highly sensitive
to hyperparameter setups used for fine-tuning. As a result, searching for an optimal hyperparameter
set for effective unlearning can be both time-consuming and computationally costly.
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To address these limitations, we propose a novel method, NegMerge, that improves the process of
forgetting by negation. We argue that relying on a single optimal model, as current methods (Ilharco
et al., 2022a; Ortiz-Jimenez et al., 2024) do, is not truly optimal. Hyperparameter tuning generates
multiple fine-tuned models, and instead of selecting just one, we suggest leveraging all of them.
Specifically, we compute the final task vector by merging multiple task vectors derived from the
fine-tuned models. This approach draws inspiration from model merging techniques (Wortsman
et al., 2022; Yang et al., 2023; Jang et al., 2024), which similarly utilize multiple fine-tuned models
to enhance performance. By extending this concept to machine unlearning, we provide a more
effective solution. Specifically, unlike these existing techniques, we only combine elements with
consistent signs across the task vectors while masking elements with inconsistent signs to zero.

We demonstrate the effectiveness of our approach in two experimental settings. The first involves
unlearning specific knowledge from a vision-language model like CLIP (Radford et al., 2021). The
second focuses on unlearning knowledge from specific data points in a general image classification
network (Chen et al., 2023; Fan et al., 2023). We validate our method using the ViT (Dosovit-
skiy et al., 2021) and ResNet (He et al., 2016) architectures across nine datasets. In both settings,
our approach achieves new state-of-the-art performance while using similar or fewer computational
resources than existing methods.

2 RELATED WORK

Machine Unlearning. Recent machine unlearning methods can be categorized into two main
groups; unlearning specific knowledge in vision-language pre-trained models (Ilharco et al., 2022a;
Ortiz-Jimenez et al., 2024) and unlearning data in standard classification networks (Chen et al.,
2023; Fan et al., 2023). Traditionally, these categories have been viewed as separate fields.

In the formal setup, the negation method in task arithmetic (Ilharco et al., 2022a) is commonly used
for unlearning specific knowledge. A recent advancement is the neural tangent kernel-based linear
negation method (Ortiz-Jimenez et al., 2024), which addresses weight disentanglement issues in
task arithmetic by linearizing models and fine-tuning them in their tangent space. Both techniques
depend on a single fine-tuned model to compute the task vector.

On the other hand, unlearning with a standard image classifier usually involves fine-tuning the orig-
inal model. Fine-tuning (Warnecke et al., 2021) and ℓ1-sparse (Jia et al., 2023) aim to overfit the
model only on the retain set to erase the knowledge of the forget set. Meanwhile, Influence (Koh
& Liang, 2017) and SalUn (Fan et al., 2023) utilize both the retain and forget sets to selectively
degrade performance on the forget set while maintaining it on the retain set.

When the forget set is much smaller than the retain set, using retain set for unlearning can be ineffi-
cient. This challenge has led to the development of methods that focus on unlearning using only the
forget set. Several approaches (Golatkar et al., 2020; Chen et al., 2023) attempt this by relabeling
the forget set to different classes and fine-tuning the model. However, these methods often suffer
from catastrophic forgetting of the retain set, as the retain set is not used during fine-tuning.

This paper proposes a unified approach to tackle both classification tasks using vision-language
models and standard models. Furthermore, our method also focuses on using only the forget set
for unlearning. We recognize the inherent trade-off between unlearning performance and retaining
performance on the retain set. Relying on a single model to address this trade-off is inefficient. To
overcome this, we propose a new approach that utilizes multiple fine-tuned models. By building on
task arithmetic, our method computes a more effective task vector from these models, enhancing
unlearning performance.

Model Merging. The concept of Model soups (Wortsman et al., 2022) addresses inefficiencies
in the validation process, where many models are discarded, and only the best one is retained.
This approach advocates for merging the weights of sub-optimal models to enhance generalization
performance without additional computational demands. Following this insight, more advanced
model merging techniques have emerged. Task Arithmetic (Ilharco et al., 2022a) introduces the
task vector, demonstrating that merging these vectors can effectively enhance a model’s multi-task
capabilities. TIES-Merging (Yadav et al., 2024) refines the merging process by incorporating a
trimming step and, in cases of sign conflicts, selects one sign through a voting process, merging all
task vectors corresponding to the chosen sign. AdaMerging (Yang et al., 2024) autonomously learns
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Figure 1: Hyperparameter Sensitivity in Negation Methods. We first share our motivation for this work. (a):
Each point represents the accuracy of the forget set and the retain set. For the forget set, 1 - accuracy on the
forget set is used for better visibility. The green points indicate the results of models fine-tuned with various
hyperparameters, while the points in other colors denote results from different methods, including ours. This
experiment uses the CLIP ViT-B-32 model on the Cars dataset (Krause et al., 2013). (b), (c): The accuracy
distribution for different hyperparameter choices on the forget and retain set, respectively. We observe that 1)
the models trained under varied hyperparameters exhibit different unlearning capabilities; 2) smartly utilizing
them could improve the capability without concerns on hyperparameter sensitivity (ours).

the coefficients for merging models, either task-wise or layer-wise, and does so without depending
on the original training data. MagMax (Marczak et al., 2024) selects task vector elements based on
their largest magnitudes.

3 METHOD

3.1 BACKGROUND

Task Arithmetic. Task arithmetic (Ilharco et al., 2022a) defines a task vector τt = θtft − θpre.
Specifically, the vectors are the result of subtracting (negating) the weights of a pre-trained model
θpre from those of a model θtft fine-tuned on a target task t. We can adjust the model in the desired
direction by adding or subtracting the sum of these task vectors τ =

∑
t τt from the original model’s

weights, according to the formula θnew = θpre + λτ . This approach is more computationally
efficient than fine-tuning, as it leverages pre-trained models from public repositories and eliminates
the need for additional training.

A key application of task arithmetic is to make a model forget certain capabilities (Ilharco et al.,
2022a). This can be achieved through the negation of task vectors from the original weight, which
decreases performance on a target task. For instance, task arithmetic can be applied to unlearning
in models like CLIP (Radford et al., 2021), which is a strong vision-language model. In the original
paper, the authors demonstrated that task vectors derived from a CLIP model fine-tuned on a specific
dataset (e.g., Cars) could reduce the model’s accuracy on the fine-tuning dataset while maintaining
overall accuracy on a general dataset (e.g., ImageNet). However, while task arithmetic has shown
promising results for machine unlearning, there has been little research on fine-tuning models and
computing task vectors for more effective unlearning. Our research addresses this gap.

Motivation. Our pilot study identifies two major challenges. First, unlearning performance is highly
sensitive to the hyperparameters used for fine-tuning. Figures 1 (b) and (c) exhibit accuracy on both
the forget set and retain set, which can vary by up to 15 percentage points depending on the hyperpa-
rameters. Second, finding a balance between reducing accuracy on the forget set while maintaining
accuracy on the retain set is challenging. As shown in Figure 1 (a), improving performance on the
retain set tends to result in a clear decrease in performance on the forget set, and vice versa.

We argue overfitting the fine-tuned model to the forget set greatly diminishes performance on the
retain set when unlearning is applied; conversely, underfitting the model to the forget set leads to
ineffective unlearning, where the forgetting performance does not decrease sufficiently. Empirical
evidence supporting our claim is presented in Section 4.3. Additionally, for successful unlearning,
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Figure 2: Illustration of the proposed method. Our NegMerge enhances task arithmetic by computing
an improved task vector. Specifically, 1) multiple task vectors derived from fine-tuned models trained with
different hyperparameters are utilized. 2) we compute the improved task vector by merging (⊕) only the
elements that retain a consistent sign across task vectors while masking elements with differing signs to 0. 3)
this refined task vector is used for negation from the original weights. The color intensity in the cells reflects
the magnitude of the task vector elements; darker blue represents larger positive values, lighter blue indicates
smaller positives, while darker red represents larger negative values, and lighter red indicates smaller negatives.

the task vector should exclusively represent the information to be forgotten within the framework of
negation. This requires that the fine-tuned model precisely fits the forget set while it preserves the
original knowledge.

Achieving both is challenging due to the nature of fine-tuning, where the only forget set is acces-
sible; a model that fits the forget set well will inevitably lose knowledge of the retain set, and vice
versa (Kirkpatrick et al., 2017). As we observed, this makes it difficult to achieve the desired balance
with only a single model, which leads us to consider that aggregating multiple models could suggest
more effective unlearning. However, we also observed that conventional model merging methods
like Uniform Merging, Greedy Merging, TIES-Merging, and MagMax, which do not account for
the characteristics of machine unlearning, fail to escape this trade-off as displayed in Figure 1 (a).
In contrast, our method, specialized in unlearning, surpasses this trade-off and achieves superior
performance. We aim to use the given fine-tuned models more effectively and enhance unlearning
outcomes while avoiding additional training costs. More details will be provided in Section 3.2.

Our Unlearning scenarios. In our study, we explore two distinct unlearning scenarios. The first
scenario is the one described above, where a vision-language model like CLIP (Radford et al., 2021)
is made to forget the knowledge of a specific class. For this scenario, we adopt the evaluation
protocol for unlearning proposed in the original paper (Ilharco et al., 2022a). The other scenario
involves a standard image classification network like ResNet (He et al., 2016) trained using cross-
entropy loss on images and class labels. In this case, the model is made to forget the knowledge of
specific training data. Here, we calculate the task vectors by fine-tuning the model only using the
forget set: θunlearn = θori − λ(θforgetft − θori) for both scenarios.

3.2 NEGMERGE : IMPROVED TASK ARITHMETIC FOR MACHINE UNLEARNING

Given multiple models fine-tuned on the forget set, which applied various training configurations
to ensure diversity among the fine-tuned models, we propose a method that neatly aggregates the
model for effective unlearning. Our proposed method called NegMerge consists of the following
steps: 1) We calculate the task vectors using all the fine-tuned models, 2) We identify the elements
corresponding to the forget set in each vector, and 3) Finally, we compute the final task vector
by using the identified elements, and perform machine unlearning by subtracting this final task
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vector from the original model. We provide a detailed description of each step below, and Figure 2
illustrates the overview of our method.

Preparing Diverse Fine-Tuned Models. There are numerous methods for preparing diverse fine-
tuned models on the forget set. A simple yet effective approach is just altering hyperparameters
such as learning rate and the number of epochs or employing data augmentation techniques like
RandAugment (Cubuk et al., 2020) and CutMix (Yun et al., 2019). In this work, we focus on making
minimal adjustments to the existing training setup, either by modifying RandAugment parameters
or adjusting training configurations like the number of epochs. Further details on these adjustments
can be found in Section 4.1. While additional techniques could further enhance model diversity and
improve unlearning performance, these are left for future exploration.

Identifying Elements in the Task Vector Corresponding to the Forget Set. We derive task vectors
from the fine-tuned models and analyze them to determine which elements (in weights) correspond
to the forget set. We conjecture that elements that consistently show the same sign across task vectors
are attributed to the forget set, as each model is trained to align with this set, regardless of the training
configurations. On the other hand, components that exhibit differing signs are considered less related
to the forget set, as their variations are more likely a result of different training configurations rather
than supervision from the forget set. Our conjecture regarding sign conflicts is supported by the
unlearning performance reported in Table 4 and qualitative results visualized in Figure 3.

Final Task Vector for Negation. We compute the final task vector using the following formulation:

τmerged =

(
1

n

n∑
k=1

τk

)
⊙ 1signs are equal, (1)

where n is the number of task vectors, ⊙ denotes the Hadamard product (element-wise multiplica-
tion), and the vector 1signs are equal acts like a filter, containing 1 for elements where the signs of the
corresponding components across all task vectors τk are the same and 0 where the signs differ1. As
a result, only the components with consistent signs across all task vectors contribute to the final task
vector, while those with differing signs are excluded by being set to zero. We then perform machine
unlearning by negating this final task vector to the original model (Ilharco et al., 2022a).

Computational Complexity. The standard setup for task negation-based methods (Ilharco
et al., 2022a; Ortiz-Jimenez et al., 2024) typically involves conducting multiple evaluations
(i.e., usually done 20 iterations for the merging coefficient to find the optimal coefficient λ ∈
{0.0, 0.05, . . . , 1.0}). For vanilla task arithmetic, this requires evaluating the coefficients m times
(m = 20 in the papers (Ilharco et al., 2022a; Ortiz-Jimenez et al., 2024)) for n models, leading to
a significant computational cost of O(mn). In contrast, our merging method requires only m eval-
uations for a single merged task vector, making it a more computationally efficient approach with a
cost of O(m). Therefore, while Task Arithmetic uses a single model in its final stage, achieving op-
timal performance demands more computation than our approach indeed. We believe this highlights
the advantages of our method over the competing methods.

Relationship with TIES-merging. We highlight some explicit differences compared to a similar-
looking strong method TIES-merging (Yadav et al., 2024). Since TIES-merging also performs selec-
tive merging based on signs, unlike our method, it includes elements with inconsistent signs across
task vectors in the merging process. Specifically, it sums the values of these elements, checks the
sign of the result, and sets the values of elements that do not match this sign to zero. The final task
vector is obtained by merging these adjusted task vectors.

However, we argue that elements with inconsistent signs across task vectors are more closely related
to the retain set than the forget set. Therefore, by including these sign-inconsistent elements in the
merging process, TIES-merging may alter the knowledge of the retain set in the original model.
For effective unlearning, task arithmetic should minimally affect the original model’s knowledge of
the retain set, but TIES-merging could significantly change this knowledge, making it unsuitable
for machine unlearning. The results presented in Table 1 along with additional empirical evidence
provided in Section 4.3, support our claim,

1This operation is based on sign unanimity and could be adjusted with additional hyperparameters to allow
partial consensus, we opt for a simpler approach.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets and Backbones. In the CLIP scenario (i.e., referred to as the scenario using a vision-
language model), we follow the training and evaluation protocols of Ilharco et al. (2022a). We
assess unlearning performance on eight datasets: SUN397 (Xiao et al., 2016), Cars (Krause et al.,
2013), RESISC45 (Cheng et al., 2017), EuroSAT (Helber et al., 2019), SVHN (Yuval, 2011), GT-
SRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), and DTD (Cimpoi et al., 2014). We use the
pre-trained CLIP ViT-{B/32, B/16, L/14} models (Radford et al., 2021) for these experiments. In the
standard classifier scenario, we evaluate unlearning performance on CIFAR-10 (Krizhevsky et al.,
2009) using a ResNet-18 (He et al., 2016) model.

Baselines and Metrics. For the CLIP scenario, we compare our method with five existing meth-
ods: Task Arithmetic (Ilharco et al., 2022a), Uniform Merge (Wortsman et al., 2022), Greedy
Merge (Wortsman et al., 2022), TIES-Merging (Yadav et al., 2024), and MagMax (Marczak et al.,
2024). For the Greedy Merge, we rank models by their loss on the retain set and merge them in a
direction that minimizes this loss. We evaluate performance by measuring accuracy on the forget set
Df and the retain set Dr.

In the standard classifier scenario, we follow Fan et al. (2023) to compare our method against
eight unlearning techniques: Fine-tuning (Warnecke et al., 2021), Random Labeling (Golatkar
et al., 2020), Gradient Ascent (Thudi et al., 2022), Influence Unlearning (Koh & Liang, 2017),
ℓ1-sparse (Jia et al., 2023), Boundary Shrink and Expand (Chen et al., 2023), and SalUn (Fan et al.,
2023). We also compare against Task Arithmetic (Ilharco et al., 2022a), Uniform Merge (Worts-
man et al., 2022), TIES-Merging (Yadav et al., 2024), and MagMax (Marczak et al., 2024). The
objective is to match the unlearned model’s performance to that of a fully retrained model. Greedy
Merge (Wortsman et al., 2022) is infeasible for comparison in this scenario, only using the forget set.
We use the accuracies of the retain set Dr, forget set Df , and test set Dtest to evaluate performance.
To assess privacy protection, we employ the Membership Inference Attack (MIA) metric (Carlini
et al., 2022), aiming to achieve similar results to the fully retrained model.

Implementation Details. In the CLIP scenario, for fine-tuning, we set the batch size to 128 and
use a learning rate of 1e-5 with a cosine annealing schedule. We utilize the AdamW optimizer,
applying a weight decay of 0.1. We enhance the diversity of the fine-tuned models by adjusting
the configurations of RandAugment. Specifically, we vary the number of sequential augmentation
transformations (ranging from 1 to 3) and the magnitude of these transformations (ranging from 1 to
10). A total of 30 models are fine-tuned. Unlike previous works, we incorporate data augmentation
directly into the fine-tuning process, which requires adjusting the number of training epochs to better
accommodate the augmented data. Consequently, the number of training epochs is set as follows:
70 epochs for Cars, 100 epochs for DTD, 40 epochs for EuroSAT, GTSRB, RESISC45, SUN397,
and 30 epochs for MNIST and SVHN.

In the standard image classifier unlearning scenario, for the CIFAR-10 dataset, we set the batch size
to 256 and the learning rate to 0.05. Since CIFAR-10 has relatively low image quality, instead of
applying data augmentation, we vary the training hyperparameters. We set the number of epochs
to 40, 50, and 60, the weight decay to 0.0001, 0.00005, and 0.00001, and the label smoothing to 0,
0.05, and 0.1 to enhance the diversity of the fine-tuned models. The total number of models used in
the model merge is 27.

In Appendix D, we conduct more experiments by expanding the range of hyperparameters in both
the CLIP unlearning scenario and the standard image classifier unlearning scenario.

4.2 EXPERIMENTAL RESULTS

CLIP Unlearning Scenario. Table 1 presents the evaluation results across three variants of the
CLIP model (ViT-B/32, ViT-B/16, and ViT-L/14) in the CLIP unlearning scenario. We follow the
setup from Task Arithmetic (Ilharco et al., 2022b) for constructing a set of single fine-tuned model.
The output of CLIP’s text encoder, specifically the final classification layer, remains frozen during
fine-tuning. With the observation that freezing the classification layer does not affect accuracy (Il-
harco et al., 2022b), we do not consider unfreezing the final layer of CLIP’s text encoder in CLIP

6
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Table 1: Unlearning Performance on CLIP ViT Models. Results are shown for CLIP ViT-{B/32, B/16,
L/14}, reporting average accuracy (%) on the eight target tasks we wish to forget (Cars, DTD, EuroSAT,
GTSRB, MNIST, RESISC45, SUN397, and SVHN), and the control task to remain (ImageNet). We compare
our method with Task Arithmetic (Ilharco et al., 2022a), Linear Task Arithmetic (Ortiz-Jimenez et al., 2024),
Uniform Merge (Wortsman et al., 2022), Greedy Merge (Wortsman et al., 2022), TIES-Merging (Yadav et al.,
2024), and MagMax (Marczak et al., 2024). ∗ indicates that the numbers are borrowed from the original papers.
† denotes the best results achieved through hyperparameter search. ‡ combines models in descending order of
losses. Time denotes the merging time, measured in seconds, taken to merge 30 models on the Cars dataset
using CLIP ViT-B/32, which is averaged over three runs.

Method ViT-B/32 ViT-B/16 ViT-L/14 Time (sec)

Acc Df (↓) Acc Dr(↑) Acc Df (↓) Acc Dr(↑) Acc Df (↓) Acc Dr(↑)

Pre-trained 48.13 63.33 55.49 68.32 65.19 75.54 -

Task Arithmetic
Paper number∗ 24.00 60.90 21.30 65.40 19.00 72.90 -
Single Best Model† 23.63 60.60 20.64 64.04 19.17 72.09 -
Uniform Merge 22.50 60.55 21.51 64.60 18.10 71.91 12±0.1

Greedy Merge‡ 23.31 60.75 21.34 64.54 17.71 71.99 607±2.6

TIES-Merging 26.21 61.08 23.78 64.72 22.70 72.41 128±10.1

MagMax 25.24 60.95 24.45 64.78 21.71 72.55 24±1.8

NegMerge (Ours) 20.76 60.36 19.24 64.54 17.32 72.08 37±1.2

Linear Task Arithmetic
Paper number∗ 10.90 60.80 11.30 64.80 - - -
Single Best Model† 8.88 60.16 6.92 64.62 - - -
Uniform Merge 9.12 60.47 6.84 65.26 - - 19±2.3

Greedy Merge‡ 8.73 60.27 6.80 64.72 - - 1696±35.3

TIES-Merging 10.66 60.38 8.44 65.12 - - 378±8.0

MagMax 11.33 60.67 8.65 65.17 - - 164±2.4

NegMerge (Ours) 8.03 60.58 6.60 65.40 - - 194±1.6

unlearning scenario. Our method achieves the best reduction in accuracy on the forget set Df across
all backbone models, which demonstrates its generalizability regardless of model size and architec-
ture.

For CLIP ViT-B/32, our method reduces the accuracy on the forget set Df to 20.76%. This out-
performs Task Arithmetic (23.63%), Uniform Merge (22.50%), and Greedy Merge (23.31%). The
accuracies on the retain set Dr for all methods are around 60%. This is because we configure the
model to ensure it does not fall below 95% of the pre-trained model’s original accuracy (66.66%)
on the validation set. Given this controlled performance on the retain set, it is appropriate to com-
pare the effectiveness of techniques based solely on their forget set performance. This follows the
setup from the original paper (Ilharco et al., 2022a). Therefore, the superior reduction in accuracy
on forget set Df highlights the effectiveness of our method. Our method continues to show strong
results using CLIP ViT-B/16, reducing the accuracy on the forget set to 19.24%, which outperforms
Task Arithmetic (20.64%). For the CLIP ViT-L/14 model, our method also achieves the best perfor-
mance on forget set, reducing it to 17.32%. In contrast, MagMax and TIES-Merging show worse
results in terms of accuracy on the forget set. Regarding required merging time, our method spends
slightly more time than Uniform Merge and MagMax but is far more effective. Additionally, Greedy
Merge Wortsman et al. (2022) and TIES-Merging Yadav et al. (2024) are significantly slower than
our method, and our approach outperforms them by a large margin in terms of accuracy.

To provide a more comprehensive evaluation of our method, we employ linear task arithmetic,
where Neural Tangent Kernel (NTK) (Ortiz-Jimenez et al., 2024) is applied to the standard task
arithmetic (Ilharco et al., 2022a). The experimental results are presented in the lower part of Ta-
ble 1, where we conduct evaluations using the CLIP ViT-B/32 and ViT-B/16 backbones. Due to
computational resource constraints, we are unable to include results for ViT-L/14. Our method
achieves the best unlearning performance, while the second-best method, Greedy Merge, requires
significantly more time for merging (1696.5 and 194.2, respectively).
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Table 2: Unlearning Performance for 10% Random Data Forgetting on CIFAR-10 using ResNet-18. The
results are expressed as a±b, representing the mean (a) and standard deviation (b) across three independent
trials. The Avg. Gap is computed as the average of the performance differences observed in various accuracy-
related metrics, including Acc Dr , Acc Df , Acc Dtest, and MIA. These metrics are favorable when they are
close to the performance of the Retrain model (≃). ∗ indicates that the numbers are borrowed from Fan et al.
(2023). † denotes the best results achieved through hyperparameter search.

Methods Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain * retain 100.00±0.00 94.76±0.69 94.26±0.02 12.88±0.09 0.00

Random Labeling *
all

99.67±0.14 92.39±0.31 92.83±0.38 37.36±0.06 7.15
Influence * 99.20±0.22 98.93±0.28 93.20±1.03 2.67±0.01 4.06
SalUn * 99.62±0.12 97.15±0.43 93.93±0.29 14.39±0.82 1.15

Finetune * retain 99.88±0.08 99.37±0.55 94.06±0.27 2.70±0.01 3.78
ℓ1-sparse * 97.74±0.33 95.81±0.62 91.59±0.57 9.84±0.00 2.26

Gradient Ascent *

forget

99.50±0.38 99.31±0.54 94.01±0.47 1.70±0.01 4.12
Boundary Shrink * 98.29±2.50 98.22±2.52 92.69±2.99 8.96±0.13 2.67
Boundary Expanding * 99.42±0.33 99.41±0.30 93.85±1.02 7.47±1.15 2.76
Random Labeling 99.99±0.00 99.98±0.02 95.04±0.11 2.15±1.94 4.19
SalUn 99.88±0.04 99.89±0.04 94.42±0.05 9.51±2.07 2.20

Task Arithmetic

forget

Single Best Model† 98.36±0.51 94.85±0.16 91.49±0.80 10.91±0.72 1.62
Uniform Merge 98.70±0.91 95.83±2.17 92.36±1.16 10.14±2.93 1.75
TIES-Merging 98.38±0.17 95.45±0.32 92.23±0.14 9.36±0.31 1.96
MagMax 98.38±0.12 97.97±0.77 91.53±0.00 8.45±2.60 3.00
NegMerge (Ours) 99.15±0.24 96.63±0.59 92.71±0.39 12.87±1.29 1.07

Task arithmetic (Ilharco et al., 2022a) demonstrates minimal accuracy differences even after filter-
ing overlapping classes from the datasets. Backed by this experiment, we believe that the overlap
between the forget set and retain set does not significantly impact the effectiveness of unlearning.

Standard Classifier Unlearning Scenario. Table 2 presents a comparison of various unlearning
techniques for random data forgetting on CIFAR-10 using ResNet-18. In this task, 10% of the
training set is randomly selected, and the goal is to make the model forget the knowledge associated
with this subset while maintaining its performance on the retain set. The fully retrained model serves
as the ideal benchmark for both forget, retain and privacy tasks. The “Avg. Gap” metric is critical
in evaluating how closely each method replicates the performance of the retrained model across key
metrics such as Dr (accuracy on retain set), Df (accuracy on forget set), Dtest (accuracy on test
set), and the MIA score.

Our method achieves an average gap of 1.07, indicating minimal performance degradation and
demonstrating that it effectively unlearns specific information while preserving the model’s over-
all capabilities. SalUn, which uses all data splits for unlearning, achieves an average gap of 1.15,
similar to the retrained model. However, our method, which only relies on the forget set, outper-
forms it with an average gap of 1.07, indicating our approach’s efficiency in retaining generalization
without relying on the retain set. Task Arithmetic and merging methods, including Uniform Merge,
TIES-Merging, and MagMax, result in larger gaps (1.62, 1.75, 1.96, and 3.00, respectively), high-
lighting that our method achieves a better balance between forgetting and preserving knowledge in
the retain set.

Overall, our method stands out by maintaining performance close to the retrained model, particularly
in preserving accuracy on Dr and Dtest, while effectively reducing accuracy on Df . Additionally,
our method offers strong privacy protection, with an MIA score of 12.87, nearly identical to that of
the retrained model (12.88), ensuring that the model forgets the targeted data without introducing
privacy vulnerabilities.

4.3 EMPRICAL ANALYSES

Regarding Our Key Assumptions. Our method relies on two key assumptions: (1) Effective un-
learning requires the fine-tuned model to maintain high performance on the forget set without de-
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Table 3: Comparative Performance on Different Datasets. Finetuning results showing the unlearning accu-
racy Df and remaining accuracy Dr across various methods on Cars, DTD, and SUN397 datasets. Finetuning
models derived by adding task vector to the original model. ∗ denotes our reproduced results based on the con-
figurations from Ilharco et al. (2022a). † represents the best results achieved through hyperparameter tuning,
including adjustments to data augmentation. ‡ combines models in descending order of losses. A higher Df is
better (↑), while Dr is preferable when it is close to the performance of the Dr of the pre-trained model (≃).

Method Cars DTD SUN397

Acc Df (↑) Acc Dr(≃) Acc Df (↑) Acc Dr(≃) Acc Df (↑) Acc Dr(≃)

Pretrained 59.6 66.7 43.9 66.7 63.3 66.7

Task Arithmetic
Paper config∗ 85.0 58.6 78.7 49.3 74.9 59.8
Single Best Model† 86.6 52.7 76.9 48.4 76.5 55.7
Uniform Merge 87.2 55.3 79.0 52.8 76.0 57.1
Greedy Merge‡ 87.5 55.2 79.3 52.8 76.2 57.1
TIES-Merging 85.3 34.7 75.2 25.4 71.4 44.3
MagMax 66.8 5.8 59.3 2.8 52.0 17.9
NegMerge (Ours) 87.1 61.7 76.3 63.0 76.3 63.4

grading performance on the retain set, and (2) To accomplish this, only elements with consistent
signs across task vectors should be used during the merging process.

Table 3 presents the evaluation results on both the forget set and retain set for the models derived by
adding task vector to the original model. According to the results, most merging methods exhibit
high performance on the forget set Df . However, we observe that, except for our method, the
performance on the retain set Dr significantly drops. Given that our unlearning method achieves
the highest performance, this supports our first assumption that high performance on the forget set
is necessary while maintaining performance on the retain set. Additionally, unlike our method,
Uniform Merge, which merges all elements, leads to a substantial performance drop on the retain
set. This observation supports our second assumption that only sign-consistent elements should be
involved in the merging process. These results demonstrate the effectiveness of our approach in
addressing the trade-off between the forget and retain sets, underscoring the rationale behind the
design choices in our method.

Our experimental results consistently show that TIES-Merging underperforms. The primary reason
for this is the significant drop in retain set performance, as shown in Table 3. The performance
of TIES-Merging on Dr is lower than that of basic methods like Uniform Merge, and we believe
this low Dr performance is the main factor behind TIES-Merging’s poor unlearning performance.
A similar trend is observed with MagMax. These results reinforce our discussion in Section 3.2,
where we argue that the design choices in TIES-Merging are ineffective at preserving knowledge of
the retain set, leading to lower unlearning performance.

Table 4: Impact of Sign Conflict in Weights for Unlearning. The results present unlearning performance
across various datasets, comparing three different methods. “All,” Uniform Merge, uses all indices without
regard to sign conflict, “Conflict” uses only indices with conflicting signs, and “Non-conflict,” our proposed
method, uses only indices with consistent signs across task vectors.

Method Cars DTD EuroSAT SUN397

Acc Df (↓) Acc Dr(↑) Acc Df (↓) Acc Dr(↑) Acc Df (↓) Acc Dr(↑) Acc Df (↓) Acc Dr(↑)

All 31.7 60.4 29.6 60.6 8.9 60.8 51.4 60.5
Conflict 40.2 60.2 31.9 60.3 11.1 60.7 58.3 60.9
Non-conflict 27.4 60.4 27.2 60.5 7.9 60.2 47.2 60.6

Effect of Sign Conflict on Unlearning Performance. We argue that elements with consistent signs
across multiple task vectors correspond to knowledge related to the forget set, while elements with
conflicting signs are less relevant to the forget set.

To verify this, we compare unlearning performance when our method is applied in reverse. The
experimental results are shown in Table 4. We use the CLIP ViT-B/32 model and the standard task
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(a) Original image (b) Original model (c) Conflict (d) Non-conflict (ours)

Figure 3: Impact of Sign Conflicts on Unlearning. We illustrate the effectiveness of our technique in terms
of the sign conflicts using Grad-CAM on the RESISC45 dataset. The first row represents the island class, the
second row corresponds to the cloud class, and the third row represents the airplane class. Red areas indicate
regions of high relevance or activation in response to the class label, which is crucial for the model’s decision-
making process. Blue areas represent regions of low relevance or activation, which have little to no influence
on the model’s output for the corresponding class.

arithmetic. The All method refers to the Uniform Merge approach, which uses all elements without
considering sign conflicts. The Conflict method uses only elements with conflicting signs, while
our proposed Non-conflict method uses only elements with consistent signs. The results show that
the Conflict method significantly degrades unlearning performance, while the All method performs
better than Conflict but is outperformed by our Non-conflict method. These experimental results
indicate that the design choice of merging only sign-consistent elements is effective.

In Figure 3, we demonstrate the effectiveness of our method using Grad-CAM visualizations on the
RESISC45 dataset. We compare the Conflict and our Non-conflict methods, and include visualiza-
tions of the original model as a baseline. The red areas represent regions where the model strongly
associates with the class label, while the blue areas indicate regions with less relevance. In the first
row (island class), we observe that the Conflict method directs the model’s attention to the island’s
location, resembling the behavior of the original model. In contrast, our method does not highlight
the island’s area, which suggests that the model has successfully forgotten its knowledge of the is-
land. The same pattern appears in the second row for the cloud class and in the third row for the
airplane class. These visual results clearly demonstrate that our proposed method, NegMerge, is
more effective for unlearning.

5 CONCLUSION

In this paper, we propose a novel machine unlearning technique, NegMerge, based on task arith-
metic and model merging. We hypothesize that multiple fine-tuned models are necessary for ef-
fective unlearning based on the observation of a trade-off between accuracy on the forget set and
the remain set. Building on the fact that existing techniques generate numerous fine-tuned models
through validation using various hyperparameters, we propose a method that utilizes all derived fine-
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tuned models. Assuming that elements with consistent signs across task vectors obtained from the
fine-tuned models are related to the forget set, we merge only those elements. This approach enables
us to compute task vectors that fit the forget set more effectively while preserving the knowledge
in the retain set, thus overcoming the trade-off. We then perform forgetting by negation with the
merged task vector. Our NegMerge is tested on the CLIP ViT models and the standard ResNet18
classifier, achieving new state-of-the-art performance across nine datasets.

Limitations. Limitation of this work is its reliance on empirical approaches without formal theoret-
ical justification. In future research, we aim to validate our assumptions theoretically and develop
an analytical solution informed by these insights.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Advances in Neural Information Processing Sys-
tems, 36, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In IJCNN, pp. 1453–1460. IEEE,
2011.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Un-
derstanding factors influencing machine unlearning. In 2022 IEEE 7th European Symposium on
Security and Privacy (EuroS&P), pp. 303–319. IEEE, 2022.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
of features and labels. arXiv preprint arXiv:2108.11577, 2021.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 119:
3–22, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. arXiv preprint arXiv:2310.02575,
2023.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning, 2024. URL https://arxiv.
org/abs/2310.02575.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Netzer Yuval. Reading digits in natural images with unsupervised feature learning. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning, 2011.

13

https://arxiv.org/abs/2310.02575
https://arxiv.org/abs/2310.02575


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix
This appendix comprises the following materials: 1) More experimental results (Section A), 2) Full
charts of the CLIP unlearning scenario (Section B), 3) Ratio of zeroed elements in the merged vector
(Section C), 4) Results in diverse model pool (Section D), 5) Memory and computational efficiency
(Section E), and 6) Theoretical insights (Section F).

A FURTHER EXPERIMENTAL RESULTS

A.1 FULL RESULTS

Tables A1, A2 and A3 show the full accuracy results for the eight tasks and the three CLIP models
we examine. Tables A4 and A5 show the full accuracy results on Linear Task Arithmetic for the
eight tasks and the two CLIP models we examine.

Table A1: ViT-B/32 standard. Results are shown for various methods across multiple datasets (Cars, DTD,
EuroSAT, GTSRB, MNIST, RESISC45, SUN397, and SVHN).

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)

Task Arithmetic† 29.0 59.9 30.4 60.8 10.4 60.9 9.1 60.9 21.2 60.6 30.7 60.8 50.6 59.9 7.6 60.9
Uniform Merge 31.7 60.4 29.6 60.6 8.9 60.8 7.0 60.0 20.5 61.4 23.8 60.1 51.4 60.5 7.3 60.7
Greedy Merge‡ 31.0 60.3 29.5 60.6 9.4 60.8 8.4 60.5 21.3 62.0 28.3 60.7 51.4 60.4 7.2 60.7
TIES-Merging 34.0 60.3 33.1 61.3 11.6 61.1 10.2 61.3 26.1 62.4 33.4 61.0 53.8 60.3 7.5 60.9
MagMax 35.6 60.6 31.9 61.1 10.5 60.7 8.4 60.8 20.1 60.7 30.7 60.6 55.4 61.1 9.3 62.0

NegMerge (Ours) 27.4 60.4 27.2 60.5 7.9 60.2 6.2 60.0 20.5 59.9 22.6 60.5 47.2 60.6 7.2 60.9

Table A2: ViT-B/16 standard. Results are shown for various methods across multiple datasets (Cars, DTD,
EuroSAT, GTSRB, MNIST, RESISC45, SUN397, and SVHN).

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)

Task Arithmetic† 31.6 63.8 26.1 63.8 7.6 64.3 7.7 64.5 8.9 64.0 27.2 64.4 49.1 63.7 6.9 63.9
Uniform Merge 32.9 64.6 26.3 64.5 9.8 64.8 7.0 64.1 13.9 65.0 25.6 64.7 49.7 64.6 6.9 64.7
Greedy Merge‡ 32.9 64.6 25.0 63.7 9.9 64.7 7.0 64.1 12.4 64.8 25.6 64.6 51.1 65.1 6.9 64.7
TIES-Merging 39.4 65.0 27.4 64.0 10.2 64.8 8.6 64.6 11.1 64.9 33.6 65.3 53.2 64.8 6.7 64.3
MagMax 38.4 64.8 26.6 63.9 10.2 65.0 9.0 64.9 14.6 64.4 36.6 66.0 53.5 65.0 6.7 64.3

NegMerge (Ours) 28.8 64.8 25.2 64.5 9.8 65.9 7.1 64.4 10.7 63.8 20.3 63.9 45.2 64.4 7.0 64.6

Table A3: ViT-L/14 standard. Results are shown for various methods across multiple datasets (Cars, DTD,
EuroSAT, GTSRB, MNIST, RESISC45, SUN397, and SVHN).

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)

Task Arithmetic† 34.6 72.2 24.7 71.3 5.4 72.5 3.0 71.6 10.3 73.6 17.0 71.7 51.6 71.9 6.7 71.9
Uniform Merge 29.1 71.8 23.5 71.4 8.2 72.1 3.1 71.5 9.9 72.4 13.9 71.5 50.5 72.3 6.7 72.2
Greedy Merge‡ 28.2 71.5 23.9 71.5 7.3 73.0 3.1 71.7 9.9 72.8 11.5 71.0 51.1 72.3 6.8 72.1
TIES-Merging 48.2 73.1 25.5 71.5 9.2 72.4 4.1 72.6 10.3 73.0 21.0 72.0 56.6 72.8 6.8 71.9
MagMax 39.2 72.0 28.7 72.7 9.9 73.6 4.2 72.5 10.7 73.5 20.6 72.2 53.7 72.1 6.7 71.9

NegMerge (Ours) 32.7 71.9 23.9 71.9 9.1 72.1 2.8 71.3 10.9 73.6 8.8 70.9 43.6 72.1 6.8 72.8
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Table A4: ViT-B/32 linear. Results are shown for various methods across multiple datasets (Cars, DTD,
EuroSAT, GTSRB, MNIST, RESISC45, SUN397, and SVHN).

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)

Task Arithmetic† 13.5 60.2 15.2 59.7 0.1 60.3 0.2 60.2 0.1 61.0 2.6 59.6 38.8 59.9 0.7 60.5
Uniform Merge 14.2 60.4 15.3 60.2 0.0 60.3 0.2 60.8 0.0 60.2 2.6 60.2 39.7 60.4 0.8 61.3
Greedy Merge‡ 14.4 60.3 15.8 60.2 0.0 60.4 0.2 60.2 0.0 60.5 2.6 60.3 36.3 59.7 0.7 60.6
TIES-Merging 19.3 60.4 16.5 60.0 0.3 60.5 0.2 60.5 0.0 60.4 5.6 60.4 42.8 60.3 0.8 60.5
MagMax 22.6 61.0 16.5 60.1 0.2 60.6 0.2 60.8 0.1 61.5 4.2 60.1 46.1 60.9 0.7 60.4

NegMerge (Ours) 12.1 60.6 15.6 60.4 0.0 60.9 0.2 61.2 0.0 60.9 1.6 60.1 34.0 59.8 0.7 60.8

Table A5: ViT-B/16 linear. Results are shown for various methods across multiple datasets (Cars, DTD,
EuroSAT, GTSRB, MNIST, RESISC45, SUN397, and SVHN).

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)

Task Arithmetic† 5.3 64.4 10.2 63.8 0.0 64.8 0.0 64.5 0.1 67.0 2.0 63.6 37.4 64.7 0.5 64.1
Uniform Merge 5.0 64.7 10.1 64.2 0.1 66.0 0.0 66.0 0.1 67.4 1.6 64.0 37.5 65.0 0.4 64.8
Greedy Merge‡ 5.0 64.8 10.3 64.1 0.0 64.5 0.0 64.5 0.1 66.8 1.5 63.9 37.1 65.0 0.4 64.2
TIES-Merging 7.4 64.3 11.7 64.6 0.1 65.3 0.0 65.4 0.1 66.9 4.1 64.4 43.8 65.7 0.4 64.3
MagMax 8.8 64.6 12.3 64.9 0.0 64.9 0.0 64.9 0.1 67.2 5.1 64.9 42.5 65.4 0.4 64.6

NegMerge (Ours) 6.6 65.9 10.4 64.5 0.0 65.9 0.0 66.0 0.1 66.9 1.1 64.5 34.1 64.7 0.5 64.8

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table A6 shows the Impact of Sign Conflict in Weights for Unlearning for the eight tasks.

Table A6: Impact of Sign Conflict in Weights for Unlearning. The results present unlearning performance
across various datasets, comparing three different methods. “All,” Uniform Merge, uses all indices without
regard to sign conflict, “Conflict” uses only indices with conflicting signs, and “Non-conflict,” our proposed
method, uses only indices with consistent signs across task vectors.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓)Dr(↑)Df (↓)Dr(↑)Df (↓)Dr(↑)Df (↓)Dr(↑)Df (↓)Dr(↑)Df (↓)Dr(↑)Df (↓)Dr(↑)Df (↓)Dr(↑)

All 31.7 60.4 29.6 60.6 8.9 60.8 7.0 60.0 20.5 61.4 23.8 60.1 51.4 60.5 7.3 60.7
Conflict 40.2 60.2 31.9 60.3 11.1 60.7 9.1 60.6 24.0 61.9 32.3 60.2 58.3 60.9 8.8 60.6
Non-conflict 27.4 60.4 27.2 60.5 7.9 60.2 6.2 60.0 20.5 59.9 22.6 60.5 47.2 60.6 7.2 60.9

A.2 ABLATION STUDY

Table A7 compares ways to derive the improved final task vector τmerged. We found that our origi-
nally proposed averaging method performed the best. This is likely because averaging helps smooth
out potential outliers in individual models during merging, resulting in a more stable and effective
task vector.

Table A7: Ablation Study to derive the Improved Final Task Vector. NegMerge (min), NegMerge (max),
and NegMerge (avg) represent merging minimum, maximum, and average of task vectors elements, respec-
tively.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)Df (↓)Dr (↑)

Task Arithmetic† 29.0 59.9 30.4 60.8 10.4 60.9 9.1 60.9 21.2 60.6 30.7 60.8 50.6 59.9 7.6 60.9
NegMerge (min) 26.5 59.9 27.9 60.6 10.3 60.8 8.3 60.7 25.2 61.0 20.1 60.0 46.8 60.2 8.2 61.0
NegMerge (max) 28.2 60.3 27.4 60.4 10.7 60.9 7.5 60.4 28.7 60.2 26.0 61.0 48.3 60.7 7.3 60.8
NegMerge (avg) 27.4 60.4 27.2 60.5 7.9 60.2 6.2 60.0 20.5 59.9 22.6 60.5 47.2 60.6 7.2 60.9

A.3 ADDITIONAL STANDARD CLASSIFIER UNLEARNING SCENARIO RESULTS

Table A8 presents a comparison of various unlearning techniques for 10% random data forgetting
on CUB (Wah et al., 2011) using ResNet-18. This experiment is important because we can validate
our method’s effectiveness on fine-grained image classification. Table A9 presents a comparison of
various unlearning techniques for 10% random data forgetting on CIFAR-10 using VGG-16. Only
using the forget set NegMerge can effectively unlearn Df. These results show that NegMerge
generalize across a wider range of datasets and model architectures.
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Table A8: Unlearning Performance for 10% Random Data Forgetting on CUB using ResNet-18. The Avg.
Gap is computed as the average of the performance differences observed in various accuracy-related metrics,
including Acc Dr , Acc Df , Acc Dtest, and MIA. These metrics are favorable when they are close to the
performance of the Retrain model (≃).

Methods Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain retain 78.55 56.43 74.61 80.47 0.00

Gradient Ascent

forget

66.75 57.26 66.60 67.61 8.38
Boundary Shrink 66.88 61.60 64.14 100.00 11.71
Boundary Expanding 65.32 61.60 58.80 73.62 10.27
Random Labeling 64.13 57.43 59.54 71.79 9.79
SalUn 66.69 59.60 63.88 74.46 7.94

Task Arithmetic

forgetSingle Best Model† 74.68 58.60 70.56 100.00 7.41
Uniform Merge 73.94 56.93 69.78 100.00 7.37
NegMerge (Ours) 74.64 58.26 70.69 100.00 7.30

Table A9: Unlearning Performance for 10% Random Data Forgetting on CIFAR-10 using VGG-16. The
Avg. Gap is computed as the average of the performance differences observed in various accuracy-related
metrics, including Acc Dr , Acc Df , Acc Dtest, and MIA. These metrics are favorable when they are close to
the performance of the Retrain model (≃). ∗ indicates that the numbers are borrowed from Fan et al. (2023). †

denotes the best results achieved through hyperparameter search.

Methods Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain * retain 99.99 94.02 93.06 10.36 0.00

Random Labeling *
all

99.65 94.29 92.29 15.98 1.75
Influence * 98.78 98.33 91.69 2.71 3.63
SalUn * 98.74 96.11 91.62 9.96 1.29

Finetune * retain 99.54 98.49 92.64 3.76 2.98
ℓ1-sparse * 97.03 95.02 90.15 9.69 1.88

Gradient Ascent *
forget

99.37 99.07 93.63 1.36 3.81
Boundary Shrink * 99.40 99.20 93.68 1.38 3.84
Boundary Expanding * 99.39 99.20 93.68 1.42 3.84

Task Arithmetic
forgetSingle Best Model† 97.26 94.90 90.10 10.34 1.64

NegMerge (Ours) 98.00 95.74 91.01 10.10 1.50

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B FULL CHARTS OF CLIP UNLEARNING SCENARIO
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Figure B1: Comparison of Merged Models on ViT-B/32. Performance metrics for merged models showing
accuracy on retain set and forget set across different models. Methods positioned towards the upper right corner
are generally considered to be better performers.

C RATIO OF ZEROED ELEMENTS IN THE MERGED VECTOR

Tables C1 and C2 present the proportion of zeroed weight elements based on the number of merged
models. The results indicate that as the number of task vectors increases, the percentage of masked
weight elements (%) also increases. Notably, this increase is accompanied by consistent improve-
ments in unlearning performance (Df ). This suggests that leveraging more task vectors allows for
a more accurate identification of the specific weight elements that require modification for effec-
tive unlearning. Ultimately, the task vectors generated through our method lead to changes in only
5–10% of the weight elements in the original model via negation. These findings strongly support
our argument that not all weight elements are critical for unlearning, and a small subset is sufficient
to achieve strong unlearning performance.

Additionally, these experiments also highlight that our technique maintains the performance of the
retain set effectively. By selectively targeting only the weight elements essential for unlearning, our
method minimizes the impact on the retain set, resulting in better preservation of its performance
compared to other merging techniques.

Table C3 shows that larger zero-out values with uniformly merged sparsified task vectors lead to
improved unlearning results. TIES-merging and MagMax exhibit fewer zero-out values, and their
performance is expected to be outperformed by our method.
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Table C1: Ratio of Zeroed Elements based on the Number of Merged models (Part 1: Cars, DTD, Eu-
roSAT, GTSRB). The table reports the zero ratio, accuracy of the forget set (Acc Df ), and the retain set (Acc
Dr) across various numbers of task vectors used for merging. Results are presented with averages and standard
deviations (std, ±.) from three runs. Results were obtained using ViT-B/32 standard.

# Cars DTD EuroSAT GTSRB

% Acc Df (↓) Acc Dr(↑) % Acc Df (↓) Acc Dr(↑) % Acc Df (↓) Acc Dr(↑) % Acc Df (↓) Acc Dr(↑)

30 90.34 27.40 60.40 92.94 27.18 60.45 94.05 7.85 60.22 94.76 6.20 59.98
25 89.68±0.04 26.63±0.06 60.19±0.02 92.21±0.10 27.25±0.28 60.45±0.10 93.37±0.09 8.33±0.06 60.34±0.05 94.13±0.02 6.45±0.01 60.14±0.03

20 88.80±0.21 26.09±0.66 60.06±0.09 91.45±0.13 27.13±0.13 60.41±0.04 92.65±0.05 8.79±0.06 60.59±0.03 93.32±0.03 6.71±0.06 60.31±0.01

15 87.48±0.17 26.02±0.20 59.96±0.07 90.15±0.12 27.68±0.09 60.42±0.03 90.84±0.28 8.33±0.11 60.40±0.07 91.93±0.09 6.92±0.17 60.27±0.01

10 84.91±0.51 26.57±0.82 59.94±0.14 87.52±0.31 27.82±0.09 60.35±0.12 88.25±0.51 8.86±0.21 60.55±0.11 89.24±0.19 8.13±0.08 60.57±0.04

5 77.12±0.30 30.49±0.42 60.37±0.09 79.86±0.60 28.79±0.39 60.52±0.14 81.51±0.26 9.25±0.55 60.61±0.10 81.86±0.32 8.32±0.35 60.46±0.08

Table C2: Ratio of Zeroed Elements based on the Number of Merged models (Part 2: MNIST, RESISC45,
SUN397, SVHN).

# MNIST RESISC45 SUN397 SVHN

% Acc Df (↓) Acc Dr(↑) % Acc Df (↓) Acc Dr(↑) % Acc Df (↓) Acc Dr(↑) % Acc Df (↓) Acc Dr(↑)

30 93.96 20.50 59.90 92.86 22.61 60.47 92.20 47.19 60.56 92.40 7.18 60.86
25 93.30±0.10 20.46±0.46 60.15±0.06 92.27±0.04 23.74±0.06 60.64±0.02 91.68±0.09 46.99±0.02 60.44±0.04 91.70±0.02 7.05±0.01 60.67±0.01

20 92.49±0.08 19.56±0.46 59.85±0.07 91.50±0.06 22.70±0.08 60.45±0.02 90.89±0.12 47.82±0.10 60.59±0.04 90.68±0.04 6.96±0.02 60.36±0.03

15 91.02±0.06 20.77±0.49 60.10±0.30 90.13±0.09 23.19±0.18 60.50±0.03 89.60±0.33 47.73±0.54 60.46±0.19 89.20±0.27 7.09±0.04 60.70±0.08

10 88.22±0.47 19.86±0.77 60.51±0.15 87.56±0.28 22.56±0.79 60.36±0.08 87.23±0.31 48.71±0.41 60.56±0.11 86.03±0.20 7.16±0.01 60.75±0.08

5 81.35±0.25 22.96±0.36 62.40±0.02 80.20±0.52 24.08±1.24 60.39±0.20 81.50±0.10 49.70±0.08 60.47±0.11 78.93±0.18 7.22±0.03 60.60±0.08

Table C3: Ratio of Zeroed Elements and the Unlearning Performance.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

% Df (↓) % Df (↓) % Df (↓) % Df (↓) % Df (↓) % Df (↓) % Df (↓) % Df (↓)

Task Arithmetic† 47.55 29.00 47.55 30.42 47.55 10.44 47.55 9.09 47.55 21.15 47.55 30.71 47.55 50.58 47.55 7.61
MagMax 47.55 35.59 47.55 31.86 47.55 10.51 47.55 8.42 47.55 20.14 47.55 30.69 47.55 55.36 47.55 9.33
TIES-Merging 51.59 34.03 50.62 33.09 51.62 11.56 50.72 10.21 51.94 26.09 51.00 33.41 50.58 53.80 52.06 7.48
NegMerge (Ours) 90.34 27.40 92.94 27.18 94.05 7.85 94.76 6.20 93.96 20.50 92.86 22.61 92.20 47.19 92.40 7.18
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D DIVERSE MODEL POOL

D.1 ROBUSTNESS ON LARGER MODEL POOL

In the CLIP Unlearning Scenario, we conducted additional experiments to analyze the impact of
varying hyperparameters, such as weight decay, learning rates, and label smoothing, as shown in
Table D1. In Table D2 we presents the effects of modifying training hyperparameters and Ran-
dAugment configurations. Furthermore, we evaluated in seven different model pools, which are
detailed in D3. In the Standard Classifier Unlearning Scenario, we enhanced the diversity of the
fine-tuned models by adjusting RandAugment configurations, as summarized in Table D4.

Table D1: Learning Rate, Weight Decay, and Label Smoothing Configuration Pool on ViT-B/32 standard
in CLIP Unlearning Scenario. The results were obtained by evaluating 16 models created from a pool of
configurations using the following hyperparameter settings: learning rates of 0.0001, 0.00005, 0.00001, and
0.000005, weight decay values of 0.01 and 0.1, and label smoothing to 0 and 0.1.

Method Cars DTD SUN397

Acc Df (↓) Acc Dr(↑) Acc Df (↓) Acc Dr(↑) Acc Df (↓) Acc Dr(↑)

Task Arithmetic† 33.52 60.29 29.14 60.38 51.36 60.55
NegMerge (Ours) 30.33 60.16 26.43 59.95 47.94 60.33

Table D2: RandAugment, Learning Rate, and Weight Decay Configuration Pool on ViT-B/32 standard
in CLIP Unlearning Scenario. The results were obtained by evaluating 8 models created from a pool of
configurations using the following hyperparameter settings: RandAugment with n = 1, 2 and m = 1, 5, 10,
learning rates of 0.00001, 0.000005, and 0.000001, and weight decay values of 0.01 and 0.1.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓) Dr(↑) Df (↓) Dr(↑) Df (↓) Dr(↑) Df (↓) Dr(↑) Df (↓) Dr(↑) Df (↓) Dr(↑) Df (↓) Dr(↑) Df (↓) Dr(↑)

Task Arithmetic† 28.62 60.17 28.03 60.15 7.66 60.46 5.31 60.22 14.56 60.55 27.19 60.72 51.38 60.32 6.75 61.30
NegMerge (Ours) 27.42 60.03 26.80 60.08 7.03 60.39 4.82 59.50 12.89 59.94 18.23 59.81 48.73 60.38 6.71 60.29

Table D3: Average of Seven Different Model Pools. The model pool details are as follows: Pool 1: RandAug-
ment configurations (n:1–3, m:1–10) with 30 models. Pool 2: Learning rates (1e-04, 1e-05, 5e-05, 5e-06),
weight decay (0.01, 0.1), and label smoothing (0, 0.1) with 16 models. Pool 3: Learning rates (1e-04, 1e-05,
5e-05, 5e-06) and weight decay (0.01, 0.1) with 8 models. Pool 4: Learning rates (1e-05, 5e-06, 5e-05) and
weight decay (0.01, 0.1) with 6 models. Pool 5: RandAugment (n:1–2, m:5,10), learning rates (1e-04, 1e-05,
5e-05, 5e-06), weight decay (0.01, 0.1), and label smoothing (0, 0.1) with 64 models. Pool 6: RandAugment
(n:1–2, m:5,10), learning rates (1e-04, 1e-05, 5e-05, 5e-06), and weight decay (0.01, 0.1) with 32 models. Pool
7: RandAugment (n:1–2, m:1,5,10), learning rates (1e-05, 5e-06, 1e-06), and weight decay (0.01, 0.1) with 8
models.

Pool Pool 1 (Df ↓) Pool 2 (Df ↓) Pool 3 (Df ↓) Pool 4 (Df ↓) Pool 5 (Df ↓) Pool 6 (Df ↓) Pool 7 (Df ↓)

Task Arithmetic† 23.63 22.80 23.21 23.21 24.05 21.31 21.19
NegMerge (Ours) 20.76 21.69 21.56 22.23 22.65 19.37 19.08

As shown in Tables D1–D4, unlearning performance improves further compared to the baseline, as
expected, with diverse types of hyperparameters. These results highlight that, while the degree of
improvement may vary depending on the model pool, using multiple models consistently provides
more stable performance gains compared to using a single model.

D.2 STRATEGY TO CREATE VARIANTS

NegMerge relies on the knowledge encoded in each task vector. Based on our observations, poorly
constructed task vectors—such as those trained with unreasonable weight decay—can result in unre-
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Table D4: RandAugment Configuration Pool on ResNet-18 in Standard Classifier Unlearning Scenario.
The results were obtained by evaluating 5 models created from a pool of configurations using the following
hyperparameter settings: RandAugment with n = 1 and m = 1, 2, 3, 4, 5.

Methods Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain * 100.00 94.76 94.26 12.88 0.00

Task Arithmetic† 97.79 95.88 91.31 9.58 2.40
NegMerge (Ours) 97.81 95.76 91.03 10.76 2.14

liable knowledge and introduce noise into the process. To mitigate this, we recommend constructing
a task vector pool using reasonable and functional hyperparameters, ensuring the vectors are reliable
and contribute effectively to unlearning.

Furthermore, our method inherently produces a model with a well-optimized retain loss. This aligns
with one of our core assumptions discussed in Section 4.3: the merged model should preserve
performance on the retain set. Practitioners can leverage this property by using the retain loss as
a guiding signal during the model generation phase, enabling more effective model merging through
better monitoring and optimization of retain set performance. While we have not yet explored this
idea, we view it as an exciting direction for future research.

E MEMORY AND COMPUTATIONAL EFFICIENCY

We intend to address the computational cost from four perspectives: storage, runtime memory,
merge time and inference time complexity. It is important to note that the merging methods we
compare all share the same model pool, so there is no inherent computational overhead from using
multiple models.

E.1 STORAGE

Although storing all models before merging would be costly in terms of memory, our method does
not require keeping all fine-tuned models stored. During the process of training multiple models,
we only need to check the sign consensus of each element and can store them by adding them to
the existing model. This approach allows our technique to utilize the same amount of storage as the
conventional single-model baseline while performing more effective unlearning. This is not feasible
with other merging methods like TIES-Merging, highlighting the superiority of our approach.

E.2 RUNTIME MEMORY

Our method offers a distinct advantage in runtime memory usage. As shown in Table C1 and C2,
during the merging process, a significant proportion of the weights in the task vector are zeroed
out, leaving only 5–10% of the total weight elements active. This substantial reduction in active
weights enables the adoption of lightweight storage techniques, such as weight lookup tables, to
further minimize runtime memory requirements. By storing only the active weights, our method
achieves greater efficiency compared to baseline approaches.

E.3 MERGE TIME

Our method requires checking the sign of each weight element, which takes longer than methods
like MagMax, which only detects maximum values, or Uniform merge, which calculates averages.
However, our method is significantly faster than those requiring more complex operations, such as
TIES-Merging or Greedy Merge. Detailed estimation results can be found in Table 1.

E.4 INFERENCE TIME COMPLEXITY

Achieving optimal performance in Task Arithmetic often requires multiple training rounds for hy-
perparameter validation due to hyperparameter sensitivity shown in Figure 1. This sensitivity often
necessitates n iterations of hyperparameter tuning during the validation process. Additionally, de-
termining the scaling coefficient—an inference hyperparameter—requires 20 inferences per task
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vector. With n validation rounds, the total inference cost scales to 20× n, resulting in a complexity
of O(mn), where m represents the number of inferences per round.

In contrast, our approach eliminates the need for repeated inferences per task vector. It requires
only 20 inferences to determine the scaling coefficient, regardless of the number of task vectors or
validation rounds. This fixed inference cost reduces the complexity to O(m), making our method
significantly faster and more efficient in hyperparameter tuning scenarios.

To better emulate a realistic validation process, we conducted experiments by varying n values from
5 to 30. Tables C1 and C2 demonstrates that our method remains robust across diverse n settings.

F THEORY

F.1 THEORETICAL CONJECTURE

Let θori and θft denote the weights of the pre-trained model and a fine-tuned model, respectively.
We have the formulation θunlearn = θori − λτmerged, where τmerged is from Eq. 1 - our consensually
merged task vector. We argue that achieving larger zero-out values with sparsified consensus editing
signals in τmerged could lead to unlearning performance improvements, based on the following fun-
damental claims: (1) Weight-wise unanimous consensus merging reduces non-zero values and gives
a robust τmerged; the larger zero-out values in τmerged contribute to stable merging. (2) There exists
a stable merged point θ∗unlearn, which enjoys better unlearning results as k as the number of task
vector τk increases.

F.2 INFORMAL PROOF

As the number of task vectors τk in τmerged increases, the non-zero values decrease because our
consensus operation performs like an AND operation. The robustness of τmerged increases upon
merging, as sparse weights are merged uniformly, which enjoys inherently more robustness than an
individual weight as revealed in (Wortsman et al., 2022; Jang et al., 2025), where the first term of
τmerged = 1/n ∗

∑
k θft − θori conducts uniform merge. θunlearn moves closer to θori, which likely

stays lower loss regions due to weights generally holding linear mode connectivity (LMC) (Frankle
et al., 2020; Juneja et al., 2022; Entezari et al., 2021). It also mitigates issues that cause fluctuating
high losses (i.e., loss barriers) on certain loss surfaces, when weights deviate significantly from θori.
Therefore, task negation at an improved θ∗unlearn would likely reside in lower loss regions which
leads to yielding a better result. While we do not specify the exact θ∗unlearn, increasing the number
of merged task vectors allows the process to approach a closer-to-optimal point as more sparsified
merged weights are merged uniformly (Jang et al., 2025).

F.3 EMPIRICAL BACKUP

Our empirical evidence, shown in Tables C1 and C2, demonstrates that larger zero-out values from
uniformly merged sparsified task vectors lead to improved unlearning results. Additionally, as indi-
cated in Table C3, TIES-merging and MagMax exhibit fewer zero-out values, which explains their
lower performance compared to our method.
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