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ABSTRACT

We analyze the learning problem of fully connected neural networks with the
sigmoid activation function for binary classification in the teacher-student setup,
where the outputs are assumed to be generated by a ground-truth teacher neural
network with unknown parameters, and the learning objective is to estimate the
teacher network model by minimizing a non-convex cross-entropy risk function
of the training data over a student neural network. This paper analyzes a general
and practical scenario that the input features follow a Gaussian mixture model of a
finite number of Gaussian distributions of various mean and variance. We propose
a gradient descent algorithm with a tensor initialization approach and show that
our algorithm converges linearly to a critical point that has a diminishing distance
to the ground-truth model with guaranteed generalizability. We characterize the
required number of samples for successful convergence, referred to as the sample
complexity, as a function of the parameters of the Gaussian mixture model. We
prove analytically that when any mean or variance in the mixture model is large, or
when all variances are close to zero, the sample complexity increases, and the con-
vergence slows down, indicating a more challenging learning problem. Although
focusing on one-hidden-layer neural networks, to the best of our knowledge, this
paper provides the first explicit characterization of the impact of the parameters of
the input distributions on the sample complexity and learning rate.

1 INTRODUCTION

Deep neural networks (LeCun et al., 2015) have demonstrated superior empirical performance in
various applications such as speech recognition (Krizhevsky et al., 2012) and computer vision
(Graves et al., 2013; He et al., 2016). Despite the numerical success, the theoretical underpin of
learning neural networks is much less investigated. One bottleneck for the wide acceptance of deep
learning in critical applications is the lack of the theoretical generalization guarantees, i.e., why a
model learned from the training data would achieve a high accuracy on the testing data.

This paper studies the generalization performance of neural networks in the “teacher-student” setup,
where the training data are generated by a teacher neural network, and the learning is performed on a
student network by minimizing the empirical risk of the training data. This teacher-student setup has
been studied in the statistical learning community for a long time (Engel & Broeck, 2001; Seung
et al., 1992) and applied to neural networks recently (Goldt et al., 2019a; Zhong et al., 2017b;a;
Zhang et al., 2019; 2020b; Fu et al., 2020; Zhang et al., 2020a). Assuming that the student network
has the same architecture as the teacher network, the existing generalization analyses mostly focus
on one-hidden-layer networks, because the optimization problem is already nonconvex, and the
analytical complexity increases tremendously when the number of hidden layers increases.

One critical assumption of most works in this line is that the input features follow the standard Gaus-
sian distribution. Although other distributions are considered in (Du et al., 2017; Ghorbani et al.,
2020; Goldt et al., 2019b; Li & Liang, 2018; Mei et al., 2018b; Mignacco et al., 2020; Yoshida &
Okada, 2019), the generalization performance beyond the standard Gaussian input is less investi-
gated. On the other hand, the learning performance clearly depends on the input data distribution.
(LeCun et al., 1998) states that the learning method converges faster if the inputs are whitened to
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be the standard Gaussian. Batch normalization (Ioffe & Szegedy, 2015) modifies the mean and
variance in each layer and is a popular practical method to achieve a fast and stable convergence.
Various explanations such as (Bjorck et al., 2018; Chai et al., 2020; Santurkar et al., 2018) have been
proposed to explain the enormous success of Batch normalization, but little consensus exists on the
exact mechanism.

Contributions: This paper provides a theoretical analysis of learning one-hidden-layer neural net-
works when the input distribution follows a Gaussian mixture model containing an arbitrary number
of Gaussian distributions with arbitrary mean and variance. The Gaussian mixture model has been
employed in many applications such as data clustering and unsupervised learning (Dasgupta, 1999;
Figueiredo & Jain, 2002; Jain, 2010), and image classification and segmentation (Permuter et al.,
2006). The parameters of the mixture model can be estimated from data by the EM algorithm
(Redner & Walker, 1984) or the moment-based method (Hsu & Kakade, 2013), with theoretical
performance guarantees, see, e.g., (Ho & Nguyen, 2016; Ho et al., 2020; Dwivedi et al., 2020a;b).

For the binary classification problem with the cross entropy loss function, this paper proposes a
gradient descent algorithm with tensor initialization to estimate the weights of the one-hidden-layer
fully-connected neural network. Our algorithm converges to a critical point linearly, and the returned
critical point converges to the ground-truth model at a rate of

√
d log n/n, where d is the dimension

of the feature, and n is the number of samples. We also characterize the required number of samples
for accurate estimation, referred to as the sample complexity, as a function of d, the number of
neurons K, and the input distribution. Our explicit bounds imply (1) when the absolute value of any
mean in the Gaussian mixture model increases from zero, the sample complexity increases, and the
algorithm converges slower, indicating that it will be more challenging to learn a model with a small
test error; (2) The same phenomenon happens when any variance in the mixture model increases
to infinity from a certain positive value, or if all the variances in the mixture model approach zero.
Our results indicate that the training converges faster and requires a less number of samples if the
input data are zero mean with a certain non-zero variance. This can be viewed as one theoretical
explanation in one-hidden-layer for the success of Batch normalization. Moreover, to the best of
our knowledge, this paper provides the first theoretical and explicit characterization about how the
mean and variance of the input distribution affect the sample complexity and learning rate.

1.1 RELATED WORK

Learning over-parameterized neural networks. One line of theoretical research on the learning
performance considers the over-parameterized setting where the number of network parameters is
greater than the number of training samples. (Bousquet & Elisseeff, 2002; Hardt et al., 2016; Keskar
et al., 2016; Livni et al., 2014; Neyshabur et al., 2017; Rumelhart et al., 1988; Soltanolkotabi et al.,
2018; Allen-Zhu et al., 2019a). (Allen-Zhu et al., 2019b; Du et al., 2019; Zou & Gu, 2019) show
the deep neural networks can fit all training samples in polynomial time. The optimization problem
has no spurious local minima (Livni et al., 2014; Zhang et al., 2016; Soltanolkotabi et al., 2018),
and the global minimum of the empirical risk function can be obtained by gradient descent (Li &
Yuan, 2017; Du et al., 2018b; Zou et al., 2020). Although the returned model can achieve a zero
training error, these works do not discuss whether it achieves a small test error or not. (Allen-Zhu
et al., 2019a; Li & Liang, 2018) analyze the generalization error by characterizing the training error
and test error separately. Still, there is no guarantee that a learned model with a small training error
would have a small test error. (Cao & Gu, 2019) provides the bounds of the generalization error
of the learned model by stochastic gradient descent (SGD) in deep neural networks, based on the
assumption that there exists a good model with a small test error around the initialization of the SGD
algorithm, and no discussion is provided about how to find such an initialization. In contrast, our
tensor initialization method in this paper provides an initialization that is close to the ground-truth
teacher model such that our algorithm can find this model with a zero test error.

Generalization performance with the standard Gaussian input. In the teacher-student setup
of one-hidden-layer neural networks, (Brutzkus & Globerson, 2017; Du et al., 2018a; Ge et al.,
2018; Liang et al., 2018; Li & Yuan, 2017; Shamir, 2018; Safran & Shamir, 2018; Tian, 2017)
consider the ideal case of an infinite number of training samples so that the training and test accuracy
coincide and can be analyzed simultaneously. When the number of training samples is finite, (Zhong
et al., 2017b;a) characterize the sample complexity, i.e., the required number of samples, of learning
one-hidden-layer fully connected neural networks with smooth activation functions and propose a
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gradient descent algorithm that converges to the ground-truth model linearly. (Zhang et al., 2019;
2020b) extend the analyses to the non-smooth ReLU for fully-connected and convolutional neural
networks, respectively. (Zhang et al., 2020a) analyzes the generalizability of graph neural networks
for both regression and binary classification problems. (Fu et al., 2020) analyzes the cross entropy
loss function for binary classification problems. Compared with other common loss functions such
as the squared loss, the cross entropy loss function is harder to analyze due to the complicated forms
and the saturation phenomenon of its Gradient and Hessian (Fu et al., 2020).

Theoretical characterization of learning performance from other input distributions. (Du et al.,
2017) considers rotationally invariant distributions, but the results only apply to a perceptron (i.e.,
a single-node network). (Mei et al., 2018b) analyzes the generalization error of one-hidden-layer
neural networks in the mean-field limit trained on a large class of distributions, including a mix-
ture of Gaussian distributions with the same mean. The results only hold in the high-dimensional
region where both the number of neurons K and the input dimension d are sufficiently large, and
no sample complexity analysis is provided. (Li & Liang, 2018) studies the generalization error of
over-parameterized one-hidden-layer networks when the data come from mixtures of well-separated
distribution, but the separation requirement excludes Gaussian distributions and Gaussian mixture
models. (Yoshida & Okada, 2019) analyzes the Plateau Phenomenon that the decrease of the risk
slows down significantly partway and speeds up again in one-hidden-layer neural networks with in-
puts drawn from a single Gaussian with an arbitrary covariance. (Goldt et al., 2019b; 2020) analyze
the dynamics of learning one-hidden-layer networks with SGD when the inputs are drawn from a
wide class of generative models. (Mignacco et al., 2020) provides analytical equations for SGD
evolution in a perceptron trained on the Gaussian mixture model. (Ghorbani et al., 2020) considers
inputs with low-dimensional structures and compares neural networks with kernel methods.

Notations: Vectors are in bold lowercase, matrices and tensors in are bold uppercase. Scalars are
in normal fonts. For instance, Z is a matrix, and z is a vector. zi denotes the i-th entry of z, and
Zi,j denotes the (i, j)-th entry of Z. [K] (K > 0) denotes the set including integers from 1 to
K. Id ∈ Rd×d and ei represent the identity matrix in Rd×d and the i-th standard basis vector,
respectively. We use δi(Z) to denote the i-th largest singular value of Z. A � 0 means A is a
positive semi-definite (PSD) matrix. The gradient and the Hessian of a function f(W ) are denoted
by ∇f(W ) and ∇2f(W ), respectively. The outer product of vectors zi ∈ Rni , i ∈ [l], is defined
as T = z1 ⊗ · · · × zl ∈ Rn1×···×nl with Tj1···jl = (z1)j1 · · · (zl)jl .
Given a tensor T ∈ Rn1×n2×n3 and matrices A ∈ Rn1×d1 , B ∈ Rn2×d2 , C ∈ Rn3×d3 , the
(i1, i2, i3)-th entry of the tensor T (A,B,C) is given by

n1∑
i′1

n2∑
i′2

n3∑
i′3

Ti′1,i′2,i′3Ai′1,i1
Bi′2,i2

Ci′3,i3 . (1)

We follow the convention that f(x) = O(g(x)) (or Ω(g(x), Θ(g(x))) means that f(x) increases at
most, at least, or in the order of g(x), respectively.

2 PROBLEM FORMULATION

We consider a one-hidden-layer fully connected neural network where all the weights in the second
layer have the same fixed value. This structure is also known as the committee machine, see, e.g.,
(Aubin et al., 2018; Monasson & Zecchina, 1995; Schwarze & Hertz, 1992; 1993). Let x ∈ Rd
denote the input features. Let K ≥ 1 be the number of neurons in the hidden layer. Following the
teacher-student setup, see e.g., (Fu et al., 2020), the output labels are generated by a teacher neural
network with unknown ground-truth weights w∗j ∈ Rd (j ∈ [K]). Let W ∗ = [w∗1 , ...,w

∗
K ] ∈

Rd×K contain all the weights. Let δi(W ∗) denote the i-th largest singular value of W ∗. Let
κ = δ1(W ∗)

δK(W ∗) , and define η1 =
∏K
i=1

δi(W
∗)

δK(W ∗) . The nonlinear activation function here is the sigmoid
function φ(x) = 1

1+exp(−x) . We consider binary classification, and the binary output y is generated
by the teacher committee machine through

P(y = 1|x) = H(W ∗,x) :=
1

K

K∑
j=1

φ(w∗j
>x). (2)

3



Under review as a conference paper at ICLR 2021

Learning is performed over a student neural network that has the same architecture as the teacher
network, and its weights are denoted byW ∈ Rd×K . Given n pairs of training samples {xi, yi}ni=1,
the empirical risk function is

fn(W ) =
1

n

n∑
i=1

`(W ;xi, yi) (3)

where `(W ;xi, yi) is the cross-entropy loss function, i.e.,
`(W ;xi, yi) = −yi · log(H(W ,xi))− (1− yi) · log(1−H(W ,xi)). (4)

To estimateW ∗ from training samples, we solve the following nonconvex minimization problem
min

W∈Rd×K
fn(W ). (5)

Here we assume the input features xi are generated i.i.d. from the Gaussian mixture model (Pearson,
1894; Titterington et al., 1985; Hsu & Kakade, 2013), which we denote as

x ∼
L∑
l=1

λlN (µl, σ
2
l Id), (6)

where N denotes the multi-variate Gaussian distribution with mean µl ∈ Rd, and covariance σlId
for σl ∈ R+ for all l ∈ [L]. The Gaussian mixture model can be viewed as

x := µh + zh ∈ Rd (7)
where h is a discrete random variable with Pr(h = l) = λl for l ∈ [L], and zl follows the multivari-
ate Gaussian N (0, σ2

l Id) with zero mean and covariance σ2
l Id

1.

If the Gaussian mixture model is symmetric, the symmetric distribution can be written as

x ∼


L
2∑
l=1

λl
(
N (µl, σ

2
l Id) +N (−µl, σ2

l Id)
)

L is even

λ1N (0, σ2
1Id) +

L−1
2∑
l=2

λl
(
N (µl, σ

2
l Id) +N (−µl, σ2

l Id)
)

L is odd

(8)

We assume without loss of generality that µl belongs to the column space of W ∗ for all l ∈ [L].
To see this, note that an arbitrary µl can be written as µl‖ + µl⊥, where µl‖ belongs to the column
space ofW ∗, and µl⊥ is perpendicular to the column space. Then, from (2) and (7) we have

H(W ∗,x) =
1

K

K∑
j=1

φ(w∗j
>(µh‖ + µh⊥ + zh)) =

1

K

K∑
j=1

φ(w∗j
>(µh‖ + zh)) = H(W ∗,x′)

(9)
where x′ ∼

∑L
l=1 λlN (µl‖, σ

2
l Id). Thus, these two cases are equivalent.

3 PROPOSED LEARNING ALGORITHM

We propose Algorithm 1 to solve (5) and defer its theoeretical analysis to Section 4. The method
starts from a initialization W0 ∈ Rd×K computed based on the tensor initialization method (Sub-
routine 1) and then updates the iterates Wt using gradient descent with the step size η0. To analyze
the general cases, we assume an i.i.d. zero-mean noise {νi}ni=1 ∈ Rd×K with bounded magnitude
|(νi)jk| ≤ ξ (j ∈ [d], k ∈ [K]) for some ξ ≥ 0 when computing the gradient of the loss in (4).

Our tensor initialization method is extended from (Janzamin et al., 2014) and (Zhong et al., 2017b).
The idea is to compute quantities (Mj in (10)) that are tensors of w∗i and then apply the tensor
decomposition method to estimate w∗i . Because Mj can only be estimated from training samples,
tensor decomposition does not return w∗i exactly but provides a close approximation. Because the
existing method only applies to the standard Gaussian, we exploit the relationship between proba-
bility density functions and tensor expressions developed in (Janzamin et al., 2014) to design tensors
suitable for the Gaussian mixture model. Formally,

1One can easily extend our analysis to the case when the covariance is diag(σ2
l1, · · · , σ2

ld). One needs to
revise Property 4 and Lemma 7 correspondingly. We use the same σl to simplify the presentation.
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Algorithm 1 Our proposed learning algorithm

Input: Training data {(xi, yi)}ni=1, the step size η0 = O
(

1∑L
l=1 λl(‖µl‖∞+σl)2

)
, iteration T

Initialization: W0 ← Tensor initialization method via Subroutine 1
Gradient Descent: for t = 0, 1, · · · , T − 1

Wt+1 = Wt − η0 ·
1

n

n∑
i=1

(∇l(W ,xi, yi) + νi) = Wt − η0

(
∇fn(W ) +

1

n

n∑
i=1

νi

)
Output: WT

Definition 1 Let p(x) =
∑L
l=1 λl(2πσl)

− d2 exp(− ||x−µl||
2

2σ2
l

) be the probability density function of
the Gaussian mixture model in (6). We define

Mj := Ex∼∑L
l=1 λlN (µl,σ2

l I)[y · (−1)jp−1(x)∇(m)p(x)], j = 1, 2, 3 (10)

Let α ∈ Rd denote an arbitrary vector. If the Gaussian Mixture Model is symmetric as in (8), then
P2 := M3(Id, Id,α). Otherwise, P2 := M2.

Mj is a jth-order tensor of w∗i , e.g., M3 = 1
K

∑K
i=1 Ex∼∑L

l=1 λlN (µl,σ2
l I)[φ

′′′(w∗i
>x)]w∗i

⊗3.
These quantifies cannot be directly computed from (10) but can be estimated by sample means, de-
noted by M̂i (i = 1, 2, 3) and P̂2, from samples {xi, yi}ni=1. The following assumption guarantees
that these tensors are nonzero and can thus be leveraged to estimateW ∗.

Assumption 1 The Gaussian Mixture Model in (6) satisfies the following conditions:

1. Ex∼∑L
l=1 λlN (µl,σ2

l I)[φ
′′′(w∗i

>x)] 6= 0 for i ∈ [K], which implies thatM3 is nonzero.

2. If the distribution is not symmetric, then Ex∼∑L
l=1 λlN (µl,σ2

l I)[φ
′′(w∗i

>x)] 6= 0 for i ∈
[K], which impliesM2 and P2 in this case are nonzero.

Note that Assumption 1 is a very mild assumption2. Moreover, as indicted in (Janzamin et al., 2014),
in the rare case that some quantitiesMi (i = 1, 2, 3) and P2 are zero, one can construct higher-order
tensors in a similar way as in Definition 1 and then estimateW ∗ from higher-order tensors.

Subroutine 1 estimates the direction and magnitude of w∗j , j ∈ [K], separately. The key steps are
as follows. We first use the power method to decompose P̂2 to approximate the subspace spanned
by {w∗1 ,w∗2 , · · · ,w∗K}, denoted by Û . Then, we project M̂3 ∈ Rd×d×d to R̂3 ∈ RK×K×K

using Û to reduce the computational and sample complexity for decomposing a third-order tensor
in the next step. We then apply the KCL algorithm to decompose R̂3 into vectors v̂i. Note that
Û>v̂i = siw̄

∗
i , where si ∈ {1,−1} is a random sign. Then the direction of w∗j is determined.

Finally, the magnitude of w∗i ’s and the signs of si’s are determined by solving a linear system of
equations using the RecMagSign method. Please refer to (Zhong et al., 2017b) and (Kuleshov et al.,
2015) for more details on the power method, KCL and RecMagSign methods.

4 MAIN THEORETICAL RESULTS

The main idea of our analysis is to show that the empirical risk function in (3) is strongly convex
in a region near W ∗. Then W0 returned by Subroutine 3 is in this convex region, and the iterates
returned by Algorithm 1 converge to a critical point in this region. Before formally stating our result
in Theorem 1, we summarize the key implications of Theorem 1 as follow.

1. Convergence rate and estimation accuracy: When gradients are accurate (i.e., ξ = 0), the
iterates Wt converge to a critical point Ŵn linearly, and the distance between Ŵn and W ∗ is

2By mild we mean given L, if Assumption 1 is not met for some (λ0,M0,σ0), there exists an infinite
number of (λ′,M ′,σ′) in any neighborhood of (λ0,M0,σ0) such that Assumption 1 holds for (λ′,M ′,σ′),
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Subroutine 1 Tensor Initialization Method
Input: Partition n pairs of data {(xi, yi)}ni=1 into three subsets D1, D2, D3

Compute P̂2 using D1 and an arbitrary vector α
Û ←− PowerMethod(P̂2,K)

Compute R̂3 = M̂3(Û , Û , Û) from data set D2

{v̂i}i∈[K] ←− KCL(R̂3)

{W0} ←− RecMagSign(Û , {v̂i}i∈[K],D3)
Return: W0

O(
√
d log n/n). With the noise in the gradient, there is an additional error term ofO(ξ

√
d log n/n).

For example, when n is Θ(d log2 d), the estimation error decays as O( 1+ξ
log d ).

2. Sample complexity: The sample complexity for accurate estimation is Θ(d log2 d) where d is
the feature dimension. This result is in the same order as the sample complexity for the standard
Gaussian input in (Fu et al., 2020) and (Zhong et al., 2017b), indicating that our method can handle
input from the Gaussian mixture model without increasing the order of the sample complexity. Our
bound is almost order-wise optimal with respect to d because the degree of freedom is dK. The
additional multiplier of log2 d results from the concentration bound in the proof technique.

3. Impact of the mean: If everything else is fixed, and at least one entry of a mean µl(i) (the ith entry
of µl) of the Gaussian mixture model increases from 0 (in terms of the absolute value), the sample
complexity increases to infinity and the convergence slows down. The intuition is that as the absolute
value of some mean increases, some training samples have significantly large magnitude such that
the sigmoid function saturates. These training samples are not informative for the estimation of
W ∗, and the gradient of these samples is close to zero. Therefore, the required number of samples
to estimateW ∗ needs to increase, and the gradient descent algorithm slows down.

4. Impact of the variance: If everything else is fixed, and at least one variance σl of the Gaussian
mixture model increases from a certain positive value, the sample complexity increases to infinity
and the convergence slows down. The intuition is the same as increasing |µl(i)| in point 3. On the
other hand, when all variances in the Gaussian mixture model approach zero, the sample complexity
increases to infinity, and the convergence slows down. The intuition is that when the input data are
concentrated on a few vectors, the optimization problem does not have a benign landscape.

Combining points 3 and 4, one can see that to learn the teacher network characterized by (2), the
training samples shall have zero mean and a medium level of variance to reduce the sample complex-
ity and speed up the convergence. If the variance is too large, some samples become non-informative
and affect the learning negatively. If the variance is too small, the learning problem becomes math-
ematically challenging to solve. This theoretical characterization can be viewed as one motivation
of the empirical techniques to improve learning rate such as whiting (LeCun et al., 1998) and Batch
normalization (Ioffe & Szegedy, 2015). We state our main theoretical result as follows.

Theorem 1 Consider the binary classification problem with one hidden-layer fully connected neu-
ral network as in (2). Suppose Assumption 1 holds, then there exist ε0 ∈ (0, 1

4 ) and positive value
functions B(λ,M ,σ,W ∗) and q(λ,M ,σ,W ∗) such that as long as the sample size n satisfies

n ≥ nsc := poly(ε−1
0 , κ,K)B(λ,M ,σ,W ∗)d log2 d, (11)

we have that with probability at least 1− d−10, the iterates {Wt}Tt=1 returned by Algorithm 1 with

step size η0 = O
(

1∑L
l=1 λl(‖µl‖∞+σl)2

)
converge linearly with a statistical error to a critical point

Ŵn with the rate of convergence v = 1−K−2q(λ,M ,σ,W ∗), i.e.,

||Wt − Ŵn||F ≤ vt||W0 − Ŵn||F +
η0ξ

1− v
√
dK log n/n, (12)

Moreover, the distance betweenW ∗ and Ŵn is bounded by

||Ŵn −W ∗||F ≤ O
(
K

5
2 (1 + ξ) ·

√
d log n/n

)
. (13)
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We next quantify the impact of the parameters of the Gaussian mixture model on the sample com-
plexity nsc and the convergence rate v discussed in Theorem 1 as follows.

Corollary 1 (Impact of the Gaussian mixture model on nsc and v)

(1) When everything else is fixed, nsc increases to infinity, and v increases to 1, as |µl(i)| with any
l ∈ [L] and i ∈ [d] increases, where µl(i) is the i-th entry of µl.

(2). When everything else is fixed except for some σl for any l ∈ [L], nsc increases to infinity, and v
increases to 1, as σl increases from ζs for some constant ζs > 0.

(3) nsc increases to infinity, and v increases to 1 if all σl’s go to zero for all l ∈ [L].

To the best of our knowledge, Theorem 1 provides the first explicit characterization of the sample
complexity and learning rate when the input follows the Gaussian mixture model. Although we
consider the sigmoid activation in this paper, our results apply to any activation function φ provided
that φ′ is an even function, and φ, φ′ and φ′′ are bounded. Examples include tanh and erf . Algorithm
1 employs a constant step size. One can potentially speed up the convergence, i.e., reduce v, by using
a variable step size. We leave the corresponding theoretical analysis for future work.

If we scale the weights W ∗′ = W ∗/c and the input feature x′ = cx simultaneously, the output
remains the same for any nonzero constant c. Therefore, the learning problems in these two cases
are equivalent in terms of the sample complexity and convergence rate. Theorem 1 reflects such
equivalence. One can check that B(λ,M ,σ,W ∗) = B(λ,M ′,σ′,W ∗′) from the proof in Section
B. Similarly, the convergence rate in (12) remains the same in both cases.

One main component in the proof of Theorem 1 to show that if (11) holds, the landscape of the
empirical risk is close to that of the population risk in a local neighborhood of W ∗. (Mei et al.,
2018a) quantified the similarity of these two functions when K = 1, but it is not clear if their
approach can be extended to the case K > 1. Here, focusing on the Gaussian mixture model, we
explicitly quantify the impact of the parameters of the input distribution on the landscapes of these
functions. Please see Appendix-C for details.

Compared with the analyses for the standard Gaussian in (Fu et al., 2020; Zhong et al., 2017b), we
develop new techniques in the following aspects. First, a direct extension of the matrix concentration
inequalities in these works leads to a sample complexity bound of O(d3), while we develop new
concentration bounds to tighten it toO(d log2 d). Second, the existing analysis to bound the Hessian
of the population risk function does not extend to the Gaussian mixture model. We develop new tools
that also apply to other activation functions like tanh or erf. Third, we design new tensors for the
initialization, and the proof about the tensor initialization is revised accordingly.

The above results assume the parameters of the Gaussian mixture are known. In practice, they can
be estimated by the EM algorithm (Redner & Walker, 1984) and the moment-based method (Hsu
& Kakade, 2013). The EM algorithm returns model parameters within Euclidean distance O(( dn )

1
2 )

when the number of mixture components L is known. When L is unknown, one usually over-
specifies an estimate L̄ > L, then the estimation error by the EM algorithm scales as O(( dn )

1
4 ).

Please refer to (Ho & Nguyen, 2016; Ho et al., 2020; Dwivedi et al., 2020a;b) for details.

5 NUMERICAL EXPERIMENTS

We verify Theorem 1 through numerical experiments. We generate a ground-truth W ∗ ∈ Rd×K
from the Gaussian distribution. The training samples {xi, yi}ni=1 are generated using (6) and (2).
The maximum number of iterations of Algorithm 1 is set as 12000.

5.1 TENSOR INITIALIZATION

Fig. 1 shows the accuracy of the returned model by Algorithm 1. Here d = 5, K = 2, λ1 = λ2 =
0.5, µ1 = −1 and µ2 = 0. We compare the tensor initialization with a random initialization in a
local region {W ∈ Rd×K : ||W−W

∗||F
‖W ∗‖F ≤ ε}. Tensor initialization in Subroutine 1 returns an initial

point close toW ∗ with a relative error of 0.61. If the random initialization is also close toW ∗, e.g.,

7
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ε = 0.1, then the gradient descent algorithm converges to a critical point from both initializations,
and the linear convergence rate is the same. If the random initialization is far away, e.g., ε = 1.5,
the algorithm does not converge. On a MacBook Pro with Intel(R) Core(TM) i5-7360U CPU at
2.30GHz and MATLAB 2017a, it takes 0.55 second to compute the tensor initialization. We consider
a random initialization with ε = 0.1 in the following experiments to simplify the computation.

5.2 SAMPLE COMPLEXITY

Consider the case that K = 3, L = 2, λ1 = λ2 = 1
2 . Let µ1 be an all one vector in Rd and let

µ2 = −µ1. Let σ1 = σ2 = 1. We vary d and evaluate the sample complexity bound in (11) with
respect to d. We randomly initialize M times and let Ŵ (m)

n denote the output of Algorithm 1 in the

mth trail. Let W̄n denote the mean values of all Ŵ (m)
n , and let dW =

√∑M
m=1 ||ŵm

n − W̄n||2/M
denote the variance. An experiment is successful if dW ≤ 10−4 and fails otherwise. M is set as 20.

We vary d and the number of samples n. For each pair of d and n, 20 independent sets of W ∗ and
the corresponding training samples are generated. Fig. 2 shows the success rate of these independent
experiments. A black block means that all the experiments fail. A white block means that they all
succeed. The sample complexity is indeed almost linear in d, as predicted by (11). Moreover, the
coefficient n/d can be large depending on the problem setup.

Figure 1: Comparison between gradi-
ent descent with tensor initialization and
random initialization

Figure 2: The sample complexity against
the feature dimension d

We then fix d = 5 and study the impact on the sample complexity when the mean and variance
in the Gaussian mixture model change. In Fig. 3.(a), we fix σ1 = σ2 = 1 and let µ1 = µ · 1,
µ2 = −1. µ varies from 0 to 7.5. Fig. 3.(a) shows that when the mean increases, the sample
complexity increases. This coincides with our theoretical analyses in Section 4. In Fig. 3.(b), we
fix µ1 = 1, µ2 = −1, and let σ1 = σ and σ2 = 1. σ varies from 10−1.4 to 101.4. The sample
complexity increases both when σ increases and when σ approaches zero. The results match our
theoretical prediction in Section 4.

(a) (b)

Figure 3: The sample complexity (a) when one mean changes, (b) when one variance changes.

8
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5.3 CONVERGENCE ANALYSIS

We next study the convergence rate of Algorithm 1. d is fixed as 5. Fig. 4.(a) shows the impact of the
mean of the Gaussian mixture model on the convergence rate. We set λ1 = λ2 = 0.5, µ1 = µ · 1,
µ2 = −1, and σ1 = σ2 = 1. The sample complexity n is set to 10000. One can see that Algorithm
1 always converges linearly when µ changes. Moreover, as µ increases, Algorithm 1 converges
slower, as predicted by our theoretical analyses in Section 4. In Fig. 4.(b) shows the impact of the
variance of the Gaussian mixture model. We set λ1 = λ2 = 0.5, µ1 = 1, µ2 = −1, σ1 = σ2 = σ.
The sample complexity n is set to 50000. Among different σ we test, Algorithm 1 converges fastest
when σ = 1. The convergence rate slows down when σ increases to 2 or when σ decreases to 0.5.
The result is consistent with our theoretical results in Section 4.

We then verify the convergence rate in (12), which shows that v = 1−Θ(K−2). We set λ1 = λ2 =
0.5, µ1 = 1, µ2 = −1, σ1 = σ2 = 1. K ranges from 2 to 8. One can see from Fig. 5 that, as
predicted, the convergence rate is almost linear in 1/K2.

(a) (b)

Figure 4: (a) The convergence rate with different µ, (b) The convergence rate with different σ.

Figure 5: Convergence rate when the
number of neurons K changes

Figure 6: The relative error of the learned model
with the ground-truth when n changes

We then evaluate the distance between Ŵn returned by Algorithm 1 andW ∗, measured by ||Ŵn−
W ∗||F . d is 5. n ranges from 2× 103 to 6× 104. σ1 = σ2 = 3, µ1 = 1, µ2 = −1. Each point in
Fig. 6 is averaged over 100 independent experiments of differentW ∗ and the corresponding training
set. ‖W ∗‖F is normalized to 1. The error is indeed linear in

√
log(n)/n, as predicted by (12).

6 CONCLUSIONS

This paper analyzes the theoretical performance guarantee of learning one-hidden-layer neural net-
works for binary classification when the input follows the Gaussian mixture model. We develop an
algorithm that converges linearly to a model that has a diminishing difference from the ground-truth
model that has guaranteed generalizability. We also provide the first explicit characterization of the
impact of the input distribution on the sample complexity and convergence rate. Future works in-
clude the analysis of multiple-hidden-layer neural networks and multi-class classification. Because
of the concatenation of nonlinear activation functions, the analysis of the landscape of the empirical
risk and the design of a proper initialization is more challenging and requires the development of
new tools.
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data structure on learning in neural networks: the hidden manifold model. arXiv preprint arXiv:
1909.11500, 2019b.
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A PRELIMINARIES

In this section, we introduce some definitions and properties that will be used in proving the main
results.
First we define the sub-Gaussian random variable and sub-Gaussian norm.

Definition 2 We say X is a sub-Gaussian random variable with sub-Gaussian norm K > 0, if
(E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted ‖X‖ψ2

, is
defined as ‖X‖ψ2

= supp≥1 p
− 1

2 (E|X|p)
1
p .

Then we define the following three quantities. ρ(µ, σ) is motivated by the ρ parameter for the
standard Gaussian distribution in (Zhong et al., 2017b), and we generalize it to a Gaussian with an
arbitrary mean and variance. We define the new quantities Γ(λ,M ,σ,W ∗) and Dm(λ,M ,σ) for
the Gaussian mixture model.

Definition 3 (ρ-function). Let z ∼ N (u, Id) ∈ Rd. Define αq(i,u, σ) = Ezi∼N (ui,1)[φ
′(σ · zi)zqi ]

and βq(i,u, σ) = Ezi∼N (ui,1)[φ
′2(σ · zi)zqi ], ∀ q ∈ {0, 1, 2}, where zi and ui is the i-th entry of z

and u, respectively. Define ρ(u, σ) as

ρ(u, σ) = min
i,j∈[d],j 6=i

{(u2
j + 1)(β0(i,u, σ)− α0(i,u, σ)2), β2(i,u, σ)− α2(i,u, σ)2

u2
i + 1

} (14)

Definition 4 (Γ-function). With (6), (14) and κ, η defined in Section 2, we define

Γ(λ,M ,σ,W ∗) =

L∑
l=1

λl
κ2η

σ2
l

σ2
max

ρ(
W ∗>µl
σlδK(W ∗)

, σlδK(W ∗)) (15)

Definition 5 (D-function). Given the Gaussian Mixture Model in (6) and any positive integer m,
define Dm(λ,M ,σ) as

Dm(λ,M ,σ) =

L∑
l=1

λl(
||µl||∞
σl

+ 1)m, (16)

where λ = (λ1, · · · , λL) ∈ RL,M = (µ1, · · · ,µL) ∈ Rd×L and σ = (σ1, · · · , σL) ∈ RL.

ρ-function is defined to compute the lower bound of the Hessian of the population risk with Gaussian
input. Γ function is the weighted sum of ρ-function under mixture Gaussian distribution. This
function is positive and upper bounded by a small value. It is increasing when |µl(i)| increases.
When σl increases, Γ increases first and then decreases. Γ goes to zero if all ‖µl‖∞ or all σl goes
to infinity. D-function is a normalized parameter for the means and variances. It is lower bounded
by 1. D-function is an increasing function of ‖µl‖∞ and a decreasing function of σl.

Property 1 We have that ‖νi‖F is a sub-Gaussian random variable with its sub-Gaussian norm
bounded bu ξ

√
dK.

Proof:

(E‖νi‖pF )
1
p ≤ (E|

√
dKξ|p)

1
p ≤ ξ

√
dK (17)

Property 2 ρ(u, σ) in Definition 3 satisfies the following properties,

1. ρ(u, σ) > 0 for any u ∈ Rd and σ 6= 0.

2. ρ(u, σ) converges to a positive value function of σ as ui goes to 0, i.e. limui→0 ρ(u, σ) :=
Cm(σ).

14



Under review as a conference paper at ICLR 2021

3. When all ui 6= 0 (i ∈ [d]), ρ(uσ , σ) converges to a positive value function of u as σ goes to
0, i.e. limσ→0 ρ(uσ , σ) := Cs(u). When ui = 0 for some i ∈ [d], limσ→0 ρ(uσ , σ) = 0.

4. When everything else except |ui| is fixed, ρ( W ∗>u
σδK(W ∗) , σδK(W ∗)) is lower bounded by a

positive value function, Lm( W ∗>u
σδK(W ∗) , σδK(W ∗)), which is monotonically decreasing to

0 as |ui| increases.

5. When everything else except σ is fixed, ρ( W ∗>u
σδK(W ∗) , σδK(W ∗)) is lower bounded by a

positive value function, Ls( W ∗>u
σδK(W ∗) , σδK(W ∗)), which satisfies the following conditions:

(a) there exists ζs′ > 0, such that σ−1Ls( W ∗>u
σδK(W ∗) , σδK(W ∗)) is an increasing function

of σ when σ ∈ (0, ζs′); (b) there exists ζs > 0 such that Ls( W ∗>u
σδK(W ∗) , σδK(W ∗)) is an

decreasing function of σ when σ ∈ (ζs,+∞).

Proof:
(1) From the Cauchy Schwarz’s inequality, we have

Ezi∼N (ui,1)[φ
′(σ · zi)] ≤

√
Ezi∼N (ui,1)[φ′2(σ · zi)] (18)

Ezi∼N (ui,1)[φ
′(σ · zi)zi · zi] ≤

√
Ezi∼N (ui,1)[φ′2(σ · zi)z2

i ] ·
√

Ezi∼N (ui,1)[z
2
i ]

=
√
Ezi∼N (ui,1)[φ′2(σ · zi)z2

i ] ·
√
u2
i + 1

(19)

The equalities of the (18) and (19) hold if and only if φ′ is a constant function. Since that φ is the
sigmoid function, the equalities of (18) and (19) cannot hold.
By the definition of ρ(u, σ) in Definition 3, we have β0(i,u, σ)−α2

0(i,u, σ) > 0 and β2(i,u, σ)−
α2

2(i,u,σ)

u2
i+1

> 0. Therefore,

ρ(u, σ) > 0 (20)

(2)

lim
ui→0

(
u2
j

σ2
+ 1)

(
β0(i,u, σ)− α2

0(i,u, σ)
)

= lim
ui→0

(
u2
j

σ2
+ 1)

( ∫ ∞
−∞

φ′2(σ · zi)(2π)−
1
2 exp(−‖zi − ui‖

2

2
)dzi

− (

∫ ∞
−∞

φ′(σ · zi)(2π)−
1
2 exp(−‖zi − ui‖

2

2
)dzi)

2
)

=(
u2
j

σ2
+ 1)

( ∫ ∞
−∞

φ′2(σ · zi)(2π)−
1
2 exp(−‖zi‖

2

2
)dzi − (

∫ ∞
−∞

φ′(σ · zi)(2π)−
1
2 exp(−‖zi‖

2

2
)dzi)

2
)

(21)

lim
ui→0

(
β2(i,u, σ)− 1

u2
i + 1

α2
2(i,u, σ)

)
= lim
ui→0

∫ ∞
−∞

φ′2(σ · zi)z2
i (2π)−

1
2 exp(−‖zi − ui‖

2

2
)dzi

− (
1

u2
i + 1

∫ ∞
−∞

φ′(σ · zi)z2
i (2π)−

1
2 exp(−‖zi − ui‖

2

2
)dzi)

2

=

∫ ∞
−∞

φ′2(σ · zi)z2
i (2π)−

1
2 exp(−‖zi‖

2

2
)dzi − (

∫ ∞
−∞

φ′(σ · zi)z2
i (2π)−

1
2 exp(−‖zi‖

2

2
)dzi)

2

(22)

Combining (21) and (22), we can derive that ρ(u, σ) converges to a positive value function of σ as
ui goes to 0, i.e. limu→0 ρ(u, σ) := Cm(σ)

15
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(3) When all ui 6= 0 (i ∈ [d]),

lim
σ→0

(
β2(i,

u

σ
, σ)− 1

u2
i

σ2 + 1
α2

2(i,
u

σ
, σ)
)

= lim
σ→0

∫ ∞
−∞

φ′2(σ · zi)z2
i (2π)−

1
2 exp(−

‖zi − ui
σ ‖

2

2
)dzi

− 1
u2
i

σ2 + 1

( ∫ ∞
−∞

φ′(σ · zi)z2
i (2π)−

1
2 exp(−

‖zi − ui
σ ‖

2

2
)dzi

)2
= lim
σ→0

∫ ∞
−∞

φ′2(ui · xi)
u2
i

σ2
x2
i (2π

σ2

u2
i

)−
1
2 exp(−‖xi − 1‖2

2σ
2

u2
i

)dxi

− 1
u2
i

σ2 + 1

( ∫ ∞
−∞

φ′(ui · xi)
u2
i

σ2
x2
i (2π

σ2

u2
i

)−
1
2 exp(−‖xi − 1‖2

2σ
2

u2
i

)dxi
)2

zi =
ui
σ
xi

= lim
σ→0

φ′2(ui)
u2
i

σ2
− 1

u2
i

σ2 + 1
(φ′(ui)

u2
i

σ2
)

= lim
σ→0

φ′2(ui)
u2
i

σ2

(
1−

u2
i

σ2

1 + σ2

u2
i

)2
= lim
σ→0

φ′2(ui)
1

1 + σ2

u2
i

=φ′2(ui)

(23)

The third step of (23) is by the fact that the Gaussian distribution goes to a Dirac delta function when
σ goes to 0. Then the integral will take the value when xi = 1. Similarly, we can obtain the following

lim
σ→0

(
β0(i,

u

σ
, σ)− α2

0(i,
u

σ
, σ)
)

= lim
σ→0

∫ ∞
−∞

φ′2(σ · zi)(2π)−
1
2 exp(−

‖zi − ui
σ ‖

2

2
)dzi

−
( ∫ ∞
−∞

φ′(σ · zi)(2π)−
1
2 exp(−

‖zi − ui
σ ‖

2

2
)dzi

)2
=φ′2(ui)− φ′2(ui) = 0

(24)

lim
σ→0

( ∂

∂σ

(
β0(i,

u

σ
, σ)− α2

0(i,
u

σ
, σ)
))

= lim
σ→0

( ∂

∂σ

(∫ ∞
−∞

φ′2(xi)(2πσ
2)−

1
2 exp(−‖xi − ui‖

2

2σ2
)dxi

−
( ∫ ∞
−∞

φ′(xi)(2πσ
2)−

1
2 exp(−‖xi − ui‖

2

2σ2
)dxi

)2))
xi = σ · zi

= lim
σ→0

(∫ ∞
−∞

φ′2(xi)(2πσ
2)−

1
2 exp(−‖xi − ui‖

2

2σ2
)(−σ−1 + ‖xi − ui‖2σ−2)dxi

− 2
( ∫ ∞
−∞

φ′(xi)(2πσ
2)−

1
2 exp(−‖xi − ui‖

2

2σ2
)dxi

)
·
∫ ∞
−∞

φ′(xi)(2πσ
2)−

1
2 exp(−‖xi − ui‖

2

2σ2
)(−σ−1 + ‖xi − ui‖2σ−2)dxi

)
= lim
σ→0

(φ′2(ui)

−σ
− 2φ′(ui)

φ′(ui)

−σ

)
= lim
σ→0

φ′2(ui)

σ
= +∞

(25)

16



Under review as a conference paper at ICLR 2021

Therefore, by L’Hopital’s rule and (24), (25), we have

lim
σ→0

(
u2
j

σ2
+ 1)(β0(i,

u

σ
, σ)− α0(i,

u

σ
, σ))

= lim
σ→0

u2
i

2σ

∂

∂σ
(β0(i,

u

σ
, σ)− α0(i,

u

σ
, σ))

= +∞

(26)

Combining (26) and (23), we can derive that ρ(uσ , σ) converges to a positive value function of u as
σ goes to 0, i.e. limσ→0 ρ(uσ , σ) := Cs(u).

When ui = 0 for some i ∈ [d], limσ→0(
u2
i

σ2 + 1)(β0(j, uσ , σ)−α2(j, uσ , σ)) = 0 by (24). Then from
the Definition 3, we have limσ→0 ρ(uσ , σ) = 0.
(4) We show the statement by contradiction. Suppose that for any positive value func-
tion, h(ui), which is monotonically decreasing to 0 as |ui| increases, there exists a
u∗i ∈ R such that h(ui) ≥ ρ( W ∗>u

σδK(W ∗) , σδK(W ∗))
∣∣∣
ui=ui∗

. Then we can derive that

limui→u∗i ρ( W ∗>u
σδK(W ∗) , σδK(W ∗))

∣∣∣
ui=ui∗

= 0. Since that ρ( W ∗>u
σδK(W ∗) , σδK(W ∗)) is continuous,

we can obtain that ρ( W ∗>u
σδK(W ∗) , σδK(W ∗))

∣∣∣
ui=ui∗

= 0, which contradicts to the conclusion in

Property 2.1.
(5) The condition (b) can be easily proved as (4). Therefore, we only need to show the condition (a).
When (W ∗>u)i 6= 0 for all i ∈ [K], limσ→0 ρ( W ∗>u

σδK(W ∗) , σδK(W ∗)) = Cs(u) > 0. Therefore,

there exists ζs > 0, such that when 0 < σ < ζs, ρ( W ∗>u
σδK(W ∗) , σδK(W ∗)) > Cs(W ∗>u)

2 . Then we

can define Ls( W ∗>u
σδK(W ∗) , σδK(W ∗)) := Cs(W ∗>u)

2ζs
σ2 such that σ−1Ls( W ∗>u

σδK(W ∗) , σδK(W ∗)) is an

increasing function of σ below ρ( W ∗>u
σδK(W ∗) , σδK(W ∗)). When (W ∗>u)i = 0 for some i ∈ [K],

then limσ→0 ρ( W ∗>u
σδK(W ∗) , σδK(W ∗)) = 0. We can derive

lim
σ→0

ρ( W ∗>u
σδK(W ∗) , σδK(W ∗))

σ
= lim
σ→0

∂

∂σ
ρ(

W ∗>u

σδK(W ∗)
, σδK(W ∗)) ≥ 0 (27)

The last step of (27) is because if the limit is negative, then ρ( W ∗>u
σδK(W ∗) , σδK(W ∗)) will be negative

in a small neighborhood around σ = 0, which contradicts to the fact that ρ( W ∗>u
σδK(W ∗) , σδK(W ∗)) >

0.

If the limit in (27) is 0, then limσ→0
∂
∂σ

ρ( W∗>u
σδK (W∗) ,σδK(W ∗))

σ > 0 otherwise there will be a small

neighborhood around σ = 0 in which
ρ( W∗>u
σδK (W∗) ,σδK(W ∗))

σ < 0. In this case we only need to

let σ−1Ls( W ∗>u
σδK(W ∗) , σδK(W ∗)) :=

ρ( W∗>u
σδK (W∗) ,σδK(W ∗))

σ . If the limit in (27) is positive, we can

find a positive lower bound of
ρ( W∗>u
σδK (W∗) ,σδK(W ∗))

σ in a small neighborhood around σ = 0 and an
increasing function of σ, σ−1L( W ∗>u

σδK(W ∗) , σδK(W ∗)) can be defined to be less than this positive
lower bound.
In conclusion, the condition (a) is proved.

Property 3 With the notation in (6), if a function f(x) is an even function, then

Ex∼N (µ,σ2Id)[f(x)] = Ex∼ 1
2N (µ,σ2Id)+ 1

2N (−µ,σ2Id)[f(x)] (28)

Proof:
Denote

g(x) = f(x)(2πσ2)−
d
2 exp(−||x− µ||

2

2σ2
) (29)

17
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Ex∼N (µ,σ2I)[f(x)] =

∫
x∈Rd

g(x)dx =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, · · · , xd)dx1 · · · dxd

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ −∞
∞

g(x1, x2, · · · , xd)d(−x1)dx2 · · · dxd

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(−x1, x2 · · · , xd)dx1dx2 · · · dxd

=

∫
x∈Rd

g(−x)dx

=

∫
x∈Rd

f(x)(2πσ2)−
d
2 exp(−||x+ µ||2

2σ2
)dx

= Ex∼N (−µ,σ2·Id)[f(x)]

(30)

Therefore, we have

Ex∼N (µ,σ2Id)[f(x)] = Ex∼ 1
2N (µ,σ2Id)+ 1

2N (−µ,σ2Id)[f(x)] (31)

Property 4 Under Gaussian Mixture Model x ∼
∑L
l=1 λlN (µl, σ

2
l Id), we have the following

upper bound.

Ex∼∑L
l=1 λlN (µl,σ2

l Id)[(u
>x)2t] ≤ (2t− 1)!!||u||2t

L∑
l=1

λl(||µl||∞ + σl)
2t (32)

Proof:
The main idea is to find an upper bound with symmetric distribution assumption first, and then apply
Property 3 to extend the conclusion to the general case.
(a) If the Mixed-Gaussian distribution is symmetric and L = 2, i.e. x ∼ 1

2

(
N (µ, σ2Id) +

N (−µ, σ2Id)
)

, then we first need to analyse the distribution of u>x by computing the moment
generating function

E
x∼ 1

2

(
N (µ,σ2Id)+N (−µ,σ2Id)

)[exp(tu>x)] = E[exp(t

d∑
i=1

uixi)] =

d∏
i=1

E[exp(tuixi)]

=

d∏
i=1

{
2∑
j=1

1

2

∫ ∞
−∞

exp(tuixi)
1√
2πσ

exp(− (xi − (−1)jµi)
2

2σ2
)dxi}

=

d∏
i=1

{
2∑
j=1

1

2
exp(tui(−1)jµi)

·
∫ ∞
−∞

exp
(
tui(xi − (−1)jµi)

) 1√
2πσ

exp(− (xi − (−1)jµi)
2

2σ2
)dxi}

=

d∏
i=1

{1

2
exp(−tuiµi) +

1

2
σ2u2

i t
2 +

1

2
exp(tuiµi +

1

2
σ2u2

i t
2)}

:=

2d∑
i=1

1

2d
exp(tµ′i +

1

2
t2σ′2)

(33)

which is the Moment Generating Function of
∑2d

i=1
1
2d
N (µ′i, σ

′2). The last step of (33) is
by expanding the multiplication of d terms. Specifically, let {si}2di=1 denote all 2d vectors
in Rd taking values from 0 and 1. Let sik (k ∈ [d]) denote the k-th entry of si. We define
µ′i =

∑d
k=1(−1)s

i
kukµk ∈ R for i ∈ [2d], and σ′ = σ||u|| ∈ R, where uk and µk are the k-th entry

of the vector u and µ, respectively. Then we can derive the first few steps of E[(u>x)2t]

18
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E
x∼ 1

2

(
N (µ,σ2Id)+N (−µ,σ2Id)

)[(u>x)2t]

=

∫ ∞
−∞

y2t
2d∑
i=1

1

2d
1√

2πσ′
e−

(y−µ′i)
2

2σ′2 dy

=

2d∑
i=1

1

2d

∫ ∞
−∞

(y − µ′i + µ′i)
2t 1√

2πσ′
e−

(y−µ′i)
2

2σ′2 dy

=

2d∑
i=1

1

2d

∫ ∞
−∞

2t∑
p=0

(
2t

p

)
µ′i

2t−p
(y − µ′)p 1√

2πσ′
e−

(y−µ′i)
2

2σ′2 dy

=

2d∑
i=1

1

2d

2t∑
p=0

(
2t

p

)
µ′i

2t−p ·
{

0 , p is odd
(p− 1)!!σ′

2
, p is even

=

2d∑
i=1

1

2d

t∑
k=0

(
2t

2k

)
µ′i

2t−2k
σ′

2k
(2k − 1)!!

=
1

2d

t∑
k=0

(
2t

2k

)
σ′

2k
(2k − 1)!!

2d∑
i=1

µ′i
2t−2k

(34)

The first step is by the distribution of u>x we obtain from (33). The third step follows from the
binomial expansion. The forth step results from the calculation of high-order moment of Gaussian
distribution. The second to last step is derived from the inverse of binomial expansion. The last step
is due to the substitution of summation. To compute the inner summation in the last step of (34), we
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have

2d∑
i=1

µ′i
2t

=

2d∑
i=1

(u1(−1)s
i
1µ1 + u2(−1)s

i
2µ2 + ...+ ud(−1)s

i
dµd)

2t

=

2d∑
i=1

∑
p
(i)
1 +···+p(i)d =2t

(2t)!

p
(i)
1 !p

(i)
2 !...p

(i)
d !

(u1(−1)s
i
1µ1)p

(i)
1 ...(ud(−1)s

i
dµd)

p
(i)
d

=

2d∑
i=1

∑
p
(i)
1 +···+p(i)d =2t

(2t)!

p
(i)
1 !p

(i)
2 !...p

(i)
d !

(u1µ1)p
(i)
1 ...(udµd)

p
(i)
d all the pi are even

=

2d∑
i=1

∑
p
(i)
1 +···+p(i)d =2t

(2t)!

p
(i)
1 !p

(i)
2 !...p

(i)
d !

(u2
1µ

2
1)q

(i)
1 ...(u2

dµ
2
d)
q
(i)
d q

(i)
j =

p
(i)
j

2

≤
2d∑
i=1

max
(2t)!

p
(i)
1 !p

(i)
2 !...p

(i)
d !

/ (t)!

q
(i)
1 !q

(i)
2 !...q

(i)
d !
}

∑
∑d
h=1 q

(i)
h =t

(t)!

q
(i)
1 !q

(i)
2 !...q

(i)
d !

(u2
1µ

2
1)q

(i)
1 ...(u2

dµ
2
d)
q
(i)
d

≤
2d∑
i=1

max{ (2t)!

p
(i)
1 !p

(i)
2 !...p

(i)
d !

/ (t)!

q
(i)
1 !q

(i)
2 !...q

(i)
d !
} · (u2

1µ
2
1 + · · ·+ u2

dµ
2
d)
t

≤
2d∑
i=1

max{ (2t)!

p
(i)
1 !p

(i)
2 !...p

(i)
d !

/ (t)!

q
(i)
1 !q

(i)
2 !...q

(i)
d !
} · (u2

1 + ...+ u2
d)
t ·max

j
{|µj |}2t

≤2d||u||2t ·max
j
{|µj |}2t · (2t− 1)!!

(35)
Firstly we explain the third step. For any odd p`, there is a term a0 = (u`(−1)s

i
`µ`)

p` ·∏
k 6=`(uk(−1)s

i
kµk)pk among the expansion of µ′2ti , whose corresponding vector si is

(sii, · · · , si`, · · · , sid). We can find a µ′j such that its corresponding vector is (si1, · · · , 1−si`, · · · , sid),
which is only different from the tuple of µ′i in the `-th entry. Therefore, in the expansion of µ′2tj ,
there exists a term a′0 = (u`(−1)1−si`µ`)

p` ·
∏
k 6=`(uk(−1)s

i
kµk)pk that can be cancelled out by

a0. Therefore, there will be no odd power terms left. The third to last step of (35) is by the inverse
binomial expansion. The second to last step is by the inequality

∑N
i=1 aibi ≤ max{bi} ·

∑N
i=1 ai,

where ai and bi are positive. The last step is because

(2t)!

p
(i)
1 !p

(i)
2 !...p

(i)
d !

/ (t)!

q
(i)
1 !q

(i)
2 !...q

(i)
d !

=
(2t)!

t!
·
p
(i)
d1

2

p
(i)
d2

2 ! · · · p
(i)
dm

2 !

p
(i)
d1

!p
(i)
d2

! · · · p(i)
dm

!

≤ (2t)!

t!
· (1

2
)m

≤ (2t)!

t!
· (1

2
)t = (2t− 1)!!

(36)

In the first equality of (36), pd1 , ..., pdm denote all the positive pi. Thus, we have
∑m
i=1 pdi = 2t

where pdi ≥ 2. Therefore,m ≤ 2t
2 = twhich is used in the second inequality. Therefore, combining
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(35), we can continue the derivation of (34) as follows.
E
x∼ 1

2

(
N (µ,σ2Id)+N (−µ,σ2Id)

)[(u>x)2t]

=
1

2d

t∑
k=0

(
2t

2k

)
σ′i

2k
(2k − 1)!!

2d∑
i=1

µ′i
2t−2k

≤
t∑

k=0

(
2t

2k

)
· σ′2k(2k − 1)!!||u||2t ·max

j
{|µj |}2t−2k(2t− 1− 2k)!!

≤(2t− 1)!!||u||2t(||µ||∞ + σ′)2t

(37)

The last step is because that
(2t− 1− 2k)!!(2k − 1)!! ≤ (2t− 1− 2k)!! (2t− 1)(2t− 3) · · · (2t− 2k + 1)︸ ︷︷ ︸

k terms

= (2t− 1)!!

(b) From Property 3, since that (u>x)2t is an even function, we have a result for a general Gaussian
distribution

Ex∼N (µ,σ2Id)[(u
>x)2t] = Ex∼ 1

2N (µ,σ2Id)+ 1
2N (−µ,σ2Id)[(u

>x)2t]

≤(2t− 1)!!||u||2t(||µ||∞ + σ)2t
(38)

Therefore, if there are L components in the Gaussian Mixture Model, then

Ex∼∑L
l=1 λlN (µl,σ2

l Id)[(u
>x)2t] ≤ (2t− 1)!!||u||2t

L∑
l=1

λl(||µl||∞ + σl)
2t (39)

Property 5 With Gaussian Mixture Model (7), we have

Ex∼∑L
l=1 λlN (µl,σ2

l Id)[||x||
2t] ≤ dt(2t− 1)!!

L∑
l=1

λl(‖µl‖∞ + σl)
2t (40)

Proof:

Ex∼∑L
l=1 λlN (µl,σ2

l Id)[||x||
2t
2 ]

=Ex∼∑L
l=1 λlN (µl,σ2

l Id)[(

d∑
i=1

x2
i )
t]

=Ex∼∑L
l=1 λlN (µl,σ2

l Id)[d
t(

d∑
i=1

x2
i

d
)t]

≤Ex∼∑L
l=1 λlN (µl,σ2

l Id)[d
t
d∑
i=1

x2t
i

d
]

=dt−1
d∑
i=1

L∑
j=1

∫ ∞
−∞

(xi − µji + µji)
2tλj

1√
2πσ

exp(− (xi − µji)2

2σ2
j

)dxi

=dt−1
d∑
i=1

L∑
j=1

2t∑
k=1

(
2t

k

)
λj |µji|2t−k ·

{
0 , k is odd

(k − 1)!!σkj , k is even

≤dt−1
d∑
i=1

L∑
j=1

2t∑
k=1

(
2t

k

)
λj |µji|2t−kσkj · (2t− 1)!!

=dt−1
d∑
i=1

L∑
j=1

λj(|µji|+ σj)
2t(2t− 1)!!

≤dt(2t− 1)!!

L∑
l=1

λl(‖µ‖∞ + σl)
2t

(41)
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In the 3rd step, we apply Jensen inequality because f(x) = xt is convex when x ≥ 0 and t ≥ 1. In
the 4th step we apply the Binomial theorem and the result of k-order central moment of Gaussian
variable.

Property 6 The population risk function f(W ) is defined as

f(W ) = Ex∼∑L
l=1 λlN (µl,σ2

l Id)[fn(W )]

=Ex∼∑L
l=1 λlN (µl,σ2

l Id)

[ 1

n

n∑
i=1

`(W ;xi, yi)
]

=Ex∼∑L
l=1 λlN (µl,σ2

l Id)[`(W ;xi, yi)]

(42)

Based on (2), (3) and (4), we can derive its gradient and Hessian as follows.
∂`(W ;x, y)

∂wj
= − 1

K

y −H(W )

H(W )(1−H(W ))
φ′(w>j x)x = ζ(W ) · x (43)

∂2`(W ;x, y)

∂wj∂wl
= ξj,l · xx> (44)

ξj,l(W ) =

{
1
K2φ

′(w>j x)φ′(w>l x)H(W )2+y−2y·H(W )
H2(W )(1−H(W ))2 , j 6= l

1
K2φ

′(w>j x)φ′(w>l x)H(W )2+y−2y·H(W )
H2(W )(1−H(W ))2 −

1
Kφ
′′(w>j x) y−H(W )

H(W )(1−H(W )) , j = l

(45)

Property 7 With Dm(λ,M ,σ) defined in definition 5, we have

(i) Dm(λ,M ,σ)D2m(λ,M ,σ) ≤ D3m(λ,M ,σ) (46)

(ii)
(
Dm(λ,M ,σ)

)2 ≤ D2m(λ,M ,σ) (47)

Proof:
To prove (46), we can first compare the terms

∑L
i=1 λiai

∑L
i=1 λia

2
i and

∑L
i=1 λia

3
i , where ai ≥

1, i ∈ [L] and
∑L
i=1 λi = 1.

L∑
i=1

λia
3
i −

L∑
i=1

λiai

L∑
i=1

λia
2
i =

L∑
i=1

λiai ·
(
a2
i −

L∑
j=1

λja
2
j

)
=

L∑
i=1

λiai ·
(
(1− λi)a2

i −
∑

1≤j≤L,j 6=i

λja
2
j

)
=

L∑
i=1

λiai ·
( ∑

1≤j≤L,j 6=i

λja
2
i −

∑
1≤j≤L,j 6=i

λja
2
j

)
=

L∑
i=1

λiai ·
( ∑

1≤j≤L,j 6=i

λj(a
2
i − a2

j )
)

=
∑

1≤i,j≤L,i6=j

(
λiλjai(a

2
i − a2

j ) + λiλjaj(a
2
j − a2

i )
)

=
∑

1≤i,j≤L,i6=j

λiλj(ai − aj)2(ai + aj) ≥ 0

(48)

The second to last step is because we can find the pairwise terms λiai · λj(a2
i − a2

j ) and λjaj ·
λi(a

2
j − a2

i ) in the summation that can be putted together. From (48), we can obtain
L∑
i=1

λiai

L∑
i=1

λia
2
i ≤

L∑
i=1

λia
3
i (49)
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Combining (49) and the definition of Dm(λ,M ,σ) in (5), we can derive (46).
Similarly, to prove (47), we can first compare the terms (

∑L
i=1 λiai)

2 and
∑L
i=1 λia

2
i , where ai ≥

1, i ∈ [L] and
∑L
i=1 λi = 1.

L∑
i=1

λia
2
i − (

L∑
i=1

λiai)
2 =

L∑
i=1

λiai ·
(
ai −

L∑
j=1

λjaj
)

=

L∑
i=1

λiai ·
(
(1− λi)ai −

∑
1≤j≤L,j 6=i

λjaj
)

=

L∑
i=1

λiai ·
( ∑

1≤j≤L,j 6=i

λjai −
∑

1≤j≤L,j 6=i

λjaj
)

=

L∑
i=1

λiai ·
( ∑

1≤j≤L,j 6=i

λj(ai − aj)
)

=
∑

1≤i,j≤L,i6=j

(
λiλjai(ai − aj) + λiλjaj(aj − ai)

)
=

∑
1≤i,j≤L,i6=j

λiλj(ai − aj)2 ≥ 0

(50)

The derivation of (50) is close to (48). By (50) we have

(

L∑
i=1

λiai)
2 ≤

L∑
i=1

λia
2
i (51)

Combining (51) and the definition of Dm(λ,M ,σ) in (5), we can derive (47).

B PROOF OF THEOREM 1

Theorem 1 is built upon three lemmas. Lemma 1 shows that with O(dK5 log2 d) samples, the
empirical risk function is strongly convex in the neighborhood of W ∗. Lemma 2 shows that if
initialized in the convex region, that the gradient descent algorithm converges linearly to a critical
point Ŵn, that is close toW ∗. Lemma 3 shows that the Tensor Initialization Method in Subroutine
1 initializes W0 ∈ Rd×K in the local convex region. Theorem 1 follows naturally by combining
these three lemmas.

This proving approach is built upon those in (Fu et al., 2020). One of our major technical contri-
bution is extending Lemmas 1 and 2 to the Gaussian mixture model, while the results in (Fu et al.,
2020) only apply to Standard Gaussian models. The second major contribution is a new tensor
initialization method for Gaussian mixture model such that the initial point is in the convex region
(see Lemma 3). Both contributions require the development of new tools, and our analyses are
much more involved than those for the standard Gaussian due to the complexity introduced by the
Gaussian mixture model.

To present these lemmas, the Euclidean ball B(W ∗, r) is used to denote the neighborhood of W ∗,
where r is the radius of the ball.

B(W ∗, r) = {W ∈ Rd×K : ||W −W ∗||F ≤ r} (52)

The radius of the convex region is

r := Θ
( C3ε0 ·

∑L
l=1 λl

σ2
l

ηκ2 ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗))

K
7
2

(∑L
l=1 λl(‖µl‖∞ + σl)4

∑L
l=1 λl(‖µl‖∞ + σl)8

) 1
4

)
(53)

with some constant C3 > 0.
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Lemma 1 (Strongly local convexity) Consider the classification model with FCN (2) and the sig-
moid activation function. There exists a constant C such that as long as the sample size

n ≥ C1ε
−2
0 ·

( L∑
l=1

λl(‖µ‖∞ + σl)
2
)2

(

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))
)−2

dK5 log2 d

(54)
for some constant C1 > 0 and ε0 ∈ (0, 1

4 ), we have for allW ∈ B(W ∗, rFCN ),

Ω
(1− 2ε0

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))
)
· IdK

� ∇2fn(W ) � C2

L∑
l=1

λl(||µl||∞ + σl)
2 · IdK

(55)

with probability at least 1− d−10 for some constant C2 > 0.

Lemma 2 (Linear convergence of gradient descent) Assume the conditions in Lemma 1 hold. If
the local convexity holds, there exists a critical point in B(W ∗, r) for some constant C3 > 0 and
ε0 ∈ (0, 1

2 ), such that

||Ŵn −W ∗||F ≤ O(
K

5
2

√∑L
l=1 λl(‖µ‖∞ + σl)2∑L

l=1 λl
σ2
l

ηκ2 ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗))

√
d log n

n
) (56)

If the initial pointW0 ∈ B(W ∗, r), the gradient descent linearly converges to Ŵn, i.e.,

||Wt − Ŵn||F ≤
(

1− Ω
(∑L

l=1 λl
σ2
l

ηκ2 ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗))

K2
∑L
l=1 λl(‖µl‖∞ + σl)2

))t
||W0 − Ŵn||F (57)

with probability at least 1− d−10.

Lemma 3 (Tensor initialization) For classification model, with D6(λ,M ,σ) defined in Definition
5, we have that if the sample size

n ≥ κ8K4τ12D6(λ,M ,σ) · d log2 d, (58)

then the outputW0 ∈ Rd×K satisfies3

||W0 −W ∗|| . κ6K3 · τ6
√
D6(λ,M ,σ)

√
d log n

n
||W ∗|| (59)

with probability at least 1− n−Ω(δ41)

Proof of Theorem 1 and Corollary 1:
From Lemma 2 and Lemma 3, we know that if n is sufficiently large such that the initializationW0

by the tensor method is in the region B(W ∗, r), then the gradient descent method converges to a
critical point Ŵn that is sufficiently close toW ∗. To achieve that, one sufficient condition is

||W0 −W ∗||F ≤
√
K||W0 −W ∗|| ≤ κ6K

7
2 · τ6

√
D6(λ,M ,σ)

√
d log n

n
||W ∗||

≤ C3ε0Γ(λ,M ,σ,W ∗)σ2
max

K
7
2

(∑L
l=1 λl(‖µl‖∞ + σl)4

∑L
l=1 λl(‖µl‖∞ + σl)8

) 1
4

(60)

where the first inequality follows from ||W ||F ≤
√
K||W || forW ∈ Rd×K , the second inequality

comes from Lemma 3, and the third inequality comes from the requirement to be in the region

3σmin and σmax denote the minimum and maximum among {σ1, · · · , σL}, respectively. τ = σmax
σmin
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B(W ∗, r). That is equivalent to the following condition

n ≥C0ε
−2
0 · τ12κ12K14

( L∑
l=1

λl(‖µl‖∞ + σl)
4

L∑
l=1

λl(‖µl‖∞ + σl)
8
) 1

2

(δ1(W ∗))2D6(λ,M ,σ)

· Γ(λ,M ,σ,W ∗)−2σ−4
max · d log2 d

(61)
where C0 = max{C4, C

−2
3 }. By the definition 5, we can obtain( L∑

l=1

λl(‖µl‖∞ + σl)
4

L∑
l=1

λl(‖µl‖∞ + σl)
8
) 1

2 ≤
√
D4(λ,M ,σ)D8(λ,M ,σ)σ6

max (62)

From Property 7, we have that√
D4(λ,M ,σ)D8(λ,M ,σ)D6(λ,M ,σ)

≤
√
D12(λ,M ,σ)

√
D12(λ,M ,σ) = D12(λ,M ,σ)

(63)

Plugging (62), (63) into (61), we have

n ≥ C0ε
−2
0 · κ12K14(σmaxδ1(W ∗))2τ12Γ(λ,M ,σ,W ∗)−2D12(λ,M ,σ) · d log2 d (64)

Considering the requirements on the sample complexity in (54), (58) and (64), (64) shows a
sufficient number of samples. Taking the union bound of all the failure probabilities in Lemma 1,
and 3, (64) holds with probability 1− d−10.
By Property 2.3, ρ( W ∗>µl

σlδK(W ∗) , σlδK(W ∗)) can be lower bounded by positive and monotonically

decreasing functions Lm( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) when everything else except |µl(i)| is fixed, or

Ls( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) when everything else except σl is fixed. Then, by substituting the lower

bound of ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) for itself in Γ(λ,M ,σ,W ∗), we can have an upper bound of

(σmaxδ1(W ∗))2τ12Γ(λ,M ,σ,W ∗)−2D12(λ,M ,σ), denoted as B(λ,M ,σ,W ∗).
To be more specific, when everything else except |µl(i)| is fixed, Lm( W ∗>µl

σlδK(W ∗) , σlδK(W ∗))

is plugged in B(λ,M ,σ,W ∗). Then since that D12(λ,M ,σ,W ∗) and
Lm( W ∗>µl

σlδK(W ∗) , σlδK(W ∗))−2 are both increasing function of µl(i), B(λ,M ,σ,W ∗) is an
increasing function of |µl(i)|.
When everything else except σl is fixed, if σl = σmax > ζs, then σ2

maxτ
12D12(λ,M ,σ,W ∗)

is an increasing function of σl. Since that Ls( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) is a decreasing function,

Ls( W ∗>µl
σlδK(W ∗) , σlδK(W ∗))−2 is an increasing function of σl. Hence, B(λ,M ,σ,W ∗) is an

increasing function of σl. Moreover, when all σl < ζs′ and go to 0, two decreasing functions
of σl, σ2

maxLs(
W ∗>µl
σlδK(W ∗) , σlδK(W ∗))−2 and D12(λ,M ,σ) will be the dominant term of

B(λ,M ,σ,W ∗). Therefore, B(λ,M ,σ,W ∗) increases to infinity as all σl’s go to 0.
Hence, we have

n ≥ poly(ε−1
0 , κ,K)B(λ,M ,σ,W ∗) · d log2 d (65)

Similarly, by replacing ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) with Lm( W ∗>µl

σlδK(W ∗) , σlδK(W ∗)) when every-

thing else except |µl(i)| is fixed, or Ls( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) (or σ−2Ls( W ∗>µl

σlδK(W ∗) , σlδK(W ∗))

for σ ≥ 1) when everything else except σl is fixed, (57) can also be transferred to an-
other feasible upper bound. We denote the modified version of the convergence rate as v =
1 − K−2q(λ,M ,σ,W ∗). Since that q(λ,M ,σ,W ∗) is a ratio between the smallest and the
largest singular value of ∇2f(W ∗), we have q(λ,M ,σ,W ∗) ∈ (0, 1). Hence, we can obtain
1 − K−2q(λ,M ,σ,W ∗) ∈ (0, 1) by K ≥ 1. When everything else except |µl(i)| is fixed,

since that Lm( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) is monotonically decreasing and

∑L
l=1 λ(‖µ‖∞ + σl)

2 is
increasing as |µl(i)| increases, v is an increasing function of |µl(i)| to 1. Similarly, when ev-
erything else except σl is fixed where σl ≥ max{1, ζs}, 1∑L

l=1 λl(‖µl‖∞+σl)2
decreases to 0 as

σl increases. We replace ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) by σ−2Ls( W ∗>µl

σlδK(W ∗) , σlδK(W ∗)) and then
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σ2 · σ−2Ls( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) = Ls( W ∗>µl

σlδK(W ∗) , σlδK(W ∗)) is an decreasing function less

than ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)). Therefore, v is an increasing function of σl to 1 when σl ≥

max{1, ζs}. When everything else except all σl ≤ ζs′ ’s go to 0, all Ls( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)’s

and σ2
l∑L

l=1 λl(‖µl‖∞+σl)2
’s decrease to 0. Therefore, v increases to 1.

The bound of ‖Ŵn −W ∗‖F is directly from (56).

C PROOF OF LEMMA 1

We first state some important lemmas used in proof in Section C.1 and describe the proof in Section
C.2. The proofs of these lemmas are provided in Section C.3 to C.7 in sequence. The proof idea
mainly follows from (Fu et al. (2020)). Lemma 6 shows the Hessian ∇2f(W ) of the population
risk function is smooth. Lemma 7 illustrates that ∇2f(W ) is strongly convex in the neighborhood
around µ∗. Lemma 8 shows the Hessian of the empirical risk function ∇2fn(W ∗) is close to its
population risk ∇2f(W ∗) in the local convex region. Summing up these three lemmas, we can
derive the proof of Lemma 1. Lemma 4 is used in the proof of Lemma 7. Lemma 5 is used in the
proof of Lemma 8.
The analysis of the Hessian matrix of the population loss in (Fu et al., 2020) and (Zhong et al.,
2017b) can not be extended to the Gaussian mixture model. To solve this problem, we develop new
tools using some good properties of symmetric distribution and even function. Our approach can
also be applied to other activations like tanh or erf. Moreover, if we directly apply the existing matrix
concentration inequalities in these works in bounding the error between the empirical loss and the
population loss, the resulting sample complexity would be O(d3) and cannot reflect the influence
of each component of the Gaussian mixture distribution. We develop a new version of Bernstein’s
inequality (see (137)) so that the final bound is O(d log2 d).

(Mei et al. (2018a)) showed that the landscape of the empirical risk is close to that of the population
risk when the number of samples is sufficiently large for the special case that K = 1. Focusing on
Gaussian mixture models, our result explicitly shows how the parameters of the input distribution,
including the proportion, mean and variance of each component will affect the error bound between
the empirical loss and the population loss in Lemma 8.

C.1 USEFUL LEMMAS IN THE PROOF OF LEMMA 1

Lemma 4

Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)

[
(

k∑
i=1

p>i x · φ′(σ · xi))2
]
≥ ρ(µ, σ)||P ||2F , (66)

where ρ(µ, σ) is defined in Definition 3.

Lemma 5 With the FCN model (2) and the Gaussian Mixture Model (7), for some constantC12 > 0,
we have

Ex∼∑L
l=1 λlN (µl,σ2

l Id)

[
sup

W 6=W ′∈B(W ∗,r)

||∇2`(W ,x)−∇2`(W ′,x)||
||W −W ′||F

]

≤C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(‖µ‖∞ + σl)2

L∑
l=1

λl(‖µ‖∞ + σl)4

(67)

Lemma 6 (Hessian smoothness of population loss)In the FCN model (2), assume ||w∗k||2 ≤ 1 for
all k. Then for some constant C5 > 0, we have

||∇2f(W )−∇2f(W ∗)|| ≤ C5 ·K
3
2 ·
( L∑
l=1

λl(‖µ‖∞+σl)
4

L∑
l=1

λl(‖µl‖+σl)
8
) 1

4 · ||W −W ∗||F

(68)
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Lemma 7 (Local strong convexity of population loss) In the FCN model (2), if ||W −W ∗||F ≤ r
for an ε0 ∈ (0, 1

4 ), then for some constant C4 > 0,

4(1− ε0)

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))·IdK - ∇2f(W ) � C4

L∑
l=1

λl(‖µl‖∞+σl)
2·IdK

(69)

Lemma 8 In the FCN model (2), as long as n ≥ C ′ · dK log dK for some constant C ′ > 0, we
have

sup
W∈B(W ∗,rFCN )

||∇2fn(W )−∇2f(W )|| ≤ C6 ·
L∑
l=1

λl(‖µ‖∞ + σl)
2

√
dK log n

n
) (70)

with probability at least 1− d−10 for some constant C6 > 0.

C.2 PROOF OF LEMMA 1

From Lemma 7 and 8, with probability at least 1− d−10,
∇2fn(W ) � ∇2f(W )− ||∇2f(W )−∇2fn(W )|| · I

� Ω
(1− ε0

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))
)
· I

−O
(
C6 ·

L∑
l=1

λl(‖µl‖+ σl)
2

√
dK log n

n

)
· I

(71)

As long as the sample complexity is set to satisfy

C6 ·
L∑
l=1

λl(‖µl‖∞ + σl)
2

√
dK log n

n
≤ ε0
K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗)) (72)

i.e.,

n ≥ C1ε
−2
0 ·

( L∑
l=1

λl(‖µ‖∞ + σl)
2
)2

(

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))
)−2

dK5 log2 d (73)

for some constant C1 > 0, then we have the lower bound of the Hessian with probability at least
1− d−10.

∇2fn(W ) � Ω
(1− 2ε0

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))
)
· I (74)

By (69) and (70), we can also derive the upper bound as follows,
||∇2fn(W )|| ≤ ||∇2f(W )||+ ||∇2fn(W )−∇2f(W )||

≤ C4 ·
L∑
l=1

λl(‖µl‖∞ + σl)
2 + C6 ·

∑
1=1

λl(‖µ‖∞ + σl)
2

√
dK log n

n

≤ C2 ·
L∑
l=1

λl(‖µl‖∞ + σl)
2

(75)

for some constant C2 > 0. Combining (74) and (75), we have

Ω
(1− 2ε0

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗)) · I � ∇2fn(W ) � C2

L∑
l=1

λl(||µl||∞+ σl)
2 · I

(76)
with probability at least 1− d−10.
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C.3 PROOF OF LEMMA 4

Following the proof idea in Lemma D.4 of (Zhong et al., 2017b), we have

Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)

[
(

k∑
i=1

p>i x · φ′(σ · xi))2
]

= A0 +B0 (77)

A0 = Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)

( k∑
i=1

p>i x · φ′2(σ · xi) · xx>pi
)

(78)

B0 = Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)

(∑
i6=l

p>i φ
′(σ · xi)φ′(σ · xl) · xx>pl

)
(79)

In A0, we know that Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)xj = 0. Therefore,

A0 =

k∑
i=1

Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)

[
p>i

(
φ′2(σ · xi)

(
x2
ieie

>
i +

∑
j 6=i

xixj(eie
>
j

+ eje
>
i ) +

∑
j 6=i

∑
l 6=i

xjxleje
>
l

))
pi

]

=

k∑
i=1

Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)

[
p>i

(
φ′2(σ · xi)

(
x2
ieie

>
i +

∑
j 6=i

x2
jeje

>
j

))
pi

]

=

k∑
i=1

[
Ex∼ 1

2N (µ,Id)+ 1
2N (−µ,Id)[φ

′2(σ · xi)x2
i ]p
>
i eie

>
i pi

+
∑
j 6=i

Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)[x
2
j ]Ex∼ 1

2N (µ,I)+ 1
2N (−µ,I)[φ

′2(σ · xi)]p>i eje>j pi
]

=

k∑
i=1

p2
iiβ2(i,µ, σ) +

k∑
i=1

∑
j 6=i

p2
ijβ0(i,µ, σ)(1 + µ2

j )

(80)

In B0, α1(i,µ, σ) = Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)(xiφ
′(xi)) = 0. By the equation in Page 30 of

(Zhong et al., 2017b), we have

B0 =

k∑
i6=l

Ex∼ 1
2N (µ,Id)+ 1

2N (−µ,Id)

[
p>i

(
φ′(σ · xi)φ′(σ · xl)

(
x2
ieie

>
i + x2

l ele
>
l + xixl(eie

>
l +

ele
>
i ) +

∑
j 6=i

xjxleje
>
l +

∑
j 6=l

xjxieje
>
i +

∑
j 6=i,l

∑
j′ 6=i,l

xjxj′eje
>
j′

))
pl

]
=
∑
i6=l

piipliα2(i,µ, σ)α0(l,µ, σ) +
∑
i6=l

pijpljα0(i,µ, σ)α0(l,µ, σ)(1 + µ2
j )

(81)
Therefore,

A0 +B0 =

k∑
i=1

(
pii
α2(i,µ, σ)√

1 + µ2
i

+
∑
l 6=i

pliα0(l,µ, σ)
√

1 + µ2
i

)2

−
k∑
i=1

p2
ii

α2
2(i,µ, σ)

1 + µ2
i

−
k∑
i=1

∑
l 6=i

p2
liα0(l,µ, σ)2(1 + µ2

i ) +

k∑
i=1

p2
iiβ2(i,µ, σ) +

k∑
i=1

∑
j 6=i

p2
ijβ0(i,µ, σ)(1 + µ2

j )

≥
k∑
i=1

p2
ii

(
β2(i,µ, σ)− α2

2(i,µ, σ)

1 + µ2
i

)
+

k∑
i=1

∑
j 6=i

p2
ij

(
β0(i,µ, σ)− α2

0(i,µ, σ)
)

(1 + µ2
j )

≥ ρ(µ, σ)||P ||2F
(82)
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C.4 PROOF OF LEMMA 5

Following the equation (92) in Lemma 8 of (Fu et al., 2020) and by (45)

||∇2`(W )−∇2`(W ′)|| ≤
K∑
j=1

K∑
l=1

|ξj,l(W )− ξj,l(W ′)| · ||xx>|| (83)

By Lagrange’s inequality, we have

|ξj,l(W )− ξj,l(W ′)| ≤ (max
k
|Tj,k,l|) · ||x|| ·

√
K||W −W ′||F (84)

From Lemma 6, we know
max
k
|Tj,k,l| ≤ C7 (85)

By Property 5, we have

Ex∼∑L
l=1 λlN (µl,σ2

l Id)[||x||
2t||] ≤ dt(2t− 1)!!

L∑
l=1

λl(‖µl‖∞ + σl)
2t (86)

Therefore, for some constant C12 > 0

Ex∼∑L
l=1 λlN (µl,σ2

l Id)[ sup
W 6=W ′

||∇2`(W )−∇2`(W ′)||
||W −W ′||F

] ≤ K 5
2E[||x||32]

≤K 5
2

√√√√d

L∑
l=1

λl(‖µ‖∞ + σl)2

√√√√3d2

L∑
l=1

λl(‖µl‖∞ + σl)4

=C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(‖µl‖∞ + σl)2

L∑
l=1

λl(‖µl‖∞ + σl)4

(87)

C.5 PROOF OF LEMMA 6

Let a = (a>1 , · · · ,a>K)> ∈ RdK . Let ∆j,l ∈ Rd×d be the (j, l)-th block of ∇2f(W ) −
∇2f(W ∗) ∈ RdK×dK . By definition,

||∇2f(W )−∇2f(W ∗)|| = max
||a||=1

K∑
j=1

K∑
l=1

a>j ∆j,lal (88)

By the mean value theorem and (45),

∆j,l =
∂2f(W )

∂wj∂wl
− ∂2f(W ∗)

∂w∗j∂w
∗
l

= Ex∼∑L
l=1 λlN (µl,σ2

l Id)[(ξj,l(W )− ξj,l(W ∗)) · xx>]

= Ex∼∑L
l=1 λlN (µl,σ2

l Id)[

K∑
k=1

〈
∂ξj,l(W

′)

∂w′k
,wk −w∗k

〉
· xx>]

= Ex∼∑L
l=1 λlN (µl,σ2

l Id)[

K∑
k=1

〈Tj,l,k · x,wk −w∗k〉 · xx>]

(89)

where W ′ = γW + (1 − γ)W ∗ for some γ ∈ (0, 1) and Tj,l,k is defined such that ∂ξj,l(W
′)

∂w′k
=

Tj,l,k · x ∈ Rd. Then we provide an upper bound for ξj,l. Since that y = 1 or 0, we first compute
the case in which y = 1. From (45) we can obtain

ξj,l(W ) =

{
1
K2φ

′(w>j x)φ′(w>l x) · 1
H2(W ) , j 6= l

1
K2φ

′(w>j x)φ′(w>l x) · 1
H2(W ) −

1
Kφ
′′(w>j x) · 1

H(W ) , j = l
(90)
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We can bound ξj,l(W ) by bounding each components of (90). Note that we have

1

K2
φ′(w>j x)φ′(w>l x) · 1

H2(W )
≤ 1

K2

φ(w>j x)φ(w>l x)(1− φ(w>j x))(1− φ(w>l x))
1
K2φ(w>j x)φ(w>l x)

≤ 1

(91)
1

K
φ′′(w>j x) · 1

H(W )
≤ 1

K

φ(w>j x)(1− φ(w>j x))(1− 2φ(w>j x))
1
Kφ(w>j x)

≤ 1 (92)

where (91) holds for any j, l ∈ [K]. The case y = 0 can be computed with the same upper bound by
substituting (1 −H(W )) = 1

K

∑K
j=1(1 − φ(w>j x)) for H(W ) in (90), (91) and (92). Therefore,

there exists a constant C9 > 0, such that

|ξj,l(W )| ≤ C9 (93)

We then need to calculate Tj,l,k. Following the analysis of ξj,l(W ), we only consider the case of
y = 1 here for simplicity.

Tj,l,k =
−2

K3H3(W ′)
φ′(w′

>
j x)φ′(w′

>
l x)φ′(w′

>
k x), where j, l, k are not equal to each other

(94)

Tj,j,k =

{ −2
K3H3(W ′)φ

′(w′
>
j x)φ′(w′

>
j x)φ′(w′

>
k x) + 1

K2H2(W ′)φ
′′(w′

>
j x)φ′(w′

>
k x), j 6= k

−2
K3H3(W ′) (φ′(w′

>
j x))3 + 3

K2H2(W ′)φ
′′(w′

>
j x)φ′(w′

>
j x)− φ′′′(w′>j x)

KH(W ′) , j = k

(95)

a>j ∆j,lal = Ex∼∑L
l=1N (µl,σ2

l I)[(

K∑
k=1

Tj,l,k 〈x,wk −w∗k〉) · (a>j x)(a>l x)]

≤

√√√√Ex∼∑L
l=1N (µl,σ2

l I)[

K∑
k=1

T 2
j,k,l] · E[

K∑
k=1

(〈x,wk −w∗k〉 (a>j x)(a>l x))2]

≤

√√√√Ex∼∑L
l=1N (µl,σ2

l I)[

K∑
k=1

T 2
j,k,l]

√√√√ K∑
k=1

√
E((wk −w∗k)>x)4 ·

√
E[(a>j x)4(a>l x)4]

≤ C8

√√√√Ex∼∑L
l=1N (µl,σ2

l I)[

K∑
k=1

T 2
j,k,l]

√√√√ K∑
k=1

||wk −w∗k||22 · ||aj ||22 · ||al||22

·
( L∑
l=1

λl(‖µl‖∞ + σl)
4

L∑
l=1

λl(‖µl‖∞ + σl)
8
) 1

4

(96)
for some constant C8 > 0. All the three inequalities of (96) are derived from Cauchy-Schwarz
inequality. Note that we have∣∣∣ −2

K3H3(W )
(φ′(w>j x))2φ′(w>k x)

∣∣∣ ≤ 2φ2(w>j x)(1− φ(w>j x))2φ(w>k x)(1− φ(w>k x))

K3 1
K3φ2(w>j x)φ(w>k x)

= 2(1− φ(w>j x))2(1− φ(w>k x)) ≤ 2

(97)

∣∣∣ −2

K3H3(W )
φ′(w>j x)φ′(w>l x)φ′(w>k x)

∣∣∣ ≤ 2 (98)∣∣∣ 3

K2H2(W )
φ′′(w>j x)φ′(w>k x)

∣∣∣
≤
∣∣∣3φ(w>j x)(1− φ(w>j x))(1− 2φ(w>j x))φ(w>k x)(1− φ(w>k x))

K2 1
K2φ(w>j x)φ(w>k x)

∣∣∣
=
∣∣∣3(1− φ(w>j x))(1− 2φ(w>j x))(1− φ(w>k x))

∣∣∣ ≤ 3

(99)
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∣∣∣φ′′′(w>j x)

KH(W )

∣∣∣ ≤ ∣∣∣φ(w>j x)(1− φ(w>j x))(1− 6φ(w>j x) + 6φ2(w>j x))

K 1
Kφ(w>j x)

∣∣∣ ≤ 1 (100)

Therefore, by combining (94), (95) and (97) to (100), we have

|Tj,l,k| ≤ C7 ⇒ T 2
j,l,k ≤ C2

7 ,∀j, l, k ∈ [K], (101)

for some constants C7 > 0. By (88), (89), (96), (101) and the Cauchy-Schwarz’s Inequality, we
have

‖∇2f(W )−∇2f(W ∗)‖

≤C8

√
C2

7K||W −W ∗||F
( L∑
l=1

λl(‖µl‖∞ + σl)
4

L∑
l=1

λl(‖µl‖∞ + σl)
8
) 1

4

· max
||a||=1

K∑
j=1

K∑
l=1

||aj ||2||al||2

≤C8

√
C2

7K · ||W −W ∗||F ·
( L∑
l=1

λl(‖µl‖∞ + σl)
4

L∑
l=1

λl(‖µl‖∞ + σl)
8
) 1

4 ·
( K∑
j=1

||aj ||
)2

≤C8

√
C2

7K
3 · ||W −W ∗||F ·

( L∑
l=1

λl(‖µl‖∞ + σl)
4

L∑
l=1

λl(‖µl‖∞ + σl)
8
) 1

4

(102)
Hence, we have

||∇2f(W )−∇2f(W ∗)|| ≤ C5K
3
2

( L∑
l=1

λl(‖µl‖∞+σl)
4

L∑
l=1

λl(‖µl‖∞+σl)
8
) 1

4 ||W −W ∗||F

(103)
for some constant C5 > 0.

C.6 PROOF OF LEMMA 7

From (Fu et al. (2020)), we know

∇2f(W ∗) � min
||a||=1

4

K2
Ex∼∑L

l=1 λlN (µl,σ2
l Id)

[( K∑
j=1

φ′(w∗j
>x)(a>j x)

)2]
· IdK (104)

with a = (a>1 , · · · ,a>K)> ∈ RdK . And

∇2f(W ∗) �
(

max
||a||=1

a>∇2f(W ∗)a
)
·IdK � C4· max

||a||=1
Ex∼∑L

l=1 λlN (µl,σ2
l Id)

[ K∑
j=1

(a>j x)2
]
·IdK

(105)
for some constant C4 > 0. By applying Property 4, we can derive the upper bound in (105) as

C4 · Ex∼∑L
l=1 λlN (µl,σ2

l Id)

[ K∑
j=1

(a>j x)2
]
· IdK � C4 ·

L∑
l=1

λl(‖µl‖∞ + σl)
2 · IdK (106)

To find a lower bound for (104), we can first transfer the expectation of the Gaussian Mixture Model
to the weight sum of the expectations over general Gaussian distributions.

min
||a||=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)

[( K∑
j=1

φ′(w∗j
>x)(a>j x)

)2]

= min
||a||=1

L∑
l=1

λlEx∼N (µl,σ2
l Id)

[( K∑
j=1

φ′(w∗j
>x)(a>j x)

)2] (107)
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Denote U ∈ Rd×k as the orthogonal basis ofW ∗. For any vector ai ∈ Rd, there exists two vectors
bi ∈ RK and ci ∈ Rd−K such that

ai = Ubi +U⊥ci (108)
where U⊥ ∈ Rd×(d−K) denotes the complement of U . We also have U>⊥µl = 0 by (9). Plugging
(108) into RHS of (107), and then we have

Ex∼N (µl,σ2
l Id)

[( K∑
i=1

a>i x · φ′(w∗i
>x)

)2]
=Ex∼N (µl,σ2

l Id)

[( K∑
i=1

(Ubi +U⊥ci)
>x · φ′(w∗i

>x)
)2]

= A+B + C

(109)

A = Ex∼N (µl,σ2
l Id)

[( K∑
i=1

b>i U
>x · φ′(w∗i

>x)
)2]

(110)

C = Ex∼N (µl,σ2
l Id)

[
2
( K∑
i=1

c>i U
>
⊥x · φ′(w∗i

>x)
)
·
( K∑
i=1

b>i U
>x · φ′(w∗i

>x)
)]

=

K∑
i=1

K∑
j=1

Ex∼N (µl,σ2
l Id)

[
2c>i U

>
⊥x
]
Ex∼N (µl,σ2

l Id)

[
b>i U

>x · φ′(w∗i
>x)φ′(w∗j

>x)
]

=

K∑
i=1

K∑
j=1

[
2c>i U

>
⊥µl

]
Ex∼N (µl,σ2

l Id)

[
b>i U

>x · φ′(w∗i
>x)φ′(w∗j

>x)
]

= 0

(111)

where the last step is by U>⊥µl = 0 by (9).

B =Ex∼N (µl,σ2
l Id)

[
(

K∑
i=1

c>i U
>
⊥x · φ′(w∗i

>x))2
]

=Ex∼N (µl,σ2
l Id)[(t

>s)2] by defining t =

k∑
i=1

φ′(w∗i
>x)ci ∈ Rd−K and s = U>⊥x

=

K∑
i=1

E[t2i s
2
i ] +

∑
i 6=j

E[titjsisj ]

=

K∑
i=1

E[t2i ]σ
2
l +

( K∑
i=1

E[t2i ](U
>
⊥µl)

2
i +

∑
i 6=j

E[titj ](U
>
⊥µl)i · (U>⊥µl)j

)

=E[

d−K∑
i=1

t2iσ
2
l ] + E[(t>U>⊥µl)

2] = E[

d−K∑
i=1

t2iσ
2
l ]

(112)
The last step is by U>⊥µl = 0. The 4th step is because that si is independent of ti, thus
E[titjsisj ] = E[titj ]E[sisj ]

E[sisj ] =

{
(U>⊥µl)i · (U>⊥µl)j , if i 6= j

(U>⊥µl)
2
i + σ2

l , if i = j
(113)

Since
(∑k

i=1 p
>
i x · φ′(σ · xi)

)2

is an even function, so from Property 3 we have

Ex∼N (µl,σ2
l Id)

[
(

k∑
i=1

p>i x ·φ′(σ ·xi))2
]

= Ex∼ 1
2N (µl,σ2

l Id)+ 1
2N (−µl,σ2

l Id)

[
(

k∑
i=1

p>i x ·φ′(σ ·xi))2
]

(114)
Combining Lemma 4 and Property 3, we next follow the derivation for the standard Gaussian
distribution in Page 36 of (Zhong et al., 2017b) and generalize the result to a Gaussian distribution
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with an arbitrary mean and variance as follows.

A = Ex∼N (µl,σ2
l Id)

[( K∑
i=1

b>i U
>x · φ′(w∗i

>x)
)2]

=

∫
(2πσ2

l )−
K
2

[( K∑
i=1

b>i z · φ′(vi>z)
)2]

exp
(
− 1

2σ2
l

‖z −U>µl‖2
)
dz

=

∫
(2πσ2

l )−
K
2

[( K∑
i=1

b>i V
†>s · φ′(si)

)2]
exp

(
− 1

2σ2
l

‖V †>s−U>µl‖2
)∣∣∣det(V †)

∣∣∣ds
≥
∫

(2πσ2
l )−

K
2

[( k∑
i=1

b>i V
†>s · φ′(si)

)2]
exp

(
− ‖s− V

>U>µl‖2

2δ2
K(W ∗)σ2

l

)∣∣∣det(V †)
∣∣∣ds

≥
∫

(2π)−
K
2 σ−Kl

[( k∑
i=1

b>i V
†>(δK(W ∗)σl)g · φ′(δK(W ∗)σl · gi)

)2]

· exp
(
−
||g − W ∗>µl

σlδK(W ∗) ||
2

2

)∣∣∣det(V †)
∣∣∣σKl δKK (W ∗)dg

=
σ2
l

η
Eg
[
(

K∑
i=1

(b>i V
†>δK(W ∗))g · φ′(σlδK(W ∗) · gi))2

]
≥ σ2

l

κ2η
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))||b||2.

(115)
The second step is by letting z = U>x. The third step is by letting s = V >z. The last to second
step follows from g = s

σlδK(W ∗) , where g ∼ N ( W ∗>µl
σlδK(W ∗) , IK) and the last inequality is by

Lemma 4. Similarly, we extend the derivation in Page 37 of (Zhong et al., 2017b) for the standard
Gaussian distribution to a general Gaussian distribution as follows.

B = σ2
l Ex∼N (µl,σ2

l Id)[||t||2] ≥ σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))||c||2 (116)

Combining (109) - (112), (115) and (116), we have

min
||a||=1

Ex∼N (µl,σ2
l Id)

[
(

k∑
i=1

a>i x · φ′(w∗i
>x))2

]
≥ σ2

l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗)). (117)

For the Gaussian Mixture Model x ∼
∑L
l=1N (µl, σ

2
l Id), we have

min
||a||=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)

[
(

k∑
i=1

a>i x · φ′(w∗i
>x))2

]
≥

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))

(118)
Therefore,

4

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδk(W ∗)) · IdK � ∇2f(W ∗) � C4 ·
L∑
l=1

λl(‖µl‖∞ + σl)
2 · IdK

(119)
From (68) in Lemma 6, since that we have the condition ‖W −W ∗‖F ≤ r and (53), we can obtain

||∇2f(W )−∇2f(W ∗)||

≤C5K
3
2

( L∑
l=1

λl(‖µl‖∞ + σl)
4

L∑
l=1

λl(‖µl‖∞ + σl)
8
) 1

4 ||W −W ∗||F

≤4ε0
K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗)),

(120)
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where ε0 ∈ (0, 1
4 ). Then we have

||∇2f(W )|| ≥ ||∇2f(W ∗)|| − ||∇2f(W )−∇2f(W )||

≥ 4(1− ε0)

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))
(121)

||∇2f(W )|| ≤ ||∇2f(W ∗)||+ ||∇2f(W )−∇2f(W )||

≤ C4 ·
L∑
l=1

λl(‖µl‖∞ + σl)
2 +

4

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))

. C4 ·
L∑
l=1

λl(‖µ‖∞ + σl)
2

(122)

The last inequality of (122) holds since C4 ·
∑
l=1 λl(‖µ‖∞ + σl)

2 = Ω(σ2
max),

4
K2

∑L
l=1 λl

σ2
l

ηκ2 ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗)) = O(

σ2
max

K2 ) and O(σ2
max) ≥ Ω(

σ2
max

K2 ). Combining (121)
and (122), we have

4(1− ε0)

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗)) · I � ∇2f(W ) � C4 ·
L∑
l=1

λl(‖µ‖∞ + σl)
2 · I

(123)

C.7 PROOF OF LEMMA 8

Let Nε be the ε-covering number of the Euclidean ball B(W ∗, r). It is known that logNε ≤
dK log( 3r

ε ) from (Vershynin, 2010). LetWε = {W1, ...,WNε} be the ε-cover set withNε elements.
For anyW ∈ B(W ∗, r), let j(W ) = arg min

j∈[Nε]

||W −Wj(W )||F ≤ ε for allW ∈ B(W ∗, r).

Then for anyW ∈ B(W ∗, r), we have

‖∇2fn(W )−∇2f(W )‖

≤ 1

n
||

n∑
i=1

[∇2`(W ;xi)−∇2`(Wj(W );xi)]||

+ || 1
n

n∑
i=1

∇2`(Wj(W );xi)− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇
2`(Wj(W );xi)]||

+ ||Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇
2`(Wj(W );xi)]− Ex∼∑L

l=1 λlN (µl,σ2
l Id)[∇

2`(W ;xi)]||

(124)

Hence, we have

P
(

sup
W∈B(W ∗,r)

||∇2fn(W )−∇2f(W )|| ≥ t
)
≤ P(At) + P(Bt) + P(Ct) (125)

where At, Bt and Ct are defined as

At = { sup
W∈B(W ∗,r)

1

n
||

n∑
i=1

[∇2`(W ;xi)−∇2`(Wj(W );xi)]|| ≥
t

3
} (126)

Bt = { sup
W∈B(W ∗,r)

|| 1
n

n∑
i=1

∇2`(Wj(W );xi)− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇
2`(Wj(W );xi)]|| ≥

t

3
}

(127)
Ct ={ sup

W∈B(W ∗,r)

||Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇
2`(Wj(W );xi)]

− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇
2`(W ;xi)]|| ≥

t

3
}

(128)
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Then we bound P(At), P(Bt) and P(Ct) separately.

1) Upper bound on P(Bt). By Lemma 6 in (Fu et al., 2020), we obtain

∣∣∣∣∣∣ 1
n

n∑
i=1

∇2`(W ;xi)− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇
2`(W ;xi)]

∣∣∣∣∣∣
≤2 sup

v∈V 1
4

∣∣∣〈v, ( 1

n

n∑
i=1

∇2`(W ;xi)− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇
2`(W ;xi)])v

〉∣∣∣ (129)

where V 1
4

is a 1
4 -cover of the unit-Euclidean-norm ball B(0, 1) with log |V 1

4
| ≤ dK log 12. Taking

the union bound overWε and V 1
4

, we have

P(Bt) ≤P
(

sup
W∈Wε,v∈V 1

4

∣∣∣ 1
n

n∑
i=1

Gi

∣∣∣ ≥ t

6

)
≤ exp(dK(log

3r

ε
+ log 12)) sup

W∈Wε,v∈V 1
4

P(| 1
n

n∑
i=1

Gi| ≥
t

6
)

(130)

where Gi =
〈
v, (∇2`(W ,xi)− Ex∼∑L

l=1 λlN (µl,σ2
l Id)[∇2`(W ,xi)]v)

〉
and E[Gi] = 0. Here

v = (u>1 , · · · ,u>K)> ∈ RdK .

|Gi| =
∣∣∣ K∑
j=1

K∑
l=1

[
ξj,lu

>
j xx

>ul − Ex∼∑L
l=1 λlN (µl,σ2

l I)(ξj,lu
>
j xx

>ul)
]∣∣∣

≤ C9 ·
[ K∑
j=1

(u>j x)2 +

K∑
j=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)(u
>
j x)2

] (131)

for some C9 > 0. The first step of (131) is by (44). The last step is by (93) and the Cauchy-
Schwarz’s Inequality.
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E[|Gi|p] ≤
p∑
l=1

(
p

l

)
C9 · Ex∼∑L

l=1 λlN (µl,σ2
l Id)

·
[
(

K∑
j=1

(u>j x)2)l
]( K∑

j=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)(u
>
j x)2

)p−l
=

p∑
l=1

(
p

l

)
C9 · Ex∼∑L

l=1 λlN (µl,σ2
l Id)

[ ∑
l1+···+lK=l

l!∏K
j=1 lj !

K∏
j=1

(u>j x)2lj
]

·
( K∑
j=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)(u
>
j x)2

)p−l
=

p∑
l=1

(
p

l

)
C9 ·

[ ∑
l1+···+lK=l

l!∏K
j=1 lj !

K∏
j=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)(u
>
j x)2lj

]

·
( K∑
j=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)(u
>
j x)2

)p−l
= C9 ·

p∑
l=1

(
p

l

)( K∑
j=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)(u
>
j x)2

)l
·
( K∑
j=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)(u
>
j x)2

)p−l
= C9 ·

( K∑
j=1

Ex∼∑L
l=1 λlN (µl,σ2

l Id)(u
>
j x)2

)p
≤ C9 ·

( K∑
j=1

1!!||uj ||2
L∑
l=1

λl(‖µl‖∞ + σl)
2
)p

≤ C9 ·
( L∑
l=1

λl(‖µl‖∞ + σl)
2
)p

(132)

where the second to last inequality results from Property 4. The last inequality is because v ∈ V 1
4

,∑K
j=1 ||uj ||2 = ||v||2 ≤ 1.

E[exp(θGi)] = 1 + θE[Gi] +

∞∑
p=2

θpE[|Gi|p]
p!

≤ 1 +

∞∑
p=2

|eθ|p

pp
C9 ·

(∑
l=1

λl(‖µl‖∞ + σl)
2
)p

≤ 1 + C9 · |eθ|2
( L∑
l=1

λl(‖µl‖∞ + σl)
2
)2

(133)

where the first inequality holds from p! ≥ (pe )p and (132), and the third line holds provided that

max
p≥2
{
|eθ|(p+1)

(p+1)(p+1) ·
(∑L

l=1 λl(‖µl‖∞ + σl)
2
)p+1

|eθ|p
pp ·

(∑L
l=1 λl(‖µl‖∞ + σl)2

)p } ≤ 1

2
(134)
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Note that the quantity inside the maximization in (134) achieves its maximum when p = 2, because
it is monotonously decreasing. Therefore, (134) holds if θ ≤ 27

4e

∑L
l=1 λl(‖µl‖∞ + σl)

2. Then

P
( 1

n

n∑
i=1

Gi ≥
t

6

)
= P

(
exp(θ

n∑
i=1

Gi) ≥ exp(
nθt

6
)
)
≤ e−nθt6

n∏
i=1

E[exp(θGi)]

≤ exp(C10θ
2n
( L∑
l=1

λl(‖µl‖∞ + σl)
2
)2

− nθt

6
)

(135)

for some constant C10 > 0. The first inequality follows from the Markov’s Inequality. When
θ = min{ t

12C10

(∑L
l=1 λl(‖µl‖∞+σl)2

)2 ,
27
4e

∑L
l=1 λl(‖µl‖∞ + σl)

2}, we have a modified Bern-

stein’s Inequality for the Gaussian Mixture Model as follows

P(
1

n

n∑
i=1

Gi ≥
t

6
) ≤ exp

(
max{ − C10nt

2

144
(∑L

l=1 λl(‖µl‖∞ + σl)2
)2 ,

− C11n

L∑
l=1

λl(‖µl‖∞ + σl)
2 · t}

) (136)

for some constant C11 > 0. We can obtain the same bound for P(− 1
n

∑n
i=1Gi ≥

t
6 ) by replacing

Gi as −Gi. Therefore, we have

P(| 1
n

n∑
i=1

Gi| ≥
t

6
) ≤ 2 exp

(
max{ − C10nt

2

144
(∑L

l=1 λl(‖µl‖∞ + σl)2
)2 ,

− C11n

L∑
l=1

λl(‖µl‖∞ + σl)
2 · t}

) (137)

Thus, as long as

t ≥ C6 ·max{
L∑
l=1

λl(‖µl‖∞ + σl)
2

√
dK log 36r

ε + log 4
δ

n
,

dK log 36r
ε + log 4

δ∑L
l=1 λl(‖µl‖∞ + σl)2n

} (138)

for some large constant C6 > 0, we have P(Bt) ≤ δ
2 .

2) Upper bound on P(At) and P(Ct). From Lemma 5, we can obtain

sup
W∈B(W ∗,r)

||Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇
2`(Wj(W );x)]− Ex∼∑L

l=1 λlN (µl,σ2
l Id)[∇

2`(W ;x)]||

≤ sup
W∈B(W ∗,r)

||Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇2`(Wj(W );x)]− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇2`(W ;x)]||
||W −Wj(W )||F

· sup
W∈B(W ∗,r)

||W −Wj(W )||F

≤ C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(‖µl‖∞ + σl)2

L∑
l=1

λl(‖µl‖∞ + σl)4 · ε

(139)
Therefore, Ct holds if

t ≥ C12 · d
3
2K

5
2

√√√√ L∑
l=1

λl(‖µl‖∞ + σl)2

L∑
l=1

λl(‖µl‖∞ + σl)4 · ε (140)
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We can bound the At as below.

P
(

sup
W∈B(W ∗,r)

1

n
||

n∑
i=1

[∇2`(Wj(W );xi)−∇2`(W ;xi)]|| ≥
t

3

)
≤ 3

t
Ex∼∑L

l=1 λlN (µl,σ2
l Id)

[
sup

W∈B(W ∗,r)

1

n
||

n∑
i=1

[∇2`(Wj(W );xi)−∇2`(W ;xi)]||
]

=
3

t
Ex∼∑L

l=1 λlN (µl,σ2
l Id)

[
sup

W∈B(W ∗,r)

||∇2`(Wj(W );xi)−∇2`(W ;xi)||
]

≤ 3

t
E
[

sup
W∈B(W ∗,r)

||∇2`(Wj(W );xi)−∇2`(W ;xi)||
||W −Wj(W )||F

]
· sup
W∈B(W ∗,r)

||W −Wj(W )||F

≤
C12 · d

3
2K

5
2

√∑L
l=1 λl(‖µl‖∞ + σl)2

∑L
l=1 λl(‖µl‖∞ + σl)4 · ε

t

(141)

Thus, taking

t ≥
C12 · d

3
2K

5
2

√∑L
l=1 λl(‖µl‖∞ + σl)2

∑L
l=1 λl(‖µl‖∞ + σl)4 · ε

δ
(142)

ensures that P(At) ≤ δ
2 .

3) Final step
Let ε = δ

C12·d
3
2K

5
2
√∑L

l=1 λl(‖µl‖∞+σl)2
∑L
l=1 λl(‖µl‖∞+σl)4·ndK

and δ = d−10, then from (138)

and (142) we need

t >max{ 1

ndK
, C6 ·

L∑
l=1

λl(‖µl‖∞ + σl)
2

·

√√√√dK log(36rnd
25
2 K

7
2

√∑L
l=1 λl(‖µl‖∞ + σl)2

∑L
l=1 λl(‖µl‖∞ + σl)4) + log 4

δ

n
,

dK log(36rnd
25
2 K

7
2 ·
√∑L

l=1 λl(‖µl‖∞ + σl)2
∑L
l=1 λl(‖µl‖∞ + σl)4) + log 4

δ∑L
l=1 λl(‖µl‖∞ + σl)2n

}

(143)

So by setting t =
∑L
l=1 λl(‖µl‖∞ + σl)

2
√

dK logn
n , as long as n ≥ C ′ · dK log dK, we have

P( sup
W∈B(W ∗,r)

||∇2fn(W )−∇2f(W )|| ≥ C6 ·
L∑
l=1

λl(‖µl‖∞+σl)
2

√
dK log n

n
) ≤ d−10 (144)

D PROOF OF LEMMA 2

We first present a lemma used in proving Lemma 2 in Section D.1 and then prove Lemma 2 in
Section D.2.

D.1 A USEFUL LEMMA USED IN THE PROOF

Lemma 9 If r is defined in (53) for ε0 ∈ (0, 1
4 ), then with probability at least 1− d−10, we have4

4∇f̃n(W ) is defined as 1
n

∑n
i=1(∇l(W ,xi, yi) + νi) in algorithm 1

38



Under review as a conference paper at ICLR 2021

sup
W∈B(W ∗,r)

||∇f̃n(W )−∇f̃(W )|| ≤ C13 ·

√√√√K

L∑
l=1

λl(‖µ‖∞ + σl)2

√
d log n

n
(1 + ξ) (145)

for some constant C13 > 0.

Proof:
Note that∇f̃n(W ) = ∇fn(W )+ 1

n

∑n
i=1 νi,∇f̃(W ) = ∇f(W )+E[νi] = ∇f(W ). Therefore,

we have

sup
W∈B(W ∗,r)

||∇f̃n(W )−∇f̃(W )|| ≤ sup
W∈B(W ∗,r)

||∇fn(W )−∇f(W )||+ ‖ 1

n

n∑
i=1

νi‖ (146)

Then, similar to the idea of the proof of Lemma 8, we adopt an ε-covering net of the ball B(W ∗, r)
to build a relationship between any arbitrary point in the ball and the points in the covering set. We
can then divide the distance between∇fn(W ) and∇f(W ) into three parts, similar to (124). (147)
to (149) can be derived in a similar way as (126) to (128), with “∇2” replaced by “∇”. Then we
need to bound P(A′t), P(B′t) and P(C ′t) respectively, where A′t, B

′
t and C ′t are defined below.

A′t = { sup
W∈B(W ∗,r)

1

n
||

n∑
i=1

[∇`(W ;xi)−∇`(Wj(W );xi)]|| ≥
t

3
} (147)

B′t = { sup
W∈B(W ∗,r)

|| 1
n

n∑
i=1

∇`(Wj(W );xi)− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇`(Wj(W );xi)]|| ≥
t

3
}

(148)
C ′t ={ sup

W∈B(W ∗,r)

||Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇`(Wj(W );xi)]

− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇`(W ;xi)]|| ≥
t

3
}

(149)

(a) Upper bound of P(B′t). Applying Lemma 3 in (Mei et al., 2018a), we have

|| 1
n

n∑
i=1

∇`(Wj(W );xi)− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇`(Wj(W );xi)]||

≤2 sup
v∈V 1

2

∣∣∣〈 1

n

n∑
i=1

∇`(Wj(W );xi)− Ex∼∑L
l=1 λlN (µl,σ2

l Id)[∇`(Wj(W );xi)],v

〉∣∣∣ (150)

Define G′i =
〈
v, (∇`(W ,xi)− Ex∼∑L

l=1 λlN (µl,σ2
l Id)[∇`(W ,xi)])

〉
. Here v ∈ Rd. To compute

∇`(W ,xi), we require the derivation in Property 6. Then we can have an upper bound of ζ(W ) in
(43).

ζ(W ) =


∣∣∣− 1

K
1

H(W )φ
′(w>j x)

∣∣∣ ≤ φ(w>j x)(1−φ(w>j x))

K· 1K φ(w>j x)
≤ 1, y = 1∣∣∣ 1

K
1

1−H(W )φ
′(w>j x)

∣∣∣ ≤ φ(w>j x)(1−φ(w>j x))

K· 1K (1−φ(w>j x))
≤ 1, y = 0

(151)

Then we have an upper bound of G′i.

|G′i| =
∣∣∣ζj,lv>x− Ex∼∑L

l=1 λlN (µl,σ2
l Id)[ζv

>x]
∣∣∣

≤ |v>x|+ Ex∼∑L
l=1 λlN (µl,σ2

l Id)[|v
>x|]

(152)

Following the idea of (132) and (133), and by v ∈ V 1
2

, we have

E[|G′i|p] ≤
( L∑
l=1

λl(‖µl‖∞ + σl)
2
) p

2

(153)

E[exp(θG′i)] ≤ 1 + |eθ2|
L∑
l=1

λl(‖µl‖∞ + σl)
2 (154)
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where (154) holds if θ ≤ 27
4e

√∑L
l=1 λl(‖µl‖∞ + σl)2. Following the derivation of (130) and (135)

to (138), we have

P(| 1
n

n∑
i=1

G′i| ≥
t

6
)

≤2 exp
(

max
{
− C14nt

2

144
∑L
l=1 λl(‖µl‖∞ + σl)2

,−C15n

√√√√ L∑
l=1

λl(‖µl‖∞ + σl)2 · t
}) (155)

for some constant C14 > 0 and C15 > 0. Moreover, we can obtain P(B′t) ≤ δ
2 as long as

t ≥ C13 ·max{

√√√√ L∑
l=1

λl(‖µl‖∞ + σl)2

√
dK log 18r

ε + log 4
δ

n
,

dK log 18r
ε + log 4

δ√∑L
l=1 λl(‖µl‖∞ + σl)2 · n

}

(156)
(b) For the upper bound of P(A′t) and P(C ′t), we can first derive

Ex∼∑L
l=1 λlN (µl,σ2

l Id)

[
sup

W 6=W ′∈B(W ∗,r)

||∇`(W ,x)−∇`(W ′,x)||
||W −W ′||F

]
≤Ex∼∑L

l=1 λlN (µl,σ2
l Id)

[
sup

W 6=W ′∈B(W ∗,r)

|ζ(W )− ζ(W ′)| · ||x||
||W −W ′||F

]
≤Ex∼∑L

l=1 λlN (µl,σ2
l Id)

[
sup

W 6=W ′∈B(W ∗,r)

max1≤j,l≤K{|ξj,l(W ′′)|} · ||x||2
√
K||W −W ′||F

||W −W ′||F

]
≤Ex∼∑L

l=1 λlN (µl,σ2
l Id)

[
sup

W 6=W ′∈B(W ∗,r)

C9 · ||x||2
√
K||W −W ′||F

||W −W ′||F

]
≤C9 · 3

√
Kd ·

L∑
l=1

λl(‖µl‖∞ + σl)
2

(157)
The first inequality is by (43). The second inequality is by the Mean Value Theorem. The third step
is by (93). The last inequality is by Property 5. Therefore, following the steps in part (2) of Lemma
8, we can conclude that C ′t holds if

t ≥ 3C9 ·
√
Kd ·

L∑
l=1

λl(‖µl‖∞ + σl)
2 · ε (158)

Moreover, from (142) in Lemma 8 we have that

t ≥
18C9 ·

√
Kd ·

∑L
l=1 λl(‖µl‖∞ + σl)

2 · ε
δ

(159)

ensures P(A′t) ≤ δ
2 . Therefore, let ε = δ

18C9·
√
Kd·

∑L
l=1 λl(‖µl‖∞+σl)2·ε·ndK

, δ = d−10 and t =

C13

√
K
∑L
l=1 λl(‖µl‖∞ + σl)2

√
d logn
n , if n ≥ C ′′ · dK log dK for some constant C ′′ > 0, we

have

P( sup
W∈B(W ∗,r)

||∇fn(W )−∇f(W )||) ≥ C13 ·

√√√√K

L∑
l=1

λl(‖µl‖∞ + σl)2

√
d log n

n
≤ d−10

(160)
By Hoeffding’s inequality in (Vershynin, 2010) and Property 1, we have

P
( 1

n

n∑
i=1

‖νi‖F ≥ C13 ·

√√√√ L∑
l=1

λl(‖µl‖∞ + σl)2

√
dK log n

n
ξ
)

. exp(−C2
13 ·

L∑
l=1

λl(‖µl‖∞ + σl)
2 ξ

2dK log n

dKξ2
)

.d−10

(161)
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Therefore,

sup
W∈B(W ∗,r)

||∇f̃n(W )−∇f̃(W )|| ≤ C13 ·

√√√√K

L∑
l=1

λl(‖µl‖∞ + σl)2

√
d log n

n
+

1

n

n∑
i=1

‖νi‖

≤ C13 ·

√√√√K

L∑
l=1

λl(‖µl‖∞ + σl)2

√
d log n

n
+

1

n

n∑
i=1

‖νi‖F

≤ C13 ·

√√√√K

L∑
l=1

λl(‖µl‖∞ + σl)2

√
d log n

n
(1 + ξ)

(162)

D.2 PROOF OF LEMMA 2

Following the proof of Theorem 2 in [Fu et al. (2020)], first we have the Taylor’s expansion of
fn(Ŵn)

fn(Ŵn) =fn(W ∗) +
〈
∇f̃n(W ∗), vec(Ŵn −W ∗)

〉
+

1

2
vec(Ŵn −W ∗)∇2fn(W ′)vec(Ŵn −W ∗)

(163)

Here W ′ is on the straight line connecting W ∗ and Ŵn. By the fact that fn(Ŵn) ≤ fn(W ∗), we
have

1

2
vec(Ŵn −W ∗)∇2fn(W ′)vec(Ŵn −W ∗) ≤

∣∣∣∇fn(W ∗)>vec(Ŵn −W ∗)
∣∣∣ (164)

From Lemma 7 and Lemma 9, we have

4

K2

L∑
l=1

λl
σ2
l

ηκ2
ρ(

W ∗>µl
σlδK(W ∗)

, σlδK(W ∗))||Ŵn −W ∗||2F

≤1

2
vec(Ŵn −W ∗)∇2fn(W ′)vec(Ŵn −W ∗)

(165)

and ∣∣∣∇f̃n(W ∗)>vec(Ŵn −W ∗)
∣∣∣

≤‖∇f̃n(W ∗)‖ · ‖Ŵn −W ∗‖F
≤(‖∇f̃n(W ∗)−∇f̃(W ∗)‖+ ‖∇f̃(W ∗)‖) · ‖Ŵn −W ∗‖F

≤O
(√√√√K

L∑
l=1

λl(‖µl‖∞ + σl)2

√
d log n

n
(1 + ξ)

)
||Ŵn −W ∗||F

(166)

The second to last step of (166) comes from the triangle inequality and the last step follows from
the fact ∇f(W ∗) = 0. Combining (164), (165) and (166), we have

||Ŵn −W ∗||F ≤ O
(K 5

2

√∑L
l=1 λl(‖µl‖∞ + σl)2(1 + ξ)∑L

l=1 λl
σ2
l

ηκ2 ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗))

√
d log n

n

)
(167)

Therefore, we have concluded that there indeed exists a critical point Ŵ in B(W ∗, r). Then we
show the linear convergence of Algorithm 1 as below. By the update rule, we have

Wt+1 − Ŵn = Wt − η0(∇fn(Wt) +
1

n

n∑
i=1

νi)− (Ŵn − η0∇fn(Ŵn))

=
(
I − η0

∫ 1

0

∇2fn(W (γ))
)

(Wt − Ŵn)− η0

n

n∑
i=1

νi

(168)
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where W (γ) = γŴn + (1 − γ)Wt for γ ∈ (0, 1). Since W (γ) ∈ B(W ∗, r), by Lemma 1, we
have

Hmin · I � ∇2fn(W (γ)) ≤ Hmax · I (169)

where Hmin = Ω
(

1
K2

∑L
l=1 λl

σ2
l

ηκ2 ρ( W ∗>µl
σlδK(W ∗) , σlδK(W ∗))

)
, Hmax = C4 ·

∑L
l=1 λl(‖µl‖∞ +

σl)
2. Therefore,

||Wt+1 − Ŵn||F = ||I − η0

∫ 1

0

∇2fn(W (γ))|| · ||Wt − Ŵn||F + ‖η0

n

n∑
i=1

νi‖F

≤ (1− η0Hmin)||Wt − Ŵn||F + ‖η0

n

n∑
i=1

νi‖F

(170)

By setting η0 = 1
Hmax

= O
(

1∑L
l=1 λl(‖µl‖∞+σl)2

)
, we obtain

||Ŵt+1 − Ŵn||F ≤ (1− Hmin

Hmax
)||Wt − Ŵn||F +

η0

n

n∑
i=1

‖νi‖F (171)

Therefore, Algorithm 1 converges linearly to the local minimizer with an extra statistical error.
By Hoeffding’s inequality in (Vershynin, 2010) and Property 1, we have

P
( 1

n

n∑
i=1

‖νi‖F ≥
√
dK log n

n
ξ
)
. exp(−ξ

2dK log n

dKξ2
) . d−10 (172)

Therefore, with probability 1− d−10 we can derive

||Ŵt − Ŵn||F ≤ (1− Hmin

Hmax
)t||W0 − Ŵn||F +

Hmaxη0

Hmin

√
dK log n

n
ξ (173)

E PROOF OF LEMMA 3

We need Lemma 10 to Lemma 14, which are stated in Section E.1, for the proof of Lemma 3. Sec-
tion E.2 summarizes the proof of Lemma 3. The proofs of Lemma 10 to Lemma 12 are provided
in Section E.3 to Section E.5. Lemma 13 and Lemma 14 are cited from (Zhong et al., 2017b). Al-
though (Zhong et al., 2017b) considers the standard Gaussian distribution, the proofs of Lemma 13
and 14 hold for any data distribution. Therefore, these two lemmas can be applied here directly.
The tensor initialization in (Zhong et al., 2017b) only holds for the standard Gaussian distribution.
We exploit a more general definition of tensors from (Janzamin et al. (2014)) for the tensor initial-
ization in our algorithm. We also develop new error bounds for the initialization.

E.1 USEFUL LEMMAS IN THE PROOF

Lemma 10 Let P2 follow Definition 1. Let S be a set of i.i.d. samples generated from the mixed
Gaussian distribution

∑L
l=1 λlN (µl, σ

2
l I). Let P̂2 be the empirical version of P2 using data set S.

Then with probability at least 1− 2n−Ω(δ41d), we have

||P2 − P̂2|| .
√
d log n

n
· δ2

1 · τ6
√
D2(λ,M ,σ)D4(λ,M ,σ) (174)

Lemma 11 Let U ∈ Ed×K be the orthogonal column span of W ∗. Let α be a fixed unit vec-
tor and Û ∈ Rd×K denote an orthogonal matrix satisfying ||UU> − ÛÛ>|| ≤ 1

4 . Define
R3 = M3(Û , Û , Û), where M3 is defined in Definition 1. Let R̂3 be the empirical version of
R3 using data set S, where each sample of S is i.i.d. sampled from the mixed Gaussian distribution∑L
l=1 λlN (µl, σ

2
l I). Then with probability at least 1− n−Ω(δ4), we have

||R̂3 −R3|| . δ2
1 ·
(
τ6
√
D6(λ,M ,σ)

)
·
√

log n

n
(175)
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Lemma 12 Let M̂1 be the empirical version ofM1 using dataset S. Then with probability at least
1− 2n−Ω(d), we have

||M̂1 −M1|| .
(
τ2
√
D2(λ,M ,σ)

)
·
√
d log n

n
(176)

Lemma 13 ((Zhong et al., 2017b), Lemma E.6) Let P2 be defined in Definition 1 and P̂2 be its
empirical version. LetU ∈ Rd×K be the column span ofW ∗. Assume ||P2− P̂2|| ≤ δK(P2)

10 . Then
after T = O(log( 1

ε )) iterations, the output of the Tensor Initialization Method 3, Û will satisfy

||ÛÛ> −UU>|| . ||P̂2 − P2||
δK(P2)

+ ε (177)

which implies

||(I − ÛÛ>)w∗i || . (
||P2 − P̂2||
δK(P2)

+ ε)||w∗i || (178)

Lemma 14 ((Zhong et al., 2017b), Lemma E.13) Let U ∈ Rd×K be the orthogonal column span
of W ∗. Let Û ∈ Rd×K be an orthogonal matrix such that ||UU> − ÛÛ>|| . γ1 . 1

κ2
√
K

. For

each i ∈ [K], let v̂i denote the vector satisfying ||v̂i − Û>w̄i∗|| ≤ γ2 . 1
κ2
√
K

. LetM1 be defined

in Lemma 12 and M̂1 be its empirical version. If ||M1−M̂1|| ≤ γ3||M1|| . 1
4 ||M1||, then we have∣∣∣||w∗i || − α̂i∣∣∣ ≤ (κ4K

3
2 (γ1 + γ2) + κ2K

1
2 γ3)||w∗i || (179)

E.2 PROOF OF LEMMA 3

||w∗j − α̂jÛ v̂j || =
∣∣∣∣∣∣w∗j − ||w∗j ||Û v̂j + ||w∗j ||Û v̂j − α̂jÛ v̂j

∣∣∣∣∣∣
≤
∣∣∣∣∣∣w∗j − ||w∗j ||Û v̂j∣∣∣∣∣∣+

∣∣∣∣∣∣||w∗j ||Û v̂j − α̂jÛ v̂j∣∣∣∣∣∣
≤ ||w∗j ||

∣∣∣∣∣∣w̄j∗ − Û v̂j∣∣∣∣∣∣+
∣∣∣∣∣∣||w∗j || − α̂j∣∣∣∣∣∣||Û v̂j ||

≤ ||w∗j ||
∣∣∣∣∣∣w̄j∗ − ÛÛ>w̄∗j + ÛÛ>w̄j

∗ − Û v̂j
∣∣∣∣∣∣+

∣∣∣∣∣∣||w∗j || − α̂j∣∣∣∣∣∣||Û v̂j ||
≤ δ1(W ∗)

(∣∣∣∣∣∣w̄j∗ − ÛÛ>w̄j∗∣∣∣∣∣∣+
∣∣∣∣∣∣Û>w̄j∗ − v̂j∣∣∣∣∣∣)+

∣∣∣∣∣∣||w∗j || − α̂j∣∣∣∣∣∣
(180)

By Lemma 10, Lemma 13 and δK(P2) . δ2
K , we have∣∣∣∣∣∣w̄j∗ − ÛÛ>w̄j∗∣∣∣∣∣∣ . ||P2 − P̂2||

δK(P2)
.

√
d log n

n
· δ

2
1

δ2
K

· τ6
√
D2(λ,M ,σ)D4(λ,M ,σ)

=

√
d log n

n
· κ2 · τ6

√
D2(λ,M ,σ)D4(λ,M ,σ)

(181)

Moreover, we have∣∣∣∣∣∣Û>w̄j∗ − v̂j∣∣∣∣∣∣ ≤ K
3
2

δ2
K(W ∗)

||R3 − R̂3|| . κ2 ·
(
τ6
√
D6(λ,M ,σ)

)
·
√
K3 log n

n
(182)

in which the first step is by Theorem 3 in [Kuleshov et al. (2015)] and the second step is by Lemma
11. By Lemma 14, we have∣∣∣∣∣∣||w∗j || − α̂j∣∣∣∣∣∣ ≤ (κ4K

3
2 (γ1 + γ2) + κ2K

1
2 γ3)||W ∗|| (183)

Therefore, taking the union bound of failure probabilities in Lemmas 10, 11 and 12 and by
D2(λ,M ,σ)D4(λ,M ,σ) ≤ D6(λ,M ,σ) from Property 7, we have that if the sample size
n ≥ κ8K4τ12D6(λ,M ,σ) · d log2 d, then the outputW0 ∈ Rd×K satisfies

||W0 −W ∗|| . κ6K3 · τ6
√
D6(λ,M ,σ)

√
d log n

n
||W ∗|| (184)
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with probability at least 1− n−Ω(δ41)

E.3 PROOF OF LEMMA 10

From Assumption 1, if the Gaussian Mixture Model is a symmetric probability distribution defined
in (8), then P2 = M3(I, I,α). Therefore, by Definition 1, we have

||M̂3(I, I,α)−M3(I, I,α)|| =
∣∣∣∣∣∣ 1
n

n∑
i=1

[
yi · p(x)−1

L∑
l=1

λl(2πσl)
− d2 exp(−||x− µl||

2

2σ2
l

)(
(
x− µl
σ2
l

)⊗3 − (
x− µl
σ2
l

)⊗̃σ−2
l I

)]
(I, I,α)

−E
[
y · p(x)−1

L∑
l=1

λl(2πσl)
− d2 exp(−||x− µl||

2

2σ2
l

)(
(
x− µl
σ2
l

)⊗3 − (
x− µl
σ2
l

)⊗̃σ−2
l I

)]
(I, I,α)

∣∣∣∣∣∣
(185)

Following (Zhong et al., 2017b), ⊗̃ is defined such that for any v ∈ Rd1 and Z ∈ Rd1×d2 ,

v⊗̃Z =

d2∑
i=1

(v ⊗ zi ⊗ zi + zi ⊗ v ⊗ zi + zi ⊗ zi ⊗ v), (186)

where zi is the i-th column of Z. By Definition 1, we have∣∣∣∣∣∣[y · p(x)−1
L∑
l=1

λl(2πσl)
− d2 exp(−||x− µl||

2

2σ2
l

)
(

(
x− µl
σ2
l

)⊗3 − (
x− µl
σ2
l

)⊗̃σ−2
l I

)]
(I, I,α)

∣∣∣∣∣∣
.
∣∣∣∣∣∣∑L

l=1 λl(2πσ
2
l )−

d
2 exp(− ||x−µl||

2

2σ2
l

) · (x−µl
σ2
l

)⊗2(α>(x−µl
σ2
l

))∑L
l=1 λl(2πσ

2
l )−

d
2 exp(− ||x−µl||

2

2σ2
l

)

∣∣∣∣∣∣
. ||σ−6

min(x>i α)xix
>
i ||

(187)
The first step of (187) is because (x−µl

σ2
l

)⊗2(α>(x−µl
σ2
l

)) is the dominant term of the entire ex-
pression, and y ≤ 1. The second step is because the expression can be considered as a normal-
ized weighted summation of (x−µl

σ2
l

)⊗2(α>(x−µl
σ2
l

)) and (x>i α)xix
>
i is its dominant term. Define

Sm(x) = (−1)m
∇mx p(x)
p(x) , where p(x) is the probability density function of the random variable x.

From Definition 1, we can verify that

Mj = E[y · Sm(x)] j ∈ {1, 2, 3} (188)

Then define Gpi =
〈
v, ([yi · S3(xi)](Id, Id,α)− E

[
[yi · S3(xi)](Id, Id,α)

]
v)
〉
, where ||v|| = 1,

then E[Gpi] = 0. Similar to the proof of (131), (132) and (133) in Lemma 8, we have

|Gpi|p .
∣∣σ−6

min(x>i α)(x>i v)2 + Ex∼∑L
l=1N (µl,σ2

l Id)[σ
−6
min(x>i α)(x>i v)2]

∣∣p (189)

E[|Gpi|p] .
(
Ex∼∑L

l=1N (µl,σ2
l Id)[σ

−6
min(x>i α)(x>i v)2]

)p
≤ σ−6p

min Ex∼∑L
l=1N (µl,σ2

l Id)[(x
>α)2]

p
2Ex∼∑L

l=1N (µl,σ2
l Id)[(x

>v)4]
p
2

≤ τ6p
√
D2(λ,M ,σ)D4(λ,M ,σ)

p

(190)

E[exp(θGpi)] . 1 +

∞∑
p=2

θpE[|Gpi|p]
p!

. 1 +

∞∑
p=2

|eθ|pτ6p(D2(λ,M ,σ)D4(λ,M ,σ))
p
2

pp

. 1 + θ2τ12D2(λ,M ,σ)D4(λ,M ,σ)

(191)
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Hence, similar to the derivation of (135), we have

P
( 1

n

n∑
i=1

Gpi ≥ t
)
≤ exp

(
− nθt+ C16nθ

2
(
τ6
√
D2(λ,M ,σ)D4(λ,M ,σ)

)2)
(192)

for some constant C16 > 0. Let θ = t

2C16

(
τ6
√
D2(λ,M ,σ)D4(λ,M ,σ)

)2 and t = δ2
1 ·(

τ6
√
D2(λ,M ,σ)D4(λ,M ,σ)

)
·
√

d logn
n , then we have

||M̂3(Id, Id,α)−M3(Id, Id,α)|| ≤ δ2
1 ·
(
τ6
√
D2(λ,M ,σ)D4(λ,M ,σ)

)
·
√
d log n

n
(193)

with probability at least 1− 2n−Ω(δ41d).
If the Gaussian Mixture Model is not a symmetric distribution which is defined in (8), then
P2 = M2. We would have a similar result as follows.

||M̂2 −M2|| =
∣∣∣∣∣∣ 1
n

n∑
i=1

[yi · S2(x)]− E[y · S2(x)]
∣∣∣∣∣∣ (194)

||yi · S2(xi)|| . ||σ−4
min

1

K

K∑
j=1

φ(w∗j
>xi)xix

>
i || (195)

Then define Gp′i =
〈
v, ([yi · S2(xi)]− E

[
yi · S2(xi)

]
v)
〉
, where ||v|| = 1, then E[Gp′i] = 0.

Similar to the proof of (131), (132) and (133) in Lemma 8, we have

|Gp′i|p .
∣∣σ−4

min(x>i v)2 + Ex∼∑L
l=1N (µl,σ2

l Id)[σ
−4
min(x>i v)2]

∣∣p (196)

E[|Gp′i|p] .
(
Ex∼∑L

l=1N (µl,σ2
l Id)[σ

−4
min(x>i v)2]

)p ≤ τ4pD2(λ,M ,σ)p (197)

E[exp(θGp′i)] . 1 +
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p=2

θpE[|Gpi|p]
p!

. 1 +
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p=2

|eθ|pτ4pD2(λ,M ,σ)p

pp

. 1 + θ2τ8D2(λ,M ,σ)2

(198)

Hence, similar to the derivation of (135), we have

P
( 1

n

n∑
i=1

Gpi ≥ t
)
≤ exp

(
− nθt+ C17nθ

2
(
τ4D2(λ,M ,σ)

)2)
(199)

for some constant C17 > 0. Let θ = t

2C17

(
τ4D2(λ,M ,σ)

)2 and t = δ2
1 ·
(
τ4D2(λ,M ,σ)

)
·
√

d logn
n ,

then we have

||M̂2 −M2|| . δ2
1 · τ4D2(λ,M ,σ) ·

√
d log n

n
(200)

with probability at least 1− 2n−Ω(δ41d).
To sum up, from (193) and (200) we have

||P2 − P̂2|| .
√
d log n

n
· δ2

1 ·max{τ4D2(λ,M ,σ)), τ6
√
D2(λ,M ,σ)D4(λ,M ,σ)}

.

√
d log n

n
· δ2

1 · τ6
√
D2(λ,M ,σ)D4(λ,M ,σ)

(201)

with probability at least 1− 2n−Ω(δ41d).
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E.4 PROOF OF LEMMA 11

We consider each component of y = 1
K

∑K
i=1 φ(w∗i

>x).
Define Ti(x) : Rd → RK×K×K such that

Ti(x) = [φ(w∗i
>x) · S3(x)](Û , Û , Û) (202)

We flatten Ti(x) : Rd → RK×K×K along the first dimension to obtain function
Bi(x) : Rd → RK×K2

. Similar to the derivation of the last step of Lemma E.8 in (Zhong
et al., 2017b), we can obtain ‖Ti(x)‖ ≤ ‖Bi(x)‖. By (185), we have

||Bi(x)|| . σ−6
min

1

K

K∑
j=1

φ(w∗j
>xi)(Û

>x)3 (203)

Define Gri = 〈v,Bi(xi))− E[Bi(xi)]v)〉, where ||v|| = 1, so E[Gri] = 0. Similar to the proof
of (131), (132) and (133) in Lemma 8, we have

|Gri|p .
∣∣σ−6

min(v>Û>x)3 + Ex∼∑L
l=1N (µl,σ2

l Id)[σ
−6
min(v>Û>x)3]

∣∣p (204)

E[|Gri|p] .
(
Ex∼∑L

l=1N (µl,σ2
l Id)[σ

−6
min(v>Û>x)3]

)p
. τ6p

√
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(205)

E[exp(θGri)] . 1 +
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p=2

θpE[|Gri|p]
p!

. 1 +
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p=2

|eθ|pτ6pD6(λ,M ,σ)
p
2

pp

≤ 1 + θ2(τ12
√
D6(λ,M ,σ))2

(206)

Hence, similar to the derivation of (135), we have

P
( 1

n

n∑
i=1

Gri ≥ t
)
≤ exp

(
− nθt+ C18θ

2
(
τ6
√
D6(λ,M ,σ)

)2)
(207)

for some constant C18 > 0. Let θ = t

C18

(
τ6
√
D6(λ,M ,σ)

)2 and t = δ2
1 ·
(
τ6
√
D6(λ,M ,σ)

)
·√

logn
n , then we have

||R̂3 −R3|| . δ2
1 ·
(
τ6
√
D6(λ,M ,σ)

)
·
√

log n

n
(208)

with probability at least 1− 2n−Ω(δ41).

E.5 PROOF OF LEMMA 12

From the Definition 1, we have

||M̂1 −M1|| =
∣∣∣∣∣∣ 1
n

n∑
i=1

[yi · S1(x)]− E[y · S1(x)]
∣∣∣∣∣∣. (209)

Based on Definition 1,

∣∣∣∣∣∣[yi·S1(xi)]
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)

∣∣∣∣∣∣ . ∣∣∣∣∣∣σ−2
min

1

K
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φ(w∗j
>xi)xi
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(210)

Define Gqi =
〈
v, ([yi · S1(xi)]− E

[
[yi · S1(xi)]

]
v)
〉
, where ||v|| = 1, so E[Gqi] = 0. Similar to

the proof of (131), (132) and (133) in Lemma 8, we have

|Gqi|p .
∣∣σ−2

min(x>i v) + Ex∼∑L
l=1N (µl,σ2

l Id)[σ
−2
min(x>i v)]

∣∣p (211)
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E[|Gqi|p] .
(
Ex∼∑L

l=1N (µl,σ2
l Id)[σ

−2
min(x>i v)]

)p ≤ τ2p
√
D2(λ,M ,σ)

p
(212)

E[exp(θGqi)] . 1 +
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p=2

θpE[|Gqi|p]
p!

. 1 +
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p=2

|eθ|pτ2pD2(λ,M ,σ)
p
2

pp

≤ 1 + θ2(τ2
√
D2(λ,M ,σ))2

(213)

Hence, similar to the derivation of (135), we have

|P
( 1

n

n∑
i=1

Gqi ≥ t
)
≤ exp

(
− nθt+ C19θ

2
(
τ2
√
D2(λ,M ,σ)

)2)
(214)

for some constant C19 > 0. Let θ = t

C19

(
τ2
√
D2(λ,M ,σ)

)2 and t =
(
τ2
√
D2(λ,M ,σ)

)
·
√

d logn
n ,

then we have

||M̂1 −M1|| .
(
τ2
√
D2(λ,M ,σ))

)
·
√
d log n

n
(215)

with probability at least 1− 2n−Ω(d).
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