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Abstract

Adapters are parameter-efficient modules001
added to pretrained Transformer models that002
facilitate cross-lingual transfer. Language003
adapters and task adapters can be separately004
trained and zero-shot transfer is enabled by005
pairing the language adapter in the target lan-006
guage with a task adapter trained on a high-007
resource language. However, there are many008
languages and dialects for which training lan-009
guage adapters would be difficult. In this010
work, we present a simple and efficient en-011
sembling technique to transfer task knowledge012
to unseen target languages for which no lan-013
guage adapters exist. We compute a uniformly-014
weighted ensemble model over the top lan-015
guage adapters based on how well they per-016
form on the test set of a high-resource language.017
We outperform the state-of-the-art model for018
this specific setting on named entity recogni-019
tion (NER) and part-of-speech tagging (POS),020
across nine typologically diverse languages021
with relative performance improvements of up022
to 29% and 9% on NER and POS, respectively,023
on select target languages.024

1 Introduction025

Multilingual pretrained models have been estab-026

lished as a powerful first step towards cross-lingual027

NLP (Devlin et al., 2019; Conneau et al., 2020).028

A major appeal of these models is that they can029

bootstrap NLP tasks in very low-resource lan-030

guages via zero-shot transfer (Wu and Dredze,031

2019; Pires et al., 2019; Hsu et al., 2019). A032

dominant paradigm in zero-shot cross-lingual trans-033

fer is to finetune a multilingual model using task-034

specific data in a high-resource language before035

evaluating on the unseen target languages. Adapter036

modules (Rebuffi et al., 2017; Houlsby et al.,037

2019; Pfeiffer et al., 2020a,b, 2021) have recently038

emerged as another effective technique for zero-039

shot transfer. Adapters are new layers interspersed040

within the layers of the pretrained models. Only041

these new layers are fine-tuned while the weights 042

of the original pretrained model are kept frozen, 043

thus enabling efficient parameter sharing between 044

tasks and languages with the help of task-specific 045

and language-specific adapters. 046

Pfeiffer et al. (2020a) propose zero-shot trans- 047

fer using adapters by stacking language-specific 048

adapters (trained on unlabeled text) with task- 049

specific adapters (trained on labeled data). This 050

technique requires a language adapter for every test 051

language which may not exist for a large fraction 052

of the world’s languages. Our main motivation is 053

to improve zero-shot cross-lingual performance for 054

such languages that do not have language adapters. 055

In recent work, Wang et al. (2021b) addressed 056

this specific setting of zero-shot transfer to lan- 057

guages without any language adapters using a 058

learnable weighted ensemble of related language 059

adapters called Entropy Minimized Ensemble of 060

Adapters (EMEA). Ensemble weights were learned 061

for each test instance to minimize the entropy of 062

the output distribution from the ensembled model. 063

They found even simple ensembling with uniform 064

weights to be effective on cross-lingual sequence 065

tagging tasks and EMEA offered further improve- 066

ments over vanilla ensembling. However, EMEA is 067

costly at inference time due to the ensemble weight 068

computations for each test instance. 069

In this work, we present a surprisingly simple 070

and efficient ensembling strategy with no test-time 071

computations that performs at par or outperforms 072

EMEA on a diverse set of target languages. For a 073

given task, the key idea is to evaluate all existing 074

language adapters on a test set of a high-resource 075

or related language, sort them in descending or- 076

der of performance and pick the top few language 077

adapters for our ensemble. This simple strategy 078

performs surprisingly well. We also offer many 079

supporting empirical analyses to further demon- 080

strate the value of our ensembling techniques. 081
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2 Our Adapter Ensembling Techniques082

Our ensembling techniques are built on top of the083

MAD-X framework (Pfeiffer et al., 2020a,b) that084

we briefly describe below.085

Adapters for Zero-Shot Transfer The MAD-X086

framework (Pfeiffer et al., 2020b) introduced lan-087

guage and task adapters as lightweight modules088

that are inserted within a pretrained multilingual089

model M. MAD-X supports multiple tasks in mul-090

tiple languages by passing the outputs of each layer091

of M, denoted by h, through a language adapter L092

and a task adapter T to give T (L(h)). The result-093

ing model is written as T ◦L◦M. For cross-lingual094

transfer from a source language Lsrc to a target lan-095

guage Ltgt, MAD-X adopts the following two-step096

approach. First, the models Lsrc ◦M and Ltgt ◦M097

are trained on unlabeled text in Lsrc and Ltgt, re-098

spectively, using the masked language modeling099

objective. Next, T is trained on labeled task data100

in Lsrc using the cascaded model T ◦ Lsrc ◦ M.101

Finally, T ◦ Ltgt ◦ M can be used for zero-shot102

transfer to Ltgt.103

Our goal is to adapt M to a new target language104

Lnew that does not have a language adapter. Our105

ensembling techniques are all based on a simple av-106

eraging of outputs from a set of language adapters,107

S = {L1, . . . ,Ln}. That is, h of each layer in108

M is transformed as
1

n

n∑
i=1

Li(h). Our ensemble109

is fixed across all target languages and does not110

incur any test-time computations. Next, we discuss111

different strategies to choose S.112

ENSEMBLE-ALL. Wang et al. (2021b) advocate113

the use of languages that are perceived to be re-114

lated to Lnew for their ensembles. We argue this115

may not be an optimal strategy since it precludes116

the use of other (unrelated) language adapters that117

are well-trained and might potentially help Lnew.118

Also, the presence of a task adapter trained on Lsrc119

in the model makes it unclear as to whether the120

chosen adapter languages should be similar to Lsrc121

or Lnew. We first opt for the easiest choice of using122

an ensemble of all language adapters available on123

AdapterHub (Pfeiffer et al., 2020a). However, this124

is expensive in terms of memory and averages over125

a large number of adapters. The next two strategies126

aim at meaningfully reducing the size of S.127

EN-10. It is conceivable that there are certain high-128

performing language adapters that can be effective129

across all targets. In order to identify these “good"130

language adapters, for every available language 131

adapter Li, we evaluate T ◦ Li ◦M on an English 132

test set. We sort the adapters Li in decreasing order 133

of their performance and select the top K for our 134

ensemble set S. (We find K = 10 to be a good 135

choice. More details are in Section 4.) 136

REL-10. Rather than evaluating on an English 137

test set, evaluating on a language Lrel that is simi- 138

lar to Lnew may be a better proxy for performance 139

on Lnew. Thus, we also select the top K language 140

adapters for S based on their performance on a test 141

set in Lrel. Lrel is identified a priori based on lin- 142

guistic knowledge of the language and its relation 143

to Lnew (as was done in Wang et al. (2021b)). 144

3 Experimental Setup 145

Tasks and Datasets. We perform experiments 146

on two tasks: Named entity recognition (NER) 147

and Part-of-Speech tagging (POS). We use the 148

WikiAnn dataset (Pan et al., 2017) for NER and 149

Universal Treebank 2.0 (Nivre et al., 2018) for POS 150

tagging. We report F1 scores averaged over 3 ran- 151

dom seeds for all our experiments. 152

Model. We use the mBERT (Devlin et al., 2019) 153

base model for all our experiments. We use pre- 154

trained language adapters from AdapterHub (Pfeif- 155

fer et al., 2020a). To train the task adapters and 156

the EMEA ensembles, we use the hyperparameters 157

specified in Wang et al. (2021b). Appendix C lists 158

more implementation details. 159

Languages. We use the same three groups of lan- 160

guages listed in Wang et al. (2021b). Group 1 has 161

Marathi (mr), Tamil (ta), Bengali (bn) and Bho- 162

jpuri (bho); Group 2 has Faroese (fo), Norwegian 163

(no), Danish(da)3; and, Group 3 has Belarussian 164

(be), Ukranian (uk) and Bulgarian (bg). Related 165

languages for each group are Hindi (hi), Icelandic 166

(is) and Russian (ru), and we also use Arabic( ar) 167

and German (de) as additional adapters for the first 168

and second groups, respectively. For our ensem- 169

bles, we consider 45 pretrained language adapters 170

available on AdapterHub (excluding Bengali and 171

Bhojpuri that appear as target languages). 172

Baselines. We reproduce the following baselines 173

from Wang et al. (2021b)1 :1. EN: English lan- 174

guage adapter. 2. RELATED: Single related lan- 175

guage adapter. 3. ENSEMBLE-REL: Ensemble of 176

1We observe very high variance in F1s across random
seeds for certain languages. This leads to the difference with
reported numbers in Wang et al. (2021b), although the overall
trends remain the same. E.g., our ta scores are much worse for
NER and far better for POS compared to Wang et al. (2021b).

2



Table 1: Averaged F1 scores for POS tagging and NER. Best scores for each target language are highlighted in bold.

TASK METHOD MR BN TA FO NO DA BE UK BG AVG

NER

EN 44.6 51.7 22.9 61.9 72.7 79.5 60.3 57.5 68.2 57.7
RELATED 45.6 41.5 18.6 59.8 69.8 72.9 61.1 52.9 66.7 54.3

ENSEMBLE-REL 51.7 51.5 28.7 63.3 73.9 79.6 65.5 58.2 71.1 60.4
EMEA-1 53.0 56.2 30.1 64.9 74.0 80.1 66.6 59.6 72.1 61.8

EMEA-10 54.2 57.4 31.2 65.1 74.1 80.5 67.1 60.6 73.1 62.6

ENSEMBLE-ALL 49.9 59.9 37.2 55.9 72.6 78.2 67.0 57.1 72.3 61.1
EN-10 49.8 62.4 38.9 62.5 73.6 79.2 67.0 57.3 73.3 62.7

REL-10 51.8 63.0 40.3 62.8 73.8 79.5 67.7 58.9 73.6 63.5

TASK METHOD MR BHO TA FO NO DA BE UK BG AVG

POS

EN 62.7 39.6 61.6 73.7 84.7 87.8 80.1 81.4 84.7 72.9
RELATED 53.9 46.6 56.4 73.5 77.4 82.9 76.1 76.5 80.5 69.3

ENSEMBLE-REL 64.0 45.6 61.8 75.2 84.0 88.1 81.2 81.4 84.7 74.0
EMEA-1 64.4 45.7 62.4 75.3 83.9 88.1 81.1 81.3 84.7 74.1

EMEA-10 65.2 45.4 63.1 75.2 84.1 88.2 81.4 81.4 84.9 74.3

ENSEMBLE-ALL 64.8 43.5 67.7 72.6 84.2 88.1 81.9 81.8 84.9 74.4
EN-10 68.6 45.0 68.5 74.3 84.8 88.1 82.1 82.1 85.2 75.4

REL-10 67.9 46.3 68.2 75.3 84.9 88.3 82.4 82.2 85.4 75.7

an English adapter, a related language adapter and177

additional adapters (as listed in Wang et al. (2021b),178

if available). 4. EMEA-1/EMEA-10: One or ten179

steps of test-time entropy minimization applied to180

the ensemble in ENSEMBLE-REL.181

4 Results182

Our main results are listed in Table 1. EN-10 is183

consistently better than EMEA-10 on POS tag-184

ging for most of the target languages, with the185

highest improvement obtained for ta. REL-10 fur-186

ther improves over EN-10 with small but consistent187

improvements on POS tagging. (We note an ad-188

vantage of EN-10 in that it is entirely agnostic of189

the target language, unlike REL-10 that requires190

a related language.) For the NER task, the Indian191

language group of mr, bn and ta is most benefited192

overall by REL-10 compared to EMEA-10 and193

F1 scores on most of the other target languages us-194

ing REL-10 are comparable to that obtained using195

EMEA-10.196

(a) Named Entity Recognition (b) Part of Speech Tagging

Figure 1: Improvement over ENSEMBLE-ALL using
different ensemble sizes K with REL-K.

Varying the ensemble size. Figure 1 shows the 197

gain in averaged F1 scores for the three language 198

groups over ENSEMBLE-ALL, for three different 199

values of K. Considering the overall average F1 200

scores, K = 10 is the best setting for NER and 201

K = 5 and K = 10 are comparable for POS. 202

Given these trends, we set K = 10 for all subse- 203

quent experiments. 204

Changing the task adapter. We verify whether 205

our ensembling technique helps if we had access to 206

a task adapter trained on a related language (rather 207

than English). Table 2 shows F1 scores for POS of 208

group 1 languages using a Hindi task adapter. HI 209

TOP 10 clearly outperforms the other two ensem- 210

bling techniques based on average F1 scores. 211

Evaluating different ensembling techniques. 212

In order to disentangle the importance of ensem- 213

bling from the importance of choosing source lan- 214

guage adapters, we examine how performance 215

varies using different ensembling techniques in Ta- 216

ble 3. ENSEMBLE-RAND-10 uses 10 randomly 217

chosen language adapters and ENSEMBLE-LV-10 218

picks the top 10 language adapters based on simi- 219

Table 2: F1 scores for POS tagging using a Hindi task
adapter and different ensembling techniques.

METHOD MR BHO TA AVG

EN TASK + HI TOP 10 68.1 46.6 68.3 61.0

HI TASK + EN,HI,AR 63.7 53.8 67.9 61.8
HI TASK + EN TOP 10 66.9 52.7 70.4 63.3
HI TASK + HI TOP 10 68.5 52.9 71.1 64.2
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Table 3: F1 scores for POS and NER tasks using different ensembling techniques.

TASK METHOD MR BN TA FO NO DA BE UK BG AVG

NER

ENSEMBLE-ALL 49.9 59.9 37.2 55.9 72.6 78.2 67.0 57.1 72.3 61.1
ENSEMBLE-RAND-10 10 47.7 56.9 35.9 57.3 72.1 77.7 66.2 57.3 71.5 59.9

ENSEMBLE-LV-10 50.2 57.3 38.0 58.6 74.0 79.0 67.4 57.8 72.6 61.7
EN-10 49.8 62.4 38.9 62.5 73.6 79.2 67.0 57.3 73.3 62.7

REL-10 51.8 63.0 40.3 62.8 73.8 79.5 67.7 58.9 73.6 63.5

TASK METHOD MR BHO TA FO NO DA BE UK BG AVG

POS

ENSEMBLE-ALL 64.8 43.5 67.7 72.6 84.2 88.1 81.9 81.8 84.9 74.4
ENSEMBLE-RAND-10 10 64.5 43.5 66.5 72.9 83.9 88.2 81.8 81.6 85.0 74.2

ENSEMBLE-LV-10 67.4 45.2 67.9 73.6 84.1 88.1 82.1 82.0 85.0 75.0
EN-10 68.6 45.0 68.5 74.3 84.8 88.1 82.1 82.1 85.2 75.4

REL-10 67.9 46.3 68.2 75.3 84.9 88.3 82.4 82.2 85.4 75.6

larity between geographical vectors corresponding220

to the target and source languages (Littell et al.,221

2017). We observe that our proposed ensembling222

techniques outperform the others on (almost) all223

target languages for both POS and NER.224

5 Related Work225

Pfeiffer et al. (2020a,b) introduces the MAD-X226

framework for NLP tasks and creates a repository227

of pretrained language and task adapters that en-228

able cross-lingual transfer. In this work, we focus229

on zero-shot transfer to target languages for which230

even language adapters do not exist. Wang et al.231

(2021b) focuses on the very same setting and serves232

as our main comparison. They draw inspiration233

from test-time adaptation techniques (Wang et al.,234

2021a) and ensemble over language adapters at235

test time using learned ensemble weights for each236

test instance. These test time computations signif-237

icantly add to the inference cost. In contrast, our238

simple ensembling techniques do not require costly239

test-time computations and yield superior perfor-240

mance on both POS and NER tasks. Our work adds241

to the existing literature on factors that impact or242

limit zero-shot transfer (Lin et al., 2019; Lauscher243

et al., 2020; Turc et al., 2021).244

6 Discussion and Conclusion245

We identify a core set of common language246

adapters appearing in the top-10 lists of en, hi, is247

and ru. Figure 2 visually displays the languages248

that appear in all four lists; nine of the seventeen249

languages appear in three or more lists. We con-250

jecture that, along with the related language, it251

is important to ensemble over this core set of lan-252

guage adapters. These adapters perform well across253

target languages, regardless of how they relate to254

the target, owing to various reasons such as size 255

and diversity of data used to train the language 256

adapters (Lin et al., 2019). (Appendix A elaborates 257

on an experiment using a core set.) 258

The main limitation of EMEA is its slow infer- 259

ence speed. REL-10 is significantly faster then 260

EMEA: With a batch size of 1, REL-10 processes 261

26.3 examples/second, as opposed to just 6.67 and 262

0.86 examples/second by EMEA-1 and EMEA- 263

10, respectively. Further, Wang et al. (2021b) ob- 264

served that the performance of EMEA-10 decays 265

with increasing batch size, while REL-10 has no 266

such limitation. With a batch size of 32, REL-10 267

processes as many as 110 examples per second. 268

(Appendix B shows how EMEA-1 and EMEA- 269

10 could be used with the ensembles identified by 270

REL-10 to further improve performance.). 271

Future Work. While we present a simple en- 272

sembling technique, we do not yet have a clear 273

understanding of why the “core set" of language 274

adapters performs well on most target languages. 275

This knowledge would help in training more high- 276

performing language adapters. We leave this im- 277

portant question for future work. 278

cs

pt zh_yue

id

en
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hu
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lv
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de is ru
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is ru
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Figure 2: Visualization of the top ten language adaptors
for Lrel ∈ {en,hi,is,ru}. Note the significant overlap in
language adapters across the four choices of Lrel.
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A Ensembling over a core set405

To investigate the idea of a core set of language406

adapters, we introduce a new method, ENSEMBLE-407

CORE. We select adapters that perform well consis-408

tently across all 4 source languages: en,hi,is,ru. We409

first normalize the F1 scores in each ranked list to410

lie between 0 and 1 such that the best adapter gets a411

score of 1 and the worst gets a score of 0. We then412

add the normalized scores from each source lan-413

guage for a given adapter, and rank the adapters in414

decreasing order of cumulative score. In our exper-415

iments, we use an ensemble of the top 9 adapters416

from this list (fixed across target groups), and in-417

clude the related language as the tenth adapter for418

each group. From Table 4, the F1 scores using the419

above-mentioned core set of language adapters are420

very comparable to those obtained using REL-10.421

B EMEA with the ensembles identified422

by REL-10423

Table 5 shows the results with learning ensemble424

weights using EMEA-1 and EMEA-10 on the en-425

semble of adapters chosen by REL-10. We choose426

K=10 for both POS and NER based on the results427

shown in Fig. 1. We find that the F1 scores us-428

ing EMEA with REL-10 are marginally better than429

REL-10 alone.430

C Implementation Details431

All the experiments were run on an NVIDIA 11Gb432

GeForce GTX 1080 Ti. The NER task adapter433

was trained for 100 epochs and the POS adapter434

was trained for 50 epochs. In both cases, we use435

a learning rate of 1e-4 and an effective batch size436

of 32. We choose the best model checkpoint based437

on performance on a dev set. For EMEA, we use438

a learning rate of γ = 10. These are the same439

hyperparameters specified by (Wang et al., 2021b).440

We use the code shared by Wang et al. (2021b)2 to 441

reproduce all the baseline numbers. 442

2https://github.com/cindyxinyiwang/
emea
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Table 4: Comparison of ENSEMBLE-CORE with REL-10

TASK METHOD MR BN TA FO NO DA BE UK BG AVG

NER REL-10 51.8 63.0 40.3 62.8 73.8 79.5 67.7 58.9 73.6 63.5
ENSEMBLE-CORE 51.9 63.6 39.6 61.7 74.0 79.4 67.4 58.2 73.4 63.2

TASK METHOD MR BHO TA FO NO DA BE UK BG AVG

POS REL-10 67.9 46.3 68.2 75.3 84.9 88.3 82.4 82.2 85.4 75.6
ENSEMBLE-CORE 68.5 46.9 68.5 75.2 84.9 88.2 82.3 82.1 85.3 75.8

Table 5: Performance of EMEA-1 and EMEA-10 when used in conjunction with REL-10.

TASK METHOD MR BN TA FO NO DA BE UK BG AVG

NER

EMEA-1 53.0 56.2 30.1 64.9 74.0 80.1 66.6 59.6 72.1 61.8
EMEA-10 54.2 57.4 31.2 65.1 74.1 80.5 67.1 60.6 73.1 62.6

REL-10 51.8 63.0 40.3 62.8 73.8 79.5 67.7 58.9 73.6 63.5
REL-10 + EMEA-1 51.9 65.0 40.8 63.6 74.0 79.9 68.3 60.1 73.9 64.2

REL-10 + EMEA-10 52.6 66.1 41.5 63.9 74.0 80.3 68.9 61.9 74.6 64.9

TASK METHOD MR BHO TA FO NO DA BE UK BG AVG

POS

EMEA-1 64.4 45.7 62.4 75.3 83.9 88.1 81.1 81.3 84.7 74.1
EMEA-10 65.2 45.4 63.1 75.2 84.1 88.2 81.4 81.4 84.9 74.3

REL-10 67.9 46.3 68.2 75.3 84.9 88.3 82.4 82.2 85.4 75.6
REL-10 + EMEA-1 68.0 46.5 68.0 75.2 84.8 88.4 82.4 82.2 85.4 75.7

REL-10 + EMEA-10 69.2 46.1 68.6 75.4 84.7 88.3 82.5 82.2 85.4 75.8
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