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Abstract

Adapters are parameter-efficient modules
added to pretrained Transformer models that
facilitate cross-lingual transfer. Language
adapters and task adapters can be separately
trained and zero-shot transfer is enabled by
pairing the language adapter in the target lan-
guage with a task adapter trained on a high-
resource language. However, there are many
languages and dialects for which training lan-
guage adapters would be difficult. In this
work, we present a simple and efficient en-
sembling technique to transfer task knowledge
to unseen target languages for which no lan-
guage adapters exist. We compute a uniformly-
weighted ensemble model over the top lan-
guage adapters based on how well they per-
form on the test set of a high-resource language.
We outperform the state-of-the-art model for
this specific setting on named entity recogni-
tion (NER) and part-of-speech tagging (POS),
across nine typologically diverse languages
with relative performance improvements of up
to 29% and 9% on NER and POS, respectively,
on select target languages.

1 Introduction

Multilingual pretrained models have been estab-
lished as a powerful first step towards cross-lingual
NLP (Devlin et al., 2019; Conneau et al., 2020).
A major appeal of these models is that they can
bootstrap NLP tasks in very low-resource lan-
guages via zero-shot transfer (Wu and Dredze,
2019; Pires et al., 2019; Hsu et al., 2019). A
dominant paradigm in zero-shot cross-lingual trans-
fer is to finetune a multilingual model using task-
specific data in a high-resource language before
evaluating on the unseen target languages. Adapter
modules (Rebuffi et al., 2017; Houlsby et al.,
2019; Pfeiffer et al., 2020a,b, 2021) have recently
emerged as another effective technique for zero-
shot transfer. Adapters are new layers interspersed
within the layers of the pretrained models. Only

these new layers are fine-tuned while the weights
of the original pretrained model are kept frozen,
thus enabling efficient parameter sharing between
tasks and languages with the help of task-specific
and language-specific adapters.

Pfeiffer et al. (2020a) propose zero-shot trans-
fer using adapters by stacking language-specific
adapters (trained on unlabeled text) with task-
specific adapters (trained on labeled data). This
technique requires a language adapter for every test
language which may not exist for a large fraction
of the world’s languages. Our main motivation is
to improve zero-shot cross-lingual performance for
such languages that do not have language adapters.

In recent work, Wang et al. (2021b) addressed
this specific setting of zero-shot transfer to lan-
guages without any language adapters using a
learnable weighted ensemble of related language
adapters called Entropy Minimized Ensemble of
Adapters (EMEA). Ensemble weights were learned
for each test instance to minimize the entropy of
the output distribution from the ensembled model.
They found even simple ensembling with uniform
weights to be effective on cross-lingual sequence
tagging tasks and EMEA offered further improve-
ments over vanilla ensembling. However, EMEA is
costly at inference time due to the ensemble weight
computations for each test instance.

In this work, we present a surprisingly simple
and efficient ensembling strategy with no test-time
computations that performs at par or outperforms
EMEA on a diverse set of target languages. For a
given task, the key idea is to evaluate all existing
language adapters on a test set of a high-resource
or related language, sort them in descending or-
der of performance and pick the top few language
adapters for our ensemble. This simple strategy
performs surprisingly well. We also offer many
supporting empirical analyses to further demon-
strate the value of our ensembling techniques.



2 Our Adapter Ensembling Techniques

Our ensembling techniques are built on top of the
MAD-X framework (Pfeiffer et al., 2020a,b) that
we briefly describe below.

Adapters for Zero-Shot Transfer The MAD-X
framework (Pfeiffer et al., 2020b) introduced lan-
guage and task adapters as lightweight modules
that are inserted within a pretrained multilingual
model M. MAD-X supports multiple tasks in mul-
tiple languages by passing the outputs of each layer
of M, denoted by h, through a language adapter £
and a task adapter 7 to give 7 (L(h)). The result-
ing model is written as 7 o Lo M. For cross-lingual
transfer from a source language L. to a target lan-
guage L, MAD-X adopts the following two-step
approach. First, the models L o M and Ly 0 M
are trained on unlabeled text in Ly and Ly, re-
spectively, using the masked language modeling
objective. Next, 7 is trained on labeled task data
in L. using the cascaded model 7 o Ly, o M.
Finally, 7 o Lig o M can be used for zero-shot
transfer to Lyg.

Our goal is to adapt M to a new target language
Lew that does not have a language adapter. Our
ensembling techniques are all based on a simple av-
eraging of outputs from a set of language adapters,
S = {Li,...,L,}. Thatis, h of each layer in
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M is transformed as — Z L;(h). Our ensemble
s

is fixed across all target languages and does not
incur any test-time computations. Next, we discuss
different strategies to choose S.

ENSEMBLE-ALL. Wang et al. (2021b) advocate
the use of languages that are perceived to be re-
lated to Lypew for their ensembles. We argue this
may not be an optimal strategy since it precludes
the use of other (unrelated) language adapters that
are well-trained and might potentially help Lyey.
Also, the presence of a task adapter trained on Lg
in the model makes it unclear as to whether the
chosen adapter languages should be similar to Ly
or Lpew. We first opt for the easiest choice of using
an ensemble of all language adapters available on
AdapterHub (Pfeiffer et al., 2020a). Howeyver, this
is expensive in terms of memory and averages over
a large number of adapters. The next two strategies
aim at meaningfully reducing the size of S.

EN-10. It is conceivable that there are certain high-
performing language adapters that can be effective
across all targets. In order to identify these “good"

language adapters, for every available language
adapter £;, we evaluate 7 o £; o M on an English
test set. We sort the adapters £; in decreasing order
of their performance and select the top K for our
ensemble set S. (We find K = 10 to be a good
choice. More details are in Section 4.)

REL-10. Rather than evaluating on an English
test set, evaluating on a language Ly that is simi-
lar to Lyew may be a better proxy for performance
on Lpew. Thus, we also select the top K language
adapters for S based on their performance on a test
set in Lye1. Ly is identified a priori based on lin-
guistic knowledge of the language and its relation
to Lyew (as was done in Wang et al. (2021b)).

3 Experimental Setup

Tasks and Datasets. We perform experiments
on two tasks: Named entity recognition (NER)
and Part-of-Speech tagging (POS). We use the
WikiAnn dataset (Pan et al., 2017) for NER and
Universal Treebank 2.0 (Nivre et al., 2018) for POS
tagging. We report F1 scores averaged over 3 ran-
dom seeds for all our experiments.

Model. We use the mBERT (Devlin et al., 2019)
base model for all our experiments. We use pre-
trained language adapters from AdapterHub (Pfeif-
fer et al., 2020a). To train the task adapters and
the EMEA ensembles, we use the hyperparameters
specified in Wang et al. (2021b). Appendix C lists
more implementation details.

Languages. We use the same three groups of lan-
guages listed in Wang et al. (2021b). Group 1 has
Marathi (mr), Tamil (ta), Bengali (bn) and Bho-
jpuri (bho); Group 2 has Faroese (fo), Norwegian
(no), Danish(da)3; and, Group 3 has Belarussian
(be), Ukranian (uk) and Bulgarian (bg). Related
languages for each group are Hindi (hi), Icelandic
(is) and Russian (ru), and we also use Arabic( ar)
and German (de) as additional adapters for the first
and second groups, respectively. For our ensem-
bles, we consider 45 pretrained language adapters
available on AdapterHub (excluding Bengali and
Bhojpuri that appear as target languages).
Baselines. We reproduce the following baselines
from Wang et al. (2021b)! :1. EN: English lan-
guage adapter. 2. RELATED: Single related lan-
guage adapter. 3. ENSEMBLE-REL: Ensemble of

"We observe very high variance in Fls across random
seeds for certain languages. This leads to the difference with
reported numbers in Wang et al. (2021b), although the overall
trends remain the same. E.g., our ta scores are much worse for
NER and far better for POS compared to Wang et al. (2021b).



Table 1: Averaged F1 scores for POS tagging and NER. Best scores for each target language are highlighted in bold.

TASK | METHOD | MR BN TA | FO NO DA | BE UK BG | AVG
EN 446 517 229 | 619 727 1795 | 60.3 57.5 682 | 57.7

RELATED 456 415 18.6 | 59.8 69.8 729 | 61.1 529 66.7 | 54.3
ENSEMBLE-REL | 51.7 51.5 287 | 63.3 739 79.6 | 655 582 71.1 | 60.4

NER EMEA-1 53.0 56.2 30.1 | 649 740 80.1 | 66.6 59.6 72.1 | 61.8
EMEA-10 54.2 574 31.2|65.1 74.1 80.5 | 67.1 60.6 73.1 | 62.6
ENSEMBLE-ALL | 499 599 37.2 | 559 726 782 | 67.0 57.1 723 | 61.1

EN-10 498 624 389 | 625 736 792 |67.0 573 1733 | 62.7

REL-10 51.8 63.0 403 | 62.8 73.8 79.5 | 67.7 589 73.6 | 63.5

TASK | METHOD | MR  BHO TA | FO NO DA BE UK BG | AVG
EN 62.7 396 o61.6 | 73.7 84.7 87.8 | 80.1 81.4 84.7 | 72.9

RELATED 53.9 46.6 56.4 | 735 774 829 | 76.1 76.5 80.5 | 69.3
ENSEMBLE-REL | 64.0 456 61.8 | 752 84.0 88.1 | 81.2 81.4 84.7 | 74.0

POS EMEA-1 64.4 457 624 | 75.3 839 88.1 | 81.1 81.3 84.7 | 74.1
EMEA-10 652 454 63.1 | 752 84.1 88.2 | 81.4 8l1.4 849 | 74.3
ENSEMBLE-ALL | 64.8 435 67.7 | 72.6 84.2 88.1 | 81.9 81.8 84.9 | 74.4

EN-10 68.6 450 68.5 | 743 84.8 88.1 | 82.1 82.1 852 | 754

REL-10 67.9 463 68.2 | 753 84.9 88.3 | 824 82.2 854 | 75.7

an English adapter, a related language adapter and
additional adapters (as listed in Wang et al. (2021b),
if available). 4. EMEA-1/EMEA-10: One or ten
steps of test-time entropy minimization applied to
the ensemble in ENSEMBLE-REL.

4 Results

Our main results are listed in Table 1. EN-10 is
consistently better than EMEA-10 on POS tag-
ging for most of the target languages, with the
highest improvement obtained for ta. REL-10 fur-
ther improves over EN-10 with small but consistent
improvements on POS tagging. (We note an ad-
vantage of EN-10 in that it is entirely agnostic of
the target language, unlike REL-10 that requires
a related language.) For the NER task, the Indian
language group of mr, bn and ta is most benefited
overall by REL-10 compared to EMEA-10 and
F1 scores on most of the other target languages us-
ing REL-10 are comparable to that obtained using
EMEA-10.
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Figure 1: Improvement over ENSEMBLE-ALL using
different ensemble sizes K with REL-K.

Varying the ensemble size. Figure 1 shows the
gain in averaged F1 scores for the three language
groups over ENSEMBLE-ALL, for three different
values of K. Considering the overall average F1
scores, K = 10 is the best setting for NER and
K = 5 and K = 10 are comparable for POS.
Given these trends, we set K = 10 for all subse-
quent experiments.

Changing the task adapter. We verify whether
our ensembling technique helps if we had access to
a task adapter trained on a related language (rather
than English). Table 2 shows F1 scores for POS of
group 1 languages using a Hindi task adapter. H1
TopP 10 clearly outperforms the other two ensem-
bling techniques based on average F1 scores.

Evaluating different ensembling techniques.
In order to disentangle the importance of ensem-
bling from the importance of choosing source lan-
guage adapters, we examine how performance
varies using different ensembling techniques in Ta-
ble 3. ENSEMBLE-RAND-10 uses 10 randomly
chosen language adapters and ENSEMBLE-LV-10
picks the top 10 language adapters based on simi-

Table 2: F1 scores for POS tagging using a Hindi task
adapter and different ensembling techniques.

METHOD | MR  BHO TA | AVG
ENTASK + HITOP 10 | 68.1 46.6 68.3 | 61.0
HI TASK + EN,HI,AR 63.7 53.8 679 | 61.8
Hi TASK + ENTOP 10 | 66.9 52.7 704 | 63.3
Hi TASK + HITOP 10 | 68.5 52.9 71.1 | 64.2




Table 3: F1 scores for POS and NER tasks using different ensembling techniques.

TASK | METHOD | MR BN TA | FO NO DA | BE UK BG | AVG
ENSEMBLE-ALL 499 599 37.2 | 559 726 782 | 67.0 57.1 723 | 61.1
ENSEMBLE-RAND-10 10 | 47.7 569 359 | 57.3 72.1 77.7 | 66.2 57.3 71.5 | 59.9

NER ENSEMBLE-LV-10 50.2 57.3 38.0 | 586 74.0 79.0 | 67.4 578 172.6 | 61.7
EN-10 498 624 389|625 736 792 | 67.0 573 733 | 62.7

REL-10 51.8 63.0 40.3 | 62.8 738 795 | 67.7 58.9 73.6 | 63.5

TASK | METHOD | MR  BHO TA | FO NO DA | BE UK BG | AVG
ENSEMBLE-ALL 64.8 435 67.7 | 72.6 84.2 88.1 | 81.9 81.8 849 | 74.4
ENSEMBLE-RAND-10 10 | 64.5 43.5 66.5| 729 83.9 88.2 | 81.8 81.6 85.0 | 74.2

POS ENSEMBLE-LV-10 67.4 452 679 | 73.6 84.1 88.1 | 82.1 82.0 85.0 | 75.0
EN-10 68.6 450 68.5 | 74.3 84.8 88.1 | 82.1 82.1 852 | 75.4

REL-10 679 46.3 68.2 | 75.3 849 88.3 | 824 82.2 854 | 75.6

larity between geographical vectors corresponding
to the target and source languages (Littell et al.,
2017). We observe that our proposed ensembling
techniques outperform the others on (almost) all
target languages for both POS and NER.

5 Related Work

Pfeiffer et al. (2020a,b) introduces the MAD-X
framework for NLP tasks and creates a repository
of pretrained language and task adapters that en-
able cross-lingual transfer. In this work, we focus
on zero-shot transfer to target languages for which
even language adapters do not exist. Wang et al.
(2021b) focuses on the very same setting and serves
as our main comparison. They draw inspiration
from test-time adaptation techniques (Wang et al.,
2021a) and ensemble over language adapters at
test time using learned ensemble weights for each
test instance. These test time computations signif-
icantly add to the inference cost. In contrast, our
simple ensembling techniques do not require costly
test-time computations and yield superior perfor-
mance on both POS and NER tasks. Our work adds
to the existing literature on factors that impact or
limit zero-shot transfer (Lin et al., 2019; Lauscher
et al., 2020; Turc et al., 2021).

6 Discussion and Conclusion

We identify a core set of common language
adapters appearing in the top-10 lists of en, hi, is
and ru. Figure 2 visually displays the languages
that appear in all four lists; nine of the seventeen
languages appear in three or more lists. We con-
jecture that, along with the related language, it
is important to ensemble over this core set of lan-
guage adapters. These adapters perform well across
target languages, regardless of how they relate to

the target, owing to various reasons such as size
and diversity of data used to train the language
adapters (Lin et al., 2019). (Appendix A elaborates
on an experiment using a core set.)

The main limitation of EMEA is its slow infer-
ence speed. REL-10 is significantly faster then
EMEA: With a batch size of 1, REL-10 processes
26.3 examples/second, as opposed to just 6.67 and
0.86 examples/second by EMEA-1 and EMEA.-
10, respectively. Further, Wang et al. (2021b) ob-
served that the performance of EMEA-10 decays
with increasing batch size, while REL-10 has no
such limitation. With a batch size of 32, REL-10
processes as many as 110 examples per second.
(Appendix B shows how EMEA-1 and EMEA-
10 could be used with the ensembles identified by
REL-10 to further improve performance.).

Future Work. While we present a simple en-
sembling technique, we do not yet have a clear
understanding of why the “core set" of language
adapters performs well on most target languages.
This knowledge would help in training more high-
performing language adapters. We leave this im-
portant question for future work.

Figure 2: Visualization of the top ten language adaptors
for L € {en,hi,is,ru}. Note the significant overlap in
language adapters across the four choices of L.
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A Ensembling over a core set

To investigate the idea of a core set of language
adapters, we introduce a new method, ENSEMBLE-
CORE. We select adapters that perform well consis-
tently across all 4 source languages: en,hi,is,ru. We
first normalize the F1 scores in each ranked list to
lie between 0 and 1 such that the best adapter gets a
score of 1 and the worst gets a score of 0. We then
add the normalized scores from each source lan-
guage for a given adapter, and rank the adapters in
decreasing order of cumulative score. In our exper-
iments, we use an ensemble of the top 9 adapters
from this list (fixed across target groups), and in-
clude the related language as the tenth adapter for
each group. From Table 4, the F1 scores using the
above-mentioned core set of language adapters are
very comparable to those obtained using REL-10.

B EMEA with the ensembles identified
by REL-10

Table 5 shows the results with learning ensemble
weights using EMEA-1 and EMEA-10 on the en-
semble of adapters chosen by REL-10. We choose
K=10 for both POS and NER based on the results
shown in Fig. 1. We find that the F1 scores us-
ing EMEA with REL-10 are marginally better than
REL-10 alone.

C Implementation Details

All the experiments were run on an NVIDIA 11Gb
GeForce GTX 1080 Ti. The NER task adapter
was trained for 100 epochs and the POS adapter
was trained for 50 epochs. In both cases, we use
a learning rate of le-4 and an effective batch size
of 32. We choose the best model checkpoint based
on performance on a dev set. For EMEA, we use
a learning rate of v = 10. These are the same
hyperparameters specified by (Wang et al., 2021b).

We use the code shared by Wang et al. (2021b)? to
reproduce all the baseline numbers.

https://github.com/cindyxinyiwang/
emea
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Table 4: Comparison of ENSEMBLE-CORE with REL-10

TASK | METHOD MR BN TA | FO NO DA | BE UK BG | AVG
NER REL-10 51.8 63.0 403 | 62.8 738 79.5| 67.7 58.9 73.6 | 63.5
ENSEMBLE-CORE | 51.9 63.6 39.6 | 61.7 74.0 79.4 | 674 58.2 734 | 63.2
TASK | METHOD MR  BHO TA FO NO DA | BE UK BG | AVG
POS REL-10 679 463 682 | 753 849 883|824 822 854|756
ENSEMBLE-CORE | 68.5 46.9 68.5 | 752 849 88.2 | 823 82.1 853|758

Table 5: Performance of EMEA-1 and EMEA-10 when used in conjunction with REL-10.

TASK | METHOD | MR BN TA | FO NO DA | BE UK BG | AVG
EMEA-1 53.0 56.2 30.1 | 649 74.0 80.1 | 666 596 72.1 | 61.8

EMEA-10 54.2 574 31.2 | 651 74.1 80.5 | 67.1 60.6 73.1 | 62.6

NER REL-10 51.8 63.0 403 | 62.8 73.8 79.5 | 67.7 589 173.6 | 63.5
REL-10 + EMEA-1 51.9 650 40.8 | 63.6 740 799 | 68.3 60.1 739 | 64.2

REL-10 + EMEA-10 | 52.6 66.1 41.5 | 639 74.0 80.3 | 68.9 61.9 74.6 | 64.9

TASK | METHOD | MR BHO  TA FO NO DA BE UK BG | AVG
EMEA-1 64.4 457 624 | 753 83.9 88.1 | 81.1 81.3 84.7 | 74.1

EMEA-10 65.2 454 63.1 | 752 84.1 88.2 | 81.4 814 849 | 743

POS REL-10 679 463 682 | 753 849 88.3 | 824 82.2 854 | 756
REL-10 + EMEA-1 68.0 46.5 68.0 | 752 84.8 88.4 | 82.4 82.2 854 | 75.7

REL-10 + EMEA-10 | 69.2 46.1 68.6 | 75.4 84.7 88.3 | 82.5 82.2 854 | 75.8




